Skip to main content

MTH 111–112 Supplement

Appendix A Answers and Solutions to Exercises

1 MTH 111 Supplement
1.1 Graph Transformations

Exercises

1.1.1.
Answer.
\(g(x)=f(-x)\text{.}\) So, we can reflect the graph of \(y=f(x)\) across the \(y\)-axis to obtain \(y=g(x)\text{.}\)
1.1.2.
Answer.
\(h(x)=-f(x)\text{.}\) So, we can reflect the graph of \(y=f(x)\) across the \(x\)-axis to obtain \(y=h(x)\text{.}\)
1.1.3.
Answer.
\(k(x)=f(x)+6\text{.}\) So, we can shift the graph of \(y=f(x)\) up \(6\) units to obtain \(y=k(x)\text{.}\)
1.1.4.
Answer.
\(l(x)=3f(x)\text{.}\) So, we can stretch the graph of \(y=f(x)\) vertically by a factor of \(3\) to obtain \(y=l(x)\text{.}\)
1.1.5.
Answer.
\(x\) \(-4\) \(-3\) \(-2\) \(-1\) \(0\) \(1\) \(2\) \(3\) \(4\)
\(f(x)\) \(-2\) \(-1\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\)
\(\frac{1}{2}x\) \(-1\) \(-\frac{1}{2}\) \(0\) \(\frac{1}{2}\) \(1\) \(\frac{3}{2}\) \(2\) \(\frac{5}{2}\) \(3\)
\(-2f(x)\) \(4\) \(2\) \(0\) \(-2\) \(-4\) \(-6\) \(-8\) \(-10\) \(-12\)
\(f(x)+5\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(f(x+2)\) \(0\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\)
\(f\mathopen{}\left( \frac{1}{2}x \right)\mathclose{}\) \(0\) \(1\) \(2\) \(3\) \(4\)
\(f(2x)\) \(-2\) \(0\) \(2\) \(4\) \(6\)
\(f(x-3)\) \(-2\) \(-1\) \(0\) \(1\) \(2\) \(3\)
1.1.6.
Solution.
\begin{align*} g(x) \amp = \frac{\sqrt{x-7}}{4} \\ \amp = \frac{1}{4}\sqrt{x-7} \\ \amp = \frac{1}{4}f(x-7) \end{align*}
So we can transform \(y=f(x)\) into \(y=g(x)\) by first shifting right \(7\) units and then compressing vertically by a factor of \(\frac{1}{4}\text{.}\) (There are other correct answers.)
1.1.7.
Solution.
\begin{align*} g(x) \amp = \frac{2}{x}+3 \\ \amp = 2 \cdot \frac{1}{x}+3 \\ \amp = 2f(x)+3 \end{align*}
So we can transform \(y=f(x)\) into \(y=g(x)\) by first stretching vertically by a factor of \(2\) and then shifting up \(3\) units. (There are other correct answers.)
1.1.8.
Solution.
\begin{align*} g(x) \amp =-4\left( \frac{1}{2}x-5 \right)^2+3 \\ \amp = -4f\mathopen{}\left( \frac{1}{2}x-5 \right)\mathclose{}+3 \\ \amp = -4f\mathopen{}\left( \frac{1}{2} (x-10) \right)\mathclose{}+3 \end{align*}
So we can transform \(y=f(x)\) into \(y=g(x)\) by first stretching horizontally by a factor of \(2\) and then shifting right \(10\) units. Then, stretching vertically by a factor of \(4\) and reflecting across the \(x\)-axis, and finally shifting up \(3\) units. (There are other correct answers.)
1.1.9.
Solution.
\begin{align*} g(x) \amp =\frac{1}{2}\sqrt[3]{10x+30}-6 \\ \amp =\frac{1}{2}f(10x+30)-6 \\ \amp =\frac{1}{2}f\mathopen{}\left( 10( x+3 ) \right)\mathclose{} -6 \end{align*}
So we can transform \(y=f(x)\) into \(y=g(x)\) by first compressing horizontally by a factor of \(\frac{1}{10}\) and then shifting left \(3\) units. Then, compressing vertically by a factor of \(\frac{1}{2}\) and finally shifting down \(6\) units. (There are other correct answers.)
1.1.10.
Answer.
The graph has the points (-2,4), (-1, 0), (0, 4), (1, 4), (2, -4) all connected.
1.1.11.
Answer.
The graph has the points (-2, -9), (-1, 7), (0, 7), (1, -1), and (2, 7) connected.
1.1.12.
Answer.
This graph has the points (-4, -8), (-3, 0), (-2, -8), (-1, -8), and (0, 8) all connected.
1.1.13.
Answer.
This graph has the points (-8, 6), (-4, 2), (0, 6), (4, 6), and (8, -2) are all connected.

