Skip to main content
\(\require{cancel}\newcommand{\highlight}[1]{{\color{blue}{#1}}} \newcommand{\apex}{A\kern -1pt \lower -2pt\mbox{P}\kern -4pt \lower .7ex\mbox{E}\kern -1pt X} \newcommand{\colorlinecolor}{blue!95!black!30} \newcommand{\bwlinecolor}{black!30} \newcommand{\thelinecolor}{\colorlinecolor} \newcommand{\colornamesuffix}{} \newcommand{\linestyle}{[thick, \thelinecolor]} \newcommand{\bmx}[1]{\left[\hskip -3pt\begin{array}{#1} } \newcommand{\emx}{\end{array}\hskip -3pt\right]} \newcommand{\ds}{\displaystyle} \newcommand{\fp}{f'} \newcommand{\fpp}{f''} \newcommand{\lz}[2]{\frac{d#1}{d#2}} \newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}} \newcommand{\lzo}[1]{\frac{d}{d#1}} \newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}} \newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}} \newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}} \newcommand{\plz}[2]{\frac{\partial#1}{\partial#2}} \newcommand{\plzoa}[3]{\left.{\frac{\partial#1}{\partial#2}}\right|_{#3}} \newcommand{\inflim}[1][n]{\lim\limits_{#1 \to \infty}} \newcommand{\infser}[1][1]{\sum_{n=#1}^\infty} \newcommand{\Fp}{F\primeskip'} \newcommand{\Fpp}{F\primeskip''} \newcommand{\yp}{y\primeskip'} \newcommand{\gp}{g\primeskip'} \newcommand{\dx}{\Delta x} \newcommand{\dy}{\Delta y} \newcommand{\ddz}{\Delta z} \newcommand{\thet}{\theta} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert} \newcommand{\snorm}[1]{\left|\left|\ #1\ \right|\right|} \newcommand{\la}{\left\langle} \newcommand{\ra}{\right\rangle} \newcommand{\dotp}[2]{\vec #1 \cdot \vec #2} \newcommand{\proj}[2]{\text{proj}_{\,\vec #2}{\,\vec #1}} \newcommand{\crossp}[2]{\vec #1 \times \vec #2} \newcommand{\veci}{\vec i} \newcommand{\vecj}{\vec j} \newcommand{\veck}{\vec k} \newcommand{\vecu}{\vec u} \newcommand{\vecv}{\vec v} \newcommand{\vecw}{\vec w} \newcommand{\vecx}{\vec x} \newcommand{\vecy}{\vec y} \newcommand{\vrp}{\vec r\, '} \newcommand{\vsp}{\vec s\, '} \newcommand{\vrt}{\vec r(t)} \newcommand{\vst}{\vec s(t)} \newcommand{\vvt}{\vec v(t)} \newcommand{\vat}{\vec a(t)} \newcommand{\px}{\partial x} \newcommand{\py}{\partial y} \newcommand{\pz}{\partial z} \newcommand{\pf}{\partial f} \newcommand{\mathN}{\mathbb{N}} \newcommand{\zerooverzero}{\ds \raisebox{8pt}{\text{``\ }}\frac{0}{0}\raisebox{8pt}{\textit{ ''}}} \newcommand{\deriv}[2]{\myds\frac{d}{dx}\left(#1\right)=#2} \newcommand{\myint}[2]{\myds\int #1\ dx= {\ds #2}} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \newcommand{\primeskip}{\hskip.75pt} \newcommand{\plotlinecolor}{blue} \newcommand{\colorone}{blue} \newcommand{\colortwo}{red} \newcommand{\coloronefill}{blue!15!white} \newcommand{\colortwofill}{red!15!white} \newcommand{\abs}[1]{\left\lvert #1\right\rvert} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Chapter7Applications of Integration

We begin this chapter with a reminder of a few key concepts from Chapter 5. Let \(f\) be a continuous function on \([a,b]\) which is partitioned into \(n\) equally spaced subintervals as \begin{equation*} a\lt x_1 \lt x_2 \lt \cdots \lt x_n\lt x_{n+1}=b. \end{equation*}

Let \(\dx=(b-a)/n\) denote the length of the subintervals, and let \(c_i\) be any \(x\)-value in the \(i^\text{ th }\) subinterval. Definition 5.3.12 states that the sum \begin{equation*} \sum_{i=1}^n f(c_i)\dx \end{equation*} is a Riemann Sum. Riemann Sums are often used to approximate some quantity (area, volume, work, pressure, etc.). The approximation becomes exact by taking the limit \begin{equation*} \lim_{n\to\infty} \sum_{i=1}^n f(c_i)\dx. \end{equation*}

Theorem 5.3.20 connects limits of Riemann Sums to definite integrals: \begin{equation*} \lim_{n\to\infty} \sum_{i=1}^n f(c_i)\dx = \int_a^b f(x)\ dx. \end{equation*}

Finally, the Fundamental Theorem of Calculus states how definite integrals can be evaluated using antiderivatives.

This chapter employs the following technique to a variety of applications. Suppose the value \(Q\) of a quantity is to be calculated. We first approximate the value of \(Q\) using a Riemann Sum, then find the exact value via a definite integral. We spell out this technique in the following Key Idea.

Key Idea7.0.1Application of Definite Integrals Strategy

Let a quantity be given whose value \(Q\) is to be computed.

  1. Divide the quantity into \(n\) smaller “subquantities” of value \(Q_i\text{.}\)

  2. Identify a variable \(x\) and function \(f(x)\) such that each subquantity can be approximated with the product \(f(c_i)\dx\text{,}\) where \(\dx\) represents a small change in \(x\text{.}\) Thus \(Q_i \approx f(c_i)\dx\text{.}\) A sample approximation \(f(c_i)\dx\) of \(Q_i\) is called a differential element.

  3. Recognize that \(\ds Q= \sum_{i=1}^n Q_i \approx \sum_{i=1}^n f(c_i)\dx\text{,}\) which is a Riemann Sum.

  4. Taking the appropriate limit gives \(\ds Q = \int_a^b f(x)\ dx\)

This Key Idea will make more sense after we have had a chance to use it several times. We begin with Area Between Curves, which we addressed briefly in Section 5. 5.4.