Skip to main content

Section 1.7 Basic Math Chapter Review

Subsection 1.7.1 Arithmetic with Negative Numbers

Adding Real Numbers with the Same Sign

When adding two numbers with the same sign, we can ignore the signs, and simply add the numbers as if they were both positive.

Example 1.7.1
  1. \(5+2=7\)

  2. \(-5+(-2)=-7\)

Adding Real Numbers with Opposite Signs

When adding two numbers with opposite signs, we find those two numbers' difference. The sum has the same sign as the number with the bigger value. If those two numbers have the same value, the sum is \(0\text{.}\)

Example 1.7.2
  1. \(5+(-2)=3\)

  2. \((-5)+2=-3\)

Subtracting a Positive Number

When subtracting a positive number, we can change the problem to adding the opposite number, and then apply the methods of adding numbers.

Example 1.7.3
  1. \(\begin{aligned}[t] 5-2\amp=5+(-2)\\ \amp=3 \end{aligned}\)

  2. \(\begin{aligned}[t] 2-5\amp=2+(-5)\\ \amp=-3 \end{aligned}\)

  3. \(\begin{aligned}[t] -5-2\amp=-5+(-2)\\ \amp=3 \end{aligned}\)

Subtracting a Negative Number

When subtracting a negative number, we can change those two negative signs to a positive sign, and then apply the methods of adding numbers.

Example 1.7.4
  1. \(\begin{aligned}[t] 5-(-2)\amp=5+2\\ \amp=7 \end{aligned}\)

  2. \(\begin{aligned}[t] -5-(-2)\amp=-5+2\\ \amp=-3 \end{aligned}\)

  3. \(\begin{aligned}[t] -2-(-5)\amp=-2+5\\ \amp=3 \end{aligned}\)

Multiplication and Division of Real Numbers

When multiplying and dividing real numbers, each pair of negative signs cancel out each other (becoming a positive sign). If there is still one negative sign left, the result is negative; otherwise the result is positive.

Example 1.7.5
  1. \((6)(-2)=-12\)

  2. \((-6)(2)=-12\)

  3. \((-6)(-2)=12\)

  4. \((-6)(-2)(-1)=-12\)

  5. \((-6)(-2)(-1)(-1)=12\)

  6. \(\frac{12}{-2}=-6\)

  7. \(\frac{-12}{2}=-6\)

  8. \(\frac{-12}{-2}=6\)

Powers

When we raise a negative number to a certain power, apply the rules of multiplying real numbers: each pair of negative signs cancel out each other.

Example 1.7.6
  1. \(\begin{aligned}[t] (-2)^2\amp=(-2)(-2)\\ \amp=4 \end{aligned}\)

  2. \(\begin{aligned}[t] (-2)^3\amp=(-2)(-2)(-2)\\ \amp=-8 \end{aligned}\)

  3. \(\begin{aligned}[t] (-2)^4\amp=(-2)(-2)(-2)(-2)\\ \amp=16 \end{aligned}\)

Difference between \((-a)^n\) and \(-a^n\)

For the exponent expression \(2^3\text{,}\) the number \(2\) is called the base, and the number \(3\) is called the exponent. The base of \((-a)^n\) is \(-a\text{,}\) while the base of \(-a^n\) is \(a\text{.}\) This makes a difference in the result when the power is an even number.

Example 1.7.7
  1. \(\begin{aligned}[t] (-4)^2\amp=(-4)(-4)\\ \amp=16 \end{aligned}\)

  2. \(\begin{aligned}[t] -4^2\amp=-(4)(4)\\ \amp=-16 \end{aligned}\)

  3. \(\begin{aligned}[t] (-4)^3\amp=(-4)(-4)(-4)\\ \amp=-64 \end{aligned}\)

  4. \(\begin{aligned}[t] -4^3\amp=-(4)(4)(4)\\ \amp=-64 \end{aligned}\)

Subsection 1.7.2 Fraction Arithmetic

Example 1.7.8 Multiplying Fractions

When multiplying two fractions, we simply multiply the numerators and denominators. To avoid big numbers, we should reduce fractions before multiplying. If one number is an integer, we can write it as a fraction with a denominator of \(1\text{.}\) For example, \(2=\frac{2}{1}\text{.}\)

\begin{align*} \frac{1}{2}\cdot\frac{3}{4}\amp=\frac{1\cdot3}{2\cdot4}\\ \amp=\frac{3}{8} \end{align*}
Example 1.7.9 Dividing Fractions

