MATH 20 - Chapter 3

Introduction to Fractions with Manipulatives

  1. Take all of the fraction pieces out of the bag, sort them by color and put them into circles. There should be enough pieces of each color to make one whole.

    Fraction= Numerator Denominator = Numberofpieces Totalpieces MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabAeacaqGYb GaaeyyaiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaaGjbVlaaysW7 cqGH9aqpcaaMe8UaaGjbVpaalaaabaGaaeOtaiaabwhacaqGTbGaae yzaiaabkhacaqGHbGaaeiDaiaab+gacaqGYbaabaGaaeiraiaabwga caqGUbGaae4Baiaab2gacaqGPbGaaeOBaiaabggacaqG0bGaae4Bai aabkhaaaGaaGjbVlaaysW7cqGH9aqpcaaMe8UaaGjbVpaalaaabaGa aeOtaiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaGjbVlaab+gaca qGMbGaaGjbVlaabchacaqGPbGaaeyzaiaabogacaqGLbGaae4Caaqa aiaabsfacaqGVbGaaeiDaiaabggacaqGSbGaaGjbVlaabchacaqGPb GaaeyzaiaabogacaqGLbGaae4Caaaaaaa@79ED@

    Write the fraction for each piece shown. The numerator is equal to one and the denominator represents the number of pieces in the whole.

  2. How many fourths make a half? Find the fraction pieces and draw a picture to show this.
  3. How many eights make a fourth? Find the fraction pieces and draw a picture to show this.
  4. How many eights make a half? Find the fraction pieces and draw a picture to show this.
  5. How many twelfths make a third? Find the fraction pieces and draw a picture to show this.
  6. Is any piece equivalent to a third plus a sixth? If so, which one? Find the fraction pieces and draw a picture to show this.
  7. Can you add 2 different pieces to make two-thirds? If so, which ones? Find the fraction pieces and draw a picture to show this.
  8. Can you find 3 different ways to make three-quarters? Find the fraction pieces and draw a picture to show this.
  9. How many different ways can you make one-half? Find the fraction pieces and draw a picture with a label for each equivalent fraction.
  10. Find the fraction pieces listed below and put them in order from smallest to largest. In the circles below, shade each fraction and write the fraction underneath.

    1 3 , 1 6 , 1 4 , 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaiodaaaGaaiilamaalaaabaGaaGymaaqaaiaaiAdaaaGa aiilamaalaaabaGaaGymaaqaaiaaisdaaaGaaiilamaalaaabaGaaG ymaaqaaiaaikdaaaaaaa@3E1F@
  11. In between which two circles would fifths be placed? In between which two circles would sevenths be placed? Draw arrows and label where the fifths and sevenths would be placed.
  12. Give a rule for ordering fractions of this kind (with 1 in the numerator).

Introduction to Fractions - Practice

Divide the object into the given fractions. Then shade the fraction listed.

  1. Halves, 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaaaaa@3773@

  2. Eights, 3 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaiIdaaaaaaa@377B@

  3. Fourths, 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaisdaaaaaaa@3777@

  4. Sevenths, 5 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ynaaqaaiaaiEdaaaaaaa@377C@

Shade the figure so that it represents the given fraction. Then write the corresponding equivalent fraction.

  1. 1 2 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaGaeyypa0daaa@3879@

    Title Here
  2. 3 4 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaisdaaaGaeyypa0daaa@387D@

    Title Here
  3. 2 3 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaaqaaiaaiodaaaGaeyypa0daaa@387B@

    Title Here
  4. 4 5 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG inaaqaaiaaiwdaaaGaeyypa0daaa@387F@

    Title Here

Pizza Anyone is licensed under CC BY-N 4.0/ A derivative from the original work.

Build each fraction to make an equivalent fraction with the given denominator.

  1. 1 2 â‹… = 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaGaeyyXIC9aaSaaaeaadaqjEaqaaiaaysW7caaM e8UaaGjbVdaaaeaadaqjEaqaaiaaysW7caaMe8UaaGjbVdaaaaGaey ypa0ZaaSaaaeaadaqjEaqaaiaaysW7caaMe8UaaGjbVdaaaeaacaaI XaGaaGimaaaaaaa@4B22@
  2. 3 4 â‹… = 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaisdaaaGaeyyXIC9aaSaaaeaadaqjEaqaaiaaysW7caaM e8UaaGjbVdaaaeaadaqjEaqaaiaaysW7caaMe8UaaGjbVdaaaaGaey ypa0ZaaSaaaeaadaqjEaqaaiaaysW7caaMe8UaaGjbVdaaaeaacaaI XaGaaGOmaaaaaaa@4B28@
  3. 2 5 â‹… = 20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaaqaaiaaiwdaaaGaeyyXIC9aaSaaaeaadaqjEaqaaiaaysW7caaM e8UaaGjbVdaaaeaadaqjEaqaaiaaysW7caaMe8UaaGjbVdaaaaGaey ypa0ZaaSaaaeaadaqjEaqaaiaaysW7caaMe8UaaGjbVdaaaeaacaaI YaGaaGimaaaaaaa@4B27@
  4. 6 7 â‹… = 42 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OnaaqaaiaaiEdaaaGaeyyXIC9aaSaaaeaadaqjEaqaaiaaysW7caaM e8UaaGjbVdaaaeaadaqjEaqaaiaaysW7caaMe8UaaGjbVdaaaaGaey ypa0ZaaSaaaeaadaqjEaqaaiaaysW7caaMe8UaaGjbVdaaaeaacaaI 0aGaaGOmaaaaaaa@4B31@
  5. 3 2 â‹… = 18 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaikdaaaGaeyyXIC9aaSaaaeaadaqjEaqaaiaaysW7caaM e8UaaGjbVdaaaeaadaqjEaqaaiaaysW7caaMe8UaaGjbVdaaaaGaey ypa0ZaaSaaaeaadaqjEaqaaiaaysW7caaMe8UaaGjbVdaaaeaacaaI XaGaaGioaaaaaaa@4B2C@
  6. − 5 12 ⋅ =− 36 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaaGynaaqaaiaaigdacaaIYaaaaiabgwSixpaalaaabaWaauIh aeaacaaMe8UaaGjbVlaaysW7aaaabaWaauIhaeaacaaMe8UaaGjbVl aaysW7aaaaaiabg2da9iabgkHiTmaalaaabaWaauIhaeaacaaMe8Ua aGjbVlaaysW7aaaabaGaaG4maiaaiAdaaaaaaa@4DC3@

