Unit 1: Power Functions

DEFINITION: A **power function** is a function of the form \(f(x) = ax^n \) where \(n \in \mathbb{Z}_{\text{nonneg}} \) (i.e., \(n \) is a nonnegative integer) and \(a \in \mathbb{R} \) (A particular power function will have constants in place of \(a \) and \(n \), leaving \(x \) as the only variable.)

Here is some terminology we will use while studying power functions:

- The number \(n \) is called the **degree** of the power function. (This can also be referred to as the **power** of the power function.)
- The constants \(a \) is called the **coefficient** of the power function.

EXAMPLE: Which of the following functions are power functions? For each power function, state the value of the constants \(a \) and \(n \) in the formula \(y = ax^n \).

- \(a. \quad b(x) = 5(x - 3)^4 \)
- \(b. \quad m(x) = 7\sqrt[3]{x} \)
- \(c. \quad l(x) = 3 \cdot 2^x \)
- \(d. \quad s(x) = \sqrt[3]{\frac{7}{x^3}} \)

SOLUTIONS:

- **a.** The function \(b(x) = 5(x - 3)^4 \) is not a power function because we cannot write it in the form \(y = ax^n \).

- **b.** The function \(m(x) = 7\sqrt[3]{x} \) is a power function because we can rewrite its formula as \(m(x) = 7 \cdot x^{1/4} \). So \(a = 7 \) is the coefficient and \(n = \frac{1}{4} \) is the degree.

- **c.** The function \(l(x) = 3 \cdot 2^x \) is not a power function because the power is not constant. In fact, \(l(x) = 3 \cdot 2^x \) is an exponential function.
d. Since

\[
\sqrt{x^5} = \sqrt[7]{x^5}
\]

\[
= x^{5/2}
\]

\[
= \sqrt{7} \cdot x^{-5/2}
\]

we see that \(s(x) = \sqrt[7]{x^5} \) can be written in the form \(y = ax^n \) where \(a = \sqrt{7} \) is the coefficient and \(n = -\frac{5}{2} \) is the degree, so \(s \) is a power function.

As is the case with linear functions and exponential functions, given two points on the graph of a power function, we can find the function’s formula.

EXAMPLE: Suppose that the points \((1, 81)\) and \((3, 729)\) are on the graph of a function \(f \). Find an algebraic rule for \(f \) assuming that it is ...

- **a.** a linear function.
- **b.** an exponential function
- **c.** a power function.

SOLUTIONS:

a. If \(f \) is a linear function we know that its rule has form \(f(x) = mx + b \). We can use the two given points to solve for \(m \).

\[
m = \frac{729 - 81}{3 - 1} = \frac{648}{2} = 324
\]

So now we know that \(f(x) = 324x + b \). We can use either one of the given points to find \(b \). Let’s use \((1, 81)\):

\[
(1, 81) \quad \Rightarrow \quad f(1) = 81 = 324(1) + b
\]

\[
\Rightarrow \quad b = 81 - 324
\]

\[
\Rightarrow \quad b = -243
\]

Thus, if \(f \) is linear, its rule is \(f(x) = 324x - 243 \).
b. If f is an exponential function we know its rule has form $f(x) = Ca^x$. We can use the two given points to find two equations involving C and a:

$$(1, 81) \Rightarrow f(1) = 81 = Ca^1$$

$$(3, 729) \Rightarrow f(3) = 729 = Ca^3.$$

In Section II: Unit 2 we solved similar systems of equations by forming ratios. Let’s try a different method here: the substitution method.

Let’s start by solving the first equation for C:

$$81 = Ca^1$$

$$\Rightarrow C = \frac{81}{a}$$

Now we can substitute the expression $\frac{81}{a}$ for C in the second equation:

$$729 = Ca^3$$

$$\Rightarrow 729 = \frac{81}{a} \cdot a^3$$

$$\Rightarrow 729 = 81 \cdot a^2$$

$$\Rightarrow \frac{729}{81} = a^2$$

$$\Rightarrow 9 = a^2$$

$$\Rightarrow a = \sqrt{9} = 3$$ (we don't need $\pm \sqrt{9}$ since the base of an exponential function is always positive)

