Skip to main content
\(\require{cancel}\newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\highlight}[1]{{\color{blue}{{#1}}}} \newcommand{\lighthigh}[1]{{\color{magenta}{{#1}}}} \newcommand{\unhighlight}[1]{{\color{black}{{#1}}}} \newcommand{\lowlight}[1]{{\color{lightgray}{#1}}} \newcommand{\attention}[1]{\mathord{\overset{\downarrow}{#1}}} \newcommand{\substitute}[1]{{\color{blue}{{#1}}}} \newcommand{\addright}[1]{{\color{blue}{{{}+#1}}}} \newcommand{\addleft}[1]{{\color{blue}{{#1+{}}}}} \newcommand{\subtractright}[1]{{\color{blue}{{{}-#1}}}} \newcommand{\multiplyright}[2][\cdot]{{\color{blue}{{{}#1#2}}}} \newcommand{\multiplyleft}[2][\cdot]{{\color{blue}{{#2#1{}}}}} \newcommand{\divideunder}[2]{\frac{#1}{{\color{blue}{{#2}}}}} \newcommand{\divideright}[1]{{\color{blue}{{{}\div#1}}}} \newcommand{\cancelhighlight}[1]{{\color{blue}{{\cancel{#1}}}}} \newcommand{\apple}{\text{๐ŸŽ}} \newcommand{\banana}{\text{๐ŸŒ}} \newcommand{\pear}{\text{๐Ÿ}} \newcommand{\cat}{\text{๐Ÿฑ}} \newcommand{\dog}{\text{๐Ÿถ}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section14.3More on Rationalizing the Denominator

In Sectionย 8.2, we learned how to rationalize the denominator in simple expressions like \(\frac{1}{\sqrt{2}}\text{.}\) We will briefly review this topic and then extend the concept to the next level.

Figure14.3.1Alternative Video Lesson

Subsection14.3.1A Review of Rationalizing the Denominator

To remove radicals from the denominator of \(\frac{1}{\sqrt{2}}\text{,}\) we multiply the numerator and denominator by \(\sqrt{2}\text{:}\)

\begin{align*} \frac{1}{\sqrt{2}}\amp=\frac{1}{\sqrt{2}}\multiplyright{\frac{\sqrt{2}}{\sqrt{2}}}\\ \amp=\frac{\sqrt{2}}{2} \end{align*}

We used the property:

\begin{equation*} \sqrt{x}\cdot\sqrt{x}=x,\text{ where }x\text{ is positive} \end{equation*}
Example14.3.2

Rationalize the denominator of the expressions.

  1. \(\frac{3}{\sqrt{6}}\)

  2. \(\frac{\sqrt{5}}{\sqrt{72}}\)

Solution
  1. To rationalize the denominator of \(\frac{3}{\sqrt{6}}\text{,}\) we take the expression and multiply by a special version of \(\highlight{1}\) to make the radical in the denominator cancel.

    \begin{align*} \frac{3}{\sqrt{6}}\amp=\frac{3}{\sqrt{6}}\multiplyright{\frac{\sqrt{6}}{\sqrt{6}}}\\ \amp=\frac{3\sqrt{6}}{\sqrt{36}}\\ \amp=\frac{3\sqrt{6}}{6}\\ \amp=\frac{\sqrt{6}}{2} \end{align*}
  2. Rationalizing the denominator of \(\frac{\sqrt{5}}{\sqrt{72}}\) is slightly trickier. We could go the brute force method and multiply both the numerator and denominator by \(\sqrt{72}\text{,}\) and it would be effective; however, we should note that the \(\sqrt{72}\) in the denominator can be reduced first. This will simplify future algebra.

    \begin{align*} \frac{\sqrt{5}}{\sqrt{72}}\amp=\frac{\sqrt{5}}{\sqrt{36\cdot 2}}\\ \amp=\frac{\sqrt{5}}{\sqrt{36}\cdot\sqrt{2}}\\ \amp=\frac{\sqrt{5}}{6\cdot\sqrt{2}}\\ \end{align*}

    Now all that remains is to multiply the numerator and denominator by \(\sqrt{2}\text{.}\)

    \begin{align*} \amp=\frac{\sqrt{5}}{6\cdot\sqrt{2}}\multiplyright{\frac{\sqrt{2}}{\sqrt{2}}}\\ \amp=\frac{\sqrt{10}}{6\cdot\sqrt{4}}\\ \amp=\frac{\sqrt{10}}{6\cdot 2}\\ \amp=\frac{\sqrt{10}}{12} \end{align*}

Subsection14.3.2Rationalize Denominator with Difference of Squares Formula

How can be remove the radical from the denominator of \(\frac{1}{\sqrt{2}+1}\text{?}\) Let's try multiplying the numerator and denominator by \(\sqrt{2}\text{:}\)

\begin{align*} \frac{1}{\sqrt{2}+1}\amp=\frac{1}{\left(\sqrt{2}+1\right)}\multiplyright{\frac{\sqrt{2}}{\sqrt{2}}}\\ \amp=\frac{\sqrt{2}}{\sqrt{2}\cdot\highlight{\sqrt{2}}+1\cdot\highlight{\sqrt{2}}}\\ \amp=\frac{\sqrt{2}}{2+\sqrt{2}} \end{align*}

We removed one radical from the denominator, but created another. We need to find another method. The difference of squares formula will help:

\begin{equation*} (a+b)(a-b)=a^2-b^2 \end{equation*}

Those two squares in \(a^2-b^2\) can remove square roots. To remove the radical from the denominator of \(\frac{1}{\sqrt{2}+1}\text{,}\) we multiply the numerator and denominator by \(\sqrt{2}-1\text{:}\)

\begin{align*} \frac{1}{\sqrt{2}+1}\amp=\frac{1}{\left(\sqrt{2}+1\right)}\multiplyright{\frac{\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)}}\\ \amp=\frac{\sqrt{2}-1}{\left(\sqrt{2}\right)^2-(1)^2}\\ \amp=\frac{\sqrt{2}-1}{2-1}\\ \amp=\frac{\sqrt{2}-1}{1}\\ \amp=\sqrt{2}-1 \end{align*}

Let's look at a few more examples.

