
Haberman     MTH 112 
 

Section IV:  Vectors 
 

 
Chapter 1: Introduction to Vectors 

 
 
Vectors are mathematical objects used to represent physical quantities like velocity, force, and 
displacement.  Unlike ordinary numbers (or scalars), vectors describe both magnitude and 
direction.  So, for example, we can describe the velocity (i.e., the speed and direction) of an 
object with a vector. 
 
 

 

DEFINITION: A vector is a mathematical object used to represent a physical quantity 
that has both a magnitude (i.e., size) and a direction. 

 
 
 
In order to distinguish between vectors from scalars (i.e., numbers) we need to use a different 
notation to denote vectors.  In this course, we will use a small arrow above the vector name to 
denote a vector, so that v



 and s


 represent vectors while v  and s  represent scalars.  (Note that 
our textbook uses bold text to represent vectors but this isn't possible for handwritten work; 
instead the “arrow notation” is necessary for handwritten work so I prefer to also use arrows in 
typed work.) 
 
In this class we will focus on two-dimensional vectors.  A two-dimensional vectors can be 
represented by an arrow on the coordinate plane.  The length of the arrow represents the 
magnitude of the vector and the direction that the arrow points represents the direction of the 
vector.  (We traditionally use the angle between the positive x-axis and the arrow to describe 
the direction of the vector.) 
 
 

 EXAMPLE 1: The vector v


 is depicted as an arrow on the coordinate plane in Figure 1. 
 

 
 

Figure 1:  Arrow representing v


. 
 
The tip of the vector is where the arrow ends and the tail of the vector is where the 
arrow begins.  Thus, the tip of v



 is at the point (4, 3)  and the tail of the vector is at 
the origin, (0, 0) . 
  



Haberman     MTH 112 Section IV: Chapter 1 Page 2 of 15 
 
 
As mentioned above, the length of the arrow represents the magnitude of the vector.  
We denote the magnitude of vector v



 by v


.  To find the magnitude of v


, we need 
to find the length of the arrow; we can do this by thinking of the arrow as being the 
hypotenuse of a right-triangle with side lengths 4 and 3 (see Figure 2) and then use 
the Pythagorean Theorem to find v



. 
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So the magnitude of v  is 5 units.   
 
We can find the angle between the positive x-axis and the arrow to describe the 
direction of the vector.  We’ve denoted this angle by θ  in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can use the trigonometry that we learned earlier in the course to find θ : 
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Figure 3:  The components of v



. 
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Although the magnitude and direction of the vector describe it completely, it is often 
useful to describe a vector by using its horizontal and vertical components.  The 
horizontal component of v



 in Figure 3 (above) is 4 units and a vertical component of 
vector v



 is 3 units.  Thus, we say that the component form of vector 


v  is 4, 3 . 
 
It is important to recognize that we could translate this vector anywhere in the 
coordinate plane and it would still be the same vector.  For example, all of the arrows 
in Figure 4 represent v



 since all of these vectors have a horizontal component of 4 
and a vertical component of 3. 
 

 
 

Figure 4:  Three copies of v


. 
 
 

 
 
 

 EXAMPLE 2: Find the component form of the vector s


 given in Figure 5 below. 
 

 
 

Figure 5:  s


. 
 
SOLUTION: 

 

To find the horizontal component of s


 we need to determine the horizontal distance between 
the tip and the tail of the vector’s arrow, and to find the vertical component of s



, we need to 
determine the vertical distance between the tip and the tail of the vector’s arrow.  As we can 
see in Figure 6 (below), the horizontal component of s



 is 2 units and the vertical component 
of s


 is 6−  units.  Note that the vertical component is negative since the arrow travels down 
6 units, or vertically –6 units.  The component form of s



 is 2, 6− . 
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If we translate vector s



 so that its tail is at the origin we see that its tip is at the point (2, 6)− ; 
see Figure 7. 
 
 

 
 

 

Figure 7: s


 translated so that 
its tail is at the origin. 