Reduce each fraction to lowest terms. Divide a common factor out of the numerator and denominator.

  1. 2 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG Omaaqaaiaaisdaaaaaaa@3776@
  2. 15 30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaiaaiwdaaeaacaaIZaGaaGimaaaaaaa@38EC@
  3. 30 48 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maiaaicdaaeaacaaI0aGaaGioaaaaaaa@38F3@
  4. 15 45 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaiaaiwdaaeaacaaI0aGaaGynaaaaaaa@38F3@
  5. 14 36 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaiaaisdaaeaacaaIZaGaaGOnaaaaaaa@38F2@
  6. − 16 48 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaaGymaiaaiAdaaeaacaaI0aGaaGioaaaaaaa@39E4@
  1. 8 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ioaaqaaiaaigdacaaI1aaaaaaa@3838@
  2. − 2 42 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaaGOmaaqaaiaaisdacaaIYaaaaaaa@391F@
  3. 16 36 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaiaaiAdaaeaacaaIZaGaaGOnaaaaaaa@38F4@
  4. 48 82 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG inaiaaiIdaaeaacaaI4aGaaGOmaaaaaaa@38FA@
  5. 49 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG inaiaaiMdaaeaacaaI3aaaaaaa@383E@
  6. − 96 102 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaaGyoaiaaiAdaaeaacaaIXaGaaGimaiaaikdaaaaaaa@3A9D@

When a fraction is negative we can write the negative sign in front of the fraction, on the numerator or ono the denominator. Write each fraction in two other ways.

  1. − 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaaG4maaqaaiaaisdaaaaaaa@3864@
  2. −6 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaey OeI0IaaGOnaaqaaiaaiwdaaaaaaa@3868@
  3. 2 −3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaaqaaiabgkHiTiaaiodaaaaaaa@3862@
  1. 2 5 3 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaaqaaiaaiwdaaaGaaGjbVpaaL4babaGaaGzbVdaacaaMe8+aaSaa aeaacaaIZaaabaGaaGymaiaaicdaaaaaaa@3EA8@
  2. 1 3 5 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaiodaaaGaaGjbVpaaL4babaGaaGzbVdaacaaMe8+aaSaa aeaacaaI1aaabaGaaGymaiaaikdaaaaaaa@3EA9@
  3. 15 18 5 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaiaaiwdaaeaacaaIXaGaaGioaaaacaaMe8+aauIhaeaacaaMf8oa aiaaysW7daWcaaqaaiaaiwdaaeaacaaI2aaaaaaa@3F71@
  4. Build each fraction to a common denominator of 45, then write from smallest to largest: 4 9 , 3 5 , 2 15 , 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG inaaqaaiaaiMdaaaGaaiilamaalaaabaGaaG4maaqaaiaaiwdaaaGa aiilamaalaaabaGaaGOmaaqaaiaaigdacaaI1aaaaiaacYcadaWcaa qaaiaaigdaaeaacaaIZaaaaaaa@3EE7@

Draw a line and label where the fraction belongs on the number line. (Hint: Divide the number line into equal sections)

  1. 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaiodaaaaaaa@3774@

  2. 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaisdaaaaaaa@3777@

  3. 5 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ynaaqaaiaaiAdaaaaaaa@377B@

  4. 1 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaiIdaaaaaaa@3779@

Divisibility Rules

For Simplifying Fractions

A number is divisible by

  • 2 if it is even
  • 3 if the sum of its digits is divisible by 3
  • 4 if the number formed by its last two digits is divisible by 4
  • 5 if its last digit is 0 or 5
  • 6 if it is divisible by both 2 and 3
  • 9 if the sum of its digits is divisible by 9
  • 10 if its last digit is 0
  1. Is 930 divisible by

    2?
    3?
    4?
    5?
    6?
    9?
    10?
  2. Is -783 divisible by

    2?
    3?
    4?
    5?
    6?
    9?
    10?
  3. Is 43,905 divisible by

    2?
    3?
    4?
    5?
    6?
    9?
    10?
  4. Is 16,312 divisible by

    2?
    3?
    4?
    5?
    6?
    9?
    10?
  5. How are the divisibility rules useful for working with fractions?

Prime and Composite Numbers

For Simplifying Fractions

  1. A prime number has exactly two factors. It is only divisible by one and itself. List some examples of prime numbers.
  2. A composite number has more than two factors. List some examples of composite numbers.
  3. There is one number that is neither prime nor composite. What is it?
  4. Cross out all of the composite numbers and circle all of the prime numbers in the table.

