###### 1

\(\log_5\left(\frac{1}{5}\right)\)

Solution\(\log_5\left(\frac{1}{5}\right)=-1\)

\(\require{cancel}\newcommand{\abs}[1]{\left\lvert#1\right\rvert}
\newcommand{\point}[2]{\left(#1,#2\right)}
\newcommand{\highlight}[1]{{\color{blue}{{#1}}}}
\newcommand{\highlightr}[1]{{\color{red}{{#1}}}}
\newcommand{\highlightg}[1]{{\color{green}{{#1}}}}
\newcommand{\highlightp}[1]{{\color{purple}{{#1}}}}
\newcommand{\highlightb}[1]{{\color{brown}{{#1}}}}
\newcommand{\highlighty}[1]{{\color{gray}{{#1}}}}
\newcommand{\lowlight}[1]{{\color{lightgray}{#1}}}
\newcommand{\attention}[1]{\mathord{\overset{\downarrow}{#1}}}
\newcommand{\substitute}[1]{{\color{blue}{{#1}}}}
\newcommand{\addright}[1]{{\color{blue}{{{}+#1}}}}
\newcommand{\addleft}[1]{{\color{blue}{{#1+{}}}}}
\newcommand{\subtractright}[1]{{\color{blue}{{{}-#1}}}}
\newcommand{\multiplyright}[2][\cdot]{{\color{blue}{{{}#1#2}}}}
\newcommand{\multiplyleft}[2][\cdot]{{\color{blue}{{#2#1{}}}}}
\newcommand{\divideunder}[2]{\frac{#1}{{\color{blue}{{#2}}}}}
\newcommand{\divideright}[1]{{\color{blue}{{{}\div#1}}}}
\newcommand{\apple}{\text{π}}
\newcommand{\banana}{\text{π}}
\newcommand{\pear}{\text{π}}
\newcommand{\cat}{\text{π±}}
\newcommand{\dog}{\text{πΆ}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\)

Determine the value of each logarithm *without the use of a calculator*.

\(\log_5\left(\frac{1}{5}\right)\)

Solution\(\log_5\left(\frac{1}{5}\right)=-1\)

\(\log_3(81)\)

Solution\(\log_3(81)=4\)

\(\log_{100}(10)\)

Solution\(\log_{100}(10)=\frac{1}{2}\)

\(\log_{27}(9)\)

Solution\(\log_{27}(9)=\frac{2}{3}\)

\(\log_4\left(\frac{1}{2}\right)\)

Solution\(\log_4\left(\frac{1}{2}\right)=-\frac{1}{2}\)

\(\log(10^{-6})\)

Solution\(\log(10^{-6})=-6\)

Use the change of base formula and a calculator to estimate the value of each logarithm. Round each value to three digits after the decimal point.

Completely expand each logarithmic expression.

\(\log\left(\frac{xy^2}{4\sqrt{z}}\right)\)

Solution\(\log(x)+2\log(y)-\log(4)-\frac{1}{2}\log(z)\)

\(\log_2\left(\frac{8\sqrt[3]{x^7}}{y^9z^4}\right)\)

Solution\(3+\frac{7}{3}\log_2(x)-9\log_2(y)-4\log_2(z)\)

\(\log_8\left((x+y)(x-y)\right)\)

Solution\(\log_8(x+y)+\log_8(x-y)\)

\(\log\left(\frac{x^2+y^2}{x+y}\right)\)

Solution\(\log\left(x^2+y^2\right)-\log(x+y)\)

Combine each expression into a single logarithmic expression.

\(\log_2(x)-4\log_2(y)-7\log_2(z)\)

Solution\(\log_2\left(\frac{x}{y^4z^7}\right)\)

\(3+\frac{1}{5}\log(x)-10\log(y)+14\log(z)\)

Solution\(\log\left(\frac{1000z^{14}\sqrt[5]{x}}{y^{10}}\right)\)

\(-\frac{1}{2}-\frac{2}{3}\log_9(x)+\log_9(y-z)\)

Solution\(\log_9\left(\frac{y-z}{3\sqrt[3]{x^2}}\right)\)

\(8\log_6\left(\sqrt{x}\right)-2-4\log_6(x)-\frac{4}{9}\log_6(y)\)

Solution\(\log_6\left(\frac{1}{36\sqrt[9]{y^4}}\right)\)

Determine all solutions to each stated equation. State the exact solutions and , where appropriate, also state approximate solutions (rounded to the nearest hundredth).

\(\log(x)+\log(x-2)=\log(15)\)

SolutionThe only solution is 5.

\(\log_2(x+1)-\log_2(x-3)=1\)

SolutionThe only solution is 7.

\(2\log_3(x)-2=\log_3(x-2)\)

SolutionThe solutions are 3 and 6.

\(3^{x+5}-9^{x+2}=0\)

SolutionThe only solution is 1.

\(5^x=3^{2x-1}\)

SolutionThe only solution is \(\frac{\log(3)}{\log\left(\frac{5}{9}\right)}\) which is approximately 1.87.

\(\ln(x+2)-\ln(x-3)=2\)

SolutionThe only solution is \(\frac{3e^2+3}{e^2-1}\) which is approximately 3.78.

\(e^{3x-1}=5\)

SolutionThe only solution is \(\frac{\ln(5)+1}{3}\) which is approximately 0.87.