 
 
Notice that in Example 1, the tail of v



 is at the origin and its tip is at the point (4, 3) , and the 
component form of v



 is 4, 3 .)  In general, a vector with component form ,a b  can be 
represented by an arrow on the coordinate plane whose tail is at the origin and whose tip is 
at the point ( , )a b . 

 
 
 
 

 
 
  

 
 

Figure 6:  The components of s


. 
 

2  

6−  
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 EXAMPLE 3: Find the component form of the vector r


 given in Figure 8. 
 

 
 

Figure 8:  r


.  
 
 
SOLUTION: 

 
As we can see in Figure 9, the horizontal component of r



 is 6−  units and the vertical 
component of r



 is 4−  units so the component form of r


 is 6, 4− − . 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can translate 6, 4r = − −



 so that its tail is at the origin (see Figure 10); its tip is at the 
point ( 6, 4)− −  which agrees with what we noticed above. 
 

 
 

Figure 10: r


 translated so that 
its tail is at the origin. 

 
 

  

 
 

Figure 9:  The components of r


. 
 

4−  

6−  



Haberman     MTH 112 Section IV: Chapter 1 Page 6 of 15 
 
 

Vectors Operations 
 
 
We can multiply any vector by a scalar (i.e., a number) and we can add or subtract any two 
vectors. 
 
 
When we multiply a vector by a scalar, we simply multiply the respective components of the 
vector by the scalar.  Thus, if 1 2,a a a=



 and ∈k , then 1 2,ka ka ka=


. 
 
 

 EXAMPLE 4: Let 4, 3v =


 (from Example 1). 
 

 
 

Figure 11:  v


. 
 

a. Find 2v


. b. Find 1
2 v


. c. Find v−


. 

 
SOLUTION: 

 
2 2 4, 3

2 4, 2 3

8, 6

v = ⋅

= ⋅ ⋅

=



a.    
. 

 
In Figure 12 we’ve drawn an arrow representing 2v



.  Notice that 2v


 is twice as long as 
v


 yet it points in the same direction. 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 12:  v



 and 2v


. 

2v


 

v

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1 1
2 2

1 1
2 2

3
2

4, 3

4, 3

2,

v = ⋅

= ⋅ ⋅

=



b.    

. 

 

In Figure 13 we’ve drawn an arrow representing 1
2 v


.  Notice that 1
2 v


 is half as long as 

v


 yet it points in the same direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1 4, 3

1 4, 1 3

4, 3

v v− = − ⋅

= − ⋅

= − ⋅ − ⋅

= − −

 

c.  

. 

 

In Figure 14 we’ve drawn an arrow representing v−


.  Notice that v−


 is the same length 
as v


 yet it points in the opposite direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If 1 2,a a a=


 is a vector and ∈k  then 1 2,ka ka ka=


 has magnitude 

k a⋅


.  If 0>k  then ka


 points in the same direction as a


; if 0<k  then ka


 
points in the opposite direction as a



. 

   

 
Figure 13:  v



 and 1
2 v


. 

1
2 v


 v


 

 
Figure 14:  v



 and v−


. 

v


 

v−

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When we add or subtract vectors, we simply add the respective components of the vectors.  
Thus, if 1 2,a a a=



 and 1 2,b b b=


, then 1 1 2 2,a b a b a b+ = + +




 and 

1 1 2 2,a b a b a b− = − −




 
 
 

 EXAMPLE 5: Let 4, 3=
v  (from Example 1) and 2, 6s = −

  (from Example 2).  Find 

v s+
 

 and v s−
 

. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 

 
Let’s start by finding v s+

 

: 
 

4, 3 2, 6

4 2, 3 ( 6)

6, 3 .

v s+ = + −

= + + −

= −

 

 

 
We can also add vectors by using arrows on the coordinate plane by connecting the tip of 
the first arrow to the tail of the second arrow.  In Figure 16 we show v s+

 

: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice that the arrow for 6, 3v s+ = −

 

 starts at the origin and ends at the point (6, 3)−  
which should give us confidence that these two ways of adding vectors (using components 
and using arrows) are equivalent. 
   

