
Haberman     MTH 112 
 

Section I:  The Trigonometric Functions 
 

 
Chapter 7:  Solving Trig Equations 

 
 
Let’s start by solving a couple of equations that involve the sine function. 
 

 EXAMPLE 1a: Solve the equation 1
2sin( )t = . 

 
SOLUTION: 
 

The inverse functions we constructed in Chapter 6 can be used to solve equations like 
1
2sin( )t =  but the fraction 1

2  is a “friendly” sine value so we don’t need to use the inverse 

sine function: our experience with the sine function tells us that that ( ) 1
6 2sin π = , so we 

know that 6t π=  is a solution to 1
2sin( )t = .  We also know that the sine function is periodic 

with period 2π , so its values repeat every 2π  units, so angles like 
 

13
6 62t π ππ= + =     and    25

6 64t π ππ= + =     and    11
6 62t π ππ= − = −  

 
are also solutions.  We can represent multiples of the period with the expression 2kπ  where 
k  is any integer, i.e., k ∈ , so we can represent all of the solutions that are “related” to 6

π  

with the expression 6 2kπ π+ , k ∈ .  This expression represents infinitely many solutions, 
but it still doesn’t represent all of the solutions; see Figure 1. 
 
 

 
Figure 1: The graph of sin( )y t=  and the line 1

2y = .  The red dots 
represent points with horizontal coordinates of the form 

6 2t kπ π= + , k ∈ .  The other instances where the blue 

graph intersects the line 1
2y =  are also solutions to the 

equation 1
2sin( )t =  but they are NOT represented by 

6 2t kπ π= + . 
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Notice that one of the solutions that we are missing is just as close to π  as our original 
solution, 6t π= , is to 0.  Recall the identity ( )sin( ) sint tπ= −  that we first noticed in Part 1 

of Chapter 3: this identity tells us that the angles t  and tπ −  always have the same sine 
value.  This means that whenever we’ve found a solution, t , to an equation involving sine, 
we can find another solution by computing tπ − .  Now let’s apply this observation to find 

the rest of the solutions to 1
2sin( )t = : since we know that 6t π=  is a solution to 1

2sin( )t = , 

we know that 5
6 6t π ππ= − =  is another solution.  And now we can again utilize the fact 

that the period of the sine function is 2π  so we can express the rest of the solutions with 
5
6 2t kπ π= + , k ∈ ; in Figure 2, these solutions are colored green.  So the complete 

solution to the equation 1
2sin( )t =  is: 

 

6 2t kπ π= +   or  5
6 2t kπ π= +  for all k ∈ . 

 
 

 
Figure 2: The red dots represent points with horizontal coordinates 

of the form 6 2t kπ π= + , k ∈ , while the green dots 
represent points with horizontal coordinates of the form 

5
6 2t kπ π= + , k ∈ .  The red and green dots together 

represent all of the solutions to 1
2sin( )t = . 
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 EXAMPLE 1b: Solve the equation sin( ) 0.555t = − . 
 
SOLUTION: 

 
Unlike Example 1a where the equation involved a “friendly” sine value, 0.555−  isn’t a 
“friendly” sine value: we don’t know what input for the sine function is related to the output 

0.555− , so we need to utilize the inverse sine function that we constructed in Chapter 6 in 
order to solve the equation: 
 

( ) ( )

( )

1 1

1

sin si

sin( ) 0.555

sin( ) 0.555

sin 0.555 0.588

n

t

t

t −

− −

= −

⇒ = −

⇒ = − ≈ −

(apply the inverse sine function  to both sides of the equation)  

 
(Note that you can utilize a calculator to obtain an approximation for ( )1sin 0.555− −  by 

accessing a button labeled “ 1sin− ”.) 
 
Although we've found one solution to the equation, we aren’t done yet!  The inverse sine 
inverse only gives us one value, but we know that the periodic nature of the sine function 
suggests that there are infinitely many solutions to an equation like this; see Figure 3. 
 
 

 
Figure 3: The graph of sin( )y t=  intersecting the line 0.555y = −  

many, many times.  Each point of intersection represents a 
solution to sin( ) 0.555t = − . 

