

Graphing Sinusoidal Functions

Below is a summary of what is studied in MTH 111 about graph transformations; see Section I, Units 6–8 from my [online notes for MTH 111](#) to review graph transformations.

SUMMARY OF GRAPH TRANSFORMATIONS

Suppose that f and g are functions such that $g(t) = A \cdot f(\omega(t - h)) + k$ and $A, \omega, h, k \in \mathbb{R}$. In order to transform the graph of the function f into the graph of g :

- 1st: horizontally stretch/compress the graph of f by a factor of $\frac{1}{|\omega|}$ and, if $\omega < 0$, reflect it about the y -axis. (Stretch if $|\omega| < 1$; compress if $|\omega| > 1$.)
- 2nd: shift the graph horizontally h units (shift right if $h > 0$; shift left if $h < 0$).
- 3rd: vertically stretch/compress the graph by a factor of $|A|$ and, if $A < 0$, reflect it about the t -axis. (Stretch if $|A| > 1$; compress if $|A| < 1$.)
- 4th: shift the graph vertically k units (shift up if k is positive and down if k is negative).

(The order in which these transformations are performed **matters**.)

When we apply these graph transformations to the graphs of $y = \sin(t)$ and $y = \cos(t)$ we obtain sinusoidal functions:

DEFINITION: A **sinusoidal function** is function f of the form

$$\left\{ \begin{array}{l} f(t) = A \sin(\omega(t - h)) + k \text{ or } f(t) = A \cos(\omega(t - h)) + k \end{array} \right\}$$

where $A, \omega, h, k \in \mathbb{R}$, $A \neq 0$, and $\omega \neq 0$.

A sinusoidal function of this form has the following properties:

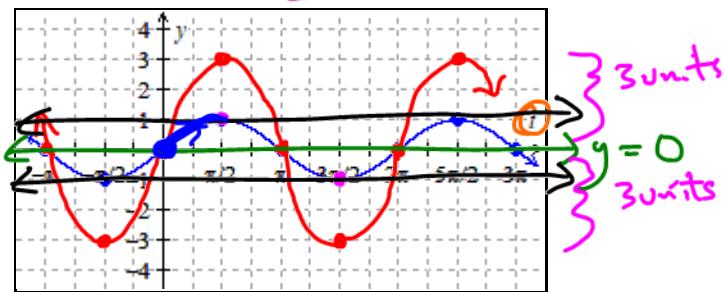
- Amplitude of $|A|$ units
- Midline: $y = k$
- Period: $2\pi \cdot \frac{1}{\omega}$

• If the input for sine or cosine is factored as shown in the template then we can "start" sine or cosine wave at $t = h$.

(We'll use the examples below to determine the properties for the box above.)

EXAMPLE: The graph of $f(t) = \sin(t)$ is given below. Sketch a graph of $y = 3\sin(t)$.

Compared with $f(t) = \sin(t)$,
 $y = 3\sin(t)$ is stretch vertically
 by a factor of 3
 Amp is 3 units.



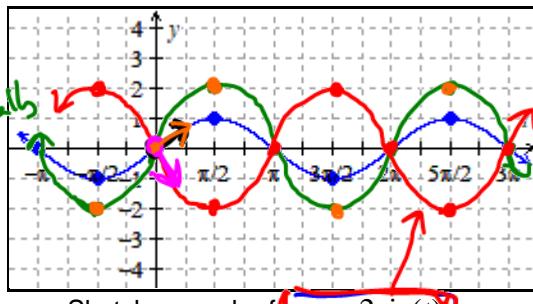
Sketch a graph of $y = 3\sin(t)$.

Use [Desmos](#) to graph $f(t) = \sin(t)$ & $y = A\sin(t)$ and $g(t) = \cos(t)$ & $y = A\cos(t)$ for various values of $A > 0$; then complete the following sentence:

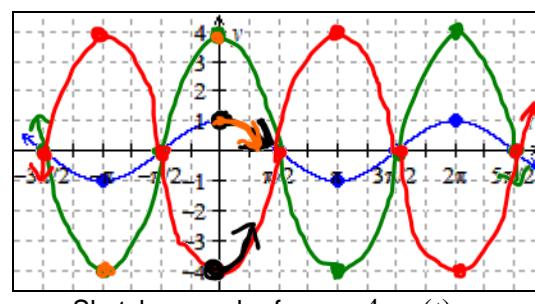
- The graphs of $y = A\sin(t)$ and $y = A\cos(t)$ have have amplitude A units.