    12345678910
    11121314151617181920
    21222324252627282930
    31323334353637383940
    41424344454647484950
  5. What patterns can you observe in the table?
  6. How is the concept of prime and composite useful for reducing fractions?

Multiplying Fractions

Multiplying a fraction by a whole number

  1. The following picture can be used to show that two-thirds of 60 is 40:

    Write this result as a mathematical equation:

  2. Draw a similar picture as above to find three-fourths of 12.

    Write this result as a mathematical equation:

For each problem, draw a picture and write a multiplication problem involving fractions. Then find the answer and state it in a complete sentence.

  1. In 1996, the state of Oregon passed a referendum to require a "supermajority" of three-fifths of the votes in the legislature to pass a tax increase bill. If all 90 of Oregon's state legislators vote on a proposed tax increase, how many must approve for the bill to pass?
  2. A recipe calls for one-half of a tablespoon of olive oil per serving. How much olive oil is required to make 5 servings?
  3. Currently there are 27 amendments to the U.S. Constitution. In order to pass a constitutional amendment, it must be approved by three-fourths of the state legislatures. How many state legislatures must approve?

Use the diagram to find the answer and then write the corresponding multiplication statement.

  1. What is 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0de9Gq=Je9 qspeea0xd9qs=xfrVkFHe9peei0dXdar=Jb9qqFfea0lrP0xe9Fve9 Fve9GapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaaa@39E6@ of 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0de9Gq=Je9 qspeea0xd9qs=xfrVkFHe9peei0dXdar=Jb9qqFfea0lrP0xe9Fve9 Fve9GapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGinaaaaaaa@39E8@ ?

    1 2 â‹… 1 4 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaGaeyyXIC9aaSaaaeaacaaIXaaabaGaaGinaaaa cqGH9aqpaaa@3C4C@

  2. What is 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0de9Gq=Je9 qspeea0xd9qs=xfrVkFHe9peei0dXdar=Jb9qqFfea0lrP0xe9Fve9 Fve9GapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaG4maaaaaaa@39E8@ of 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0de9Gq=Je9 qspeea0xd9qs=xfrVkFHe9peei0dXdar=Jb9qqFfea0lrP0xe9Fve9 Fve9GapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaaaaa@39E6@

  3. What is 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0de9Gq=Je9 qspeea0xd9qs=xfrVkFHe9peei0dXdar=Jb9qqFfea0lrP0xe9Fve9 Fve9GapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIZaaabaGaaGinaaaaaaa@39EA@ of 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0de9Gq=Je9 qspeea0xd9qs=xfrVkFHe9peei0dXdar=Jb9qqFfea0lrP0xe9Fve9 Fve9GapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaG4maaaaaaa@39E8@

For each problem, draw a picture and write a multiplication problem involving fractions. Then find the answer and state it in a complete sentence.

  1. A recipe to make 3 dozen cookies requires one-fourth of a cup of butter. How much butter should you use if you only want to make a dozen cookies?
  2. Three members of the PCC math department purchased a lottery ticket and won the grand prize. If state and federal taxes combine to get two-fifths of the money, and they are going to split the remaining money equally, what fraction of the grand prize will each member receive?
  3. A survey of Portlanders found that seven-tenths of them own pets, and that two-thirds of all pet owners have dogs. What fraction of Portlanders own dogs?

Multiplying and Cross-Canceling Fractions

Multiply First

Multiply the fractions together first and then simplify the result.

  1. 3 5 â‹… 7 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaiwdaaaGaeyyXIC9aaSaaaeaacaaI3aaabaGaaGOnaaaa aaa@3B53@
  2. − 11 2 ⋅ 4 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaaGymaiaaigdaaeaacaaIYaaaaiabgwSixpaalaaabaGaaGin aaqaaiaaiodaaaaaaa@3CEF@
  3. ( − 3 8 )⋅( − 2 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey OeI0YaaSaaaeaacaaIZaaabaGaaGioaaaaaiaawIcacaGLPaaacqGH flY1daqadaqaaiabgkHiTmaalaaabaGaaGOmaaqaaiaaiMdaaaaaca GLOaGaayzkaaaaaa@403F@
  4. −3⋅ 1 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaio dacqGHflY1daWcaaqaaiaaigdaaeaacaaI2aaaaaaa@3B6A@
  5. 1 4 â‹…28 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaisdaaaGaeyyXICTaaGOmaiaaiIdaaaa@3B3C@
  6. 2 3 â‹… 5 4 â‹… 9 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaaqaaiaaiodaaaGaeyyXIC9aaSaaaeaacaaI1aaabaGaaGinaaaa cqGHflY1daWcaaqaaiaaiMdaaeaacaaIXaGaaGimaaaaaaa@3FDD@

Cancel Common Factors First

Do the same problems by canceling common factors first and then multiplying.

  1. 3 5 â‹… 7 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaiwdaaaGaeyyXIC9aaSaaaeaacaaI3aaabaGaaGOnaaaa aaa@3B52@
  2. − 11 2 ⋅ 4 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaaGymaiaaigdaaeaacaaIYaaaaiabgwSixpaalaaabaGaaGin aaqaaiaaiodaaaaaaa@3CEF@
  3. ( − 3 8 )⋅( − 2 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey OeI0YaaSaaaeaacaaIZaaabaGaaGioaaaaaiaawIcacaGLPaaacqGH flY1daqadaqaaiabgkHiTmaalaaabaGaaGOmaaqaaiaaiMdaaaaaca GLOaGaayzkaaaaaa@403F@
  4. −3⋅ 1 6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaio dacqGHflY1daWcaaqaaiaaigdaaeaacaaI2aaaaaaa@3B6A@
  5. 1 4 â‹…28 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaisdaaaGaeyyXICTaaGOmaiaaiIdaaaa@3B3C@
  6. 2 3 â‹… 5 4 â‹… 9 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaaqaaiaaiodaaaGaeyyXIC9aaSaaaeaacaaI1aaabaGaaGinaaaa cqGHflY1daWcaaqaaiaaiMdaaeaacaaIXaGaaGimaaaaaaa@3FDD@

Which method do you prefer and why?

