Skip to main content
\(\newcommand{\Z}{\mathbb{Z}} \newcommand{\reals}{\mathbb{R}} \newcommand{\real}[1]{\mathbb{R}^{#1}} \newcommand{\fe}[2]{#1\mathopen{}\left(#2\right)\mathclose{}} \newcommand{\cinterval}[2]{\left[#1,#2\right]} \newcommand{\ointerval}[2]{\left(#1,#2\right)} \newcommand{\cointerval}[2]{\left[\left.#1,#2\right)\right.} \newcommand{\ocinterval}[2]{\left(\left.#1,#2\right]\right.} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\fd}[1]{#1'} \newcommand{\sd}[1]{#1''} \newcommand{\td}[1]{#1'''} \newcommand{\lz}[2]{\frac{d#1}{d#2}} \newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}} \newcommand{\lzo}[1]{\frac{d}{d#1}} \newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}} \newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}} \newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\sech}{\operatorname{sech}} \newcommand{\csch}{\operatorname{csch}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Activity4.3Nondifferentiability

A function is said to be nondifferentiable at any value where its first derivative is undefined. There are three graphical behaviors that lead to non-differentiability.

  • \(f\) is nondifferentiable at \(a\) if \(f\) is discontinuous at \(a\text{.}\)

  • \(f\) is nondifferentiable at \(a\) if the slope of \(f\) is different from the left and right at \(a\text{.}\)

  • \(f\) is nondifferentiable at \(a\) if \(f\) has a vertical tangent line at \(a\text{.}\)

Subsection4.3.1Exercises

Consider the function \(k\) shown in Figure 4.3.1. Please note that \(k\) has a vertical tangent line at \(-4\text{.}\)

Figure4.3.1\(y=\fe{k}{x}\)
Figure4.3.2\(y=\fe{\fd{k}}{x}\)
1

There are four values where \(k\) is nondifferentiable; what are these values?

Consider the function \(g\) shown in Figure 4.3.3.

Figure4.3.3\(y=\fe{g}{x}\)
Figure4.3.4\(y=\fe{\fd{g}}{x}\)
3

\(\fd{g}\) has been drawn onto Figure 4.3.4 over the interval \(\ointerval{-5}{-2.5}\text{.}\) Use the piecewise symmetry and periodic behavior of \(g\) to help you draw the remainder of \(\fd{g}\) over \(\ointerval{-7}{7}\text{.}\)

4

What six-syllable word applies to \(g\) at \(-5\text{,}\) \(0\text{,}\) and \(5\text{?}\)

5

What five-syllable and six-syllable words apply to \(\fd{g}\) at \(-5\text{,}\) \(0\text{,}\) and \(5\text{?}\)