 
 
We can find all of the solutions by using the solution that we found using the inverse sine 
function along with the fact that the sine function has period 2π : since the sine function has 
period 2π  units, we know that the outputs repeat every 2π  units.  So if 0.588t ≈ −  is a 
solution, the values represented by 0.588 2t kπ≈ − + , k ∈  must also be solutions.  This 
gives us LOTS of solutions, but we are still missing half of them.  (Recall we had the same 
problem in Example 1a.)  In order to get the rest of the solutions, can use the identity 

( )sin( ) sint tπ= − , and subtract our original solution ( 0.588t ≈ − ) from π :  
( 0.588) 2t kπ π≈ − − + , k ∈ .  Therefore, the complete solution to the equation is: 

 
0.588 2t kπ≈ − +   or  0.588 2t kπ π≈ + +  for all k ∈ . 
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 EXAMPLE 2a: Solve the equation 3
2cos( )t = − . 

 
SOLUTION: 

 

Like Example 1a, 3
2−  is a “friendly” cosine value so we can use our knowledge about the 

cosine function, rather than the inverse cosine function, to solve the equation.  Our 

experience with the cosine function tells us that that ( ) 35
6 2cos π = − , so we know that 

5
6t π=  is a solution to 3

2cos( )t = − .  We also know that the cosine function is periodic 
with period 2π , so its values repeat every 2π  units, so angles like 
 

5 17
6 62t π ππ= + =     and    5 29

6 64t π ππ= + =     and    5 7
6 62t π ππ= − = −  

 
are also solutions.  We can represent all of the solutions that are “related” to 5

6
π  with the 

expression 5
6 2kπ π+ , k ∈ .  This expression represents infinitely many solutions, but it 

still doesn’t represent all of the solutions; see Figure 4. 
 
 

 
Figure 4: The graph of cos( )y t=  and the line 3

2y = − .  The red 
dots represent points with horizontal coordinates of the 
form 5

6 2t kπ π= + , k ∈ .  The other instances where 

the blue graph intersects the line 3
2y = −  are also 

solutions to the equation 3
2cos( )t = −  but they are NOT 

represented by 5
6 2t kπ π= + . 

 
 

Recall the identity ( )cos( ) cost t= −  that we noticed in Part 1 of Chapter 3: this identity tells 
us that the angles t  and t−  always have the same cosine value.  This means that whenever 
we’ve found a solution, t , to an equation involving cosine, we can find another solution by 
computing t− .  Now let’s apply this observation to find the rest of the solutions to 

3
2cos( )t = − : since we know that 5

6t π=  is a solution to 3
2cos( )t = − , we know that 

5
6t π= −  is another solution.  Now we can again utilize the fact that the period of cosine is 
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2π  so we can express the rest of the solutions with 5

6 2t kπ π= − + , k ∈ ; in Figure 5, 

these solutions are colored green.  So the complete solution to the equation 3
2cos( )t = −  

is: 
 

5
6 2t kπ π= +   or  5

6 2t kπ π= − +  for all k ∈ . 
 
 

 
Figure 5: The red dots represent points with horizontal coordinates 

of the form 5
6 2t kπ π= + , k ∈ , while the green dots 

represent points with horizontal coordinates of the form 
5
6 2t kπ π= − + , k ∈ .  The red and green dots together 

represent all of the solutions to 3
2cos( )t = − . 

 
 
 

 
 
 
 

 EXAMPLE 2b: Solve the equation cos( ) 0.4t = . 
 
SOLUTION: 

 
Like in Example 1b, 0.4  isn’t a “friendly” cosine value so we need to utilize the inverse 
cosine function that we constructed in Chapter 6 in order to solve the equation: 
 

( ) ( )

( )

1

1

1

cos( ) 0.4

cos( ) 0.4

cos 0.4 1.16

cos cos

t

t

t

− −

−

=

⇒ =

⇒ = ≈

(apply the inverse cosine function  to both sides of the equation)  

 
(Note that you can utilize a calculator to obtain an approximation for 1cos (0.4)−  by 

accessing a button labeled “ 1cos− ”.) 
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Although we have found a solution to the given equation, we aren’t done yet!  The inverse 
cosine function only gives us one value but we know that the periodic nature of the cosine 
function suggests that there are infinitely many solutions to an equation like this; see Figure 
6. 
 
