Skip to main content
\(\require{cancel}\newcommand{\highlight}[1]{{\color{blue}{#1}}} \newcommand{\apex}{A\kern -1pt \lower -2pt\mbox{P}\kern -4pt \lower .7ex\mbox{E}\kern -1pt X} \newcommand{\colorlinecolor}{blue!95!black!30} \newcommand{\bwlinecolor}{black!30} \newcommand{\thelinecolor}{\colorlinecolor} \newcommand{\colornamesuffix}{} \newcommand{\linestyle}{[thick, \thelinecolor]} \newcommand{\bmx}[1]{\left[\hskip -3pt\begin{array}{#1} } \newcommand{\emx}{\end{array}\hskip -3pt\right]} \newcommand{\ds}{\displaystyle} \newcommand{\fp}{f'} \newcommand{\fpp}{f''} \newcommand{\lz}[2]{\frac{d#1}{d#2}} \newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}} \newcommand{\lzo}[1]{\frac{d}{d#1}} \newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}} \newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}} \newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}} \newcommand{\plz}[2]{\frac{\partial#1}{\partial#2}} \newcommand{\plzoa}[3]{\left.{\frac{\partial#1}{\partial#2}}\right|_{#3}} \newcommand{\inflim}[1][n]{\lim\limits_{#1 \to \infty}} \newcommand{\infser}[1][1]{\sum_{n=#1}^\infty} \newcommand{\Fp}{F\primeskip'} \newcommand{\Fpp}{F\primeskip''} \newcommand{\yp}{y\primeskip'} \newcommand{\gp}{g\primeskip'} \newcommand{\dx}{\Delta x} \newcommand{\dy}{\Delta y} \newcommand{\ddz}{\Delta z} \newcommand{\thet}{\theta} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert} \newcommand{\snorm}[1]{\left|\left|\ #1\ \right|\right|} \newcommand{\la}{\left\langle} \newcommand{\ra}{\right\rangle} \newcommand{\dotp}[2]{\vec #1 \cdot \vec #2} \newcommand{\proj}[2]{\text{proj}_{\,\vec #2}{\,\vec #1}} \newcommand{\crossp}[2]{\vec #1 \times \vec #2} \newcommand{\veci}{\vec i} \newcommand{\vecj}{\vec j} \newcommand{\veck}{\vec k} \newcommand{\vecu}{\vec u} \newcommand{\vecv}{\vec v} \newcommand{\vecw}{\vec w} \newcommand{\vecx}{\vec x} \newcommand{\vecy}{\vec y} \newcommand{\vrp}{\vec r\, '} \newcommand{\vsp}{\vec s\, '} \newcommand{\vrt}{\vec r(t)} \newcommand{\vst}{\vec s(t)} \newcommand{\vvt}{\vec v(t)} \newcommand{\vat}{\vec a(t)} \newcommand{\px}{\partial x} \newcommand{\py}{\partial y} \newcommand{\pz}{\partial z} \newcommand{\pf}{\partial f} \newcommand{\mathN}{\mathbb{N}} \newcommand{\zerooverzero}{\ds \raisebox{8pt}{\text{``\ }}\frac{0}{0}\raisebox{8pt}{\textit{ ''}}} \newcommand{\deriv}[2]{\myds\frac{d}{dx}\left(#1\right)=#2} \newcommand{\myint}[2]{\myds\int #1\ dx= {\ds #2}} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \newcommand{\primeskip}{\hskip.75pt} \newcommand{\plotlinecolor}{blue} \newcommand{\colorone}{blue} \newcommand{\colortwo}{red} \newcommand{\coloronefill}{blue!15!white} \newcommand{\colortwofill}{red!15!white} \newcommand{\abs}[1]{\left\lvert #1\right\rvert} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section6.6Hyperbolic Functions

The hyperbolic functions are a set of functions that have many applications to mathematics, physics, and engineering. Among many other applications, they are used to describe the formation of satellite rings around planets, to describe the shape of a rope hanging from two points, and have application to the theory of special relativity. This section defines the hyperbolic functions and describes many of their properties, especially their usefulness to calculus.

These functions are sometimes referred to as the “hyperbolic trigonometric functions” as there are many, many connections between them and the standard trigonometric functions. Figure 6.6.1 demonstrates one such connection. Just as cosine and sine are used to define points on the circle defined by \(x^2+y^2=1\text{,}\) the functions hyperbolic cosine and hyperbolic sine are used to define points on the hyperbola \(x^2-y^2=1\text{.}\)

<<SVG image is unavailable, or your browser cannot render it>>

<<SVG image is unavailable, or your browser cannot render it>>

(a)
(b)
Figure6.6.1Using trigonometric functions to define points on a circle and hyperbolic functions to define points on a hyperbola. The area of the shaded regions are included in them.

