Skip to main content

MTH 111–112 Supplement

Section 2.2 Generalized Definitions of Trigonometric Functions

We can generalize the definitions of the trigonometric functions so that they are applicable to circles of any size.

Definition 2.2.1.

If the point \(P = \left(x,y \right) \) is specified by the angle \(\theta\) on the circumeference of a circle of radius \(r\text{,}\) then \(\cos (\theta ) = \frac{x}{r} \) and \(\sin (\theta ) = \frac{y}{r} \text{.}\)
This is circle with radius r intersecting the terminal side of an angle labeled theta. The intersecting point is labeled P.
Figure 2.2.2.
Notice that if we are on a unit circle, where \(r=1\text{,}\) then these definitions for \(\cos(\theta)\) and \(\sin(\theta)\) simplifly accordingly:
\begin{equation*} \cos(\theta)=\frac{x}{r}=\frac{x}{1}=x \end{equation*}
\begin{equation*} \sin(\theta)=\frac{y}{r}=\frac{y}{1}=y \end{equation*}
We can use Definition 2.2.1 to express the other four trigonometric functions in terms of \(x\text{,}\) \(y\text{,}\) and \(r\text{.}\)
\begin{align*} \tan(\theta) \amp= \frac{\sin(\theta)}{\cos(\theta)} \\ \amp= \frac{y/r}{x/r} \\ \amp= \frac{y}{x} \end{align*}
\begin{align*} \csc(\theta) \amp= \frac{1}{\sin(\theta)} \\ \amp= \frac{1}{y/r} \\ \amp= \frac{r}{y} \end{align*}
\begin{align*} \sec(\theta) \amp= \frac{1}{\cos(\theta)} \\ \amp= \frac{1}{x/r} \\ \amp= \frac{r}{x} \end{align*}
\begin{align*} \cot(\theta) \amp= \frac{1}{\tan(\theta)} \\ \amp= \frac{1}{y/x} \\ \amp= \frac{x}{y} \end{align*}
We summarize this in the following definition.

Definition 2.2.3.

If the point \(P = \left(x,y \right) \) is specified by the angle \(\theta\) on the circumeference of a circle of radius \(r\text{,}\) then we can define the six trigonemtric functions as follows.
\begin{equation*} \cos (\theta ) = \frac{x}{r} \end{equation*}
\begin{equation*} \sin (\theta ) = \frac{y}{r} \end{equation*}
\begin{equation*} \tan (\theta ) = \frac{y}{x} \end{equation*}
\begin{equation*} \sec (\theta ) = \frac{r}{x} \end{equation*}
\begin{equation*} \csc (\theta ) = \frac{r}{y} \end{equation*}
\begin{equation*} \cot (\theta ) = \frac{x}{y} \end{equation*}
This is circle with radius r intersecting the terminal side of an angle in standard position labeled theta. The intersecting point is labeled P.
Figure 2.2.4.

Example 2.2.5.

