Section1.15Functions
Ā¶Subsection1.15.1Written Examples
Click here to access some practice problems related to the terminology of polynomials: Practice problemsĀ 1.15.2.1
2Domain and Range
Click here to access some practice problems related to the terminology of polynomials: Practice problemsĀ 1.1.1.6
3Advanced function notation
Click here to access some practice problems related to the terminology of polynomials: Practice problemsĀ 1.15.2.3
4Function composition
Click here to access some practice problems related to the terminology of polynomials: Practice problemsĀ 1.15.2.4
5The difference quotient
Click here to access some practice problems related to the terminology of polynomials: Practice problemsĀ 1.15.2.5
6Solving inequalities involving functions presented in graphical form
When solving inequalities involving functions that are presented in graphical form, we follow a two-step process. We first use the function to identify the points on the curve whose \(-y\)-coordinates satisfy the property implied by the inequality statement. We then identify the \(x\)-coordinates of those points, which collectively make up the solution set to the inequality.
In FigureĀ 1.15.1, I've indicated all of the points on the function named \(g\) that have \(y\)-coordinates greater than or equal to \(1\text{.}\) I've also marked off the portion of the \(x\)-axis over which these points lie. Since the \(y\)-coordinates of the points are the values of \(g(x)\text{,}\) we can infer from this that the solution set to the inequality \(g(x) \geq 1\) is \([-4.5,3]\text{.}\)
In FigureĀ 1.15.2, I've indicated all of the points on the function named \(g\) that have \(y\)-coordinates less than to \(44\text{.}\) I've also marked off the portion of the \(x\)-axis over which these points lie. Since the \(y\)-coordinates of the points are the values of \(g(x)\text{,}\) we can infer from this that the solution set to the inequality \(g(x) \lt 4\) is \((-\infty,-3) \cup (0,6]\text{.}\)
7Determining the domain and range for functions presented in graphical form
Subsection1.15.2Practice Exercises (with step-by-step solutions)
1Introduction to function notation
Problem Set 1
Determine each of the stated function values.
- Determine \(g(7)\) where \(g(t)=8-4t\text{.}\)
- Determine \(f(-3)\) where \(f(x)=-x^2+5x+12\text{.}\)
- Determine \(h(33)\) where \(h(x)=-\sqrt{\frac{x-25}{2}}\text{.}\)
- Determine \(t(22)\) where \(t(x)=17\text{.}\)
- Determine \(y(-6)\) where \(y(t)=\abs{-9-t}+3\text{.}\)
- Determine \(z(-1)\) where \(z(x)=\frac{x+6}{x^2+1}\text{.}\)
- Determine \(k(4)\) where \(k(t)=3\sqrt{21-t^2}\text{.}\)
Problem Set 2
Determine the solution set for each of the following equations.
- Solve \(f(x)=12\) where \(f(x)=4-x\text{.}\)
- Solve \(h(t)=100\) where \(h(t)=t^2-21\text{.}\)
- Solve \(p(x)=-14\) where \(p(x)=6-\abs{x}\text{.}\)
- Solve \(w(y)=10\) where \(w(y)=y^2-y-2\text{.}\)
- Solve \(r(t)=s(t)\) where \(r(t)=\frac{5}{7}t-3\) and \(s(t)=\frac{2}{3}t+\frac{11}{21}\text{.}\)
- Solve \(g(x)=y(x)\) where \(q(x)=6-4x^2\) and \(y(x)=(3-x)(8+4x)\text{.}\)
Problem set 3
Determine each of the following function values based upon the function \(f\) shown in FigureĀ 1.15.3.
- \(f(4)\)
- \(f(2)\)
- \(f(5)\)
- \(f(1)\)
Determine the solution set to each of the following equations based upon the function \(f\) shown in FigureĀ 1.15.3.