More Practice Multiplying Fractions

  1. 15 4 â‹… 1 9 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaiaaiwdaaeaacaaI0aaaaiabgwSixpaalaaabaGaaGymaaqaaiaa iMdaaaaaaa@3C0B@
  2. ( 3 7 )( 14 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaS aaaeaacaaIZaaabaGaaG4naaaaaiaawIcacaGLPaaadaqadaqaamaa laaabaGaaGymaiaaisdaaeaacaaI5aaaaaGaayjkaiaawMcaaaaa@3CD7@
  3. 36 45 ⋅( − 5 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maiaaiAdaaeaacaaI0aGaaGynaaaacqGHflY1daqadaqaaiabgkHi TmaalaaabaGaaGynaaqaaiaaiAdaaaaacaGLOaGaayzkaaaaaa@3F44@
  4. − 7 8 ⋅ 2 21 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaaG4naaqaaiaaiIdaaaGaeyyXIC9aaSaaaeaacaaIYaaabaGa aGOmaiaaigdaaaaaaa@3CF8@
  5. 11 6 â‹… 5 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaiaaigdaaeaacaaI2aaaaiabgwSixpaalaaabaGaaGynaaqaaiaa iodaaaaaaa@3C07@
  6. ( − 4 7 )⋅( − 3 8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey OeI0YaaSaaaeaacaaI0aaabaGaaG4naaaaaiaawIcacaGLPaaacqGH flY1daqadaqaaiabgkHiTmaalaaabaGaaG4maaqaaiaaiIdaaaaaca GLOaGaayzkaaaaaa@403F@
  7. −4⋅ 1 16 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaais dacqGHflY1daWcaaqaaiaaigdaaeaacaaIXaGaaGOnaaaaaaa@3C26@
  8. 30( 2 5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiodacaaIWa WaaeWaaeaadaWcaaqaaiaaikdaaeaacaaI1aaaaaGaayjkaiaawMca aaaa@3A76@
  9. 3 8 â‹…24 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaiIdaaaGaeyyXICTaaGOmaiaaisdaaaa@3B3E@
  10. 1 2 â‹… 2 5 â‹… 5 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaGaeyyXIC9aaSaaaeaacaaIYaaabaGaaGynaaaa cqGHflY1daWcaaqaaiaaiwdaaeaacaaIZaaaaaaa@3F1D@
  11. ( − 18 3 )⋅ 4 9 ⋅( − 3 8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey OeI0YaaSaaaeaacaaIXaGaaGioaaqaaiaaiodaaaaacaGLOaGaayzk aaGaeyyXIC9aaSaaaeaacaaI0aaabaGaaGyoaaaacqGHflY1daqada qaaiabgkHiTmaalaaabaGaaG4maaqaaiaaiIdaaaaacaGLOaGaayzk aaaaaa@44D5@
  12. ( − 3 16 )⋅( − 9 7 )⋅( − 4 27 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey OeI0YaaSaaaeaacaaIZaaabaGaaGymaiaaiAdaaaaacaGLOaGaayzk aaGaeyyXIC9aaeWaaeaacqGHsisldaWcaaqaaiaaiMdaaeaacaaI3a aaaaGaayjkaiaawMcaaiabgwSixpaabmaabaGaeyOeI0YaaSaaaeaa caaI0aaabaGaaGOmaiaaiEdaaaaacaGLOaGaayzkaaaaaa@4808@

Dividing Fractions

The relationship between multiplying and dividing fractions

Use the diagram to find the answer and then write the corresponding division statement.

  1. Divide one fourth in two and shade that region. What fraction do you have?

  2. Now shade half of a fourth. What fraction do you have?

  3. Problem 1 is a division problem.

    1 4 ÷2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaisdaaaGaey49aGRaaGOmaaaa@3A6C@ or 1 4 ÷ 2 1 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaisdaaaGaey49aG7aaSaaaeaacaaIYaaabaGaaGymaaaa cqGH9aqpaaa@3C3D@
  4. Problem 2 is a multiplication problem.

    1 4 â‹… 1 2 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaisdaaaGaeyyXIC9aaSaaaeaacaaIXaaabaGaaGOmaaaa cqGH9aqpaaa@3C4C@
  5. Dividing by 3 is the same as multiplying by what fraction?
  6. Dividing by 5 is the same as multiplying by what fraction?
  7. What is the relationship between dividing and multiplying fractions?