Find the exact value of each of the six trigonometric functions of an angle \(\theta\) if \((-1,2)\) is a point on its terminal side.
This is circle intersecting the terminal side of an angle labeled theta. The intersecting point has coordinates -1,2.
Figure 2.2.6.
Solution.
We need the values of \(x\text{,}\) \(y\text{,}\) and \(r\) to determine the exact value of each of the trigonemtric function. We are given \(x\) and \(y\text{,}\) but will need to find the value of \(r\text{.}\)
We can think of \(r\) as the hypotenuse of a right triangle whose horiztonal leg has a length of \(|-1|=1\) unit and vertical leg has a length of \(2\) units. We can use the Pythagorean Theorem to solve for \(r\text{:}\)
\begin{align*} r^2 \amp= 1^2+2^2 \\ r^2 \amp= 5 \\ r \amp= \sqrt{5} \end{align*}
Now that we have values for \(x\text{,}\) \(y\text{,}\) and \(r\text{,}\) we can use Definition 2.2.3 to state the exact values of each trigonmetric function.
\begin{align*} \cos(\theta) \amp= \frac{x}{r} \\ \amp= \frac{-1}{\sqrt{5}} \\ \amp= \frac{-1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \\ \amp= -\frac{\sqrt{5}}{5} \end{align*}
\begin{align*} \sin(\theta) \amp= \frac{y}{r} \\ \amp= \frac{2}{\sqrt{5}} \\ \amp= \frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \\ \amp= \frac{2\sqrt{5}}{5} \end{align*}
\begin{align*} \tan(\theta) \amp= \frac{y}{x} \\ \amp= \frac{2}{-1} \\ \amp= -2 \end{align*}
\begin{align*} \sec(\theta) \amp= \frac{r}{x} \\ \amp= \frac{\sqrt{5}}{-1} \\ \amp= -\sqrt{5} \end{align*}
\begin{align*} \csc(\theta) \amp= \frac{r}{y} \\ \amp= \frac{\sqrt{5}}{2} \end{align*}
\begin{align*} \cot(\theta) \amp= \frac{x}{y} \\ \amp= \frac{-1}{2} \\ \amp= -\frac{1}{2} \end{align*}
We can use Definition 2.2.1 to express the coordinates of point \(P\) in Figure 2.2.2. We do this by solving the equations \(\cos (\theta ) = \frac{x}{r} \) and \(\sin (\theta ) = \frac{y}{r} \) for \(x\) and \(y\text{,}\) respectively:
\begin{equation*} \cos(\theta)=\frac{x}{r} \implies x=r\cos(\theta) \end{equation*}
\begin{equation*} \sin(\theta)=\frac{y}{r} \implies y=r\sin(\theta) \end{equation*}
We summarize this below.

Definition 2.2.7.

If the point \(P = \left(x,y \right) \) is specified by the angle \(\theta\) on the circumeference of a circle of radius \(r\text{,}\) then \(x=r \cos (\theta )\) and \(y=r \sin (\theta )\text{.}\)
This is circle with radius r intersecting the terminal side of an angle theta. The intersecting point labeled P.
Figure 2.2.8.

Example 2.2.9.

Find the coordinates of the point on a circle with a radius of \(8\) units corresponding to an angle of \(\frac{7\pi}{4}\text{.}\)
This is circle a circle of radius 8 intersecting the terminal side of the angle 7 time pi over 4 in standard position.
Figure 2.2.10.
Solution.
We are given the values of \(r\) and \(\theta\text{,}\) so we can use Definition 2.2.7 to determine the coordinate values.
Find \(x\text{:}\)
\begin{align*} x \amp= r\cos\mathopen{}\left( \theta \right)\mathclose{} \\ \amp= 8\cos\mathopen{}\left( \frac{7\pi}{4}\right)\mathclose{} \\ \amp= 8 \cdot \frac{\sqrt{2}}{2} \\ \amp= 4\sqrt{2} \end{align*}
Find \(y\text{:}\)
\begin{align*} y \amp= r\sin\mathopen{}\left( \theta \right)\mathclose{} \\ \amp= 8\sin\mathopen{}\left( \frac{7\pi}{4}\right)\mathclose{} \\ \amp= 8 \mathopen{}\left( -\frac{\sqrt{2}}{2} \right)\mathclose{} \\ \amp= -4\sqrt{2} \end{align*}
So the coordinates of the point on a circle with a radius of \(8\) units corresponding to an angle of \(\frac{7\pi}{4}\) are \(\mathopen{}\left( 4\sqrt{2}, -4\sqrt{2} \right)\mathclose{}\text{.}\)

Exercises Exercises

Six Trigonemtric Function Values.

In Exercises 1–2, find the exact value of each of the six trigonometric functions of an angle \(\theta\) if the given point is on its terminal side.
1.
\((3,4)\)
2.
\((-2,-6)\)

Find the coordinates.

In Exercises 3–4, find the coordinates of the point on a circle with the given radius corresponding to the given angle.
3.
\(r=3, \theta=\frac{7\pi}{6}\)
4.
\(r=10, \theta=\frac{\pi}{3}\)