Haberman MTH 112 Week 3

Graphing Sinusoidal Functions

Below is a summary of what is studied in MTH 111 about graph transformations; see Section I, Units 6–8 from my online notes for MTH 111 to review graph transformations.

SUMMARY OF GRAPH TRANSFORMATIONS

Suppose that f and g are functions such that $g(t) = A \cdot f(\omega(t-h)) + k$ and $A, \omega, h, k \in \mathbb{R}$. In order to transform the graph of the function f into the graph of g:

1st: horizontally stretch/compress the graph of f by a factor of $\frac{1}{|\omega|}$ and, if $\omega < 0$, reflect it about the y-axis. (Stretch if $|\omega| < 1$; compress if $|\omega| > 1$.)

2nd: shift the graph horizontally h units (shift right if h > 0; shift left if h < 0).

 ${f 3}^{
m rd}$: vertically stretch/compress the graph by a factor of $\left|A\right|$ and, if A<0, reflect it about the t-axis. (Stretch if $\left|A\right|>1$; compress if $\left|A\right|<1$.)

4th: shift the graph vertically k units (shift up if k is positive and down if k is negative).

(The order in which these transformations are performed matters.)

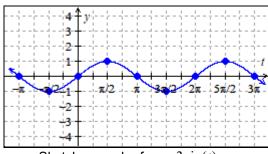
When we apply these graph transformations to the graphs of $y = \sin(t)$ and $y = \cos(t)$ we obtain *sinusoidal functions*:

DEFINITION: A **sinusoidal function** is function f of the form

$$f(t) = A\sin(\omega(t-h)) + k$$
 or $f(t) = A\cos(\omega(t-h)) + k$

where $A, \omega, h, k \in \mathbb{R}$, $A \neq 0$, and $\omega \neq 0$.

A sinusoidal function of this form has the following properties:

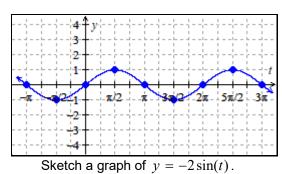

•

•

•

(We'll use the examples below to determine the properties for the box above.)

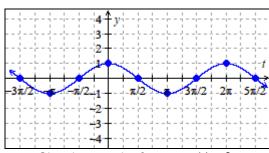
EXAMPLE: The graph of $f(t) = \sin(t)$ is given below. Sketch a graph of $y = 3\sin(t)$.



Sketch a graph of $y = 3\sin(t)$.

Use <u>Desmos</u> to graph $f(t) = \sin(t)$ & $y = A\sin(t)$ and $g(t) = \cos(t)$ & $y = A\cos(t)$ for various values of A > 0; then complete the following sentence:

• The graphs of $y = A\sin(t)$ and $y = A\cos(t)$ have _____


EXAMPLE: The graph of $f(t) = \sin(t)$ is given below; sketch a graph of $y = -2\sin(t)$; also the graph of $g(t) = \cos(t)$ is given below; sketch a graph of $y = -4\cos(t)$.

Observation: The reflected sine wave "starts"

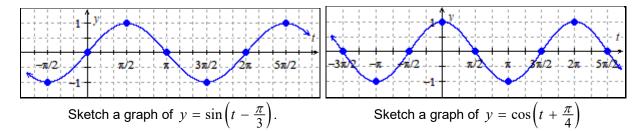
while the reflected cosine wave "starts"

EXAMPLE: The graph of $g(t) = \cos(t)$ is given below. Sketch a graph of $y = \cos(t) + 2$.

Sketch a graph of $y = \cos(t) + 2$.