EXAMPLE: The graph of $f(t) = \sin(t)$ is given below; sketch a graph of $y = -2\sin(t)$; also the graph of $g(t) = \cos(t)$ is given below; sketch a graph of $y = -4\cos(t)$.

$y = -2\sin(t)$
 $= -1 \cdot 2 \sin(t)$
 reflect vertically
 by factor 2
 reflect about
 t-axis
 The amp is
 $| -2 | = 2$



Sketch a graph of $y = -2\sin(t)$.

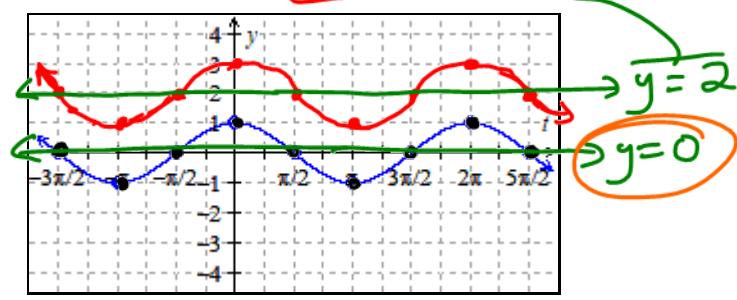


Sketch a graph of $y = -4\cos(t)$.

Observation: The reflected sine wave "starts" at midline & travels DOWN while the reflected cosine wave "starts" minimum & travels UP.

EXAMPLE: The graph of $g(t) = \cos(t)$ is given below. Sketch a graph of $y = \cos(t) + 2$.

Compared with $g(t) = \cos(t)$,
 The graph of $y = \cos(t) + 2$
 is shifted up 2 units.
 The midline is $y = 2$



Sketch a graph of $y = \cos(t) + 2$.

Use [Desmos](#) to graph $g(t) = \cos(t)$ & $y = \cos(t) + k$ and $f(t) = \sin(t)$ & $y = \sin(t) + k$ for various values of k ; then complete the following sentence:

- The graphs of $y = \cos(t) + k$ and $y = \sin(t) + k$ have midline of $y = k$.

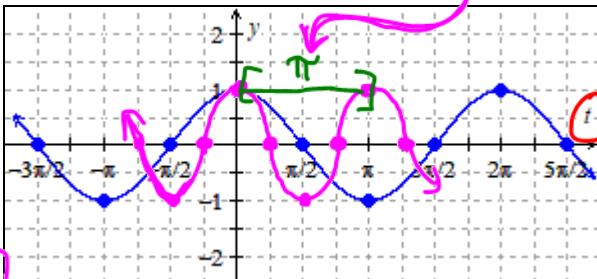
$y = \sin(1t)$ has period $\frac{2\pi}{1}$ units

Page 3 of 6

EXAMPLE: The graph of $g(t) = \cos(t)$ is given below. Sketch a graph of $y = \cos(2t)$.

Compared with $g(t) = \cos(t)$,
 $y = \cos(2t)$ is compressed horizontally by a factor of $\frac{1}{2}$.

$$\text{Period} = 2\pi \cdot \frac{1}{2} = \pi \text{ units}$$



1 unit
1 unit

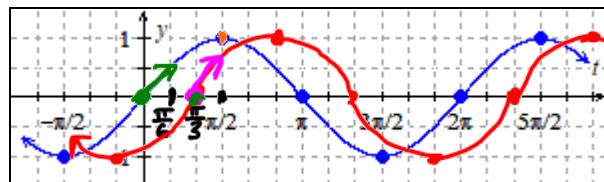
Sketch a graph of $y = \cos(2t)$.