Practice Dividing by multiplying by the reciprocal

  1. 2 3 ÷ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaG4maaaacqGH3daUdaWcaaqaaiaaigdaaeaacaaIYaaa aaaa@3B42@
  2. 1 3 ÷( − 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaG4maaaacqGH3daUdaqadaqaaiabgkHiTmaalaaabaGa aGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaaa@3DB7@
  3. − 3 4 ÷ 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIZaaabaGaaGinaaaacqGH3daUdaWcaaqaaiaaiodaaeaa caaIYaaaaaaa@3C33@
  4. 11 16 ÷( − 9 16 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaGaaGymaaqaaiaaigdacaaI2aaaaiabgEpa4oaabmaabaGaeyOe I0YaaSaaaeaacaaI5aaabaGaaGymaiaaiAdaaaaacaGLOaGaayzkaa aaaa@3FF7@
  5. −1÷ 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG ymaiabgEpa4oaalaaabaGaaGymaaqaaiaaisdaaaaaaa@3B63@
  6. − 1 7 ÷( − 5 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaG4naaaacqGH3daUdaqadaqaaiabgkHiTmaa laaabaGaaGynaaqaaiaaiAdaaaaacaGLOaGaayzkaaaaaa@3EB0@

Mixed Practice

  1. 7 10 â‹… 20 21 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI3aaabaGaaGymaiaaicdaaaGaeyyXIC9aaSaaaeaacaaIYaGaaGim aaqaaiaaikdacaaIXaaaaaaa@3D84@
  2. −9⋅ 1 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG yoaiabgwSixpaalaaabaGaaGymaaqaaiaaiIdaaaaaaa@3B7E@
  3. − 28 15 ÷ 21 10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIYaGaaGioaaqaaiaaigdacaaI1aaaaiabgEpa4oaalaaa baGaaGOmaiaaigdaaeaacaaIXaGaaGimaaaaaaa@3F23@
  4. − 3 4 ÷4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIZaaabaGaaGinaaaacqGH3daUcaaI0aaaaa@3B68@

For each problem, show your thinking in pictures, symbols and/or words. Show your steps and write your answer in a complete sentence.

  1. A recipe calls for 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIZaaabaGaaGinaaaaaaa@3782@ of a cup of flour and you are tripling the batch. How many cups of flour do you need?
  2. A survey found that seven-tenths of Portlanders own pets, and that two-thirds of all pet owners have dogs. What fraction of Portlanders own dogs?
  3. A recipe to make 3 dozen cookies requires one-fourth of a cup of butter. How much butter should you use if you only want to make a dozen cookies?
  4. How many servings are there in an 8-pound roast if the suggested serving size is 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaG4maaaaaaa@3780@ pound?
  5. Three members of the PCC math department purchased a lottery ticket and won the grand prize. If state and federal taxes combine to get two-fifths of the money, and they are going to split the remaining money equally, what fraction of the grand prize will each member receive?

Adding and Subtracting Fractions Activity

With Fraction Circle Manipulatives

Like Denominators

  1. Below are two apple pies. If you and 7 of your friends are going to eat these pies, you need 8 equal pieces. Draw lines on each pie so that each one has four equal parts.

      
  2. Two of your friends each eat a piece from the left pie. Shade the two pieces of the pie that have been eaten.
  3. Three of your friends eat pieces out of the right pie. Shade the three pieces of the pie that have been eaten.
  4. You and the remaining friends decide you are not hungry and aren’t going to eat the rest of the pie. They leave the remaining pie with you to take home to your kids.

    1. What fraction of the left pie is still remaining? (Don’t reduce the fraction yet.)
    2. What fraction of the right pie is still remaining?
    3. Find the fraction circle pieces to represent the amount of pie that is remaining and put them together. Draw a picture of what it would look like if you put all the remaining pieces into one pie pan.
    4. Create an addition model that would represent adding the leftover pieces from the left and right pies together. (Do not use a reduced fraction for the left pie). How much pie is remaining?

      + = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaau IhaeaacaaMe8UaaGjbVlaaysW7aaaabaWaauIhaeaacaaMe8UaaGjb VlaaysW7aaaaaiaaysW7caaMe8UaaGjbVlabgUcaRiaaysW7caaMe8 UaaGjbVpaalaaabaWaauIhaeaacaaMe8UaaGjbVlaaysW7aaaabaWa auIhaeaacaaMe8UaaGjbVlaaysW7aaaaaiaaysW7caaMe8UaaGjbVl aaysW7cqGH9aqpaaa@5B2D@
      Left Pie + Right Pie = Total Pie Remaining
    5. What do you notice about the denominators of all the fractions? (including the answer)
    6. What did you do with the numerators to get the final answer?
  5. Now let’s just look at only the pie on the right. You cut the pie into 4 equal parts. Before anyone ate any of the pie you had 4 parts. The fraction corresponding to the uneaten original pie is 4 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI0aaabaGaaGinaaaaaaa@3783@
    1. Write a fraction for how much of the right pie was eaten by your friends.
    2. Write a subtraction problem to model how much pie is left on the right pie.

      − = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaau IhaeaacaaMe8UaaGjbVlaaysW7aaaabaWaauIhaeaacaaMe8UaaGjb VlaaysW7aaaaaiaaysW7caaMe8UaaGjbVlabgkHiTiaaysW7caaMe8 UaaGjbVpaalaaabaWaauIhaeaacaaMe8UaaGjbVlaaysW7aaaabaWa auIhaeaacaaMe8UaaGjbVlaaysW7aaaaaiaaysW7caaMe8UaaGjbVl aaysW7cqGH9aqpaaa@5B38@
      Whole Pie - Right Pie Eaten = Fraction Remaining
    3. What do you notice about the denominators of all the fractions? (including the answer)
    4. What did you do with the numerators to get the final answer?
  6. Find the coordinating fraction circle pieces for each addition or subtraction problem below. Use them to compute your answer. Draw a picture to represent each problem and write the answer.

