
Haberman     MTH 111 
 

Power and Polynomial Functions 
 
 

 

DEFINITION: A power function is a function of the form ( ) nf x ax  where n nonneg
 

(i.e., n  is a nonnegative integer) and a   (A particular power function 

will have constants in place of a and n, leaving x as the only variable). 
 

 
 

EXAMPLE: Compare the graphs of 
2( )s x x  and 

3( )t x x . 

 

 
2( )s x x  

x  2( )s x x  

 
3( )t x x  

x  3( )t x x  

    

    

    

    

    

 
 
 

EXAMPLE: Compare the graphs of 
2( )u x x   and 

3( )w x x  . 

 

 
2( )u x x   

x  2( )u x x   

 
3( )w x x   

x  3( )w x x   

    

    

    

    

    

 
 
 

EXAMPLE: Compare the graphs of ( ) pf x ax  where p is an even positive integer and 

( ) qg x ax . where q is an odd positive integer.  (Note a .) 

 
 

 
0a   

or 

 

 
0a   

 

 
0a   

 

or 

 

 
0a   

( ) pf x ax , p is even ( ) qg x ax , q is odd 
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DEFINITION: A polynomial function is a function of the form: 
 

1 2 1 0

1 2( ) n n
n np x a x a x a x a x a

       

 

where 
nonnegn  (i.e.,  n  is a nonnegative integer) and each ia  .  (So 

a particular polynomial will have constants in place of all the n’s and ia ’s, 

leaving x as the only variable).  Notice that we could also define a 

polynomial as a sum of power functions. 
 

 
 
Here is some terminology we will use while studying polynomials: 

 
■ The number n is called the degree of the polynomial.  It represents the largest power 

that appears in the rule for the function. 
 

■ The constants 1 2 1 0n na a a a a, , , , ,  are called coefficients. 

 

■ Each power function 
k

ka x  in this sum is called a term. 

 

■ The highest-powered term, 
n

na x , is called the leading term. 

 

■ The number na  is called the leading coefficient. 

 

■ The term 0a  is called the constant term. 

 
■ A polynomial is written in standard form if its terms are arranged from highest power to 

lowest power, reading from left to right.  (The functions given in the example below are 
written in standard form.) 

 
 

 
 

 
EXAMPLE: The functions given below are all polynomial functions. 

 

a. 
3 2( ) 5 8 7 10a x x x x     b. ( ) 2 7b x x   

 

c. 
8 5 4 2( ) 7 3 10 2 12c x x x x x x       d. 

6( ) 4d x x   

 
 

EXAMPLE: The function 
3 2( ) 5 8 7 10a x x x x     is a ___degree polynomial written in 

__________form.  The _______ _____ is 
35x , the constant term is _____, and the 

coefficients are _____________. 
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The domain of a polynomial function is ____________________. 
 
 
 
 
 
Polynomial functions have extremely “nice” graphs since they are smooth and continuous.  
Their graphs have no sharp corners, no gaps, and no jumps.  Let's draw a graph below that 
is definitely NOT a polynomial function: 
 
 
 
 
 
 
 
 
 
 
 
 
Let's draw some graphs below that do represent polynomial functions.  They need to be 
smooth and continuous since there aren't any sharp corners, gaps, or jumps in a 
polynomial's graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on your previous coursework, you should already know a great deal about 2nd degree 
polynomial functions. 
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Let’s consider a 4th degree polynomial function and then compare it to what we know about 2nd 
degree polynomials. 
 
 

EXAMPLE: Consider the 4th degree polynomial function  
 

4 3 2( ) 3 2 5 7 13g x x x x x     . 
 

Let’s investigate the behavior of g  when the input values get extremely large. 

 
3 2

3 2

(100)

(1000

2 100 5 100 7 100 13

2,000,000 50,000 700 13

2,049,313

2 1000 5 1000 7 1000 13

2,000,000,000 5,000,000 7,000

)

13

g

g

      

   



      

  

















4

4

3×100

300,000,000

300,000,000

3×1000

3,000,000,000,000

3,000,000,00

3 2

2,004,993,013

2 10,000 5 10,000 7 10,000 13

2,000,000,000,000 500,000,000 70,000 13

2,000,499,930,0

(10,000)

13

g



      

   







 



4

0,000

3×10,000

30,000,000,000,000,000

30,000,000,000,000,000

 

 
What we can see above is that the leading term is MUCH larger than all the other terms 

when the x-values are large.  In fact, as the x-values get larger, the leading term represents 

a larger and larger fraction of the output value.  Mathematicians often say that the leading 

term dominates the other terms of the polynomial when the x-values are sufficiently large.  

In fact, when viewed on a large enough scale, the graph of the polynomial function 

1 2 1 0

1 2( ) n n
n np x a x a x a x a x a

       looks like the graph of its leading term, the 

power function 
n

ny a x .  This behavior is called the long-run behavior of the polynomial. 

 
 

  Key Point: The long-run behavior (i.e., as x  ) of the graph of a polynomial 

function is determined by its leading term.  Thus, the leading term of a 
polynomial function is the dominant term when the inputs are increase 
or decrease without bound (i.e., get large in absolute value). 

 

 

EXAMPLE: Compare the graphs of 
4 3 2( ) 3 2 5 7 13g x x x x x      and 

4( ) 3h x x . 
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Let’s take a second look at 2nd degree polynomial functions.  We know that the graphs of 
quadratic functions with positive leading coefficients are parabolas opening upwards.  

Compare that to the graph of 
4 3 2( ) 3 2 5 7 13g x x x x x     .  The graph of g  has similar 

long-run behavior as quadratic functions with positive leading coefficients!  In fact, any even 
degree polynomial with a positive leading coefficient has similar long-run behavior as quadratic 
functions with positive leading coefficients. 

