Skip to main content
\(\newcommand{\Z}{\mathbb{Z}} \newcommand{\reals}{\mathbb{R}} \newcommand{\real}[1]{\mathbb{R}^{#1}} \newcommand{\fe}[2]{#1\mathopen{}\left(#2\right)\mathclose{}} \newcommand{\cinterval}[2]{\left[#1,#2\right]} \newcommand{\ointerval}[2]{\left(#1,#2\right)} \newcommand{\cointerval}[2]{\left[\left.#1,#2\right)\right.} \newcommand{\ocinterval}[2]{\left(\left.#1,#2\right]\right.} \newcommand{\point}[2]{\left(#1,#2\right)} \newcommand{\fd}[1]{#1'} \newcommand{\sd}[1]{#1''} \newcommand{\td}[1]{#1'''} \newcommand{\lz}[2]{\frac{d#1}{d#2}} \newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}} \newcommand{\lzo}[1]{\frac{d}{d#1}} \newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}} \newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}} \newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}} \newcommand{\abs}[1]{\left|#1\right|} \newcommand{\sech}{\operatorname{sech}} \newcommand{\csch}{\operatorname{csch}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Activity9.3Formal Identification of Critical Numbers

When finding critical numbers based upon a function formula, there are three issues that need to be considered; the domain of the function, the zeros of the first derivative, and the numbers in the domain of the function where the first derivative is undefined. When writing a formal analysis of this process each of these questions must be explicitly addressed. The following outline shows the work you need to show when you are asked to write a formal determination of critical numbers based upon a function formula.

Subsection9.3.1Exercises

Formally establish the critical numbers for each of the following functions following the procedure outlined in Algorithm 9.3.1.

1

\(\fe{f}{x}=x^2-9x+4\)

2

\(\fe{g}{t}=7t^3+39t^2-24t\)

3

\(\fe{p}{t}=(t+8)^{\sfrac{2}{3}}\)

4

\(\fe{z}{x}=x\fe{\ln}{x}\)

5

\(\fe{y}{\theta}=e^{\fe{\cos}{\theta}}\)

6

\(\fe{T}{t}=\sqrt{t-4}\sqrt{16-t}\)

The first derivative of the function \(\fe{m}{x}=\frac{\sqrt{x-5}}{x-7}\) is

\begin{equation*} \fe{\fd{m}}{x}=\frac{3-x}{2\sqrt{x-5}(x-7)^2}\text{.} \end{equation*}
7

Roland says that \(5\) is a critical number of \(m\) but Yuna disagrees. Who is correct and why?

8

Roland says that \(7\) is a critical number of \(m\) but Yuna disagrees. Who is correct and why?

9

Roland says that \(3\) is a critical number of \(m\) but Yuna disagrees. Who is correct and why?