1.2 Inverse Functions

Exercises

1.2.1.
Solution.
\(m\) is an invertible function since it is one-to-one, i.e., each output corresponds to exactly one input. Here is a table-of-values for \(m^{-1}\text{.}\)
\(x\) \(0\) \(5\) \(10\) \(15\) \(20\)
\(m^{-1}(x)\) \(1\) \(2\) \(3\) \(4\) \(5\)
1.2.2.
Solution.
\(p\) isn’t an invertible function since it isn’t one-to-one. Notice how the output \(0\) corresponds to two distinct output values.

1.3 Exponential Functions

Exercises

1.3.1.
Answer.
\(f(x)=50 \cdot 2^x\)
1.3.2.
Answer.
\(f(x)=4 \cdot \left( \frac{1}{2} \right)^x\)
1.3.3.
Answer.
\(f(x)=2 \cdot 3^x\)
1.3.4.
Answer.
\(f(x)=10 \cdot \left( \frac{4}{5} \right)^x\)
1.3.5.
Answer.
\(f(x)=5 \cdot \left( \frac{1}{5} \right)^x\)
1.3.6.
Answer.
\(f(x)=\frac{1}{2} \cdot \left( \frac{2}{3} \right)^x\)

1.4 Logarithmic Functions

Exercises

1.4.1.
Answer.
\(a=\sqrt{5}\)
1.4.2.
Answer.
\(a=20\)
1.4.3.
Answer.
\(a=\sqrt{3}\)

2 MTH 112 Supplement
2.1 Angles
2.1.4 Exercises

2.1.4.1.

Answer.
\(423^{\circ}\) and \(-297^{\circ}\) are coterminal with \(63^{\circ}\text{.}\)

2.1.4.2.

Answer.
\(\frac{19\pi}{9}\) and \(-\frac{17\pi}{9}\) are coterminal with \(\frac{\pi}{9}\text{.}\)

2.1.4.3.

Answer.
\(\frac{29\pi}{8}\) and \(-\frac{3\pi}{8}\) are coterminal with \(\frac{13\pi}{8}\text{.}\)

2.1.4.4.

Answer.
\(60^{\circ}\)

2.1.4.5.

Answer.
\(\frac{\pi}{4}\)

2.1.4.6.

Answer.
\(40^{\circ}\)

2.1.4.7.

Answer.
\(\frac{3\pi}{8}\)

2.1.4.8.

Answer.
\(\pi-2 \approx 1.14\)

2.1.4.9.

Answer.
\(\frac{\pi}{11}\)

2.1.4.10.

Answer.
\(20^{\circ}\)

2.1.4.11.

Answer.
\(\frac{\pi}{5}\)

2.1.4.12.

Answer.
\(80^{\circ}\)

2.1.4.13.

Answer.
\(243^{\circ}10' \approx 243.167^{\circ}\)

2.1.4.14.

Answer.
\(3^{\circ}25' \approx 3.417^{\circ}\)

2.1.4.15.

Answer.
\(-23^{\circ}3' = -23.05^{\circ}\)

2.1.4.16.

Answer.
\(75^{\circ}32'17'' \approx 75.538^{\circ}\)

2.1.4.17.

Answer.
\(12.4^{\circ} = 12^{\circ}24'\)

2.1.4.18.

Answer.
\(1.53^{\circ} = 1^{\circ}31'48''\)

2.1.4.19.

Answer.
\(-144.9^{\circ} = -144^{\circ}54'\)

2.1.4.20.

Answer.
\(0.416^{\circ} = 0^{\circ}24'57.6''\)

2.2 Generalized Definitions of Trigonometric Functions

Exercises

2.2.1.
Answer.
\begin{align*} \cos(\theta) \amp= \frac{3}{5} \\ \sin(\theta) \amp= \frac{4}{5} \\ \tan(\theta) \amp= \frac{4}{3} \\ \sec(\theta) \amp= \frac{5}{3} \\ \csc(\theta) \amp= \frac{5}{4} \\ \cot(\theta) \amp= \frac{3}{4} \end{align*}
2.2.2.
Answer.
\begin{align*} \sin(\theta) \amp= -\frac{\sqrt{10}}{10} \\ \cos(\theta) \amp= -\frac{3\sqrt{10}}{10} \\ \tan(\theta) \amp= 3 \\ \sec(\theta) \amp= -\sqrt{10} \\ \csc(\theta) \amp= -\frac{\sqrt{10}}{3} \\ \cot(\theta) \amp= \frac{1}{3} \end{align*}
2.2.3.
Answer.
\(\mathopen{}\left( -\frac{3\sqrt{3}}{2}, -\frac{3}{2} \right)\mathclose{}\)
2.2.4.
Answer.
\(\mathopen{}\left( 5, 5\sqrt{3} \right)\mathclose{}\)