 
A similar argument can be made about odd degree polynomials: The long-run behaviors of 
their graphs are determined by their leading terms.  Based on what we observed about power 
functions, this means that any odd degree polynomial has similar long-run behavior as a 3rd 
degree polynomial. 
 

 
 

 
 
 
EXAMPLE: Which of the following could be the algebraic rule for the function graphed in 

Figure 1?  What about Figure 2? 
 

  
Figure 1 Figure 2 

 

a. 
5 2( ) 3 2 2a x x x x     b. 

3( ) 3 2b x x x     

 

c. 
6 4 2( ) 3 3 2 2c x x x x      d. 4 2( ) 3 5 2d x x x x     

 

e. 
4 3 2( ) 3 2 7e x x x x      f. 

3 2( ) 2 7f x x x    

 

g. 
6 3( ) 5 2 7g x x x x     h. 

3 2( ) 2 3 2 7h x x x x      
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Graphing Polynomial Functions 
 
 
Based on what we've studied thus far, we should be able to recognize that polynomials like 

4 3 2( ) 3 63 27 486f x x x x x      and 
4 3 2( ) 12 27 270 648g x x x x x      have 

similar long-run behavior.  Since they are both 4th degree polynomials with a positive leading 
coefficient, we know that their graphs must have arrows pointing up at the extreme left- and 
right-sides (i.e., the outputs of both functions increases without bound as the inputs increase 
without bound and as the inputs decrease without bound).  See Figure 3. 
 
 

 
Figure 3:  ( )y f x  and ( )y g x  

 
 

Although 
4 3 2( ) 3 63 27 486f x x x x x      and 

4 3 2( ) 12 27 270 648g x x x x x      

have similar long-run behavior, they are not identical functions!  Let’s study the short-run 
behavior of their graphs to see how these functions differ.   
 
The short-run behavior of the graph of a function concerns graphical features that occur 
when the input values aren’t very large.  (It’s hard to specify what “not large” means since it will 
be different for each function, but we’ll look for particular graphical features rather than look 
within a particular interval, so we don’t need to worry about being more specific.) 
 
 

■ Clearly, 0x   isn’t a large x-value, so the y-intercept will be part of the short-run 

behavior of a polynomial function’s graph.  (Notice that the y-coordinate of the y-

intercept of a polynomial function is its constant term.) 
 
 
■ Roots (or zeros) are another important part of the short-run behavior of the graph 

of a polynomial function.  To find the roots of a polynomial function, we can write it in 
factored form.  (Recall what we know about 2nd degree polynomials. 

 
 
 
 
 
 
 

Let's use the short- and long-run behavior of ( )y f x  and ( )y g x  to sketch graphs of both 

functions on the next page. 
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a. 
4 3 2( ) 3 63 27 486f x x x x x      

 
Draw the graph of ( )y f x . 

 
 
 
 
 
 
 
 
 
 
 

b. 
4 3 2( ) 12 27 270 648g x x x x x      

 
Draw the graph of ( )y g x . 
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EXAMPLE: Write an algebraic rule for the polynomial function p  graphed Figure 4.  Note that 

the graph passes through the point ( 3, 18).  

 

 
Figure 4:  The graph of ( )y p x . 

 
 
 
 
 
 
 
 
 
 
 
 
 

EXAMPLE: Write an algebraic rule for the polynomial function h  graphed in Figure 5.  Note 

that the y-intercept of h  is (0, 13) . 

 
Figure 5:  The graph of ( )y h x . 
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Properties of Polynomial Functions 
 
 

■ The graph of a polynomial is a smooth unbroken curve.  (By “smooth” we 
mean that the graph does not have any sharp corners as turning points.) 

 
■ The graph of a polynomial always exhibits the characteristic that as x  gets 

very large, y  gets very large. 

 
■ If p is a polynomial of degree n, then the polynomial equation ( ) 0p x   has at 

most n distinct solutions; that is, p has at most n zeros.  This is equivalent to 

saying that the graph of ( )y p x  crosses the x-axis at most n times.  Thus a 

5th degree polynomial can have at most five x-intercepts. 

 
■ The graph of a polynomial function of degree n can have at most 1n  turning 

points.  These points are the relative maximums or relative minimums of the 
function.  For example, the graph of a polynomial of degree five can have at 
most four turning points. In particular, the graph of a quadratic (2nd degree) 
polynomial function always has exactly one turning point – its vertex. 

 
 
 
 

 
 
 
 
EXAMPLE: What is the minimum possible degree of the polynomial function in Figure 6? 
 

 
Figure 6 

 
SOLUTION: 

 
The polynomial function graphed in Figure 6 has four zeros and five turning points.  The 
properties of polynomials tell us that a polynomial function with four zeros must have a 

degree of at least four.  These properties also tell us that if a polynomial has degree n then 

it can have at most 1n  turning points.  In other words the degree of a polynomial must be 

at least one more than the number of turning points.  Since this graph has five turning 
points, the degree of the polynomial must be at least six. 
 

Keep in mind that although a 6th degree polynomial may have as many as six real zeros, it 
need not have that many.  The graph in Figure 6 only has four real zeros. 
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Practice for Power and Polynomial Functions 
 
 

1. Sketch a graph of the function 
2 2( ) ( 3 10)( 4)m x x x x    . 

 
 
 
 
 
 
 
 
 
 
 

 
Draw the graph of ( )y m x . 

 
 

2. Write an algebraic rule for the polynomial function w  graphed below.  Note that the y-

intercept of w  is (0, 12).  
 

 
The graph of ( )y w x . 

 