Use [Desmos](#) to graph $g(t) = \cos(t)$ & $y = \cos(\omega \cdot t)$ and $f(t) = \sin(t)$ & $y = \sin(\omega \cdot t)$ for various values of $\omega > 0$; then complete the following sentence:

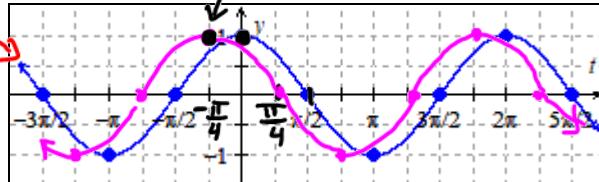
- The graphs of $y = \cos(\omega \cdot t)$ and $y = \sin(\omega \cdot t)$... will be horizontally stretched/compressed by a factor of $\frac{1}{\omega}$. Since the period is "horizontal info", the period will be stretched/compressed by factor $\frac{1}{\omega}$. Therefore the period of these functions will be $P = 2\pi \cdot \frac{1}{\omega}$.

EXAMPLE: The graphs of $f(t) = \sin(t)$ and $g(t) = \cos(t)$ are given below; sketch graphs of

$$y = \sin\left(t - \frac{\pi}{3}\right) \text{ and } y = \cos\left(t + \frac{\pi}{4}\right).$$



Sketch a graph of $y = \sin\left(t - \frac{\pi}{3}\right)$.



Sketch a graph of $y = \cos\left(t + \frac{\pi}{4}\right)$.

Shift right $\frac{\pi}{3}$ units

Shift left $\frac{\pi}{4}$ units

EXAMPLE: Use [Desmos](#) to compare $p(t) = \cos(2t - \frac{\pi}{3})$ and $q(t) = \cos(2(t - \frac{\pi}{3}))$.

Determine the appropriate horizontal shift for each function.

Both $y = p(t)$ & $y = q(t)$ involve the same horiz. stretch/compress factor & the same horiz. shifting constant. **NOTE THAT:** $p(t) = \cos(2t - \frac{\pi}{3}) = \cos(2(t - \frac{\pi}{6}))$

Observation: To determine the horizontal shift, first factor the input of the trig function.

"starts" at $t = \frac{\pi}{6}$

$y = \sin(t)$
has period 2π units
but there's no "2 π " in the formula.

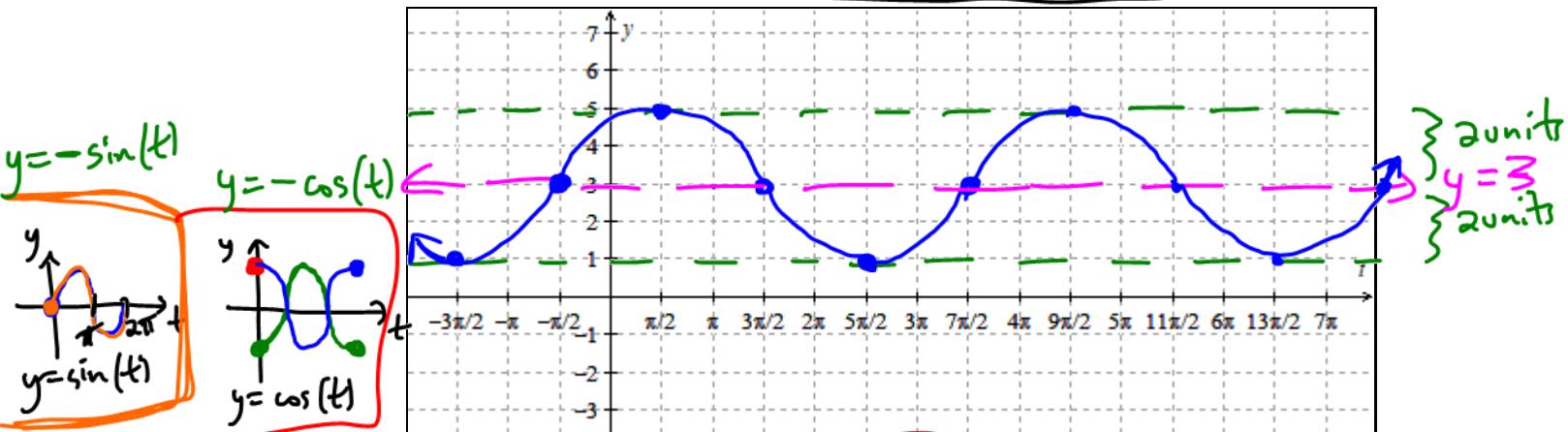
EXAMPLE: Sketch a graph of $m(t) = 2\sin\left(\frac{1}{2}(t + \frac{\pi}{4})\right) + 3$. State the period, midline, and amplitude of m .