 

 
Figure 6: The graph of cos( )y t=  intersecting the line 0.4y =  

many, many times.  Each point of intersection represents a 
solution to cos( ) 0.4t = . 

 
 
We can find all of the solutions by using the solution that we found using the inverse cosine 
function along with the fact that the cosine function has period 2π : since the cosine function 
has period 2π  units, we know that the outputs repeat every 2π  units.  So if 1.16t ≈  is a 
solution, the values represented by 1.16 2t kπ≈ + , k ∈  must also be solutions.  This 
gives us LOTS of solutions, but we are still missing half of them.  (Recall we had the same 
problem in Example 2a.)  In order to get the rest of the solutions, we can use the identity 

( )cos( ) cost t= −  and take the opposite of original solution to find a second “family” of 
solutions: 1.16 2t kπ≈ − + , k ∈ .  Therefore, the complete solution to the equation 
cos( ) 0.4t =  is: 
 

1.16 2t kπ≈ +   or  1.16 2t kπ≈ − +  for all k ∈ . 
 
 
 
 

 
 
 
  



Haberman     MTH 112 Section I: Chapter 7 Page 7 of 14 

 
 EXAMPLE 3a: Solve the equation 2cos( ) 1t = − . 
 

SOLUTION: 
 

  
CLICK HERE to see a video of this example. 

 

( ) ( )
( )

1 1

22 3

1
2

11 2

3
2

2

1

3 2

cos cos

cos
cos( ) cos

2cos( ) 1

cos( )

cos( )

2 2
( )

or for

t

t

t

t k t k k
t t

π
π ππ π

− −

= −

⇒ = −

−⇒ = −

⇒ = + = −
=

−
−

= + ∈

(this step is optional since 
is a "friendly" cosine value)

(since  and  
)



 

 
[Since 1

2−  is a “friendly” cosine value, we didn’t need to use the inverse cosine function 
as we did in the third step – the inverse trig functions are available when solving 
equations but we don’t need to use them if the values are friendly.] 

 
 

 
 
 

 EXAMPLE 3b: Solve the equation 8cos( ) 9 10x + = . 
 

SOLUTION: 
 

( ) ( )
( ) ( )

( )1

1

1 1

1

1

1
8

1

8

1
8

1
8 8

8cos( ) 9 10
8cos( ) 1

cos( )

cos( )

cos 2 cos 2

1.4

cos cos

cos 1.4445 2 1 5 5.44 2

or for

or for

x
x

x

x

t k t k k

t k t k k

π π

π π

−

−

−

−

−

+ =

⇒ =

⇒ =

⇒ =

⇒ = + = − + ∈

⇒ ≈ + ≈ − + ∈ ≈(sin ce )

 



 

 
[Since 1

8  isn’t a “friendly” cosine value, we need to use the inverse cosine function as 
we’ve done in the fourth step.  Also note that in the last step we’ve approximated the 
solutions: this requires a calculator, so it’s not something that we would need to do on 
no-calculator exams.] 

  

https://youtu.be/F_ScrVwCnlc
https://youtu.be/iognWH_2m3s
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 EXAMPLE 4a: Solve the equation 4sin( ) 3 3θ + = − . 
 

SOLUTION: 
 

  
CLICK HERE to see a video of this example. 

 

( ) ( )
( ) ( )

1 1

2 3 3
4 2

33 22

3

233 3
3

sin sin

sin
sin( ) sin

4sin( ) 3 3

4sin( ) 2 3

sin( )

sin

( )

( )

2 2

2

or for

or

k k k

k

t t
π

πππ

θ

θ

θ

θ

θ π
π

θ π

θ

π

π θ

− −

+ = −

⇒ = −

⇒ = − = −

−⇒ = −

⇒ = + = + = −
=

∈

⇒

−−

=

−

+

−
−

−

(this step is optional since 
is a "friendly" sine value)

(since a
)

   nd

4
3 2 fork kπ π= + ∈ 

 

 

[Since 3
2−  is a “friendly” value, we didn’t need to employ the inverse sine function as 

we did in the fourth step – the inverse trig functions are always available when solving 
trig equations but we don’t need to use them when the values are friendly.] 

