Skip to main content
\(\require{cancel}\newcommand{\highlight}[1]{{\color{blue}{#1}}} \newcommand{\apex}{A\kern -1pt \lower -2pt\mbox{P}\kern -4pt \lower .7ex\mbox{E}\kern -1pt X} \newcommand{\colorlinecolor}{blue!95!black!30} \newcommand{\bwlinecolor}{black!30} \newcommand{\thelinecolor}{\colorlinecolor} \newcommand{\colornamesuffix}{} \newcommand{\linestyle}{[thick, \thelinecolor]} \newcommand{\bmx}[1]{\left[\hskip -3pt\begin{array}{#1} } \newcommand{\emx}{\end{array}\hskip -3pt\right]} \newcommand{\ds}{\displaystyle} \newcommand{\fp}{f'} \newcommand{\fpp}{f''} \newcommand{\lz}[2]{\frac{d#1}{d#2}} \newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}} \newcommand{\lzo}[1]{\frac{d}{d#1}} \newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}} \newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}} \newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}} \newcommand{\plz}[2]{\frac{\partial#1}{\partial#2}} \newcommand{\plzoa}[3]{\left.{\frac{\partial#1}{\partial#2}}\right|_{#3}} \newcommand{\inflim}[1][n]{\lim\limits_{#1 \to \infty}} \newcommand{\infser}[1][1]{\sum_{n=#1}^\infty} \newcommand{\Fp}{F\primeskip'} \newcommand{\Fpp}{F\primeskip''} \newcommand{\yp}{y\primeskip'} \newcommand{\gp}{g\primeskip'} \newcommand{\dx}{\Delta x} \newcommand{\dy}{\Delta y} \newcommand{\ddz}{\Delta z} \newcommand{\thet}{\theta} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert} \newcommand{\snorm}[1]{\left|\left|\ #1\ \right|\right|} \newcommand{\la}{\left\langle} \newcommand{\ra}{\right\rangle} \newcommand{\dotp}[2]{\vec #1 \cdot \vec #2} \newcommand{\proj}[2]{\text{proj}_{\,\vec #2}{\,\vec #1}} \newcommand{\crossp}[2]{\vec #1 \times \vec #2} \newcommand{\veci}{\vec i} \newcommand{\vecj}{\vec j} \newcommand{\veck}{\vec k} \newcommand{\vecu}{\vec u} \newcommand{\vecv}{\vec v} \newcommand{\vecw}{\vec w} \newcommand{\vecx}{\vec x} \newcommand{\vecy}{\vec y} \newcommand{\vrp}{\vec r\, '} \newcommand{\vsp}{\vec s\, '} \newcommand{\vrt}{\vec r(t)} \newcommand{\vst}{\vec s(t)} \newcommand{\vvt}{\vec v(t)} \newcommand{\vat}{\vec a(t)} \newcommand{\px}{\partial x} \newcommand{\py}{\partial y} \newcommand{\pz}{\partial z} \newcommand{\pf}{\partial f} \newcommand{\mathN}{\mathbb{N}} \newcommand{\zerooverzero}{\ds \raisebox{8pt}{\text{``\ }}\frac{0}{0}\raisebox{8pt}{\textit{ ''}}} \newcommand{\deriv}[2]{\myds\frac{d}{dx}\left(#1\right)=#2} \newcommand{\myint}[2]{\myds\int #1\ dx= {\ds #2}} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \newcommand{\primeskip}{\hskip.75pt} \newcommand{\plotlinecolor}{blue} \newcommand{\colorone}{blue} \newcommand{\colortwo}{red} \newcommand{\coloronefill}{blue!15!white} \newcommand{\colortwofill}{red!15!white} \newcommand{\abs}[1]{\left\lvert #1\right\rvert} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section1.4One-Sided Limits

We introduced the concept of a limit gently, approximating their values graphically and numerically. Next came the rigorous definition of the limit, along with an admittedly tedious method for evaluating them. Section 1.3 gave us tools (which we call theorems) that allow us to compute limits with greater ease. Chief among the results were the facts that polynomials and rational, trigonometric, exponential and logarithmic functions (and their sums, products, etc.) all behave “nicely.” In this section we rigorously define what we mean by “nicely.”