When dividing two fractions, we β€œflip” the second number, and then do multiplication.

\begin{align*} \frac{1}{2}\div\frac{4}{3}\amp=\frac{1}{2}\cdot\frac{3}{4}\\ \amp=\frac{3}{8} \end{align*}
Example 1.7.10 Adding/Subtracting Fractions

Before adding/subtracting fractions, we need to change each fraction's denominator to the same number, called the common denominator. Then, we add/subtract the numerators, and the denominator remains the same.

\begin{align*} \frac{1}{2}-\frac{1}{3}\amp=\frac{1}{2}\multiplyright{\frac{3}{3}}-\frac{1}{3}\multiplyright{\frac{2}{2}}\\ \amp=\frac{3}{6}-\frac{2}{6}\\ \amp=\frac{1}{6} \end{align*}

Subsection 1.7.3 Absolute Value and Square Root

Example 1.7.11 Absolute Value

The absolute value of a number is the distance from that number to \(0\) on the number line. An absolute value is always positive or \(0\text{.}\)

  1. \(\abs{2}=2\)

  2. \(\abs{-\frac{1}{2}}=\frac{1}{2}\)

  3. \(\abs{0}=0\)

Example 1.7.12 Square Root

The symbol \(\sqrt{b}\) has meaning when \(b\geq0\text{.}\) It means the positive number that can be squared to result in \(b\text{.}\)

  1. \(\sqrt{9}=3\)

  2. \(\sqrt{2}\approx1.414\)

  3. \(\sqrt{\frac{9}{16}}=\frac{3}{4}\)

  4. \(\sqrt{-1}\text{ is undefined}\)

Subsection 1.7.4 Order of Operations

Example 1.7.13 Order of Operations

When evaluating an expression with multiple operations, we must follow the order of operations:

  1. (P)arentheses and other grouping symbols

  2. (E)xponentiation

  3. (M)ultiplication, (D)ivision, and Negation

  4. (A)ddition and (S)ubtraction

\begin{align*} 4-2\left( 3-(2-4)^2 \right)\amp=4-2\left( 3-(\nextoperation{2-4})^2 \right)\\ \amp=4-2\left( 3-\nextoperation{(\highlight{-2})^2} \right)\\ \amp=4-2\left( \nextoperation{3-\highlight{4}} \right)\\ \amp=4-\nextoperation{2\left( \highlight{-1} \right)}\\ \amp=4-\highlight{(-2)}\\ \amp=6 \end{align*}

Subsection 1.7.5 Set Notation and Types of Numbers

A set is an unordered collection of items. Braces, \(\{{}\}\text{,}\) are used to show what items are in a set. For example, the set \(\{1,2,\pi\}\) is a set with three items that contains the numbers \(1\text{,}\) \(2\text{,}\) and \(\pi\text{.}\)

Types of Numbers

Real numbers are categorized into the following sets: natural numbers, whole numbers, integers, rational numbers and irrational numbers.

Example 1.7.14

Here are some examples of numbers from each set of numbers:

Natural Numbers

The natural numbers are all counting numbers larger \(1\) and larger.

\(1,251,3462\)

Whole Numbers

The whole numbers are all counting numbers larger \(0\) and larger.

\(0,1,42,953\)

Integers

The integers are all counting numbers both negative and positive.

\(-263,-10,0,1,834\)

Rational Numbers

The rational numbers are all possible fractions of integers.

\(\frac{1}{3},-3,1.1,0,0.\overline{73}\)

Irrational Numbers

The irrational numbers are all numbers that cannot be written as a fraction of integers.

\(\pi,e,\sqrt{2}\)

Subsection 1.7.6 Comparison Symbols and Notation for Intervals

The following are symbols used to compare numbers.

Symbol Meaning Examples
\(=\) equals \(13=13\qquad\) \(\frac{5}{4}=1.25\)
\(\gt\) is greater than \(13\gt11\) \(\pi\gt3\)
\(\geq\) is greater than or equal to \(13\geq11\) \(3\geq3\)
\(\lt\) is less than \(-3\lt8\) \(\frac{1}{2}\lt\frac{2}{3}\)
\(\leq\) is less than or equal to \(-3\leq8\) \(3\leq3\)
\(\neq\) is not equal to \(10\neq20\) \(\frac{1}{2}\neq1.2\)
Table 1.7.15 Comparison Symbols

The following are some examples of set-builder notation and interval notation.

