Skip to main content
\(\require{cancel}\newcommand{\highlight}[1]{{\color{blue}{#1}}} \newcommand{\apex}{A\kern -1pt \lower -2pt\mbox{P}\kern -4pt \lower .7ex\mbox{E}\kern -1pt X} \newcommand{\colorlinecolor}{blue!95!black!30} \newcommand{\bwlinecolor}{black!30} \newcommand{\thelinecolor}{\colorlinecolor} \newcommand{\colornamesuffix}{} \newcommand{\linestyle}{[thick, \thelinecolor]} \newcommand{\bmx}[1]{\left[\hskip -3pt\begin{array}{#1} } \newcommand{\emx}{\end{array}\hskip -3pt\right]} \newcommand{\ds}{\displaystyle} \newcommand{\fp}{f'} \newcommand{\fpp}{f''} \newcommand{\lz}[2]{\frac{d#1}{d#2}} \newcommand{\lzn}[3]{\frac{d^{#1}#2}{d#3^{#1}}} \newcommand{\lzo}[1]{\frac{d}{d#1}} \newcommand{\lzoo}[2]{{\frac{d}{d#1}}{\left(#2\right)}} \newcommand{\lzon}[2]{\frac{d^{#1}}{d#2^{#1}}} \newcommand{\lzoa}[3]{\left.{\frac{d#1}{d#2}}\right|_{#3}} \newcommand{\plz}[2]{\frac{\partial#1}{\partial#2}} \newcommand{\plzoa}[3]{\left.{\frac{\partial#1}{\partial#2}}\right|_{#3}} \newcommand{\inflim}[1][n]{\lim\limits_{#1 \to \infty}} \newcommand{\infser}[1][1]{\sum_{n=#1}^\infty} \newcommand{\Fp}{F\primeskip'} \newcommand{\Fpp}{F\primeskip''} \newcommand{\yp}{y\primeskip'} \newcommand{\gp}{g\primeskip'} \newcommand{\dx}{\Delta x} \newcommand{\dy}{\Delta y} \newcommand{\ddz}{\Delta z} \newcommand{\thet}{\theta} \newcommand{\norm}[1]{\left\lVert#1\right\rVert} \newcommand{\vnorm}[1]{\left\lVert\vec #1\right\rVert} \newcommand{\snorm}[1]{\left|\left|\ #1\ \right|\right|} \newcommand{\la}{\left\langle} \newcommand{\ra}{\right\rangle} \newcommand{\dotp}[2]{\vec #1 \cdot \vec #2} \newcommand{\proj}[2]{\text{proj}_{\,\vec #2}{\,\vec #1}} \newcommand{\crossp}[2]{\vec #1 \times \vec #2} \newcommand{\veci}{\vec i} \newcommand{\vecj}{\vec j} \newcommand{\veck}{\vec k} \newcommand{\vecu}{\vec u} \newcommand{\vecv}{\vec v} \newcommand{\vecw}{\vec w} \newcommand{\vecx}{\vec x} \newcommand{\vecy}{\vec y} \newcommand{\vrp}{\vec r\, '} \newcommand{\vsp}{\vec s\, '} \newcommand{\vrt}{\vec r(t)} \newcommand{\vst}{\vec s(t)} \newcommand{\vvt}{\vec v(t)} \newcommand{\vat}{\vec a(t)} \newcommand{\px}{\partial x} \newcommand{\py}{\partial y} \newcommand{\pz}{\partial z} \newcommand{\pf}{\partial f} \newcommand{\mathN}{\mathbb{N}} \newcommand{\zerooverzero}{\ds \raisebox{8pt}{\text{``\ }}\frac{0}{0}\raisebox{8pt}{\textit{ ''}}} \newcommand{\deriv}[2]{\myds\frac{d}{dx}\left(#1\right)=#2} \newcommand{\myint}[2]{\myds\int #1\ dx= {\ds #2}} \DeclareMathOperator{\sech}{sech} \DeclareMathOperator{\csch}{csch} \newcommand{\primeskip}{\hskip.75pt} \newcommand{\plotlinecolor}{blue} \newcommand{\colorone}{blue} \newcommand{\colortwo}{red} \newcommand{\coloronefill}{blue!15!white} \newcommand{\colortwofill}{red!15!white} \newcommand{\abs}[1]{\left\lvert #1\right\rvert} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Section3.4Concavity and the Second Derivative

Our study of “nice” functions continues. The previous section showed how the first derivative of a function, \(\fp\text{,}\) can relay important information about \(f\text{.}\) We now apply the same technique to \(\fp\) itself, and learn what this tells us about \(f\text{.}\)

The key to studying \(\fp\) is to consider its derivative, namely \(\fp'\text{,}\) which is the second derivative of \(f\text{.}\) When \(\fp'>0\text{,}\) \(\fp\) is increasing. When \(\fp'\lt 0\text{,}\) \(\fp \)is decreasing. \(\fp\) has relative maxima and minima where \(\fp'=0\) or is undefined.

This section explores how knowing information about \(\fpp\) gives information about \(f\text{.}\)

Subsection3.4.1Concavity

We begin with a definition, then explore its meaning.