$$m(t) = 2\sin\left(\frac{1}{2}(t + \frac{\pi}{4})\right) + 3$$

Amplitude is 2 units
Midline is $y = 3$

Period: $P = 2\pi \cdot \frac{1}{\frac{1}{2}} = 2\pi \cdot 2 = 4\pi$ units

we need a sine wave "starting" at $t = -\frac{\pi}{2}$



$y = \sin(t)$ has period 2π but 2π isn't in the "formula"

Sketch a graph of $m(t) = 2\sin\left(\frac{1}{2}t + \frac{\pi}{4}\right) + 3$.

EXAMPLE: Find (at least) two algebraic rules (i.e., "formulas"), one involving sine and one involving cosine, for the sinusoidal function n whose graph is given below.

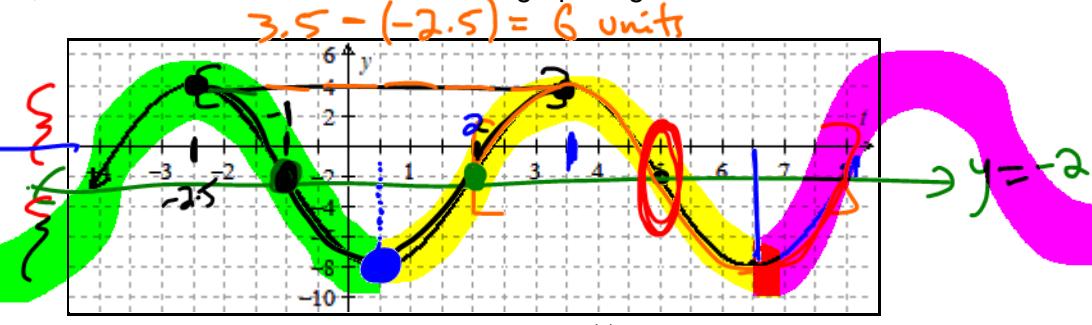
Midline: $y = -2$
 $\Rightarrow K = -2$

Amplitude: 6 units
 $\Rightarrow |A| = 6$

Period: 6 units

$\frac{6}{6} = 2\pi \cdot \frac{1}{w}$

$w = \frac{2\pi}{6} = \frac{\pi}{3}$



The graph of $y = n(t)$.

$$n(t) = A \sin(w(t-h)) + K$$

$$= 6 \sin\left(\frac{\pi}{3}(t-2)\right) - 2$$

$$= 6 \sin\left(\frac{\pi}{3}(t+16)\right) - 2$$

$$= -6 \sin\left(\frac{\pi}{3}(t-5)\right) - 2$$

$$n(t) = A \cos(w(t-h)) + K$$

$$= 6 \cos\left(\frac{\pi}{3}(t+\frac{\pi}{2})\right) - 2$$

$$= 6 \cos\left(\frac{\pi}{3}(t-\frac{\pi}{2})\right) - 2$$

$$= -6 \cos\left(\frac{\pi}{3}(t-\frac{13}{2})\right) - 2$$

EXAMPLE: Sketch a graph of $f(t) = 2 \sin\left(\pi t - \frac{\pi}{4}\right) - 3$ on the coordinate plane below.