- \(f(x)=-1\)
- \(f(x)=2\)
- \(f(x)=-3\)
- \(f(x)=5\)
Problem Set 4
Determine each of the following function values based upon the function \(g\) shown in FigureĀ 1.15.4.
- \(g(-1)\)
- \(g(2)\)
- \(g(6)\)
- \(g(-6)\)
Determine the solution set to each of the following equations based upon the function \(g\) shown in FigureĀ 1.15.4.
- \(g(x)=-2\)
- \(g(x)=3\)
- \(g(x)=-6\)
- \(g(x)=-10\)
Problem Set 5
Determine each of the following function values based upon the function \(k\) shown in FigureĀ 1.15.5.
- \(k(2)\)
- \(k(0)\)
- \(k(4)\)
- \(k(-3)\)
Determine the solution set to each of the following equations based upon the function \(k\) shown in FigureĀ 1.15.5.
- \(k(x)=1\)
- \(k(x)=4\)
- \(k(x)=5\)
- \(k(x)=6\)
Problem Set 1
- \(\begin{aligned}[t] g(\highlight{7})\amp=8-4(\highlight{7})\\ \amp=8-28\\ \amp=-20 \end{aligned}\)
- \(\begin{aligned}[t] f(\highlight{-3})\amp=-(\highlight{-3})^2+5(\highlight{-3})+12\\ \amp=-9-15+12\\ \amp=-12 \end{aligned}\)
- \(\begin{aligned}[t] h(\highlight{33})\amp=-\sqrt{\frac{\highlight{33}-25}{2}}\\ \amp=-\sqrt{\frac{8}{2}}\\ \amp=-\sqrt{4}\\ \amp=-2 \end{aligned}\)
- \(\begin{aligned}[t] t(\highlight{22})\amp=17\\ \end{aligned}\)
- \(\begin{aligned}[t] y(\highlight{-6})\amp=\abs{-9-(\highlight{-6})}+3\\ \amp=\abs{-3}+3\\ \amp=3+3\\ \amp=6 \end{aligned}\)
- \(\begin{aligned}[t] z(\highlight{-1})\amp=\frac{\highlight{-1}+6}{(\highlight{-1})^2+1}\\ \amp=\frac{5}{2} \end{aligned}\)
- \(\begin{aligned}[t] k(\highlight{4})\amp=3\sqrt{21-\highlight{4}^2}\\ \amp=3\sqrt{21-16}\\ \amp=3\sqrt{5} \end{aligned}\)
Problem Set 2
- Solve \(f(x)=12\) where \(f(x)=4-x\text{.}\)\begin{align*} f(x)\amp=12\\ 4-x\amp=12\\ 4-x\subtractright{4}\amp=12\subtractright{4}\\ -x\amp=8\\ \multiplyleft{-1}-x\amp=\multiplyleft{-1}8\\ x\amp=-8 \end{align*}The solution set is \(\{-8\}\text{.}\)
- Solve \(h(t)=100\) where \(h(t)=t^2-21\text{.}\)\begin{align*} h(t)\amp=100\\ t^2-21\amp=100\\ t^2-21\addright{21}\amp=100\addright{21}\\ t^2\amp=121\\ t\amp=\pm\sqrt{121}\\ t\amp=\pm 11 \end{align*}The solution set is \(\{-11,11\}\text{.}\)
- Solve \(p(x)=-14\) where \(p(x)=6-\abs{x}\text{.}\)\begin{align*} p(x)\amp=-14\\ 6-\abs{x}\amp=-14\\ 6-\abs{x}\subtractright{6}\amp=-14\subtractright{6}\\ -\abs{x}\amp=-20\\ \multiplyleft{-1}-\abs{x}\amp=\multiplyleft{-1}-20\\ \abs{x}\amp=20\\ x\amp=\pm 20 \end{align*}The solution set is \(\{-20,20\}\text{.}\)