    1. 1 3 + 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaiodaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaG4maaaa aaa@39DE@
    2. 4 6 − 1 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG inaaqaaiaaiAdaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOnaaaa aaa@39F2@
    3. 2 8 + 3 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OmaaqaaiaaiIdaaaGaey4kaSYaaSaaaeaacaaIZaaabaGaaGioaaaa aaa@39EB@

Unlike Denominators

  1. Now let’s look at some pizza! You bought the pepperoni mini-pizza on the left and cut it into three equal pieces. Find the fraction circle pieces to model the left pizza and draw lines on the picture to make three equal parts.
  2. Your friend bought the veggie mini-pizza on the right and cut it into two equal pieces. Find the fraction circle pieces to model the right pizza and draw a line on the picture to make two equal parts.

      
  3. You ate two pieces of the pepperoni pizza. Shade the two of the pieces on the picture and remove the fraction circle pieces. What fraction of the pizza is remaining?
  4. Your friend ate one piece of the veggie pizza. Shade the piece that was eaten and remove the fraction circle piece. What fraction of the pizza is remaining?
  5. Put the remaining fraction circle pieces together to represent the total amount of pizza that is left. Draw a picture of what it would look like if you put all of the remaining pieces together in one pie pan.
  6. Is it easy to tell what fraction of the pizza is remaining? Why or why not? Discuss in your group what could be done to make it easier to see what fraction of the pizza is left.
  7. The problem is that halves and thirds are not the same size so we can’t add them together. If you haven’t already, find a smaller size fraction piece that you can use to replace both the third and the half? What is the denominator?
  8. Now can you tell what fraction of a pizza is leftover? If so, you just found a common denominator.
  9. On the pizzas below, draw lines on each pizza to represent the smaller size pieces that you found and shade the parts that have been eaten

      
  10. Write the equivalent fraction of each pizza that is now cut into smaller pieces. Then add them together.

    + = MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaWaau IhaeaacaaMe8UaaGjbVlaaysW7aaaabaWaauIhaeaacaaMe8UaaGjb VlaaysW7aaaaaiaaysW7caaMe8UaaGjbVlabgUcaRiaaysW7caaMe8 UaaGjbVpaalaaabaWaauIhaeaacaaMe8UaaGjbVlaaysW7aaaabaWa auIhaeaacaaMe8UaaGjbVlaaysW7aaaaaiaaysW7caaMe8UaaGjbVl aaysW7cqGH9aqpaaa@5B2D@
    Left Pizza + Right Pizza = Total Franction Remaining
  11. What does the denominator of a fraction represent? What is needed to add or subtract fractions? (Discuss this in your group then write it down.)
  12. Think about your answer in problem 16. How can you make it so the fractions have what is needed in order to add or subtract them? (Discuss this in your group then write it down.)

Finding the Least Common Denominator (LCD)

Make the denominators match fraction circles

  1. 1 3 + 2 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaiodaaaGaey4kaSYaaSaaaeaacaaIYaaabaGaaG4naaaa aaa@39E3@

    3 6 9 12 15 18 21
    7 14 21

    Least Common Denominator (LCD) = 21

    1 3 â‹… 7 7 + 2 7 â‹… 3 3 = 21 + 21 = 21 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacaaIXaaabaGaaG4maaaacqGHflY1daWcaaqaamaaL4babaGaaGjb VlaaiEdacaaMe8oaaaqaamaaL4babaGaaGjbVlaaiEdacaaMe8oaaa aacqGHRaWkdaWcaaqaaiaaikdaaeaacaaI3aaaaiabgwSixpaalaaa baWaauIhaeaacaaMe8UaaG4maiaaysW7aaaabaWaauIhaeaacaaMe8 UaaG4maiaaysW7aaaaaaqaaiabg2da9maalaaabaWaauIhaeaacaaM e8UaaGjbVlaaysW7caaMe8oaaaqaamaaL4babaGaaGOmaiaaigdaca aMe8oaaaaacqGHRaWkdaWcaaqaamaaL4babaGaaGjbVlaaysW7caaM e8UaaGjbVdaaaeaadaqjEaqaaiaaikdacaaIXaGaaGjbVdaaaaaaba Gaeyypa0ZaaSaaaeaadaqjEaqaaiaaysW7caaMe8UaaGjbVlaaysW7 aaaabaWaauIhaeaacaaIYaGaaGymaiaaysW7aaaaaaaaaa@6F8F@
  2. 5 9 + 7 18 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ynaaqaaiaaiMdaaaGaey4kaSYaaSaaaeaacaaI3aaabaGaaGymaiaa iIdaaaaaaa@3AAE@

    9
    18

    LCD =

    5 9 â‹… + 7 18 â‹… = + = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaGjbVl aaysW7caaMe8+aaSaaaeaacaaI1aaabaGaaGyoaaaacqGHflY1daWc aaqaamaaL4babaGaaGjbVlaaysW7caaMe8oaaaqaamaaL4babaGaaG jbVlaaysW7caaMe8oaaaaacqGHRaWkdaWcaaqaaiaaiEdaaeaacaaI XaGaaGioaaaacqGHflY1daWcaaqaamaaL4babaGaaGjbVlaaysW7ca aMe8oaaaqaamaaL4babaGaaGjbVlaaysW7caaMe8oaaaaaaeaacqGH 9aqpdaWcaaqaamaaL4babaGaaGjbVlaaysW7caaMe8oaaaqaamaaL4 babaGaaGjbVlaaysW7caaMe8oaaaaacqGHRaWkdaWcaaqaamaaL4ba baGaaGjbVlaaysW7caaMe8oaaaqaamaaL4babaGaaGjbVlaaysW7ca aMe8oaaaaaaeaacqGH9aqpdaWcaaqaamaaL4babaGaaGjbVlaaysW7 caaMe8oaaaqaamaaL4babaGaaGjbVlaaysW7caaMe8oaaaaaaaaa@787B@
  3. 1 10 − 1 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaigdacaaIWaaaaiabgkHiTmaalaaabaGaaGymaaqaaiaa igdacaaIYaaaaaaa@3B5B@

    10
    12

    LCD =

Shortcuts: How do you find the LCD when

  • the denominators have no factors in common?
  • one denominator is a multiple of the other denominator?
  • the denominators have a common factor?

