Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
permalink

Section 13.8 Rational Exponents

permalinkThe power to a power rule of exponents relates that (x^m)^n=x^{mn}\text{.} This rule is fairly intuitive when both exponents are positive. For example, in the expression (x^4)^3 there are three factors of x^4\text{,} each of which contains four factors of x\text{,} so all together there are four factors of x\text{,} three times, i.e. 3 \cdot 4 factor of x\text{.}

permalinkWhile the power to a power rule is less intuitive once you move away from positive integer exponents, the rule remains the same regardless of the nature of the exponents. For example:

\begin{align*} (x^{1/3})^3\amp=x^{\frac{1}{3} \cdot 3}\\ \amp=x^{1}\\ \amp=x \end{align*}

permalinkBut we already have a name for the expression that when cubed results in x\text{,} and that name is \sqrt[3]{x} (the cube root of x). So it must be the case that x^{1/3}=\sqrt[3]{x}\text{.} In general, is n is any positive integer, then:

\begin{equation*} x^{1/n}=\sqrt[n]{x} \end{equation*}

permalinkand more generally,

\begin{equation*} x^{m/n}=\sqrt[n]{x^m}\text{.} \end{equation*}

permalinkSeveral examples are shown below.

permalink
Example 13.8.1.

Express y^{7/5} as an equivalent radical expression

Solution
\begin{equation*} y^{7/5}=\sqrt[5]{y^7} \end{equation*}
permalink
Example 13.8.2.

Express \sqrt[3]{w^{12}} using an equivalent exponential expression

Solution
\begin{align*} \sqrt[3]{w^{12}}\amp=w^{12/3}\\ \amp=w^4 \end{align*}
permalink
Example 13.8.3.

Express \sqrt{x^9} using an equivalent exponential expression

Solution
\begin{equation*} \sqrt{x^9}=x^{9/2} \end{equation*}

permalinkYou can use Figure 13.8.4 to explore this definition some more.

permalink
Figure 13.8.4. Explore the Meaning of Rational Exponents.

permalinkAs long as both the numerator and denominator of a rational exponent are fairly small positive numbers, it is fairly easy to evaluate expressions that include rational exponents using the rule x^{m/n}=\sqrt[n]{x^m}\text{.}

permalink
Example 13.8.5.

Evaluate 16^{1/2}\text{.}

Solution
\begin{align*} 16^{1/2}\amp=\sqrt{16}\\ \amp=4 \end{align*}
permalink
Example 13.8.6.

Evaluate 8^{2/3}\text{.}

Solution
\begin{align*} 8^{2/3}\amp=\sqrt[3]{8^2}\\ \amp=\sqrt[3]{64}\\ \amp=4 \end{align*}
permalink
Example 13.8.7.

Evaluate 100^{3/2}\text{.}

Solution
\begin{align*} 100^{3/2}\amp=\sqrt{100^3}\\ \amp=\sqrt{1000000}\\ \amp=1000 \end{align*}

permalinkWhen the numerator of the rational exponent is large, the rule x^{m/n}=\sqrt[n]{x^m} can become quite cumbersome. Consider, for example, evaluating 9^{5/2}\text{.} If we try to use the standard form we hit a brick wall. First, it's not trivial to calculate that 9^5=59,049 (reality check ... I grabbed my calculator). Now that I have the value of 59,049, I have to determine its square root. Oh my!

permalinkFortunately for us, the application of the exponent and the application of the radical can be done in either order. That is:

\begin{equation*} a^{m/n}=\sqrt[n]{x^m} \text{ and } a^{m/n}=(\sqrt[n]{x})^m \end{equation*}
permalink
Example 13.8.8.

Using the second option, evaluate 9^{5/2}\text{.}

Solution
\begin{align*} 9^{5/2}\amp=(\sqrt{9})^5\\ \amp=3^5\\ \amp=243 \end{align*}
permalink
Example 13.8.9.

Using the second option, evaluate 16^{7/4}\text{.}

Solution
\begin{align*} 16^{7/4}\amp=(\sqrt[4]{16})^7\\ \amp=2^7\\ \amp=128 \end{align*}

permalinkRational exponents are allowed to be negative. If that's the case, you probably want to deal with the negative aspect of the exponent before taking on the fractional aspect.

permalink
Example 13.8.10.

Evaluate 27^{-2/3}\text{.}

Solution
\begin{align*} 27^{-2/3}\amp=\frac{1}{27^{2/3}}\\ \amp=\frac{1}{(\sqrt[3]{27})^2}\\ \amp=\frac{1}{3^2}\\ \amp=\frac{1}{9} \end{align*}

permalinkSometimes radical expressions can be simplified after first rewriting the expressions using rational exponents and applying the appropriate rules of exponents. If the resultant expression still has a rational exponent, it is standard to convert back to radical notation. Several examples follow.

permalink
Example 13.8.11.

Use rational exponents to simplify \text{.} Where appropriate, your final result should be converted back to radical form.

Solution
\begin{align*} \sqrt[3]{y^2} \cdot \sqrt[6]{y}\amp=y^{2/3}y^{1/6}\\ \amp=y^{2/3+1/6}\\ \amp=y^{5/6}\\ \amp=\sqrt[6]{y^5} \end{align*}
permalink
Example 13.8.12.

Use rational exponents to simplify \sqrt[8]{t^4}\text{.} Where appropriate, your final result should be converted back to radical form.

