Section I: Periodic Functions and Trigonometry

Chapter 0: Sets and Numbers

DEFINITION: A **set** is a collection of objects specified in a manner that enables one to determine if a given object is or is not in the set.

In other words, a set is a well-defined collection of objects.

EXAMPLE: Which of the following represent a set?

- a. The students registered for MTH 112 at PCC this quarter.
- **b.** The good students registered for MTH 112 at PCC this quarter.

SOLUTION:

- a. This represents a set since it is "well defined": We all know what it means to be registered for a class.
- b. This does NOT represent a set since it is not well defined: There are many different understandings of what it means to be a good student (get an A or pass the class or attend class or avoid falling asleep in class).

EXAMPLE: Which of the following represent a set?

a. All of the really big numbers. **b.** All the whole numbers between 3 and 10.

SOLUTION:

- a. It should be obvious why this does NOT represent a set. (What does it mean to be a "big number"?)
- b. This represents a set. We can represent sets like b in roster notation by using "curly brackets".

"All of the whole numbers between 3 and 10" = $\{4, 5, 6, 7, 8, 9\}$

Roster Notation involves listing the elements in a set within curly brackets: "{ }".

Haberman MTH 112 Section 1: Chapter 0 Page 2 of 6

DEFINITION: An object in a set is called an **element** of the set. (symbol: " \in ")

EXAMPLE: 5 is an element of the set $\{4, 5, 6, 7, 8, 9\}$. We can express this symbolically:

$$5 \in \{4, 5, 6, 7, 8, 9\}$$

DEFINITION: Two sets are considered **equal** if they have the same elements.

We used this definition earlier when we wrote:

"All of the whole numbers between 3 and 10" = $\{4, 5, 6, 7, 8, 9\}$.

DEFINITION: A set S is a **subset** of a set T, denoted $S \subseteq T$, if all elements of S are also elements of T.

> If S and T are sets and S = T, then $S \subseteq T$. Sometimes it is useful to consider a subset S of a set T that is not equal to T. In such a case, we write $S \subset T$ and say that S is a **proper subset** of T.

EXAMPLE: $\{4,7,8\}$ is a subset of the set $\{4,5,6,7,8,9\}$.

We can express this fact symbolically by $\{4, 7, 8\} \subseteq \{4, 5, 6, 7, 8, 9\}$.

Since these two sets are not equal, $\{4,7,8\}$ is a *proper* subset of $\{4,5,6,7,8,9\}$, so we can write

$${4, 7, 8} \subset {4, 5, 6, 7, 8, 9}.$$

DEFINITION: The **empty set**, denoted \emptyset , is the set with no elements.

$$\emptyset = \{ \}$$
 There are NO elements in \emptyset .

The empty set is a subset of all sets. Note that $0 \neq \emptyset$.

DEFINITION: The **union** of two sets A and B, denoted $A \cup B$, is the set containing all of the elements in either A or B (or both A and B).

EXAMPLE: Consider the sets $\{4,7,8\}$, $\{0,2,4,6,8\}$, and $\{1,3,5,7\}$. Then...

- **a.** $\{4,7,8\} \cup \{1,3,5,7\} = \{1,3,4,5,7,8\}$
- **b.** $\{4,7,8\} \cup \{0,2,4,6,8\} = \{0,2,4,6,7,8\}$
- **c.** $\{0, 2, 4, 6, 8\} \cup \{1, 3, 5, 7\} = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$

DEFINITION: The **intersection** of two sets A and B, denoted $A \cap B$, is the set containing all of the elements in both A and B.

- **EXAMPLE:** Consider the sets $\{4,7,8\}$, $\{0, 2, 4, 6, 8\}$, and $\{1, 3, 5, 7\}$. Then...
 - **a.** $\{4,7,8\} \cap \{0, 2, 4, 6, 8\} = \{4, 8\}$
 - **b.** $\{4,7,8\} \cap \{1,3,5,7\} = \{7\}$
 - **c.** $\{0, 2, 4, 6, 8\} \cap \{1, 3, 5, 7\} = \emptyset$ These sets have no elements in common, so their intersection is the empty set.