Practice Adding and Subtracting Fractions

Perform the indicated operation(s).

  1. 1 2 + 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaGaey4kaSYaaSaaaeaacaaIYaaabaGaaG4maaaa aaa@39DE@
  2. 3 8 − 1 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaiIdaaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaG4maaaa aaa@39F0@
  3. 3 8 −( − 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaiIdaaaGaeyOeI0YaaeWaaeaacqGHsisldaWcaaqaaiaa igdaaeaacaaIYaaaaaGaayjkaiaawMcaaaaa@3C65@
  4. 7 12 − 4 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4naaqaaiaaigdacaaIYaaaaiabgkHiTmaalaaabaGaaGinaaqaaiaa igdacaaI1aaaaaaa@3B69@
  5. −2+ 5 7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik dacqGHRaWkdaWcaaqaaiaaiwdaaeaacaaI3aaaaaaa@3A07@
  6. − 5 8 −( − 7 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTmaala aabaGaaGynaaqaaiaaiIdaaaGaeyOeI0YaaeWaaeaacqGHsisldaWc aaqaaiaaiEdaaeaacaaI2aaaaaGaayjkaiaawMcaaaaa@3D5E@
  7. 18 11 − 7 11 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaiaaiIdaaeaacaaIXaGaaGymaaaacqGHsisldaWcaaqaaiaaiEda aeaacaaIXaGaaGymaaaaaaa@3C23@
  8. ( − 1 2 )+ 8 16 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey OeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPaaacqGH RaWkdaWcaaqaaiaaiIdaaeaacaaIXaGaaGOnaaaaaaa@3D18@
  9. 3 4 + 1 6 − 7 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaisdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOnaaaa cqGHsisldaWcaaqaaiaaiEdaaeaacaaIZaaaaaaa@3C5F@
  10. 4 5 − 2 3 + 7 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG inaaqaaiaaiwdaaaGaeyOeI0YaaSaaaeaacaaIYaaabaGaaG4maaaa cqGHRaWkdaWcaaqaaiaaiEdaaeaacaaIXaGaaGynaaaaaaa@3D1C@

Fraction Puzzles

Write the fraction of the whole square that each section represents.

Mixed Numbers

Draw lines if needed and shade the figure to model the mixed number. Then write the equivalent improper fraction.

  1. 1 1 3 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymamaala aabaGaaGymaaqaaiaaiodaaaGaeyypa0daaa@3940@


  2. 3 1 8 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaala aabaGaaGymaaqaaiaaiIdaaaGaeyypa0daaa@3947@

     
     
  3. 2 1 2 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaala aabaGaaGymaaqaaiaaikdaaaGaeyypa0daaa@3940@

  4. 2 3 4 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaala aabaGaaG4maaqaaiaaisdaaaGaeyypa0daaa@3944@

  5. 1 5 6 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymamaala aabaGaaGynaaqaaiaaiAdaaaGaeyypa0daaa@3947@

  6. 3 1 5 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4mamaala aabaGaaGymaaqaaiaaiwdaaaGaeyypa0daaa@3944@

Summary: To convert a mixed number to an improper fraction, __________ the whole number part by the __________
and then __________ the __________ . Write this number as the new __________ and keep the same __________ .

Draw lines and shade the figure to model the improper fraction. Then write the improper fraction as a mixed number.

  1. 5 4 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI1aaabaGaaGinaaaacqGH9aqpaaa@388A@

     
  2. 11 6 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaGaaGymaaqaaiaaiAdaaaGaeyypa0daaa@3943@

     
  3. 12 5 = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaGaaGOmaaqaaiaaiwdaaaGaeyypa0daaa@3943@

Summary: To convert an improper fraction to a mixed number, __________ the numerator by the __________
to get the whole number part. Write the remainder as the __________ of the fractional part and keep the same __________.

Convert the mixed number to an improper fraction, then perform the indicated operation. Write your answer both as an improper fraction and as a mixed number.

  1. 1 2 5 + 4 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymamaala aabaGaaGOmaaqaaiaaiwdaaaGaey4kaSYaaSaaaeaacaaI0aaabaGa aGynaaaaaaa@3AAC@
  2. 2 3 −4 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaG4maaaacqGHsislcaaI0aWaaSaaaeaacaaIXaaabaGa aGOmaaaaaaa@3AB2@
  3. −2 1 3 ⋅ 4 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG OmamaalaaabaGaaGymaaqaaiaaiodaaaGaeyyXIC9aaSaaaeaacaaI 0aaabaGaaGynaaaaaaa@3CFF@
  4. 2 1 4 ÷ 5 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaala aabaGaaGymaaqaaiaaisdaaaGaey49aG7aaSaaaeaacaaI1aaabaGa aGOnaaaaaaa@3C06@

Mixed Operations with Fractions

Review: Discuss with your group and write a rule or procedure for each operation with fractions.

