So we can transform \(y=f(x)\) into \(y=g(x)\) by first shifting right \(7\) units and then compressing vertically by a factor of \(\frac{1}{4}\text{.}\) (There are other correct answers.)
So we can transform \(y=f(x)\) into \(y=g(x)\) by first stretching vertically by a factor of \(2\) and then shifting up \(3\) units. (There are other correct answers.)
So we can transform \(y=f(x)\) into \(y=g(x)\) by first stretching horizontally by a factor of \(2\) and then shifting right \(10\) units. Then, stretching vertically by a factor of \(4\) and reflecting across the \(x\)-axis, and finally shifting up \(3\) units. (There are other correct answers.)
So we can transform \(y=f(x)\) into \(y=g(x)\) by first compressing horizontally by a factor of \(\frac{1}{10}\) and then shifting left \(3\) units. Then, compressing vertically by a factor of \(\frac{1}{2}\) and finally shifting down \(6\) units. (There are other correct answers.)
1.1.10.
Answer.
1.1.11.
Answer.
1.1.12.
Answer.
1.1.13.
Answer.
1.2Inverse Functions
Exercises
1.2.1.
Solution.
\(m\) is an invertible function since it is one-to-one, i.e., each output corresponds to exactly one input. Here is a table-of-values for \(m^{-1}\text{.}\)
\(x\)
\(0\)
\(5\)
\(10\)
\(15\)
\(20\)
\(m^{-1}(x)\)
\(1\)
\(2\)
\(3\)
\(4\)
\(5\)
1.2.2.
Solution.
\(p\) isn’t an invertible function since it isn’t one-to-one. Notice how the output \(0\) corresponds to two distinct output values.
2.4Complex Numbers and Polar Coordinates 2.4.3Exercises
2.4.3.1.
Answer.
\(z=12e^{\frac{\pi}{3} \cdot i}\)
2.4.3.2.
Answer.
\(z=4e^{\frac{5\pi}{6} \cdot i}\)
2.4.3.3.
Answer.
\(z=10e^{-\frac{\pi}{4} \cdot i}\)
2.4.3.4.
Answer.
\(z=4\sqrt{3}+4i\)
2.4.3.5.
Answer.
\(z=-4\)
2.4.3.6.
Answer.
\(z=-\frac{5}{2}-\frac{5\sqrt{3}}{2} \cdot i\)
2.4.3.7.
Answer.
\(\sqrt{18-18\sqrt{3}\cdot i}=3\sqrt{3}-3i\) (and the non-principal root is \(-3\sqrt{3}+3i\))
2.4.3.8.
Answer.
\(\sqrt[3]{-16+16i}=2+2i\) (and the non-principal roots are \(\left(-1-\sqrt{3}\right)+\left(-1+\sqrt{3}\right)i\) and \(\left(-1+\sqrt{3}\right)+\left(-1-\sqrt{3}\right)i\))
2.4.3.9.
Answer.
\(\sqrt{-i} = \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i\) (and the non-principal root is \(-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i\))
2.4.3.10.
Answer.
\(\sqrt[5]{-16\sqrt{3}-16i}=\sqrt{3}-i\) (and the non-principal roots are \(2\cos\mathopen{}\left(\frac{7\pi}{30}\right)+2i\sin\mathopen{}\left(\frac{7\pi}{30}\right)\text{,}\)\(2\cos\mathopen{}\left(\frac{19\pi}{30}\right)+2i\sin\mathopen{}\left(\frac{19\pi}{30}\right)\text{,}\)\(2\cos\mathopen{}\left(\frac{29\pi}{30}\right)-2i\sin\mathopen{}\left(\frac{29\pi}{30}\right)\text{,}\) and \(2\cos\mathopen{}\left(\frac{17\pi}{30}\right)-2i\sin\mathopen{}\left(\frac{17\pi}{30}\right)\))
2.4.3.11.
Answer.
\(\frac{3\sqrt{3}}{2}+\frac{3}{2}i\text{,}\)\(-3i\text{,}\) and \(-\frac{3\sqrt{3}}{2}+\frac{3}{2}i\)
2.4.3.12.
Answer.
\(\frac{1}{2}+\frac{\sqrt{3}}{2}i \) and \(-\frac{1}{2}-\frac{\sqrt{3}}{2}i \)