 
 

 
 

 EXAMPLE 4b: Solve the equation 13sin( ) 6t = . 
 

SOLUTION: 
 

( ) ( )
( ) ( )

( )

1

1 1

1

1

6
13

6
13

6 6
13 1

3

3

6
1

13sin( ) 6

sin( )

sin( )

sin 2 sin 2

0.48 2 0.48 2

0.48 2 2.66

sin sin

sin 0.48

2

or for all

or for all

or for all

t

t

t

t k t k k

t k t k k

t k t k k

π π π

π π π

π π

− −

−

− −

=

⇒ =

⇒ =

⇒ = + = − + ∈

⇒ ≈ + ≈ − + ∈

⇒ ≈ + ≈

≈

+ ∈

(since  )

 

 







 

[Since 6
13  isn’t a “friendly” sine value, we need to employ the inverse sine function as 

we’ve done in the third step.  Also note that in the second-to-last step we’ve 
approximated the solutions: this requires a calculator, so it’s not something that we 
need to do on a no-calculator activity.]   

https://youtu.be/JZHEKrTo7oQ
https://youtu.be/iognWH_2m3s
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 EXAMPLE 5a: Solve the equation 3 tan( ) 1x = . 
 

SOLUTION: 
 

( ) ( )
( )

1 1

1
3

1
1

6

3
3

6
1
3

3 tan( ) 1

tan

tan tan

tan

( )

tan( )

for all

x

x

x

x k kπ ππ

− −

=

⇒ =

⇒

⇒ =

=

= + ∈

(this step is optional since 

 

is a "friendly" tangent value)

(since )

 

 
[Notice that we add kπ  (rather than 2kπ ) to our solutions since, unlike sine and 
cosine, the period of tangent is π  units.  Also, there’s only one “family” of solutions 
since tangent only reaches each output value once in each period.] 

 
 
 

 
 
 
 

 EXAMPLE 5b: Solve the equation 5tan( ) 10 6θ − = − . 
 

SOLUTION: 
 

( ) ( )
( )

1

1

1

4
5

4
5

4
5

5tan( ) 10 6
5tan( ) 4

tan( )

tan( )tan tan

tan for all k k

θ
θ

θ

θ

θ π−

− −

− = −

⇒ =

⇒ =

⇒ =

⇒ = + ∈

 

 
[Since 4

5  isn’t a “friendly” tangent value, we need to use the inverse tangent function 
as we’ve done in the fourth step.  As mentioned above in Example 5a, we add kπ  
(rather than 2kπ ) to our solutions since the period of tangent is π  units and there’s 
only one “family” of solutions since tangent only reaches each output value once in 
each period.] 
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 EXAMPLE 6: a. Find all of the solutions to the equation 6sin(2 ) 3 2x = . 
 
b. Find the solutions to 6sin(2 ) 3 2x =  that are in the interval [0, 2 ]π . 

 
SOLUTION: 

 
a. Notice that the trigonometric function involved in the given equation is sin(2 )x , and 

recall that sin(2 )x  has period π  units, i.e., the values for sin(2 )x  repeat every π  units.  
This means that once we find a solution to the given equation we’ll be able to add to it 
any integer multiple of π  and obtain another solution.  Thus, we should expect the 
phrase “ for all k kπ ∈ ” to be involved in our solutions.  You’ll see in the work below 
that we add 2kπ  to our solutions after applying the inverse sine function since the period 
of the sine function is 2π  units.  In the last step, we finish solving for x and obtain the 
desired period-shift of kπ  units. 
 