Graph Set-builder Notation Interval Notation
a number line graph with a bracket at 1 opening to the right; a thick arrow points to the right \(\left\{x\mid x\ge1\right\}\) \([1,\infty)\)
a number line with a parenthesis opening to the right; a thick arrow points to the right \(\left\{x\mid x\gt1\right\}\) \((1,\infty)\)
a number line with a bracket at 1 opening to the left; a thick arrow points to the left \(\left\{x\mid x\le1\right\}\) \((-\infty,1]\)
a number line with a parenthesis at 1 opening to the left; a thick arrow points to the left \(\left\{x\mid x\lt1\right\}\) \((-\infty,1)\)

Subsection 1.7.7 Exercises

1

Perform the given addition and subtraction.

  1. \(\displaystyle{ {-19-8+\left(-2\right)}= }\)

  2. \(\displaystyle{ {2-\left(-19\right)+\left(-14\right)}= }\)

2

Perform the given addition and subtraction.

  1. \(\displaystyle{ {-18-5+\left(-8\right)}= }\)

  2. \(\displaystyle{ {9-\left(-19\right)+\left(-19\right)}= }\)

3

Multiply the following.

  1. \(\displaystyle{ (-2)\cdot(-6)\cdot(-3) = }\)

  2. \(\displaystyle{ 5\cdot(-9)\cdot(-2)= }\)

  3. \(\displaystyle{ (-99)\cdot(-60)\cdot0= }\)

4

Multiply the following.

  1. \(\displaystyle{ (-2)\cdot(-4)\cdot(-5) = }\)

  2. \(\displaystyle{ 3\cdot(-9)\cdot(-5)= }\)

  3. \(\displaystyle{ (-98)\cdot(-77)\cdot0= }\)

5

Evaluate the following.

  1. \(\displaystyle{ \frac{-25}{-5}= }\)

  2. \(\displaystyle{ \frac{10}{-5}= }\)

  3. \(\displaystyle{ \frac{-35}{5}= }\)

6

Evaluate the following.

  1. \(\displaystyle{ \frac{-8}{-4}= }\)

  2. \(\displaystyle{ \frac{32}{-4}= }\)

  3. \(\displaystyle{ \frac{-15}{5}= }\)

7

Evaluate the following.

  1. \(\displaystyle{ (-1)^{2}= }\)

  2. \(\displaystyle{ -4^{2}= }\)

8

Evaluate the following.

  1. \(\displaystyle{ (-1)^{2}= }\)

  2. \(\displaystyle{ -8^{2}= }\)

9

Evaluate the following.

  1. \(\displaystyle{ (-4)^{3}= }\)

  2. \(\displaystyle{ -1^{3}= }\)

10

Evaluate the following.

  1. \(\displaystyle{ (-4)^{3}= }\)

  2. \(\displaystyle{ -3^{3}= }\)

11

Add: \(\displaystyle{-\frac{9}{10} + \frac{5}{6}}\)

12

Add: \(\displaystyle{-\frac{1}{6} + \frac{7}{10}}\)

13

Subtract: \(\displaystyle{-\frac{5}{6} - \left(-\frac{9}{10}\right)}\)

14

Subtract: \(\displaystyle{-\frac{1}{10} - \left(-\frac{5}{6}\right)}\)

15

Subtract: \(\displaystyle{ 2 - \frac{28}{9}}\)

16

Subtract: \(\displaystyle{ 4 - \frac{25}{6}}\)

17

Multiply: \(\displaystyle{-\frac{12}{13} \cdot \frac{7}{22}}\)

18

Multiply: \(\displaystyle{-\frac{2}{13} \cdot \frac{5}{26}}\)

19

Multiply: \(\displaystyle{-4\cdot \frac{5}{6} }\)

20

Multiply: \(\displaystyle{-5\cdot \frac{9}{20} }\)

21

Divide: \(\displaystyle{ \frac{7}{15} \div \left(-\frac{5}{12}\right) }\)

22

Divide: \(\displaystyle{ \frac{1}{9} \div \left(-\frac{5}{12}\right) }\)

23

Divide: \(\displaystyle{27 \div \frac{9}{4} }\)

24

Divide: \(\displaystyle{9 \div \frac{9}{4} }\)

25

Evaluate the following.

