Skip to main content
\(\require{cancel}\newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\highlight}[1]{{\color{blue}{{#1}}}} \newcommand{\highlightr}[1]{{\color{red}{{#1}}}} \newcommand{\highlightg}[1]{{\color{green}{{#1}}}} \newcommand{\highlightp}[1]{{\color{purple}{{#1}}}} \newcommand{\highlightb}[1]{{\color{brown}{{#1}}}} \newcommand{\highlighty}[1]{{\color{gray}{{#1}}}} \newcommand{\lowlight}[1]{{\color{lightgray}{#1}}} \newcommand{\attention}[1]{\mathord{\overset{\downarrow}{#1}}} \newcommand{\substitute}[1]{{\color{blue}{{#1}}}} \newcommand{\addright}[1]{{\color{blue}{{{}+#1}}}} \newcommand{\addleft}[1]{{\color{blue}{{#1+{}}}}} \newcommand{\subtractright}[1]{{\color{blue}{{{}-#1}}}} \newcommand{\multiplyright}[2][\cdot]{{\color{blue}{{{}#1#2}}}} \newcommand{\multiplyleft}[2][\cdot]{{\color{blue}{{#2#1{}}}}} \newcommand{\divideunder}[2]{\frac{#1}{{\color{blue}{{#2}}}}} \newcommand{\divideright}[1]{{\color{blue}{{{}\div#1}}}} \newcommand{\apple}{\text{🍎}} \newcommand{\banana}{\text{🍌}} \newcommand{\pear}{\text{🍐}} \newcommand{\cat}{\text{🐱}} \newcommand{\dog}{\text{🐢}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section5.4Additional Practice Related to Imaginary and Complex Numbers

Subsection5.4.1Exercises

1

\(\sqrt{-81}\)

Solution

\(\sqrt{-81}=9i\)

2

\(-\sqrt{-144}\)

Solution

\(-\sqrt{-144}=-12i\)

3

\(\sqrt{-\frac{9}{25}}\)

Solution

\(\sqrt{-\frac{9}{25}}=\frac{3}{5}i\)

4

\(-\sqrt{-90}\)

Solution

\(-\sqrt{-90}=-3\sqrt{10}i\)

5

\(\sqrt{-325}\)

Solution

\(\sqrt{-325}=5\sqrt{13}i\)

6

\(\sqrt{-\frac{27}{64}}\)

Solution

\(\sqrt{-\frac{27}{64}}=\frac{3\sqrt{3}}{8}i\)

Simplify each of the following expressions. Please note that your final expression should be of the form \(a\text{,}\) \(bi\text{,}\) or \(a+bi\) where \(a\) and/or \(b\) are real number(s).

7

\((7i)(4i)\)

Solution

\((7i)(4i)=-28\)

8

\((-2i)\left(\frac{3}{4}i\right)\)

Solution

\((-2i)\left(\frac{3}{4}i\right)=\frac{3}{2}\)

9

\((-i)(-7i)\)

Solution

\((-i)(-7i)=-7\)

10

\(\frac{3}{i}\)

Solution

\(\frac{3}{i}=-3i\)

11

\(-\frac{5}{11i}\)

Solution

\(-\frac{5}{11i}=\frac{5}{11}i\)

12

\((3i)(12i)\left(\frac{5}{6}i\right)\)

Solution

\((3i)(12i)\left(\frac{5}{6}i\right)=-30i\)

17

\((5-4i)(-3+2i)\)

Solution

\((5-4i)(-3+2i)=-7+22i\)

18

\((2-i)^2\)

Solution

\((2-i)^2=3-4i\)

19

\((8-3i)(8+3i)\)

Solution

\((8-3i)(8+3i)=73\)

20

\(\frac{24}{1-3i}\)

Solution

\(\frac{24}{1-3i}=\frac{12}{5}+\frac{36}{5}i\)

21

\(-\frac{169i}{5+12i}\)

Solution

\(-\frac{169i}{5+12i}=-12-5i\)

22

\(-\frac{1-2i}{1+2i}\)

Solution

\(-\frac{1-2i}{1+2i}=\frac{3}{5}+\frac{4}{5}i\)

23

\(\frac{2+5i}{2-5i}\)

Solution

\(\frac{2+5i}{2-5i}=-\frac{21}{29}+\frac{20}{29}i\)

24

\(\frac{-2-3i}{-2+3i}\)

Solution

\(\frac{-2-3i}{-2+3i}=-\frac{5}{13}+\frac{12}{13}i\)