We begin with their definition.

Definition6.6.2Hyperbolic Functions
  1. \(\ds \cosh(x) = \frac{e^x+e^{-x}}2\)

  2. \(\ds \sinh(x) = \frac{e^x-e^{-x}}2\)

  3. \(\ds \tanh(x) = \frac{\sinh(x) }{\cosh(x) }\)

  4. \(\ds \sech(x) = \frac{1}{\cosh(x) }\)

  5. \(\ds \csch(x) = \frac{1}{\sinh(x) }\)

  6. \(\ds \coth(x) = \frac{\cosh(x) }{\sinh(x) }\)

Pronunciation Note:

“cosh” rhymes with “gosh,”

“sinh” rhymes with “pinch,” and

“tanh” rhymes with “ranch.”

These hyperbolic functions are graphed in Figure 6.6.3 and Figure 6.6.4.

In the graph of \(\cosh(x)\) in Figure 6.6.3.(a), the graphs of \(e^x/2\) and \(e^{-x}/2\) are included with dashed lines. In the graph of \(\sinh(x)\) in Figure 6.6.3.(b), the graphs of \(e^x/2\) and \(- e^{-x}/2\) are included with dashed lines. As \(x\) gets “large,” \(\cosh(x)\) and \(\sinh(x)\) each act like \(e^x/2\text{;}\) when \(x\) is a large negative number, \(\cosh(x)\) acts like \(e^{-x}/2\) whereas \(\sinh(x)\) acts like \(-e^{-x}/2\text{.}\)

<<SVG image is unavailable, or your browser cannot render it>>

<<SVG image is unavailable, or your browser cannot render it>>

(a)
(b)
Figure6.6.3Graphs of \(\sinh(x)\) and \(\cosh(x)\text{.}\)

In Figure Figure 6.6.4, notice the domains of \(\tanh(x)\) and \(\sech(x)\) are \((-\infty,\infty)\text{,}\) whereas both \(\coth(x)\) and \(\csch(x)\) have vertical asymptotes at \(x=0\text{.}\) Also note the ranges of these functions, especially \(\tanh(x)\text{:}\) as \(x\to\infty\text{,}\) both \(\sinh(x)\) and \(\cosh(x)\) approach \(e^{-x}/2\text{,}\) hence \(\tanh(x)\) approaches \(1\text{.}\)

The following example explores some of the properties of these functions that bear remarkable resemblance to the properties of their trigonometric counterparts.

<<SVG image is unavailable, or your browser cannot render it>>

<<SVG image is unavailable, or your browser cannot render it>>

(a)
(b)
Figure6.6.4Graphs of \(\tanh(x), \coth(x), \csch(x)\) and \(\cosh(x)\text{.}\)
Example6.6.5Exploring properties of hyperbolic functions

Use Definition 6.6.2 to rewrite the following expressions.

  1. \(\cosh^2(x) -\sinh^2(x)\)

  2. \(\tanh^2(x) +\sech^2(x)\)

  3. \(2\cosh(x) \sinh(x)\)

  4. \(\frac{d}{dx}\big(\cosh(x) \big)\)

  5. \(\frac{d}{dx}\big(\sinh(x) \big)\)

  6. \(\frac{d}{dx}\big(\tanh(x) \big)\)

Solution

The following Key Idea summarizes many of the important identities relating to hyperbolic functions. Each can be verified by referring back to Definition 6.6.2.

Key Idea6.6.6Useful Hyperbolic Function Properties
List6.6.7Basic Identities
  1. \(\cosh^2(x) -\sinh^2(x) =1\)

  2. \(\tanh^2(x) +\sech^2(x) =1\)

  3. \(\coth^2(x) -\csch^2(x) = 1\)

  4. \(\cosh(2x) =\cosh^2(x) +\sinh^2(x)\)

  5. \(\sinh(2x) = 2\sinh(x) \cosh(x)\)

  6. \(\ds\cosh^2(x) = \frac{\cosh(2x) +1}{2}\)

  7. \(\ds \sinh^2(x) =\frac{\cosh(2x) -1}{2}\)

List6.6.8Derivatives
  1. \(\frac{d}{dx}\big(\cosh(x) \big) = \sinh(x)\)

  2. \(\frac{d}{dx}\big(\sinh(x) \big) = \cosh(x)\)

  3. \(\frac{d}{dx}\big(\tanh(x) \big) = \sech^2(x)\)

  4. \(\frac{d}{dx}\big(\sech(x) \big) = -\sech(x) \tanh(x)\)

  5. \(\frac{d}{dx}\big(\csch(x) \big) = -\csch(x) \coth(x)\)

  6. \(\frac{d}{dx}\big(\coth(x) \big) = -\csch^2(x)\)

List6.6.9Integrals
  1. \(\ds\int \cosh(x) \ dx = \sinh(x) +C\)

  2. \(\ds\int \sinh(x) \ dx = \cosh(x) +C\)

  3. \(\ds\int \tanh(x) \ dx = \ln(\cosh(x) ) +C\)

  4. \(\ds\int \coth(x) \ dx = \ln\abs{\sinh(x) \,}+C\)

We practice using Key Idea 6.6.6.

