Skip to main content

Worksheet Worksheet

The table below defines the functions \(f\text{,}\) \(g\text{,}\) \(h\text{,}\) \(k\text{,}\) and \(l\text{.}\)

\(x\) \(-2\) \(-1\) \(0\) \(1\) \(2\)
\(f(x)\) \(0\) \(1\) \(2\) \(3\) \(4\)
\(g(x)\) \(4\) \(3\) \(2\) \(1\) \(0\)
\(h(x)\) \(0\) \(-1\) \(-2\) \(-3\) \(-4\)
\(k(x)\) \(6\) \(7\) \(8\) \(9\) \(10\)
\(l(x)\) \(0\) \(3\) \(6\) \(9\) \(12\)
1.

Express \(g(x)\) in terms of \(f\) and describe how the graph of \(y=f(x)\) can be transformed into the graph of \(y=g(x)\text{.}\)

2.

Express \(h(x)\) in terms of \(f\) and describe how the graph of \(y=f(x)\) can be transformed into the graph of \(y=h(x)\text{.}\)

3.

Express \(k(x)\) in terms of \(f\) and describe how the graph of \(y=f(x)\) can be transformed into the graph of \(y=k(x)\text{.}\)

4.

Express \(l(x)\) in terms of \(f\) and describe how the graph of \(y=f(x)\) can be transformed into the graph of \(y=l(x)\text{.}\)

5.

The second row in the table below gives values for the function, \(f\text{.}\) Complete the rest of the table. If you don't have sufficient information to fill in some of the cells, leave those cells blank.

\(x\) \(-4\) \(-3\) \(-2\) \(-1\) \(0\) \(1\) \(2\) \(3\) \(4\)
\(f(x)\) \(-2\) \(-1\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\)
\(\frac{1}{2}x\)
\(-2f(x)\)
\(f(x)+5\)
\(f(x+2)\)
\(f\left( \frac{1}{2}x \right)\)
\(f(2x)\)
\(f(x-3)\) \(\phantom{-0}\) \(\phantom{-0}\) \(\phantom{-0}\) \(\phantom{-0}\) \(\phantom{-0}\) \(\phantom{-0}\) \(\phantom{-0}\) \(\phantom{-0}\) \(\phantom{-0}\)

First write \(g(x)\) in terms of \(f\text{.}\) Then compose a sequence of transformations that will transform the graph of \(y=f(x)\) into the graph of \(y=g(x)\text{.}\)

6.

\(f(x)=\sqrt{x}\qquad g(x)=\frac{\sqrt{x-7}}{4}\)

7.

\(f(x)=\frac{1}{x}\qquad g(x)=\frac{2}{x}+3\)

8.

\(f(x)=x^2\qquad g(x)=-4\left( \frac{1}{2}x-5 \right)^2+3\)

9.

\([t]f(x)=\sqrt[3]{x}\qquad g(x)=\frac{1}{2}\sqrt[3]{10x+30}-6\)

Use the graph of \(y=f(x)\) that is provided to sketch a graph of each given function.

The graph of f of x which is shown has the points (-4,4), (-2, 0), (0, 4), (2, 4), (4, -4) all connected.
10.

\(k_1(x)=f(2x)\)

A blank graph.
11.

\(k_2(x)=2f(-2x)-1\)

A blank graph.
12.

\(k_3(x)=-2f(2x+4)\)

A blank graph.
13.

\(k_4(x)=f\left(\frac{1}{2}x\right) +2\)

A blank graph.