Solution
\begin{align*} \sqrt[8]{t^4}\amp=t^{4/8}\\ \amp=t^{1/2}\\ \amp=\sqrt{t} \end{align*}
permalink
Example 13.8.13.

Use rational exponents to simplify \sqrt[10]{\sqrt{5^{40}}}\text{.} Where appropriate, your final result should be converted back to radical form.

Solution
\begin{align*} \sqrt[10]{\sqrt{5^{40}}}\amp=\sqrt[10]{5^{40/2}}\\ \amp=\sqrt[10]{5^{20}}\\ \amp=5^{20/10}\\ \amp=5^2\\ \amp=25 \end{align*}
permalink

Exercises Exercises

Convert each exponential expression to a radical expression and each radical expression to an exponential expression. When converting to a rational exponent, reduce the exponent if possible. Assume that all variables represent positive values.

permalink
5.

\sqrt[4]{y^{20}}

Solution

\(\begin{aligned}[t] \sqrt[4]{y^{20}}\amp=y^{20/4}\\ \amp=y^5 \end{aligned}\)

permalink
6.

\sqrt[15]{t^3}

Solution

\(\begin{aligned}[t] \sqrt[15]{t^3}\amp=t^{3/15}\\ \amp=t^{1/5} \end{aligned}\)

Determine the value of each expression.

permalink
7.

4^{1/2}

Solution

\(\begin{aligned}[t] 4^{1/2}\amp=\sqrt{4}\\ \amp=2 \end{aligned}\)

permalink
8.

27^{-1/3}

Solution

\(\begin{aligned}[t] 27^{-1/3}\amp=\frac{1}{27^{1/3}}\\ \amp=\frac{1}{\sqrt[3]{27}}\\ \amp=\frac{1}{3} \end{aligned}\)

permalink
9.

\left(\frac{4}{9}\right)^{-1/2}

Solution

\(\begin{aligned}[t] \left(\frac{4}{9}\right)^{-1/2}\amp=\left(\frac{9}{4}\right)^{1/2}\\ \amp=\sqrt{\frac{9}{4}}\\ \amp=\frac{3}{2} \end{aligned}\)

permalink
10.

8^{7/3}

Solution

\(\begin{aligned}[t] 8^{7/3}\amp=(\sqrt[3]{8})^7\\ \amp=2^7\\ \amp=128 \end{aligned}\)

permalink
11.

100^{5/2}

Solution

\(\begin{aligned}[t] 100^{5/2}\amp=(\sqrt{100})^5\\ \amp=10^5\\ \amp=100,000 \end{aligned}\)

permalink
12.

16^{-9/4}

Solution

\(\begin{aligned}[t] 16^{-9/4}\amp=\frac{1}{16^{9/4}}\\ \amp=\frac{1}{(\sqrt[4]{16})^9}\\ \amp=\frac{1}{2^9}\\ \amp=\frac{1}{512} \end{aligned}\)

Simplify each radical expression after first rewriting the expression in exponential form. Assume that all variables represent positive values. Where appropriate, your final result should be converted back to radical form.

permalink
13.

\sqrt[5]{t^{20}}

Solution

\(\begin{aligned}[t] \sqrt[5]{t^{20}}\amp=t^{20/5}\\ \amp=t^4 \end{aligned}\)

permalink
14.

6\sqrt[33]{x^{77}}

Solution

\(\begin{aligned}[t] 6\sqrt[33]{x^{77}}\amp=6x^{77/33}\\ \amp=6x^{7/3}\\ \amp=6\sqrt[3]{x^7} \end{aligned}\)

permalink
15.

(\sqrt{3})^{10}

Solution

\(\begin{aligned}[t] (\sqrt{3})^{10}\amp=3^{10/2}\\ \amp=3^5\\ \amp=243 \end{aligned}\)

permalink
16.

\sqrt[4]{9^2}

Solution

\(\begin{aligned}[t] \sqrt[4]{9^2}\amp=9^{2/4}\\ \amp=9^{1/2}\\ \amp=\sqrt{9}\\ \amp=3 \end{aligned}\)

permalink
17.

\sqrt{w}\sqrt[4]{w}

Solution

\(\begin{aligned}[t] \sqrt{w}\sqrt[4]{w}\amp=w^{1/2}w^{1/4}\\ \amp=w^{3/4}\\ \amp=\sqrt[4]{w^3} \end{aligned}\)

permalink
18.

\sqrt[7]{x^6}\sqrt[7]{x}

Solution

\(\begin{aligned}[t] \sqrt[7]{x^6}\sqrt[7]{x}\amp=x^{6/7}x^{1/7}\\ \amp=x^1\\ \amp=x \end{aligned}\)

permalink
19.

(\sqrt[12]{x^7y^{16}})^{36}

Solution

\(\begin{aligned}[t] (\sqrt[12]{x^7y^{15}})^{36}\amp=(x^7y^{16})^{36/12}\\ \amp=(x^7y^{16})^3\\ \amp=x^{21}y^{48} \end{aligned}\)

permalink
20.

\sqrt[5]{\sqrt[3]{x^{15}}}

Solution

\(\begin{aligned}[t] \sqrt[15]{\sqrt[3]{x^{15}}}\amp=\sqrt[15]{x^{15/3}}\\ \amp=\sqrt[15]{x^5}\\ \amp=x^{5/15}\\ \amp=x^{1/3}\\ \amp=\sqrt[3]{x} \end{aligned}\)