Example14.3.3

Rationalize the denominator in \(\frac{\sqrt{7}-\sqrt{2}}{\sqrt{5}+\sqrt{3}}\text{.}\)

Solution

To remove radicals in \(\sqrt{5}+\sqrt{3}\) with the difference of squares formula, we multiply it with \(\sqrt{5}-\sqrt{3}\text{.}\)

\begin{align*} \frac{\sqrt{7}-\sqrt{2}}{\sqrt{5}+\sqrt{3}}\amp=\frac{\sqrt{7}-\sqrt{2}}{\sqrt{5}+\sqrt{3}}\multiplyright{\frac{\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)}}\\ \amp=\frac{\sqrt{7}\multiplyright{\sqrt{5}}-\sqrt{7}\multiplyright{\sqrt{3}}-\sqrt{2}\multiplyright{\sqrt{5}}-\sqrt{2}\multiplyright{-\sqrt{3}}}{\left(\sqrt{5}\right)^2-\left(\sqrt{3}\right)^2}\\ \amp=\frac{\sqrt{35}-\sqrt{21}-\sqrt{10}+\sqrt{6}}{5-3}\\ \amp=\frac{\sqrt{35}-\sqrt{21}-\sqrt{10}+\sqrt{6}}{2} \end{align*}
Example14.3.4

Rationalize the denominator in \(\frac{\sqrt{3}}{3-2\sqrt{3}}\text{.}\)

Solution

To remove the radical in \(3-2\sqrt{3}\) with the difference of squares formula, we multiply it with \(3+2\sqrt{3}\text{.}\)

\begin{align*} \frac{\sqrt{3}}{3-2\sqrt{3}}\amp=\frac{\sqrt{3}}{(3-2\sqrt{3})}\multiplyright{\frac{(3+2\sqrt{3})}{(3+2\sqrt{3})}}\\ \amp=\frac{\multiplyleft{3}\sqrt{3}+\multiplyleft{2\sqrt{3}}\sqrt{3}}{(3)^2-\left(2\sqrt{3}\right)^2}\\ \amp=\frac{3\sqrt{3}+2\cdot 3}{9-2^2\left(\sqrt{3}\right)^2}\\ \amp=\frac{3\sqrt{3}+6}{9-4(3)}\\ \amp=\frac{3\left(\sqrt{3}+2\right)}{9-12}\\ \amp=\frac{3\left(\sqrt{3}+2\right)}{-3}\\ \amp=\frac{\sqrt{3}+2}{-1}\\ \amp=-\sqrt{3}-2 \end{align*}

SubsectionExercises

Rationalizing a Denominator

1

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \frac{1}{\sqrt{7}} = }\)

2

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \frac{1}{\sqrt{10}} = }\)

3

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \frac{40}{\sqrt{10}} = }\)

4

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \frac{4}{\sqrt{2}} = }\)

5

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \frac{1}{{\sqrt{18}}} = }\)

6

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \frac{1}{{\sqrt{54}}} = }\)

7

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \frac{10}{{\sqrt{180}}} = }\)

8

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \frac{10}{{\sqrt{32}}} = }\)

9

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \frac{4}{\sqrt{n}} = }\)

10

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \frac{2}{\sqrt{a}} = }\)

11

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \sqrt{\frac{14}{15}} = }\)

12

Rationalize the denominator and simplify the expression.

\(\displaystyle{ \sqrt{\frac{15}{11}} = }\)

13

Simplify this radical.

\(\displaystyle{ \sqrt{\frac{11}{12}} = }\)

14

Simplify this radical.

\(\displaystyle{ \sqrt{\frac{11}{63}} = }\)

Rationalizing the Denominator Using the Difference of Squares Formula

15

Rationalize the denominator and simplify the expression.

\(\displaystyle{\dfrac{7}{\sqrt{6}+5}=}\)

16

Rationalize the denominator and simplify the expression.

\(\displaystyle{\dfrac{5}{\sqrt{6}+5}=}\)

17

Rationalize the denominator and simplify the expression.

\(\displaystyle{\dfrac{6}{\sqrt{21}+8}=}\)

18

Rationalize the denominator and simplify the expression.

\(\displaystyle{\dfrac{7}{\sqrt{13}+4}=}\)

19

Rationalize the denominator and simplify the expression.

\(\displaystyle{\dfrac{\sqrt{2}-13}{\sqrt{13}+7}=}\)

20

Rationalize the denominator and simplify the expression.

\(\displaystyle{\dfrac{\sqrt{5}-14}{\sqrt{7}+4}=}\)

21

Rationalize the denominator and simplify the expression.

\(\displaystyle{\dfrac{\sqrt{3}-15}{\sqrt{11}+2}=}\)

22

Rationalize the denominator and simplify the expression.

\(\displaystyle{\dfrac{\sqrt{2}-6}{\sqrt{13}+8}=}\)