In Section 1.1 we explored the three ways in which limits of functions failed to exist:

  1. The function approached different values from the left and right.

  2. The function grows without bound.

  3. The function oscillates.

In this section we explore in depth the concepts behind 1 by introducing the one-sided limit. We begin with formal definitions that are very similar to the definition of the limit given in Section 1.2, but the notation is slightly different and “\(x\neq c\)” is replaced with either “\(x\lt c\)” or “\(x>c\text{.}\)”

Definition1.4.1One-Sided Limits

There is a slighlty different definition for a left-hand limit, than for a right-hand limit, but both have a lot in common with 1.2.1.

Left-Hand Limit

Let \(I=(a,c)\) be an open interval, and let \(f\) be a function defined on \(I\text{.}\) The statement that the limit of \(f(x)\text{,}\) as \(x\) approaches \(c\) from the left, is \(L\), (alternatively, that the left-hand limit of \(f\) at \(c\) is \(L\)) is denoted by \begin{equation*} \lim_{x\to c^-} f(x) = L\text{,} \end{equation*} and means that for any \(\varepsilon \gt 0\text{,}\) there exists \(\delta \gt 0\) such that for all \(x\in I\text{,}\) \(x\lt c\text{,}\) if \(\abs{x - c} \lt \delta\text{,}\) then \(\abs{f(x) - L} \lt \varepsilon\text{.}\)

Right-Hand Limit

Let \(I=(c,b)\) be an open interval, and let \(f\) be a function defined on \(I\text{.}\) The statement that the limit of \(f(x)\text{,}\) as \(x\) approaches \(c\) from the right, is \(L\), (alternatively, that the right-hand limit of \(f\) at \(c\) is \(L\)) is denoted by \begin{equation*} \lim_{x\to c^+} f(x) = L\text{,} \end{equation*} and means that for any \(\varepsilon \gt 0\text{,}\) there exists \(\delta \gt 0\) such that for all \(x\in I\text{,}\) \(x\gt c\text{,}\) if \(\abs{x - c} \lt \delta\text{,}\) then \(\abs{f(x) - L} \lt \varepsilon\text{.}\)

Practically speaking, when evaluating a left-hand limit, we consider only values of \(x\) “to the left of \(c\text{,}\)” i.e., where \(x\lt c\text{.}\) The admittedly imperfect notation \(x\to c^-\) is used to imply that we look at values of \(x\) to the left of \(c\text{.}\) The notation has nothing to do with positive or negative values of either \(x\) or \(c\text{.}\) It's more like you are adding very small negative values to \(c\) to get values for \(x\text{.}\) A similar statement holds for evaluating right-hand limits; there we consider only values of \(x\) to the right of \(c\text{,}\) i.e., \(x>c\text{.}\) We can use the theorems from previous sections to help us evaluate these limits; we just restrict our view to one side of \(c\text{.}\)

We practice evaluating left and right-hand limits through a series of examples.

Example1.4.2Evaluating one sided limits

Let \(f(x) = \begin{cases} x \amp 0\leq x\leq 1 \\ 3-x \amp 1\lt x\lt 2 \end{cases}\text{,}\) as shown in Figure 1.4.3. Find each of the following:

  1. \(\lim\limits_{x\to 1^-} f(x)\)

  2. \(\lim\limits_{x\to 1^+} f(x)\)

  3. \(\lim\limits_{x\to 1} f(x)\)

  4. \(f(1)\)

  5. \(\lim\limits_{x\to 0^+} f(x)\)

  6. \(f(0)\)

  7. \(\lim\limits_{x\to 2^-} f(x)\)

  8. \(f(2)\)

<<SVG image is unavailable, or your browser cannot render it>>

Figure1.4.3A graph of \(f\) in Example 1.4.2.
Solution

Note how the left- and right-hand limits were different at \(x=1\text{.}\) This, of course, causes the limit to not exist. The following theorem states what is fairly intuitive: the limit exists precisely when the left- and right-hand limits are equal.