- Solve \(w(y)=10\) where \(w(y)=y^2-y-2\text{.}\)\begin{align*} w(y)\amp=10\\ y^2-y-2\amp=10\\ y^2-y-2\subtractright{10}\amp=10\subtractright{10}\\ y^2-y-12\amp=0\\ (y-4)(y+3)\amp=0 \end{align*}\begin{align*} y-4\amp=0\amp\amp\text{ or }\amp y+3\amp=0\\ y-4\addright{4}\amp=0\addright{4}\amp\amp\text{ or }\amp y+3\subtractright{3}\amp=0\subtractright{3}\\ y\amp=4\amp\amp\text{ or }\amp y\amp=-3 \end{align*}The solution set is \(\{-3,4\}\text{.}\)
- Solve \(r(t)=s(t)\) where \(r(t)=\frac{5}{7}t-3\) and \(s(t)=\frac{2}{3}t+\frac{11}{21}\text{.}\)\begin{align*} r(t)\amp=s(t)\\ \frac{5}{7}t-3\amp=\frac{2}{3}t+\frac{11}{21}\\ \multiplyleft{21}(\frac{5}{7}t-3)\amp=\multiplyleft{21}(\frac{2}{3}t+\frac{11}{21})\\ 15t-63\amp=14t+11\\ 15t-63\addright{63}\amp=14t+11\addright{63}\\ 15t\amp=14t+74\\ 15t\subtractright{14t}\amp=14t+74\subtractright{14t}\\ t\amp=74 \end{align*}The solution set is \(\{74\}\text{.}\)
- Solve \(g(x)=y(x)\) where \(q(x)=6-4x^2\) and \(y(x)=(3-x)(8+4x)\text{.}\)\begin{align*} g(x)\amp=y(x)\\ 6-4x^2\amp=(3-x)(8+4x)\\ 6-4x^2\amp=24+4x-4x^2\\ 6-4x^2\addright{4x^2}\amp=24+4x-4x^2\addright{4x^2}\\ 6\amp=24+4x\\ 6\subtractright{24}\amp=24+4x\subtractright{24}\\ -18\amp=4x\\ \divideunder{-18}{4}\amp=\divideunder{4x}{4}\\ -\frac{9}{2}\amp=x \end{align*}The solution set is \(\{-\frac{9}{2}\}\text{.}\)
Problem Set 3
- \(f(4)=2\)
- \(f(2)=2\)
- \(f(5)\) is not defined.
- \(f(1)=5\)
- The solution set is \(\{-1,3\}\text{.}\)
- The solution set is \(\{-4,-2,0,2,4\}\text{.}\)
- The solution set is \(\emptyset\text{.}\)
- The solution set is \(\{-3,1\}\)
Problem Set 4
- \(g(-1)=6\)
- \(g(2)=0\)
- \(g(6)=-8\)
- \(g(-6)\) is not defined.
- The solution set is \(\{-2,3\}\text{.}\)
- The solution set is \(\{\frac{1}{2}\}\text{.}\)
- The solution set is \(\{-4,5\}\)
- The solution set is \(\{7\}\text{.}\)
Problem Set 5
- \(k(2)\) is undefined.
- \(k(0)-3\)
- \(k(4)=4\)
- \(k(-3)=-5\)
- The solution set is \(\{-1,5\}\text{.}\)
- The solution set is \(\{4\}\text{.}\)
- The solution set is \(\{3\}\text{.}\)
- The solution set is \(\emptyset\text{.}\)
2Domain and Range
Problem 1
Determine the domain of each of the following functions. Where possible, state the domain using interval notation.
- \(y(x)=\sqrt{15-x}\)
- \(f(t)=\sqrt[3]{t^2-9}\)
- \(w(x)=\frac{x-7}{x-12}\)
- \(g(x)=\frac{x+3}{x^2+8x+15}\)
- \(r(t)=t^2-3t+9\)
- \(k(t)=\frac{t^2+16}{t^2+16}\)
Problem 2
Determine the domain and range of the function \(f\) shown in FigureĀ 1.15.6. State the domain and range using interval notation.