Example6.6.10Derivatives and integrals of hyperbolic functions

Evaluate the following derivatives and integrals.

  1. \(\ds\frac{d}{dx}\big(\cosh(2x) \big)\)

  2. \(\ds\int \sech^2(7t-3)\ dt\)

  3. \(\ds \int_0^{\ln(2) } \cosh(x) \ dx\)

Solution

Subsection6.6.1Inverse Hyperbolic Functions

Just as the inverse trigonometric functions are useful in certain integrations, the inverse hyperbolic functions are useful with others. Figure 6.6.11.(a) shows restriction on the domain of \(\cosh(x)\) to make the function one-to-one and the resulting domain and range of its inverse function. Since \(\sinh(x)\) is already one-to-one, no domain restriction is needed as shown in Figure 6.6.11.(b). Since \(\sech(x)\) is not one to one, it also needs a restricted domain in order to be invertible. Figure 6.6.12.(b) shows the graph of \(\sech^{-1}(x)\text{.}\) You should carefully compare the graph of this function to the graph given in Figure 6.6.4.(b) to see how this inverse was constructed. The rest of the hyperbolic functions area already one-to-one and need no domain restrictions. Their graphs are also shown in Figure 6.6.12.

Because the hyperbolic functions are defined in terms of exponential functions, their inverses can be expressed in terms of logarithms as shown in Key Idea 6.6.13. It is often more convenient to refer to \(\sinh^{-1}(x)\) than to \(\ln\big(x+\sqrt{x^2+1}\big)\text{,}\) especially when one is working on theory and does not need to compute actual values. On the other hand, when computations are needed, technology is often helpful but many hand-held calculators lack a convenient \(\sinh^{-1}(x)\) button. (Often it can be accessed under a menu system, but not conveniently.) In such a situation, the logarithmic representation is useful. The reader is not encouraged to memorize these, but rather know they exist and know how to use them when needed.

Function Domain Range
\(\cosh(x)\) \([0,\infty)\) \([1,\infty)\)
\(\sinh(x)\) \((-\infty,\infty)\) \((-\infty,\infty)\)
\(\tanh(x)\) \((-\infty,\infty)\) \((-1,1)\)
\(\sech(x)\) \([0,\infty)\) \((0,1]\)
\(\csch(x)\) \((-\infty,0) \cup (0,\infty)\) \((-\infty,0) \cup (0,\infty)\)
\(\coth(x)\) \((-\infty,0) \cup (0,\infty)\) \((-\infty,-1) \cup (1,\infty)\)
Function Domain Range
\(\cosh^{-1}(x)\) \([1,\infty)\) \([0,\infty)\)
\(\sinh^{-1}(x)\) \((-\infty,\infty)\) \((-\infty,\infty)\)
\(\tanh^{-1}(x)\) \((-1,1)\) \((-\infty,\infty)\)
\(\sech^{-1}(x)\) \((0,1]\) \([0,\infty)\)
\(\csch^{-1}(x)\) \((-\infty,0) \cup (0,\infty)\) \((-\infty,0) \cup (0,\infty)\)
\(\coth^{-1}(x)\) \((-\infty,-1) \cup (1,\infty)\) \((-\infty,0) \cup (0,\infty)\)

<<SVG image is unavailable, or your browser cannot render it>>

<<SVG image is unavailable, or your browser cannot render it>>

(a)
(b)
Figure6.6.11Graphs of the hyperbolic sine and cosine (with restricted domain) and their inverses.

<<SVG image is unavailable, or your browser cannot render it>>

<<SVG image is unavailable, or your browser cannot render it>>

(a)
(b)
Figure6.6.12Graphs of the inverse hyperbolic tangent, cotangent, cosecant and secant.
Key Idea6.6.13Logarithmic definitions of Inverse Hyperbolic Functions
  1. \(\ds\cosh^{-1}(x) =\ln\big(x+\sqrt{x^2-1}\big);\\ x\geq1\)

  2. \(\ds\tanh^{-1}(x) = \frac12\ln\left(\frac{1+x}{1-x}\right);\\ \abs{x}\lt 1\)

  3. \(\ds \sech^{-1}(x) = \ln\left(\frac{1+\sqrt{1-x^2}}x\right);\\ 0\lt x\leq1\)

  4. \(\ds\sinh^{-1}(x) = \ln\big(x+\sqrt{x^2+1}\big)\)

  5. \(\ds\coth^{-1}(x) = \frac12\ln\left(\frac{x+1}{x-1}\right);\\ \abs{x}>1\)

  6. \(\ds\csch^{-1}(x) = \ln\left(\frac1x+\frac{\sqrt{1+x^2}}{\abs{x}}\right);\\ x\neq0\)

The following Key Ideas give the derivatives and integrals relating to the inverse hyperbolic functions. In Key Idea 6.6.15, both the inverse hyperbolic and logarithmic function representations of the antiderivative are given, based on Key Idea 6.6.13. Again, these latter functions are often more useful than the former. Note how inverse hyperbolic functions can be used to solve integrals we used Trigonometric Substitution to solve in Section 6.4.

