Section 1.2 Inverse Functions
These exercises examine the invertibility of a function defined using a table.
Exercises  Exercises
1.
The table below defines the function \(m\text{.}\) Is \(m\) an invertible function? Why or why not? If your answer is yes, construct a table-of-values for \(m^{-1}\text{.}\)
 
| \(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | 
| \(m(x)\) | \(0\) | \(5\) | \(10\) | \(15\) | \(20\) | 
2.
The table below defines the function \(p\text{.}\) Is \(p\) an invertible function? Why or why not? If your answer is yes, construct a table-of-values for \(p^{-1}\text{.}\)
 
| \(x\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | 
| \(p(x)\) | \(4\) | \(0\) | \(-2\) | \(0\) | \(2\) |