Definition3.4.1Concave Up and Concave Down

Let \(f\) be differentiable on an interval \(I\text{.}\) The graph of \(f\) is concave up on \(I\) if \(\fp\) is increasing. The graph of \(f\) is concave down on \(I\) if \(\fp\) is decreasing. If \(\fp\) is constant then the graph of \(f\) is said to have no concavity.

Loose Language

We often state that “\(f\) is concave up” instead of “the graph of \(f\) is concave up” for simplicity.

The graph of a function \(f\) is concave up when \(\fp \)is increasing. That means as one looks at a concave up graph from left to right, the slopes of the tangent lines will be increasing. Consider Figure 3.4.2, where a concave up graph is shown along with some tangent lines. Notice how the tangent line on the left is steep, downward, corresponding to a lesser (large negative) value of \(\fp\text{.}\) On the right, the tangent line is steep, upward, corresponding to a greater (large positive) value of \(\fp\text{.}\)

<<SVG image is unavailable, or your browser cannot render it>>

Figure3.4.2A function \(f\) with a concave up graph. Notice how the slopes of the tangent lines, when looking from left to right, are increasing. (The slope values pictured are \(-12, -6, 6 \) and \(12\)).

If a function is decreasing and concave up, then its rate of decrease is slowing; it is “leveling off.” You can see this in the left side of Figure 3.4.2. If the function is increasing and concave up, then the rate of increase is increasing. The function is increasing at a faster and faster rate. You can see this in the right side of Figure 3.4.2.

Now consider a function which is concave down. We essentially repeat the above paragraphs with slight variation.

The graph of a function \(f\) is concave down when \(\fp \)is decreasing. That means as one looks at a concave down graph from left to right, the slopes of the tangent lines will be decreasing. Consider Figure 3.4.3, where a concave down graph is shown along with some tangent lines. Notice how the tangent line on the left is steep, upward, corresponding to a greater (large positive) value of \(\fp\text{.}\) On the right, the tangent line is steep, downward, corresponding to a lesser (large negative) value of \(\fp\text{.}\)

<<SVG image is unavailable, or your browser cannot render it>>

Figure3.4.3A function \(f\) with a concave down graph. Notice how the slopes of the tangent lines, when looking from left to right, are decreasing.

If a function is increasing and concave down, then its rate of increase is slowing; it is “leveling off.” If the function is decreasing and concave down, then the rate of decrease is decreasing. The function is decreasing at a faster and faster rate.

Concavity Depravity

A mnemonic for remembering what concave up/down means is: “Concave up is like a cup; concave down is like a frown.” It is admittedly terrible, but it works.

Our definition of concave up and concave down is given in terms of when the first derivative is increasing or decreasing. We can apply the results of the previous section to find intervals on which a graph is concave up or down. That is, we recognize that \(\fp\) is increasing when \(\fpp>0\text{,}\) etc.

<<SVG image is unavailable, or your browser cannot render it>>

<<SVG image is unavailable, or your browser cannot render it>>

5\(\fp>0\text{,}\) \(f\) increasing; \(\fpp\lt0\text{,}\) \(f\) is concave down
6\(\fp\lt0\text{,}\) \(f\) decreasing; \(\fpp\lt0\text{,}\) \(f\) is concave down

<<SVG image is unavailable, or your browser cannot render it>>

<<SVG image is unavailable, or your browser cannot render it>>

7\(\fp\lt0\text{,}\) \(f\) decreasing; \(\fpp>0\text{,}\) \(f\) is concave up
8\(\fp>0\text{,}\) \(f\) increasing; \(\fpp>0\text{,}\) \(f\) is concave up
Geometric Concavity

Geometrically speaking, a function is concave up if its graph lies above its tangent lines and below secant line segments. A function is concave down if its graph lies below its tangent lines and above secant line segments.

If knowing where a graph is concave up/down is important, it makes sense that the places where the graph changes from one to the other is also important. This leads us to a definition.

Definition3.4.9Point of Inflection

A point of inflection is a point on the graph of \(f\) at which the concavity of \(f\) changes.

Figure 3.4.10 shows a graph of a function with inflection points labeled.

<<SVG image is unavailable, or your browser cannot render it>>

Figure3.4.10A graph of a function with its inflection points marked. The intervals where concave up/down are also indicated.

If the concavity of \(f\) changes at a point \((c,f(c))\text{,}\) then \(\fp \)is changing from increasing to decreasing (or, decreasing to increasing) at \(x=c\text{.}\) That means that the sign of \(\fpp\)is changing from positive to negative (or, negative to positive) at \(x=c\text{.}\) A sign change may occur when \(\fpp=0\) or \(\fpp\) is undefined. This leads to the following theorem.

We have identified the concepts of concavity and points of inflection. It is now time to practice using these concepts; given a function, we should be able to find its points of inflection and identify intervals on which it is concave up or down. We do so in the following examples.

Example3.4.12Finding intervals of concave up/down, inflection points

Let \(f(x)=x^3-3x+1\text{.}\) Find the inflection points of \(f\) and the intervals on which it is concave up/down.

