Find the first derivative with respect to \(x\) of each of the following functions. In all cases, look for appropriate simplifications before taking the derivative. Please note that some of the functions will be simpler to differentiate if you first use the rules of logarithms to expand and simplify the logarithmic expression.
16
\(\fe{f}{x}=\fe{\tan^{-1}}{\sqrt{x}}\)
17
\(\fe{f}{x}=e^{e^{\fe{\sin}{x}}}\)
18
\(\fe{f}{x}=\fe{\sin^{-1}}{\fe{\cos}{x}}\)
19
\(\fe{f}{x}=\fe{\tan}{x\fe{\sec}{x}}\)
20
\(\fe{f}{x}=\fe{\tan}{x}\fe{\sec}{\fe{\sec}{x}}\)
21
\(\fe{f}{x}=\sqrt[3]{\left(\fe{\sin}{x^2}\right)^2}\)
22
\(\fe{f}{x}=4x\fe{\sin^2}{x}\)
23
\(\fe{f}{x}=\fe{\ln}{x\fe{\ln}{x}}\)
24
\(\fe{f}{x}=\fe{\ln}{\dfrac{5}{xe^x}}\)
25
\(\fe{f}{x}=2\fe{\ln}{\sqrt[3]{x\fe{\tan^2}{x}}}\)
26
\(\fe{f}{x}=\fe{\ln}{\dfrac{e^{x+2}}{\sqrt{x+2}}}\)
27
\(\fe{f}{x}=\fe{\ln}{x^e+e}\)
28
\(\fe{f}{x}=\fe{\sec^4}{e^x}\)
29
\(\fe{f}{x}=\fe{\sec^{-1}}{e^x}\)
30
\(\fe{f}{x}=\fe{\csc}{\dfrac{1}{\sqrt{x}}}\)
31
\(\fe{f}{x}=\dfrac{1}{\fe{\csc}{\sqrt{x}}}\)
32
\(\fe{f}{x}=\dfrac{\fe{\tan^{-1}}{2x}}{2}\)
33
\(\fe{f}{x}=x^3\fe{\sin}{\dfrac{x}{3}}\)
34
\(\fe{f}{x}=\dfrac{4}{\sqrt{\frac{3}{x^7}}}\)
35
\(\fe{f}{x}=\dfrac{e^{xe^x}}{x}\)
36
\(\fe{f}{x}=xe^{xe^2}\)
37
\(\fe{f}{x}=\dfrac{\fe{\sin^5}{x}-\sqrt{\fe{\sin}{x}}}{\fe{\sin}{x}}\)
38
\(\fe{f}{x}=4x\fe{\sin}{x}\fe{\cos}{x^2}\)
39
\(\fe{f}{x}=\fe{\sin}{x\fe{\cos^2}{x}}\)