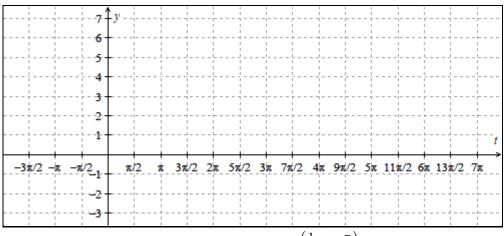
Use <u>Desmos</u> to graph $g(t) = \cos(t)$ & $y = \cos(t) + k$ and $f(t) = \sin(t)$ & $y = \sin(t) + k$ for various values of k; then complete the following sentence:

• The graphs of $y = \cos(t) + k$ and $y = \sin(t) + k$ have

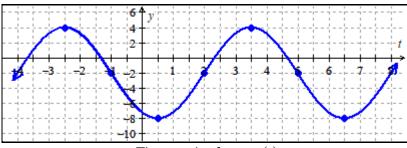

EXAMPLE: The graph of $g(t) = \cos(t)$ is given below. Sketch a graph of $y = \cos(2t)$.

Use <u>Desmos</u> to graph $g(t) = \cos(t)$ & $y = \cos(\omega \cdot t)$ and $f(t) = \sin(t)$ & $y = \sin(\omega \cdot t)$ for various values of $\omega > 0$; then complete the following sentence:

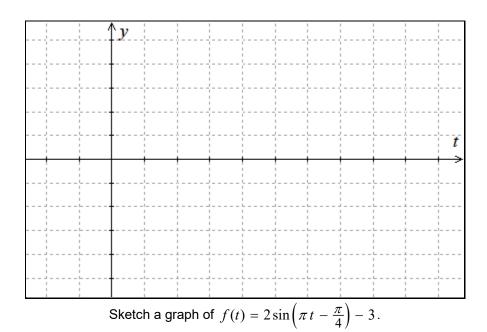
• The graphs of $y = \cos(\omega \cdot t)$ and $y = \sin(\omega \cdot t)$...


EXAMPLE: The graphs of $f(t) = \sin(t)$ and $g(t) = \cos(t)$ are given below; sketch graphs of $y = \sin\left(t - \frac{\pi}{3}\right)$ and $y = \cos\left(t + \frac{\pi}{4}\right)$.

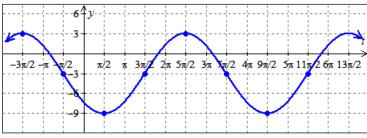
EXAMPLE: Use <u>Desmos</u> to compare $p(t) = \cos\left(2t - \frac{\pi}{3}\right)$ and $q(t) = \cos\left(2\left(t - \frac{\pi}{3}\right)\right)$. Determine the appropriate horizontal shift for each function.


Observation: To determine the horizontal shift, first factor the input of the trig function.

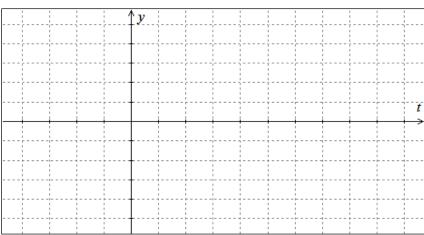
EXAMPLE: Sketch a graph of $m(t) = 2\sin\left(\frac{1}{2}t + \frac{\pi}{4}\right) + 3$. State the period, midline, and amplitude of m.


Sketch a graph of $m(t) = 2\sin\left(\frac{1}{2}t + \frac{\pi}{4}\right) + 3$.

EXAMPLE: Find (at least) two algebraic rules (i.e., "formulas"), one involving sine and one involving cosine, for the sinusoidal function n whose graph is given below.


The graph of y = n(t).

EXAMPLE: Sketch a graph of $f(t) = 2\sin\left(\pi t - \frac{\pi}{4}\right) - 3$ on the coordinate plane below.


Additional Examples:

a. Find (at least) two algebraic rules (i.e., "formulas"), one involving sine and one involving cosine, for the sinusoidal function f whose graph is given below.

The graph of y = f(t).

b. Sketch a graph of $g(t) = 3\cos\left(\frac{\pi}{2}t - \frac{\pi}{4}\right) - 1$ on the coordinate plane below. List the *period*, *amplitude*, *midline*, and *horizontal shift*.

Sketch a graph of $g(t) = 3\cos\left(\frac{\pi}{2}t - \frac{\pi}{4}\right) - 1$.