( ) ( )

( ) ( )

1 1

2
2

2
2

4 4
31 1

2 4 2 4
3

8 8

6sin(2 ) 3 2

sin(2 )

ssi in(2 )

2 2 2 2

2

si

2

n n

or for all

or for all

or for all

x

x

x

x k x k k

x k x k k

x k x k k

π π

π π

π π

π π π

π π

π π

− −

=

⇒ =

⇒ =

⇒ = + = − + ∈

⇒ = + = + ∈

⇒ = + = + ∈

 

 

 







 

 
 
 
b. Now we need to substitute specific values of k  into the solutions we found in part (a) 

and determine which solutions are in the interval [0, 2 ]π . 
 
 

3
8 8

7 5
8 8

: ( ) ( )x xπ π

π π

π π= + ⋅ = + ⋅

= − = −

1 1 1ork = − − −
 

Both of these values are negative so they aren’t in the interval [0, 2 ]π .  
Smaller values of k  will produce even smaller values of x  so we don’t 
need to try smaller values of k . 

 
 

3
8 8

3
8 8

: orx xπ π

π π

π π= + ⋅ = + ⋅

= =

0 0 0k =
 

Both of these values are in the interval [0, 2 ]π . 
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3
8 8
9 11
8 8

: orx xπ π

π π

π π= + ⋅ = + ⋅

= =

1 1 1k =
 

Both of these values are in the interval [0, 2 ]π . 
 
 

3
8 8
17 19

8 8

: orx xπ π

π π

π π= + ⋅ = + ⋅

= =

2 2 2k =
 

Since both of these values are greater than 2π , they aren’t in the interval 
[0, 2 ]π .  Certainly larger values of k  will produce even larger values of x  
so we don’t need to try larger values of k . 

 
 
Therefore, the solution set to the equation 6sin(2 ) 3 2x =  on the interval [0, 2 ]π  is 

{ }3 9 11
8 8 8 8, , ,π π π π . 

 
 
 

 
 
 
 
 

 EXAMPLE 7: a. Find all of the solutions to the equation 2cos(3 ) 1t = − . 
 
b. Find the solutions in the interval [0, 2 ]π  to the equation 2cos(3 ) 1t = − . 

 
SOLUTION: 

 
a. Notice that the trigonometric function involved in the given equation is cos(3 )t , and 

recall that cos(3 )t  has period 2
3
π  units, i.e., the values for cos(3 )t  repeat every 2

3
π  

units.  This means that once we find a solution to the given equation we’ll be able to add 
to it any integer multiple of 2

3
π  and obtain another solution.  Therefore, we should expect 

the phrase “ 2
3  k kπ ∈for all ” to be involved in our solutions.  You’ll see in the work 

below that we add 2kπ  to our solutions after applying the inverse cosine function since 
the period of the cosine function is 2π  units.  In the last step, we finish solving for t  and 
obtain the desired period-shift of 2

3
kπ  units. 
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( ) ( )

( ) ( )

1 1

1
2

1
2

2 2
3 3

2 21 1
3 3 3 3

2 2 2 2
9 3 9 3

2cos(3 ) 1

cos(3 )

cos(cos cos3 )

3 2 3 2

2 2

or for all

or for all

or for allk k

t

t

t

t k t k k

t k t k k

t t k

π π

π π

π π π π

π π

π π

− −

= −

⇒ = −

⇒ = −

⇒ = + = − + ∈

⇒ = + = − + ∈

⇒ = + = − + ∈

 

 

 







 

 
 
 
b. Now we need to substitute specific values of k  into the solutions we found in part (a) 

and determine which solutions are in the interval [0, 2 ]π . 
 
 

2( ) 2( )2 2
9 3 9 3

4 8
9 9

: t tπ ππ π

π π

= + = − +

= − = −

1 11 ork − −= −
 

Both of these values are negative so they aren’t in the interval [0, 2 ]π .  
Smaller values of k  will produce even smaller values of t  so we don’t need 
to try smaller values of k . 

 
 

2( ) 2( )2 2
9 3 9 3
2 2
9 9

: t tπ ππ π

π π

= + = − +

= = −

0 00 ork =
 

Only 2
9
π  is in the interval [0, 2 ]π  since 2

9
π−  is negative. 