Factor The input for the sine function

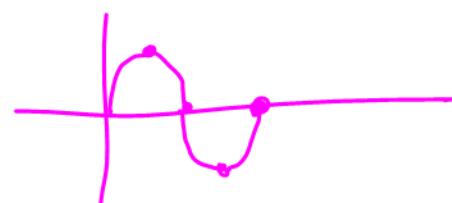
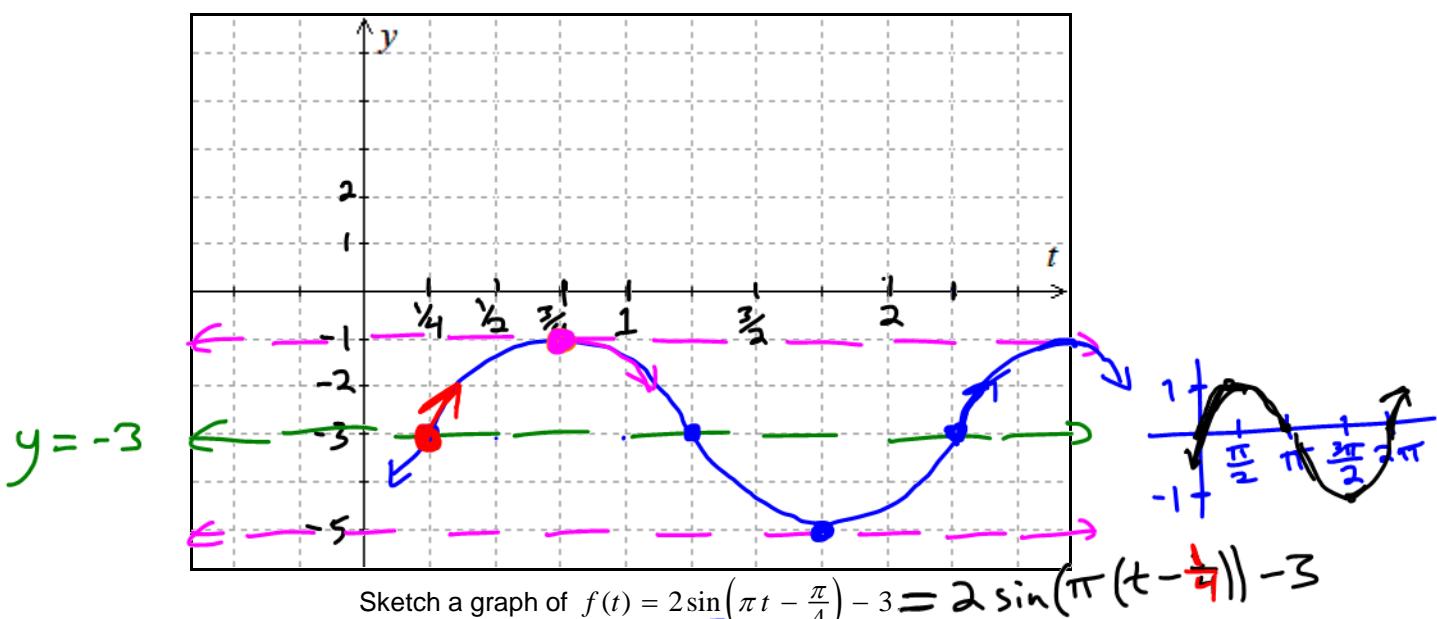
$$f(t) = 2 \sin\left(\pi(t - \frac{1}{4})\right) - 3$$

Amplitude is $|2| = 2$

Midline is $y = -3$

$$\begin{aligned} \text{Period} : P &= 2\pi \cdot \frac{1}{\pi} \\ &= 2 \text{ units} \end{aligned}$$

Need a sine wave "starting" at $t = \frac{1}{4}$

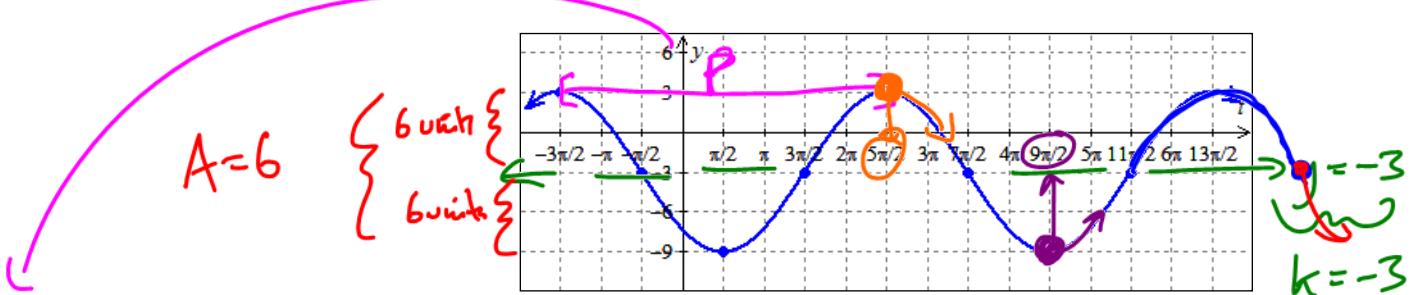


Find rule for $y = f(t)$
that involves cosine.

