Skip to main content
\(\require{cancel}\newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\highlight}[1]{{\color{blue}{{#1}}}} \newcommand{\highlightr}[1]{{\color{red}{{#1}}}} \newcommand{\highlightg}[1]{{\color{green}{{#1}}}} \newcommand{\highlightp}[1]{{\color{purple}{{#1}}}} \newcommand{\highlightb}[1]{{\color{brown}{{#1}}}} \newcommand{\highlighty}[1]{{\color{gray}{{#1}}}} \newcommand{\lowlight}[1]{{\color{lightgray}{#1}}} \newcommand{\attention}[1]{\mathord{\overset{\downarrow}{#1}}} \newcommand{\substitute}[1]{{\color{blue}{{#1}}}} \newcommand{\addright}[1]{{\color{blue}{{{}+#1}}}} \newcommand{\addleft}[1]{{\color{blue}{{#1+{}}}}} \newcommand{\subtractright}[1]{{\color{blue}{{{}-#1}}}} \newcommand{\multiplyright}[2][\cdot]{{\color{blue}{{{}#1#2}}}} \newcommand{\multiplyleft}[2][\cdot]{{\color{blue}{{#2#1{}}}}} \newcommand{\divideunder}[2]{\frac{#1}{{\color{blue}{{#2}}}}} \newcommand{\divideright}[1]{{\color{blue}{{{}\div#1}}}} \newcommand{\apple}{\text{🍎}} \newcommand{\banana}{\text{🍌}} \newcommand{\pear}{\text{🍐}} \newcommand{\cat}{\text{🐱}} \newcommand{\dog}{\text{🐢}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section2.4Summary of the Rules of Exponents

  • The Product Rule for Exponents:

    \begin{equation*} x^m \cdot x^n=x^{m+n} \end{equation*}
  • The Power to a Power Rule for Exponents:

    \begin{equation*} (x^m)^n=x^{mn} \end{equation*}
  • The Product to a Power Rule for Exponents:

    \begin{equation*} (xy)^n=x^ny^n \end{equation*}
  • The Quotient to a Power Rule for Exponents:

    \begin{equation*} \left(\frac{x}{y}\right)^n=\frac{x^n}{y^n} \end{equation*}
  • The Quotient Rules for Exponents:

    \begin{equation*} \frac{x^m}{x^n}=x^{m-n} \text{ and } \frac{x^m}{x^n}=\frac{1}{x^{n-m}} \end{equation*}
  • Zero Exponent:

    \begin{equation*} x^0=1 \text{ for } x \neq 0 \end{equation*}
  • Negative Exponents:

    \begin{equation*} x^{-n}=\frac{1}{x^n} \end{equation*}
  • Properties if Negative Exponents:

    \begin{equation*} \frac{1}{x^{-n}}=x^n \text{ and } \left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^n \end{equation*}