CLM Critical Numbers and Graphing from Formulas
Skip to main content\(\newcommand{\Z}{\mathbb{Z}}
\newcommand{\reals}{\mathbb{R}}
\newcommand{\real}[1]{\mathbb{R}^{#1}}
\newcommand{\fe}[2]{#1\mathopen{}\left(#2\right)\mathclose{}}
\newcommand{\cinterval}[2]{\left[#1,#2\right]}
\newcommand{\ointerval}[2]{\left(#1,#2\right)}
\newcommand{\cointerval}[2]{\left[\left.#1,#2\right)\right.}
\newcommand{\ocinterval}[2]{\left(\left.#1,#2\right]\right.}
\newcommand{\point}[2]{\left(#1,#2\right)}
\newcommand{\fd}[1]{#1'}
\newcommand{\sd}[1]{#1''}
\newcommand{\td}[1]{#1'''}
\newcommand{\lz}[2]{\frac{d#1}{d#2}}
\newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}}
\newcommand{\lzo}[1]{\frac{d}{d#1}}
\newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}}
\newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}}
\newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\sech}{\operatorname{sech}}
\newcommand{\csch}{\operatorname{csch}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\)