 
Figure 16:  v s+

 

. 

v


 
s


 

v s+
 

 

 
Figure 15a:  v



. 
 

Figure 15b:  s


. 

v


 
s
  
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Now, let’s find v s−
 

: 
 

4, 3 2, 6

4 2, 3 ( 6)

2, 9

− = − −

= − − −

=

 v s

 

 
We can also subtract vectors by using arrows on the coordinate plane.  Notice that  
 

( )v s v s− = + −
   

 
 
Thus, we can obtain v s−

 

 by adding v  and s−


, i.e., by connecting the tip v


 with the tail of 
s−


; see Figure 17. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice that the arrow for 2, 9v s− =

 

  starts at the origin and ends at the point (2, 9)  
which should give us confidence that these two ways of subtracting vectors (using 
components and using arrows) are equivalent.  Notice that if we start both v  and s  at the 
origin, then v s−

 

 is equivalent to the vector that starts at the tip of s


 and ends at the tip of 
v


; see Figure 18. 
 

 
 
 
In order to facilitate the communication and manipulation of vectors, it is useful to consider unit 
vectors. 
 

 

DEFINITION: A unit vector is a vector whose magnitude is 1 unit.  So if a


 is a unit 
vector then 1a =



. 
 

   

 
 

Figure 17 

v
  

v s−
 

 

 
 

Figure 18 

s−
  v

  

v s−
 

 
s
  s

  
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The standard unit vectors are the unit vectors that point in the horizontal and vertical 
directions. 
 
 

 

DEFINITION: 
The vector 



i  is the unit vector that points in the positive 
horizontal direction.  Since its horizontal component is 1 
and its vertical component is 0, we see that 1, 0 .i =



 
 

The vector 


j  is the unit vector that points in the positive 
vertical direction.  Since its horizontal component is 0 and 
its vertical component is 1, we see that 0, 1 .j =



 
 

Since i


 and j


 are unit vectors, 1i =


 and 1.j =


 
 

 
 

 
 
We can use vectors i



 and j


 to describe all other two-dimensional vectors.  For example, in 

order to describe 4, 3v =


 (from Example 1) we can use vectors i


 and j


: 
 

4, 3

4, 0 0, 3

4 1, 0 3 0, 1

4 3

v

i j

=

= +

= ⋅ + ⋅

= +



 

 

 
Similarly, we can represent 2, 6s = −



 and 6, 4r = − −


 (from the examples above) using 

vectors i


 and j


: 
 

     

( )

2, 6

2, 0 0, 6

2 1, 0 ( 6) 0, 1

2 6

2 6

s

i j

i j

= −

= + −

= ⋅ + − ⋅

= + −

= −



 

 

 

and 
 
 
 
 
 
 
 

     

( )

6, 4

6, 0 0, 4

6 1, 0 ( 4) 0, 1

6 4

6 4

r

i j

i j

= − −

= − + −

= − ⋅ + − ⋅

= − + −

= − −



 

 

 

 
 
 

In general, if 1 2,a a a=


 is a vector, then 1 2a a i a j= +
 



. 

 

  

 
Figure 19: Unit vectors 

i


 and j


. 

i


 

j

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 EXAMPLE 6: Find the magnitude and direction of the vector 3 7p i j= − +
 



. 
 
SOLUTION: 

 

First, notice that we can write p


 in component form as 3, 7− .  We’ve drawn an arrow 
representing p



 in Figure 20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can use the Pythagorean Theorem to find p



, the magnitude of p


: 
 

2 2 2

2

( 3) (7)

9 49

58

p

p

p

= − +

⇒ = +

⇒ =







 

 
So the magnitude of p



 is 58  units.   
 