The phrase “if, and only if” means the two statements are equivalent: they are either both true or both false. If the limit equals \(L\text{,}\) then the left and right hand limits both equal \(L\text{.}\) If the limit is not equal to \(L\text{,}\) then at least one of the left and right-hand limits is not equal to \(L\) (it may not even exist).

One thing to consider in Examples 1.4.21.4.9 is that the value of the function may/may not be equal to the value(s) of its left/right-hand limits, even when these limits agree.

Example1.4.5Evaluating limits of a piecewise-defined function

Let \(f(x) =\begin{cases} 2-x \amp 0\lt x\lt 1 \\ (x-2)^2 \amp 1\lt x\lt 2 \end{cases}\) as shown in Figure 1.4.6. Evaluate the following:

  1. \(\lim\limits_{x\to 1^-} f(x)\)

  2. \(\lim\limits_{x\to 1^+} f(x)\)

  3. \(\lim\limits_{x\to 1} f(x)\)

  4. \(f(1)\)

  5. \(\lim\limits_{x\to 0^+} f(x)\)

  6. \(f(0)\)

  7. \(\lim\limits_{x\to 2^-} f(x)\)

  8. \(f(2)\)

<<SVG image is unavailable, or your browser cannot render it>>

Figure1.4.6A graph of \(f\) from Example 1.4.5
Solution
Example1.4.7Evaluating limits of a piecewise-defined function

Let \(f(x) =\begin{cases} (x-1)^2 \amp 0\leq x\leq 2, x\neq 1\\ 1 \amp x=1 \end{cases}\) as shown in Figure 1.4.8. Evaluate the following:

  1. \(\lim\limits_{x\to 1^-} f(x)\)

  2. \(\lim\limits_{x\to 1^+} f(x)\)

  3. \(\lim\limits_{x\to 1} f(x)\)

  4. \(f(1)\)

<<SVG image is unavailable, or your browser cannot render it>>

Figure1.4.8Graphing \(f\) in Example 1.4.7
Solution
Example1.4.9Evaluating limits of a piecewise-defined function

Let \(f(x) = \begin{cases} x^2 \amp 0\leq x\leq 1 \\ 2-x \amp 1\lt x\leq 2 \end{cases}\) as shown in Figure 1.4.10. Evaluate the following:

  1. \(\lim\limits_{x\to 1^-} f(x)\)

  2. \(\lim\limits_{x\to 1^+} f(x)\)

  3. \(\lim\limits_{x\to 1} f(x)\)

  4. \(f(1)\)

<<SVG image is unavailable, or your browser cannot render it>>

Figure1.4.10Graphing \(f\) in Example 1.4.9
Solution

In Examples 1.4.21.4.9 we were asked to find both \(\lim\limits_{x\to 1}f(x)\) and \(f(1)\text{.}\) Consider the following table:

\(\lim\limits_{x\to 1}f(x)\) \(f(1)\)
Example 1.4.2 does not exist \(1\)
Example 1.4.5 \(1\) not defined
Example 1.4.7 \(0\) \(1\)
Example 1.4.9 \(1\) \(1\)

Only in Example 1.4.9 do both the function and the limit exist and agree. This seems “nice;” in fact, it seems “normal.” This is in fact an important situation which we explore in Section 1.5 entitled “Continuity.” In short, a continuous function is one in which when a function approaches a value as \(x\to c\) (i.e., when \(\lim\limits_{x\to c} f(x) = L\)), it actually attains that value at \(c\text{.}\) Such functions behave nicely as they are very predictable.

Subsection1.4.1Exercises

In the following exercises, evaluate each expression using the given graph of \(f(x)\text{.}\)

In the following exercises, evaluate the given limits of the piecewise defined functions \(f\text{.}\)

The following exercises are review from prior sections.