$$f(t) = 2 \cos\left(\pi(t - \frac{3}{4})\right) - 3$$

Additional Examples:

a. Find (at least) two algebraic rules (i.e., "formulas"), one involving sine and one involving cosine, for the sinusoidal function f whose graph is given below.



$$\begin{aligned}
 P &= \frac{5\pi}{2} - \left(-\frac{3\pi}{2}\right) \\
 &= \frac{8\pi}{2} \\
 &= 4\pi \\
 w \cdot 4\pi &= 2\pi \cdot \frac{1}{w} \\
 w &= \frac{2\pi}{4\pi} = \frac{1}{2}
 \end{aligned}$$

$$\begin{aligned}
 f(t) &= A \cdot \sin(\omega(t-h)) + k \\
 &= 6 \sin\left(\frac{1}{2}\left(t - \frac{3\pi}{2}\right)\right) - 3 \\
 &= -6 \sin\left(\frac{1}{2}\left(t - \frac{7\pi}{2}\right)\right) - 3 \\
 &= 6 \cos\left(\frac{1}{2}\left(t - \frac{5\pi}{2}\right)\right) - 3 \\
 &= -6 \cos\left(\frac{1}{2}\left(t - \frac{9\pi}{2}\right)\right) - 3
 \end{aligned}$$

b. Sketch a graph of $g(t) = 3\cos\left(\frac{\pi}{2}t - \frac{\pi}{4}\right) - 1$ on the coordinate plane below.

List the period, amplitude, midline, and horizontal shift.

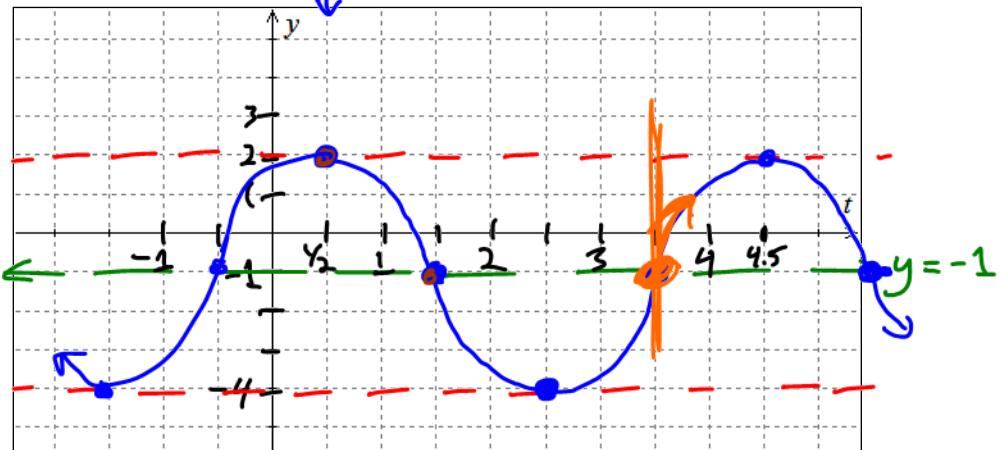
$$\begin{aligned}
 \text{Amp: } 3 \text{ units} \\
 \text{Midline: } y = -1
 \end{aligned}$$

$$\begin{aligned}
 \text{Period: } \\
 P &= 2\pi \cdot \frac{1}{\pi/2} \\
 &= 2\pi \cdot \frac{2}{1} \\
 &= 4
 \end{aligned}$$

$$\begin{aligned}
 \text{quarter periods:} \\
 \frac{4}{4} = 1
 \end{aligned}$$

$$g(t) = 3 \cos\left(\frac{\pi}{2}\left(t - \frac{1}{2}\right)\right) - 1$$

weed at $(t = \frac{1}{2})$ cosine wave "starting"



$$\text{Sketch a graph of } g(t) = 3\cos\left(\frac{\pi}{2}t - \frac{\pi}{4}\right) - 1.$$

$$g(t) = 3 \sin\left(\frac{\pi}{2}\left(t - \frac{\pi}{2}\right)\right) - 1$$