Problem 3
Determine the domain and range of the function \(g\) shown in FigureĀ 1.15.7. State the domain and range using interval notation.
Problem 4
Determine the domain and range of the function \(k\) shown in FigureĀ 1.15.11. State the domain and range using interval notation.
Problem 1
-
To determine the domain of \(y(x)=\sqrt{15-x}\text{,}\) we begin by noting that we cannot take the square root of a negative number (at least over the real numbers). This gives us the following.
\begin{align*} 15-x \amp\ge 0\\ 15-x\subtractright{15} \amp\ge 0\subtractright{15}\\ -x \amp\ge -15\\ \multiplyleft{-1}-x \amp\le \multiplyleft{-1}-15\\ x \amp\le 15 \end{align*}The domain of \(y\) is \((-\infty,15)\)
To determine the domain of \(f(t)=\sqrt[3]{t^2-9}\text{,}\) we begin by noting that the polynomial expression \(t^2-9\) is defined for all real numbers as is the cube root function. So the domain of \(f\) is \((-\infty,\infty)\text{.}\)
-
To determine the domain of \(w(x)=\frac{x-7}{x-12}\text{,}\) we begin by noting that we cannot divide by zero. This gives us the following.
\begin{align*} x-12 \amp\ne 0\\ x-12\addright{12} \amp\ne 0\addright{12}\\ x \amp\ne 12 \end{align*}The domain of \(w\) is \((-\infty,12) \cup (12,\infty)\text{.}\)
-
To determine the domain of \(g(x)=\frac{x+3}{x^2+8x+15}\text{,}\) we begin by noting that we cannot divide by zero. This gives us the following.
\begin{align*} x^2+8x+15 \amp\ne 0\\ (x+3)(x+5) \amp\ne 0 \end{align*}\begin{align*} x+3 \amp\ne 0 \amp\amp\text{ and }\amp x+5 \amp\ne 0\\ x+3\subtractright{3} \amp\ne 0\subtractright{3} \amp\amp\text{ and }\amp x+5\subtractright{5} \amp\ne 0\subtractright{5}\\ x \amp\ne -3 \amp\amp\text{ and }\amp x \amp\ne -5 \end{align*}The domain of \(g\) is \((-\infty,-5) \cup (-5,-3) \cup (-3,\infty)\text{.}\)
To determine the domain of \(r(t)=t^2-3t+9\text{,}\) we begin by noting that \(r\) is a polynomial function and polynomial functions are defined for all real numbers. So the domain of \(r\) is \((-\infty,\infty)\text{.}\)
To determine the domain of \(k(t)=\frac{t^2+16}{t^2+16}\text{,}\) we begin by noting that we cannot divide by zero. But \(t^2+16\) is positive for all real number values of \(t\text{,}\) so no value of \(t\) will cause division by zero. So the domain of \(k\) is \((-\infty,\infty)\text{.}\)
Problem 2
The domain is \([-4,5),\text{.}\) The range is \([-1,5]\text{.}\)
Problem 3
The domain is \((-6,\infty)\text{.}\) The range is \((-\infty,6]\text{.}\)
Problem 4
The domain is \((-\infty,0] \cup (2,\infty)\text{.}\) The range is \((-\infty,6]\text{.}\)
3Advanced function notation
- Simplify \(f(x-7)\) for the function \(f(x)=3x+12\text{.}\)
- Simplify \(g(x)+9\) for the function \(g(x)=14-7x\text{.}\)
- Simplify \(h(5-2t)\) for the function \(h(t)=\sqrt{3-t^2}\text{.}\)
- Simplify \(k(x+4)+3\) for the function \(k(x)=2x^2-3\text{.}\)