  1. \(\displaystyle{ - \lvert 3-10 \rvert = }\)

  2. \(\displaystyle{ \lvert -3-10 \rvert = }\)

  3. \(\displaystyle{ -2 \lvert 10-3 \rvert = }\)

26

Evaluate the following.

  1. \(\displaystyle{ - \lvert 1-7 \rvert = }\)

  2. \(\displaystyle{ \lvert -1-7 \rvert = }\)

  3. \(\displaystyle{ -2 \lvert 7-1 \rvert = }\)

27

Evaluate the following.

  1. \(\displaystyle{ \sqrt{1} }\) =

  2. \(\displaystyle{ \sqrt{81} }\) =

  3. \(\displaystyle{ \sqrt{100} }\) =

28

Evaluate the following.

  1. \(\displaystyle{ \sqrt{4} }\) =

  2. \(\displaystyle{ \sqrt{25} }\) =

  3. \(\displaystyle{ \sqrt{9} }\) =

29

Evaluate the following.

  1. \(\displaystyle{ \sqrt{{{\frac{16}{49}}}} }\) =

  2. \(\displaystyle{ \sqrt{{-{\frac{25}{64}}}} }\) =

30

Evaluate the following.

  1. \(\displaystyle{ \sqrt{{{\frac{25}{81}}}} }\) =

  2. \(\displaystyle{ \sqrt{{-{\frac{144}{49}}}} }\) =

31

Evaluate the following.

\(\displaystyle{ -6^{2}-5[ 4-( 6-4^{3} ) ] = }\)

32

Evaluate the following.

\(\displaystyle{ -6^{2}-9[ 8-( 4-4^{3} ) ] = }\)

33

Evaluate the following.

\(\displaystyle{ \frac{27-(-4)^{3}}{3-10} = }\)

34

Evaluate the following.

\(\displaystyle{ \frac{27-(-2)^{3}}{7-12} = }\)

35

Evaluate the following.

\(\displaystyle{ 10-8\left\lvert -9+(4-7)^{3}\right\rvert = }\)

36

Evaluate the following.

\(\displaystyle{ 1-6\left\lvert -5+(3-6)^{3}\right\rvert = }\)

37

Compare the following integers:

  1. \(2\)

    • <

    • >

    • =

    \(-7\)

  2. \(-2\)

    • <

    • >

    • =

    \(-7\)

  3. \(-7\)

    • <

    • >

    • =

    \(0\)

38

Compare the following integers:

  1. \(3\)

    • <

    • >

    • =

    \(-6\)

  2. \(-1\)

    • <

    • >

    • =

    \(-6\)

  3. \(-6\)

    • <

    • >

    • =

    \(0\)

39

Determine the validity of each statement by selecting True or False.

  1. The number \(\sqrt{(-60)^2}\) is irrational

  2. The number \(\sqrt{\frac{9}{16}}\) is an integer, but not a whole number

  3. The number \(\sqrt{23}\) is rational

  4. The number \(60\) is an integer, but not a whole number

  5. The number \(0\) is a natural number

40

Determine the validity of each statement by selecting True or False.

  1. The number \(\sqrt{\frac{25}{81}}\) is rational, but not an integer

  2. The number \(\frac{19}{43}\) is rational, but not an integer

  3. The number \(\sqrt{11}\) is a real number, but not an irrational number

  4. The number \(0.14404004000400004...\) is rational

  5. The number \(\sqrt{4}\) is a real number, but not a rational number

41

A set is written using set-builder notation. Write it using interval notation.

\(\displaystyle{ \{ x \mid {{x}} \gt 2 \} }\)

42

A set is written using set-builder notation. Write it using interval notation.

\(\displaystyle{ \{ x \mid {{x}} \gt 4 \} }\)

43

For each interval expressed in the number lines, give the interval notation and set-builder notation.

  1. In set-builder notation:

    In interval notation:

  2. In set-builder notation:

    In interval notation:

  3. In set-builder notation:

    In interval notation:

44

For each interval expressed in the number lines, give the interval notation and set-builder notation.

  1. In set-builder notation:

    In interval notation:

  2. In set-builder notation:

    In interval notation:

  3. In set-builder notation:

    In interval notation: