# Section8.4Ratio and Root Tests¶ permalink

The $n^\text{ th }$–Term Test of Theorem 8.2.20 states that in order for a series $\ds \infser a_n$ to converge, $\lim\limits_{n\to\infty}a_n = 0\text{.}$ That is, the terms of $\{a_n\}$ must get very small. Not only must the terms approach 0, they must approach 0 “fast enough”: while $\lim\limits_{n\to\infty}1/n=0\text{,}$ the Harmonic Series $\ds\infser \frac1n$ diverges as the terms of $\{1/n\}$ do not approach 0 “fast enough.”

The comparison tests of the previous section determine convergence by comparing terms of a series to terms of another series whose convergence is known. This section introduces the Ratio and Root Tests, which determine convergence by analyzing the terms of a series to see if they approach 0 “fast enough.”

# Subsection8.4.1Ratio Test

Theorem 8.2.21 allows us to apply the Ratio Test to series where $\{a_n\}$ is positive for all but a finite number of terms.

The principle of the Ratio Test is this: if $\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n} = L\lt 1\text{,}$ then for large $n\text{,}$ each term of $\{a_n\}$ is significantly smaller than its previous term which is enough to ensure convergence.

##### Example8.4.2Applying the Ratio Test

Use the Ratio Test to determine the convergence of the following series:

1. $\ds \infser \frac{2^n}{n!}$

2. $\ds \infser \frac{3^n}{n^3}$
3. $\ds \infser \frac{1}{n^2+1}$
Solution

The Ratio Test is not effective when the terms of a series only contain algebraic functions (e.g., polynomials). It is most effective when the terms contain some factorials or exponentials. The previous example also reinforces our developing intuition: factorials dominate exponentials, which dominate algebraic functions, which dominate logarithmic functions. In Part 1 of the example, the factorial in the denominator dominated the exponential in the numerator, causing the series to converge. In Part 2, the exponential in the numerator dominated the algebraic function in the denominator, causing the series to diverge.

While we have used factorials in previous sections, we have not explored them closely and one is likely to not yet have a strong intuitive sense for how they behave. The following example gives more practice with factorials.

##### Example8.4.3Applying the Ratio Test

Determine the convergence of $\ds\infser \frac{n!n!}{(2n)!}\text{.}$

Solution

# Subsection8.4.2Root Test

The final test we introduce is the Root Test, which works particularly well on series where each term is raised to a power, and does not work well with terms containing factorials.

##### Example8.4.5Applying the Root Test

Determine the convergence of the following series using the Root Test:

1. $\ds \infser \left(\frac{3n+1}{5n-2}\right)^n$

2. $\ds \infser\frac{n^4}{(\ln(n) )^n}$

3. $\ds \infser \frac{2^n}{n^2}$

Solution

Theorem 8.2.21 allows us to apply the Root Test to series where $\{a_n\}$ is positive for all but a finite number of terms.

Each of the tests we have encountered so far has required that we analyze series from positive sequences. Section 8.5 relaxes this restriction by considering alternating series, where the underlying sequence has terms that alternate between being positive and negative.

# Subsection8.4.3Exercises

Terms and Concepts

In the following exercises, determine the convergence of the given series using the Ratio Test. If the Ratio Test is inconclusive, state so and determine convergence with another test.