To describe the direction p



, we can find the angle that the vector makes with the positive x-
axis; we’ve labeled this angle θ  in Figure 21.  To do this, we can first find the “reference 
angle” (labeled α  in Figure 21) and then subtract this angle from 180  to find θ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
Figure 20:  3 7p i j= − +

 



 

7  

3−  

 
 

Figure 21 
 

7  

θ  
3−  α  
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( )

7
3

1 7
3

3tan( )

tan

66.8

we use positive  since it represents
 a length in the "reference triangle".α

α

α

−

=

⇒ =

⇒ ≈ 

 

 

 
 
Thus,  
 

180 66.8

113.2

θ ≈ −

=

 



 

 
so p



 makes an angle of about 113.2  with the positive  x-axis. 
 
 

 
 
 

 EXAMPLE 7: Suppose that the vector u


 is represented by an arrow on the coordinate plane 
whose tail is at the point ( 2, 1)−  and tip is at the point (5, 6) .  Find the 
components of u



. 
 
SOLUTION: 

 
First, lets draw the arrow that represents u



. 
 

 
 

Figure 22:  u


 
 
To find the horizontal component of u



, we need to determine the difference in x-values 
between the tip and the tail: 
 

5 ( 2) 7− − =  
 
So the horizontal component is 7. 
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To find the vertical component of u



, we need to determine the difference in y-values between 
the tip and the tail: 
 

6 1 5− =  
 
So the vertical component is 5. 
 
Thus, 7, 5 7 5u i j= = +

 



; see Figure 23. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In general, if an arrow representing vector v


 has its tail at the point 1 1( , )x y  
and its tip at the point 2 2( , )x y , then 

 

2 1 2 1

2 1 2 1

( ), ( )

( ) ( ) .

v x x y y

x x i y y j

= − −

= − + −



 
 

 

 
 

 EXAMPLE 8: Suppose that the vector m


 makes an angle of 37  with respect to the positive 
x-axis and that 20m =



.  Find the horizontal and vertical components of m


. 
 
SOLUTION: 

 

First, lets draw the arrow that represents m


. 
 
 
 
 
 
 
 
 
 
 
  

 
 

Figure 23:   
 

 

 

 
 

Figure 24:  m


. 

20m =  

37  
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If we think of the arrow as being the hypotenuse of a right-triangle, we can use we can use 
right-triangle trigonometry to find the components of m



.  (In Figure 25 we’ve labeled the 
horizontal component 1m  and the vertical component 2m .) 
 
 
 
 
 
 
 
 
 
 
 

1
20

1

1

cos(37 )

20cos(37 )
15.97

m

m
m

=

⇒ =
⇒ ≈



  

and 
 
 
 
 

2
20

2

2

sin(37 )

20sin(37 )
12.04

m

m
m

=

⇒ =
⇒ ≈



  

 
Thus,  
 

20cos(37 ), 20sin(37 )

15.97, 12.04

15.97 12.04 .

m

i j

=

≈

≈ +

 



 

 

 
 

 
In general, if vector v



 makes an angle θ  with the positive x-axis then, in 
component form, 
 

cos( ), sin( )

cos( ) sin( ) .

v v v

v i v j

θ θ

θ θ

=

= +

  

 

 

 

 

 
 
 

 
 
 
 
On the next page, we'll list some properties of vector addition and scalar multiplication. 
 
  

 
 

Figure 25 
 

20m =  
2m  

37  1m  
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Properties of Vector Addition and Scalar Multiplication 
 

If u


, v


, and w


 are vectors and a  and b  are scalars (i.e., , ∈a b ) then the 
following properties hold true: 
 
1. Commutativity of Vector Addition: u v v u+ = +

   

 
 
2. Associativity of Vector Addition: ( ) ( )u v w u v w+ + = + +

     

 
 
3. Associativity of Scalar Multiplication: ( ) ( )a bv ab v=

 

 
 
4. Distributivity: ( )a b v av bv+ = +

  

 
 

and 
 

( )a u v au av+ = +
   

 
 
5. Identities:  0v v+ =



 

   and   1 v v⋅ =
 

 
 

 
 
 
You can check these properties by choosing some particular vectors and scalars and calculating 
the left and right side of each equation to see that they are equal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