- Simplify \(r(\sqrt{t-4})\) for the function \(r(t)=3-7t^2\text{.}\)
- Simplify \(y(t+5)-y(t-3)\) for the function \(y(t)=3t-16\text{.}\)
- Simplify \(w(x-2)+w(2-x)+2\) for the function \(w(x)=5-x\text{.}\)
- Simplify \(s(t-8)\) for the function \(s(t)=\frac{t+8}{t}\text{.}\)
- Simplify \(3u(2x)\) for the function \(u(x)=-x^2\text{.}\)
- Simplify \(\frac{1}{2}h(2t-7)-8\) for the function \(h(t)=8t-12\text{.}\)
- Simplify \(f(x-7)\) for the function \(f(x)=3x+12\text{.}\)\begin{align*} f(\highlight{x-7})\amp=3(\highlight{x-7})+12\\ \amp=3x-21+12\\ \amp=3x-9 \end{align*}
- Simplify \(g(x)+9\) for the function \(g(x)=14-7x\text{.}\)\begin{align*} g(x)\highlightr{+9}\amp=14-7x\highlightr{+9}\\ \amp=23-7x \end{align*}
- Simplify \(h(5-2t)\) for the function \(h(t)=\sqrt{3-t^2}\text{.}\)\begin{align*} h(\highlight{5-2t})\amp=\sqrt{3-(\highlight{5-2t})^2}\\ \amp=\sqrt{3-(5-2t)(5-2t)}\\ \amp=\sqrt{3-(25-20t+4t^2)}\\ \amp=\sqrt{3-25+20t-4t^2}\\ \amp=\sqrt{-4t^2+20t-22} \end{align*}
- Simplify \(k(x+4)+3\) for the function \(k(x)=2x^2-3\text{.}\)\begin{align*} k(\highlight{x+4})\highlightr{+3}\amp=2(\highlight{x+4})^2-3\highlightr{+3}\\ \amp=2(x+4)(x+4)\\ \amp=2(x^2+8x+16)\\ \amp=2x^2+16x+32 \end{align*}
- Simplify \(r(\sqrt{t-4})\) for the function \(r(t)=3-7t^2\text{.}\)\begin{align*} r(\highlight{\sqrt{t-4}})\amp=3-7(\highlight{\sqrt{t-4}})^2\\ \amp=3-7(t-4)\\ \amp=3-7t+28\\ \amp=31-7t \end{align*}
- Simplify \(y(t+5)-y(t-3)\) for the function \(y(t)=3t-16\text{.}\)\begin{align*} y(\highlight{t+5})-y(\highlightb{t-3})\amp=(3(\highlight{t+5})-16)-(3(\highlightb{t-3})-16)\\ \amp=3t+15-16-(3t-9-16)\\ \amp=3t-1-(3t-25)\\ \amp=3t-1-3t+25\\ \amp=24 \end{align*}
- Simplify \(w(x-2)+w(2-x)+2\) for the function \(w(x)=5-x\text{.}\)\begin{align*} w(\highlight{x-2})+w(\highlightb{2-x})\highlightr{+2}\amp=(5-(\highlight{x-2}))+(5-(\highlightb{2-x}))\highlightr{+2}\\ \amp=5-x+2+5-2+x+2\\ \amp=12 \end{align*}
- Simplify \(s(t-8)\) for the function \(s(t)=\frac{t+8}{t}\text{.}\)\begin{align*} s(\highlight{t-8})\amp=\frac{\highlight{t-8}+8}{\highlight{t-8}}\\ \amp=\frac{t}{t-8} \end{align*}
- Simplify \(3u(2x)\) for the function \(u(x)=-x^2\text{.}\)\begin{align*} \highlightg{3}u(\highlight{2x})\amp=\highlightg{3\cdot}-(\highlight{2x})^2\\ \amp=-3 \cdot 4x^2\\ \amp=-12x^2 \end{align*}
- Simplify \(\frac{1}{2}h(2t-7)-8\) for the function \(h(t)=8t-12\text{.}\)\begin{align*} \highlightg{\frac{1}{2}}h(\highlight{2t-7})\highlightr{-8}\amp=\highlightg{\frac{1}{2}}(8(\highlight{2t-7})-12)\highlightr{-8}\\ \amp=\frac{1}{2}(16t-56)-20\\ \amp=8t-28-20\\ \amp=8t-48 \end{align*}
4Function composition
5The difference quotient
6Solving inequalities involving functions presented in graphical form
Problem Set 1
Determine the solution set to each of the following equations based upon the function \(f\) shown in FigureĀ 1.15.12. State the solution set using both set-builder notation and interval notation.