 
 

2( ) 2( )2 2
9 3 9 3
8 4
9 9

: t tπ ππ π

π π

= + = − +

= =

1 11 ork =
 

Both of these values are in the interval [0, 2 ]π . 
 
 

2( ) 2( )2 2
9 3 9 3
14 10

9 9

: t tπ ππ π

π π

= + = − +

= =

2 22 ork =
 

Both of these values are in the interval [0, 2 ]π . 
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2( ) 2( )2 2
9 3 9 3
20 16

9 9

: t tπ ππ π

π π

= + = − +

= =

3 33 ork =
 

Only 16
9
π  is in the interval [0, 2 ]π  since 20

9
π  is greater than 2π . 

 
 

2( ) 2( )2 2
9 3 9 3
26 22

9 9

: t tπ ππ π

π π

= + = − +

= =

4 44 ork =
 

Since both of these values are greater than 2π , they aren’t in the interval 
[0, 2 ]π .  Certainly larger values of k  will produce even larger values of t  
so we don’t need to try larger values of k . 

 
 
Therefore, the solution set to the equation 6sin(2 ) 3 2x =  on the interval [0, 2 ]π  is 

{ }2 4 8 10 14 16
9 9 9 9 9 9, , , , ,π π π π π π . 

 
 
 

 
 
 
 
 

 EXAMPLE 8: Find the solutions to the equation 3cos(2 ) 2 0x − =  on the interval [ , ]π π− . 
 
SOLUTION: 
 

( ) ( )
( ) ( )

( )( ) ( )( )
( ) ( )

1 1

1 1

1 1

1 1

2
3

2
3

2 2
3 3

1 2 1 2
2 3 2 3

1 2 1 2
2 3 2 3

3cos(2 ) 2 0

cos(2 )

cos(2 )

2 co

cos cos

s 2 2 cos 2

cos 2 cos 2

cos cos

or for all

or for all

or for all

x

x

x

x k x k k

x k x k k

x k x k k

π π

π π

π π

− −

− −

− −

− −

− =

⇒ =

⇒ =

⇒ = + = − + ∈

⇒ = + = − + ∈

⇒ = + = − + ∈

 

 

 







 

 
Notice that we were asked to find the solutions in the interval [ , ]π π− , so we need to find 
which of the infinitely many solutions we’ve found are on the interval.  It might help if we 
approximate the values we found above: 
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( )

( )

1

1

1 2
2 3

1 2
2 3

cos 0.42

cos 0.42  

x k k

x k k k

π π

π π

−

−

= + ≈ +

= − + ≈ − + ∈

or

for all

 

 
 
We know that 3.14π ≈  so we need to find values that satisfy the equation as above and 
are between 3.14−  and 3.14 . 

 
 

: 0.42 ( ) 0.42 ( )
2.72 3.56

x xπ π≈ + ⋅ ≈ − + ⋅
≈ − ≈ −

ork = −1 −1 −1
 

Only 2.72−  is in the interval [ , ]π π− . 
 
 

: 0.42 0.42
0.42 0.42

x xπ π≈ + ⋅ ≈ − + ⋅
≈ ≈ −

0 0 0ork =
 

Both of these values are in the interval [ , ]π π− . 
 
 

: 0.42 0.42
3.56 2.72

x xπ π≈ + ⋅ ≈ − + ⋅
≈ ≈

1 1 1ork =
 

Only 2.72  is in the interval [ , ]π π− . 
 
 

: 0.42 0.42
6.7 5.86

x xπ π≈ + ⋅ ≈ − + ⋅
≈ ≈

2 2 2ork =
 

Neither of these values is in the interval [ , ]π π− . 
 
 
We could try more values of k  but we can tell from the work we’ve done thus far that no 
other values of k  will give us solutions that are on the interval [ , ]π π− .  Thus, the solution 
set to the equation 3cos(2 ) 2 0x − =  on the interval [ , ]π π−  is { }2.72, 0.42, 0.42, 2.72− − . 

 
 
 
 
 
 
 
 
 
 

 
 