Key Idea6.6.14Derivatives Involving Inverse Hyperbolic Functions
  1. \(\ds\frac{d}{dx}\big(\cosh^{-1}(x) \big) = \frac{1}{\sqrt{x^2-1}};\\ x>1\)

  2. \(\ds\frac{d}{dx}\big(\sinh^{-1}(x) \big) = \frac{1}{\sqrt{x^2+1}}\)

  3. \(\ds\frac{d}{dx}\big(\tanh^{-1}(x) \big) = \frac{1}{1-x^2};\\ \abs{x}\lt 1\)

  4. \(\ds\frac{d}{dx}\big(\sech^{-1}(x) \big) = \frac{-1}{x\sqrt{1-x^2}};\\ 0\lt x\lt 1\)

  5. \(\ds\frac{d}{dx}\big(\csch^{-1}(x) \big) = \frac{-1}{\abs{x}\sqrt{1+x^2}};\\ x\neq0\)

  6. \(\ds\frac{d}{dx}\big(\coth^{-1}(x) \big) = \frac{1}{1-x^2};\\ \abs{x}>1\)

Key Idea6.6.15Integrals Involving Inverse Hyperbolic Functions
  1. \begin{align*} \int \frac{1}{\sqrt{x^2-a^2}}\ dx \amp= \cosh^{-1}\left(\frac xa\right)+C ;\ 0\lt a\lt x\amp =\ln\abs{x+\sqrt{x^2-a^2}}+C \end{align*}

  2. \begin{align*} \int \frac{1}{\sqrt{x^2+a^2}}\ dx \amp =\sinh^{-1}\left(\frac xa\right)+C;\ a \gt 0 \amp =\ln\abs{x+\sqrt{x^2+a^2}}+C\text{.} \end{align*}

  3. \begin{align*} \ds\int \frac{1}{a^2-x^2}\ dx \amp = \begin{cases} \frac1a\tanh^{-1}\left(\frac xa\right)+C \amp x^2\lt a^2\\ \frac1a\coth^{-1}\left(\frac xa\right)+C \amp a^2\lt x^2 \end{cases} \amp =\frac1{2a}\ln\abs{\frac{a+x}{a-x}}+C\text{.} \end{align*}

  4. \begin{align*} \ds\int \frac{1}{x\sqrt{a^2-x^2}}\ dx \amp = -\frac1a\sech^{-1}\left(\frac xa\right)+C;\ 0\lt x\lt a \amp =\frac1a \ln\left(\frac{x}{a+\sqrt{a^2-x^2}}\right)+C \end{align*}

  5. \begin{align*} \ds\int \frac{1}{x\sqrt{x^2+a^2}}\ dx \amp -\frac1a\csch^{-1}\abs{\frac xa} + C;\ x\neq 0,\ a\gt 0 \amp = \frac1a \ln\abs{\frac{x}{a+\sqrt{a^2+x^2}}}+C \end{align*}

\end{minipage}

We practice using the derivative and integral formulas in the following example.

Example6.6.16Derivatives and integrals involving inverse hyperbolic functions

Evaluate the following.

  1. \(\ds \frac{d}{dx}\left[\cosh^{-1}\left(\frac{3x-2}{5}\right)\right]\)

  2. \(\ds \int\frac{1}{x^2-1}\ dx\)

  3. \(\ds \int \frac{1}{\sqrt{9x^2+10}}\ dx\)

Solution

This section covers a lot of ground. New functions were introduced, along with some of their fundamental identities, their derivatives and antiderivatives, their inverses, and the derivatives and antiderivatives of these inverses. Four Key Ideas were presented, each including quite a bit of information.

Do not view this section as containing a source of information to be memorized, but rather as a reference for future problem solving. Key Idea 6.6.15 contains perhaps the most useful information. Know the integration forms it helps evaluate and understand how to use the inverse hyperbolic answer and the logarithmic answer.

The next section takes a brief break from demonstrating new integration techniques. It instead demonstrates a technique of evaluating limits that return indeterminate forms. This technique will be useful in Section 6.8, where limits will arise in the evaluation of certain definite integrals.

Subsection6.6.2Exercises

Terms and Concepts