Solution
Example3.4.15Finding intervals of concave up/down, inflection points

Let \(f(x)=x/(x^2-1)\text{.}\) Find the inflection points of \(f\) and the intervals on which it is concave up/down.

Solution

Recall that relative maxima and minima of \(f\) are found at critical points of \(f\text{;}\) that is, they are found when \(\fp(x)=0\) or when \(\fp\) is undefined. Likewise, the relative maxima and minima of \(\fp \)are found when \(\fpp(x)=0\) or when \(\fpp \)is undefined; note that these are the inflection points of \(f\text{.}\)

What does a “relative maximum of \(\fp\)” mean? The derivative measures the rate of change of \(f\text{;}\) maximizing \(\fp\)means finding the where \(f\) is increasing the most — where \(f\) has the steepest tangent line. A similar statement can be made for minimizing \(\fp\text{;}\) it corresponds to where \(f\) has the steepest negatively-sloped tangent line.

We utilize this concept in the next example.

Example3.4.18Understanding inflection points

The sales of a certain product over a three-year span are modeled by \(S(t)= t^4-8t^2+20\text{,}\) where \(t\) is the time in years, shown in Figure 3.4.19. Over the first two years, sales are decreasing. Find the point at which sales are decreasing at their greatest rate.

<<SVG image is unavailable, or your browser cannot render it>>

Figure3.4.19A graph of \(S(t)\) in Example 3.4.18, modeling the sale of a product over time.
Solution

Not every critical point corresponds to a relative extrema; \(f(x)=x^3\) has a critical point at \((0,0)\) but no relative maximum or minimum. Likewise, just because \(\fpp(x)=0\) we cannot conclude concavity changes at that point. We were careful before to use terminology “possible point of inflection” since we needed to check to see if the concavity changed. The canonical example of \(\fpp(x)=0\) without concavity changing is \(f(x)=x^4\text{.}\) At \(x=0\text{,}\) \(\fpp(x)=0\) but \(f\) is always concave up, as shown in Figure 3.4.21.

<<SVG image is unavailable, or your browser cannot render it>>

Figure3.4.21A graph of \(f(x) = x^4\text{.}\) Clearly \(f\) is always concave up, despite the fact that \(\fpp(x) = 0\) when \(x=0\text{.}\) It this example, the possible point of inflection \((0,0)\) is not a point of inflection.

Subsection3.4.2The Second Derivative Test

The first derivative of a function gave us a test to find if a critical value corresponded to a relative maximum, minimum, or neither. The second derivative gives us another way to test if a critical point is a local maximum or minimum. The following theorem officially states something that is intuitive: if a critical value occurs in a region where a function \(f\) is concave up, then that critical value must correspond to a relative minimum of \(f\text{,}\) etc. See Figure 3.4.22 for a visualization of this.

<<SVG image is unavailable, or your browser cannot render it>>

Figure3.4.22Demonstrating the fact that relative maxima occur when the graph is concave down and relative minima occur when the graph is concave up.
Use Wisely

The second derivative test can only be used on a function that is twice differentiable at \(c\text{.}\) For functions that are not twice differentiable at \(c\text{,}\) you will need to use the First Derivative Test.

The Second Derivative Test relates to the First Derivative Test in the following way. If \(\fpp(c)>0\text{,}\) then the graph is concave up at a critical point \(c\) and \(\fp\) itself is growing. Since \(\fp(c)=0\) and \(\fp\) is growing at \(c\text{,}\) then it must go from negative to positive at \(c\text{.}\) This means the function goes from decreasing to increasing, indicating a local minimum at \(c\text{.}\)

Example3.4.24Using the Second Derivative Test

Let \(f(x)=100/x + x\text{.}\) Find the critical points of \(f\) and use the The Second Derivative Test to label them as relative maxima or minima.

Solution

We have been learning how the first and second derivatives of a function relate information about the graph of that function. We have found intervals of increasing and decreasing, intervals where the graph is concave up and down, along with the locations of relative extrema and inflection points. In Chapter 1 we saw how limits explained asymptotic behavior. In the next section we combine all of this information to produce accurate sketches of functions.

Subsection3.4.3Exercises

In the following exercises, a function \(f(x)\) is given.

  1. Compute \(\fpp(x)\text{.}\)

  2. Graph \(f\) and \(\fpp\) on the same axes (using technology is permitted) and verify Theorem 3.4.4.

In the following exercises, a function \(f(x)\) is given.

  1. Find the possible points of inflection of \(f\text{.}\)

  2. Create a number line to determine the intervals on which \(f\) is concave up or concave down.

In the following exercises, a function \(f(x)\) is given. Find the critical points of \(f\) and use the Second Derivative Test, when possible, to determine the relative extrema. (Note: these are the same functions as in Exercises 3.4.3.163.4.3.28.)

In the following exercises, a function \(f(x)\) is given. Find the \(x\) values where \(\fp(x)\) has a relative maximum or minimum. (Note: these are the same functions as in Exercises 3.4.3.163.4.3.28.)