  • Addition:
  • Subtraction:
  • Multiplication:
  • Division:

Perform each operation specified and reduce your answer to simplest terms.

  1. 2 3 + 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaG4maaaacqGHRaWkdaWcaaqaaiaaiodaaeaacaaI0aaa aaaa@39ED@
  2. 2 3 − 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaG4maaaacqGHsisldaWcaaqaaiaaiodaaeaacaaI0aaa aaaa@39F8@
  3. 2 3 â‹… 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaG4maaaacqGHflY1daWcaaqaaiaaiodaaeaacaaI0aaa aaaa@3B55@
  4. 2 3 ÷ 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIYaaabaGaaG4maaaacqGH3daUdaWcaaqaaiaaiodaaeaacaaI0aaa aaaa@3B46@
  5. − 1 6 − 3 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOnaaaacqGHsisldaWcaaqaaiaaiodaaeaa caaIXaGaaGOmaaaaaaa@3BA0@
  6. ( 2 3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada WcaaqaaiaaikdaaeaacaaIZaaaaaGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaaaaa@39F2@
  7. − 7 8 ÷ 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0YaaS aaaeaacaaI3aaabaGaaGioaaaacqGH3daUdaWcaaqaaiaaigdaaeaa caaI0aaaaaaa@3C3B@
  8. 9 16 â‹… 4 3 â‹… 2 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI5aaabaGaaGymaiaaiAdaaaGaeyyXIC9aaSaaaeaacaaI0aaabaGa aG4maaaacqGHflY1daWcaaqaaiaaikdaaeaacaaI1aaaaaaa@3FEF@
  9. 1 2 − 3 4 + 5 8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOmaaaacqGHsisldaWcaaqaaiaaiodaaeaacaaI0aaa aiabgUcaRmaalaaabaGaaGynaaqaaiaaiIdaaaaaaa@3C69@
  10. −2 3 8 + 11 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG OmamaalaaabaGaaG4maaqaaiaaiIdaaaGaey4kaSYaaSaaaeaacaaI XaGaaGymaaqaaiaaiAdaaaaaaa@3C57@
  11. −6⋅( 1 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG OnaiabgwSixpaabmaabaWaaSaaaeaacaaIXaaabaGaaG4maaaaaiaa wIcacaGLPaaaaaa@3CFF@
  12. 1 1 2 ÷( −3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymamaala aabaGaaGymaaqaaiaaikdaaaGaey49aG7aaeWaaeaacqGHsislcaaI ZaaacaGLOaGaayzkaaaaaa@3DA7@
  13. Jamie walks 3 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG 4maaqaaiaaisdaaaaaaa@3777@ of a mile to get on the bus and then 2 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG Omaaqaaiaaiwdaaaaaaa@3777@ of a mile from the bus stop to the store. To go to the store and back home, how many miles does Jamie walk? Show all of your steps and write your answer in a complete sentence.
  14. Carlos is making Polvorones, which are Mexican Wedding Cookies. The recipe calls for 1 1 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdadaWcaa qaaiaaigdaaeaacaaI0aaaaaaa@3830@ cups of butter. If the recipe makes five dozen cookies, how much butter is in one cookie? (Bonus if you can convert the answer to tablespoons or teaspoons.)

Order of Operations with Fractions

Perform the following using the order of operations. Work slowly and carefully with your group members to make sure you are using the order of operations appropriately and completing computations correctly.

  1. 3 4 − 1 2 ⋅ 2 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIZaaabaGaaGinaaaacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaa aiabgwSixpaalaaabaGaaGOmaaqaaiaaiodaaaaaaa@3DC8@
  2. 1 2 ÷ 1 2 ⋅ 4 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaaikdaaaGaey49aG7aaSaaaeaacaaIXaaabaGaaGOmaaaa cqGHflY1daWcaaqaaiaaisdaaeaacaaI1aaaaaaa@3F0C@
  3. 7 15 + 3 5 ( 2 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aI3aaabaGaaGymaiaaiwdaaaGaey4kaSYaaSaaaeaacaaIZaaabaGa aGynaaaadaqadaqaamaalaaabaGaaGOmaaqaaiaaiAdaaaaacaGLOa Gaayzkaaaaaa@3DC5@
  4. ( 2 3 ÷ 16 9 )−3( 1 15 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada WcaaqaaiaaikdaaeaacaaIZaaaaiabgEpa4oaalaaabaGaaGymaiaa iAdaaeaacaaI5aaaaaGaayjkaiaawMcaaiabgkHiTiaaiodadaqada qaamaalaaabaGaaGymaaqaaiaaigdacaaI1aaaaaGaayjkaiaawMca aaaa@430A@
  5. 1 6 + 11 4 ( − 2 3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaGaaGOnaaaacqGHRaWkdaWcaaqaaiaaigdacaaIXaaabaGa aGinaaaadaqadaqaaiabgkHiTmaalaaabaGaaGOmaaqaaiaaiodaaa aacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@3F8F@

Challenge Problem:

  1. ( 11 5 −1 2 3 )− ( − 4 9 ⋅18 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaada WcaaqaaiaaigdacaaIXaaabaGaaGynaaaacqGHsislcaaIXaWaaSaa aeaacaaIYaaabaGaaG4maaaaaiaawIcacaGLPaaacqGHsisldaqada qaaiabgkHiTmaalaaabaGaaGinaaqaaiaaiMdaaaGaeyyXICTaaGym aiaaiIdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaa@469A@

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License