- \(f(x) \lt 2\)
- \(f(x) \geq 2\)
- \(f(x) \lt -1\)
- \(f(x) \leq 5\)
Problem Set 2
Determine the solution set to each of the following inequalities based upon the function \(g\) shown in FigureĀ 1.15.13. State the solution set using both set-builder notation and interval notation.
- \(g(x) \geq -2\)
- \(g(x) \leq 3\)
- \(g(x) \lt -6\)
- \(g(x) \gt -6\)
Problem Set 3
Determine the solution set to each of the following inequalities based upon the function \(k\) shown in FigureĀ 1.15.14. State the solution set using both set-builder notation and interval notation.
- \(k(x) \geq 1\)
- \(k(x) \leq 4\)
- \(k(x) \gt 5\)
- \(k(x) \lt 6\)
Problem Set 1
-
The solution set is \(\{x \mid -2 \lt x \lt 0 \text{ or } 2 \lt x \lt 4\}\text{.}\)
The solution set is \((-2,0) \cup (2,4)\text{.}\)
-
The solution set is \(\{x \mid -4 \leq x \leq -2 \text{ or } 0 \leq x \leq 2 \text{ or } 4 \leq x \lt 5\}\text{.}\)
The solution set is \([-4,-2] \cup [0,2] \cup [4,6)\text{.}\)
-
The solution set is \(\{\}\text{.}\)
The solution set is \(\emptyset\text{.}\)
-
The solution set is \(\{x \mid -4 \leq x \lt 5\}\text{.}\)
The solution set is \([-4,5)\text{.}\)
Problem Set 2
-
The solution set is \(\{-2 \leq x \leq 3\}\text{.}\)
The solution set is \([-2,3]\text{.}\)
-
The solution set is \(\{x \mid -6 \lt x \lt 2 \text{ or } x \geq \frac{1}{2}\}\text{.}\)
The solution set is \((-6,-2) \cup [\frac{1}{2},\infty)\text{.}\)
-
The solution set is \(x \mid x \gt 5\}\text{.}\)
The solution set is \((5,\infty)\text{.}\)
-
The solution set is \(\{x \mid -6 \lt x \lt -4 \text{ or } -4 \lt x \lt 5\}\text{.}\)
The solution set is \((-6,-4) \cup (-4,5)\text{.}\)
Problem Set 3
-
The solution set is \(\{x \mid -1 \leq x \lt 0 \text{ or } 2 \lt x \leq 5\}\text{.}\)
The solution set is \([-1,0) \cup (2,5]\text{.}\)
-
The solution set is \(\{x \mid x \leq 0 \text{ or } x \geq 4\}\text{.}\)
The solution set is \((-\infty,0] \cup [4,\infty)\text{.}\)
-
The solution set is \(\{\}\text{.}\)
The solution set is \(\emptyset\text{.}\)
-
The solution set is \(\{x \mid x \leq 0 \text{ or } x \gt 2\}\text{.}\)
The solution set is \((-\infty,0] \cup (2,\infty)\text{.}\)
Subsection1.15.3Workshop Materials (with short answers)
1Introduction to function notation
Follow this link to read an introduction to function notation: Written ExamplesĀ 1.15.1.1
2Domain and Range
3Advanced function notation
Follow this link to read about advanced function notation: Written ExamplesĀ 1.15.1.3