2.3 Graphing Sinusoidal Functions: Phase Shift vs. Horizontal Shift

Exercises

2.3.1.
Answer.
Amplitude
\(3\) units
Period
\(\frac{2\pi}{3} \) units
Midline
\(\displaystyle y=0\)
Phase shift
\(\displaystyle \frac{\pi}{2}\)
Horizontal Shift
\(\frac{\pi}{6}\) units to the right
The graph of f(x)=3sin(3x-pi/2).
2.3.2.
Answer.
Amplitude
\(1\) unit
Period
\(\frac{\pi}{2} \) units
Midline
\(\displaystyle y=3\)
Phase shift
\(\displaystyle -\pi\)
Horizontal Shift
\(\frac{\pi}{4}\) units to the left
The graph of g(t)=cos(4t+pi)+3.
2.3.3.
Answer.
Amplitude
\(2\) units
Period
\(1\) unit
Midline
\(\displaystyle y=4\)
Phase shift
\(\displaystyle \pi\)
Horizontal Shift
\(\frac{1}{2}\) of a unit to the right
The graph of m(theta)=2cos(2 pi theta - pi) + 4.
2.3.4.
Answer.
Amplitude
\(4\) units
Period
\(2\) units
Midline
\(\displaystyle y=-2\)
Phase shift
\(\displaystyle -\frac{\pi}{4}\)
Horizontal Shift
\(\frac{1}{4}\) of a unit to the left
The graph of n(x)=-4sin(pi x + pi/4)-2.
2.3.5.
Answer.
\(\begin{aligned} p(x)=4 \sin \mathopen{}\left( 2 \mathopen{}\left( x-\frac{\pi}{4} \right)\mathclose{} \right)\mathclose{}-2 \\ p(x)=4 \cos \mathopen{}\left( 2 \mathopen{}\left( x-\frac{\pi}{2} \right)\mathclose{} \right)\mathclose{}-2 \end{aligned} \)
2.3.6.
Answer.
\(\begin{aligned}q(x)=3 \sin \mathopen{}\left( \pi \mathopen{}\left( x+\frac{1}{4} \right)\mathclose{} \right)\mathclose{}-1\\ q(x)=3 \cos \mathopen{}\left( \pi \mathopen{}\left( x-\frac{1}{4} \right)\mathclose{} \right)\mathclose{}-1\end{aligned}\)

2.4 Complex Numbers and Polar Coordinates
2.4.3 Exercises

2.4.3.1.

Answer.
\(z=12e^{\frac{\pi}{3} \cdot i}\)

2.4.3.2.

Answer.
\(z=4e^{\frac{5\pi}{6} \cdot i}\)

2.4.3.3.

Answer.
\(z=10e^{-\frac{\pi}{4} \cdot i}\)

2.4.3.4.

Answer.
\(z=4\sqrt{3}+4i\)

2.4.3.5.

Answer.
\(z=-4\)

2.4.3.6.

Answer.
\(z=-\frac{5}{2}-\frac{5\sqrt{3}}{2} \cdot i\)

2.4.3.7.

Answer.
\(\sqrt{18-18\sqrt{3}\cdot i}=3\sqrt{3}-3i\) (and the non-principal root is \(-3\sqrt{3}+3i\))

2.4.3.8.

Answer.
\(\sqrt[3]{-16+16i}=2+2i\) (and the non-principal roots are \(\left(-1-\sqrt{3}\right)+\left(-1+\sqrt{3}\right)i\) and \(\left(-1+\sqrt{3}\right)+\left(-1-\sqrt{3}\right)i\))

2.4.3.9.

Answer.
\(\sqrt{-i} = \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\) (and the non-principal root is \(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\))

2.4.3.10.

Answer.
\(\sqrt[5]{-16\sqrt{3}-16i}=\sqrt{3}-i\) (and the non-principal roots are \(2\cos\mathopen{}\left(\frac{7\pi}{30}\right)+2i\sin\mathopen{}\left(\frac{7\pi}{30}\right)\text{,}\) \(2\cos\mathopen{}\left(\frac{19\pi}{30}\right)+2i\sin\mathopen{}\left(\frac{19\pi}{30}\right)\text{,}\) \(2\cos\mathopen{}\left(\frac{29\pi}{30}\right)-2i\sin\mathopen{}\left(\frac{29\pi}{30}\right)\text{,}\) and \(2\cos\mathopen{}\left(\frac{17\pi}{30}\right)-2i\sin\mathopen{}\left(\frac{17\pi}{30}\right)\))

2.4.3.11.

Answer.
\(\frac{3\sqrt{3}}{2}+\frac{3}{2}i\text{,}\) \(-3i\text{,}\) and \(-\frac{3\sqrt{3}}{2}+\frac{3}{2}i\)

2.4.3.12.

Answer.
\(\frac{1}{2}+\frac{\sqrt{3}}{2}i \) and \(-\frac{1}{2}-\frac{\sqrt{3}}{2}i \)

2.4.3.13.

Answer.
\(\left\{ -1, \frac{1}{2}+\frac{\sqrt{3}}{2}i, \frac{1}{2}-\frac{\sqrt{3}}{2}i \right\} \)