EXAMPLE: All of the whole numbers (positive and negative) form a set. This set is called the **integers**, and is represented by the symbol \mathbb{Z} . We can express the set of integers in roster notation:

$$\mathbb{Z} = \{ ..., -3, -2, -1, 0, 1, 2, 3, ... \}$$

Note that \mathbb{Z} is used to represent the integers because the German word for "number" is "zahlen."

Now that we have the integers, we can represent sets like "All of the whole numbers between 3 and 10" using **set-builder notation**:

SET-BUILDER NOTATION:

"All the whole numbers between 3 and 10" = $\{x \mid x \in \mathbb{Z} \text{ and } 3 < x < 10\}$

This vertical line means "such that"

Armed with set-builder notation, we can define important sets of numbers:

DEFINITIONS: The set of **natural numbers**: $\mathbb{N} = \{1, 2, 3, 4, 5, ...\}$

The set of **integers**: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

The set of rational numbers (i.e., the set of fractions):

$$\mathbb{Q} = \left\{ x \mid x = \frac{p}{q} \text{ and } p, \ q \in \mathbb{Z} \text{ and } q \neq 0 \right\}$$

The set of **real numbers**: \mathbb{R} (All the numbers on the number line.)

The set of complex numbers:

$$\mathbb{C} = \left\{ x \mid x = a + bi \text{ and } a, b \in \mathbb{R} \text{ and } i = \sqrt{-1} \right\}$$

Note that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$, i.e., the set of natural numbers is a subset of the set of integers which is a subset of the set of rational numbers which is a subset of the real numbers which is a subset of the set of complex numbers.

Throughout this course we will assume that the number-set in question is the real numbers, \mathbb{R} , unless we are specifically asked to consider an alternative set.

Since we use the real numbers so often, we have special notation for subsets of the real numbers: interval notation. Interval notation involves square or round brackets. Use the examples below to understand how interval notation works.

a. $\{x \mid x \in \mathbb{R} \text{ and } -2 \le x \le 3\} = [-2, 3]$ Set-builder Notation **Interval Notation**

We use square brackets here since the endpoints are included

b. $\{x \mid x \in \mathbb{R} \text{ and } -2 < x < 3\} = (-2, 3)$ Set-builder Notation **Interval Notation**

We use round brackets here since the endpoints are NOT included.

c. $\{x \mid x \in \mathbb{R} \text{ and } -2 < x \le 3\} = (-2, 3]$ Set-builder Notation **Interval Notation**

We use a round bracket on the left since -2 is NOT included.

d. $\{x \mid x \in \mathbb{R} \text{ and } -2 \le x < 3\} = [-2, 3)$ Set-builder Notation Interval Notation We use a round bracket on the right since 3 is NOT included.

EXAMPLE: When the interval has no upper (or lower) bound, the symbol ∞ (or $-\infty$) is used.

a. $\{x \mid x \in \mathbb{R} \text{ and } x \le 4\} = (-\infty, 4]$ Set-builder Interval Notation **Notation**

We ALWAYS use a round bracket with $-\infty$ since it is NOT a number in the set.

b. $\{x \mid x \in \mathbb{R} \text{ and } x \ge 4\} = [4, \infty)$ Set-builder Interval Notation **Notation**

We ALWAYS use a round bracket with ∞ since it is NOT a number in the set.

Haberman MTH 112 Section 1: Chapter 0 Page 6 of 6

EXAMPLE: Simplify the following expressions.

a.
$$(-4, \infty) \cup [-8, 3]$$

b.
$$(-4, \infty) \cup (-\infty, 2]$$

c.
$$(-4, \infty) \cap (-\infty, 2]$$

d.
$$(-4, \infty) \cap [-10, -5]$$

SOLUTION:

a.
$$(-4, \infty) \cup [-8, 3] = [-8, \infty)$$

b.
$$(-4, \infty) \cup (-\infty, 2] = (-\infty, \infty) = \mathbb{R}$$

c.
$$(-4, \infty) \cap (-\infty, 2] = (-4, 2]$$

d.
$$(-4, \infty) \cap [-10, -5] = \emptyset$$