Now that we know what a is, we can use the fact that $C = \frac{81}{a}$ to find C:

$$C = \frac{81}{a}$$

$$= \frac{81}{3}$$

$$= 27$$

Thus, if f is exponential, its rule is $f(x) = 27 \cdot 3^x$.

c. Since \(f \) is a power function we know that its rule has form \(f(x) = ax^n \). We can use the two given points to find two equations involving \(a \) and \(n \):

\[
(1, 81) \quad \Rightarrow \quad f(1) = 81 = a(1)^n
\]

\[
(3, 729) \quad \Rightarrow \quad f(3) = 729 = a(3)^n.
\]

We can use the first equation to immediately find \(n \).

\[
81 = a(1)^n
\]

\[
\Rightarrow \quad a = 81
\]

Now we can find \(n \) by substituting \(a = 81 \) into the second equation:

\[
729 = 81(3)^n
\]

\[
\Rightarrow \quad \frac{729}{81} = 3^n
\]

\[
\Rightarrow \quad 9 = 3^n \quad \text{(note that this could be solved with logarithms if the solution weren't so obvious)}
\]

\[
\Rightarrow \quad n = 2
\]

Thus, if \(f \) is a power function, its rule is \(f(x) = 81x^2 \).

In Figure 1, let’s graph the three functions we’ve found that all pass through the points \((1, 81)\) and \((3, 729)\).

![Figure 1: Graphs of \(y = 324x - 243 \), \(y = 27 \cdot 3^x \), and \(y = 81x^2 \) passing through \((1, 81)\) and \((3, 729)\).](image)
Graphs of Power Functions

The graphs of power functions behave differently for large x values than for small x values.

When x values are greater than 1, the greater the degree of the power function, the faster the outputs grow. In Figure 2 we've graphed six power functions: notice that as the degree increases, the outputs increase more and more quickly. Sometimes mathematicians say, “when x is larger, larger powers dominate smaller powers,” in order to represent this behavior.

![Figure 2: Graphs of $y = x$, $y = x^{3/2}$, $y = x^{2}$, $y = x^{3}$, $y = x^{4}$, and $y = x^{5}$](image)

When x values are between 0 and 1, the graphs of power functions exhibit the opposite behavior: the smaller the degree, the larger the output values. In Figure 3 we've graphed six power functions, emphasizing the interval $(0, 1)$ on the x-axis: notice how the linear power function $y = x$ has greater output values than functions of larger power. Sometimes mathematicians say, “when x is small, smaller powers dominate larger powers,” in order to represent this behavior.

![Figure 3: Graphs of $y = x$, $y = x^{3/2}$, $y = x^{2}$, $y = x^{3}$, $y = x^{4}$, and $y = x^{5}$](image)
Comparing Power Functions and Exponential Functions

Power functions and exponential functions are often confused for one another since they both involve exponents. Expressions with exponents consist of a base (i.e., something that’s raised to the exponent) and the exponent: in a power function, the base is a variable and the exponent is a constant (i.e., a number) while in an exponential function, the base is a constant and the exponent is a variable.

EXAMPLE: The functions $y = x^3$, $y = 7x^{30}$, and $y = \frac{1}{7}x^{1/3}$ are power functions since they involve a variable raised to a constant – so the base is a variable and the exponent is a constant.

The functions $y = 3^x$, $y = 7 \cdot 30^x$, and $y = \frac{1}{7} \cdot \left(\frac{1}{3}\right)^x$ are exponential functions since they involve a constant raised to a variable – so the base is a constant and the exponent is a variable.

Another important distinction to make between power functions and exponential functions concerns their long-term behavior. The long-term behavior of a function is the behavior when x-values are large, and keep getting larger. (We started looking at the long-term behavior of power functions on the previous page when we looked at different power functions when the x-values are greater than 1.) Mathematicians often use the notation “$x \rightarrow \infty$” to represent this concept and we often translate this notation with the phrase, “x approaches infinity,” but infinity isn’t actually a “thing” we can approach – it’s just the idea of “get bigger and bigger with no limit on how big we get” – so it’s better communicated as “x increases without bound.”

EXAMPLE: In this video we’ll compare the long-term behavior of power functions and exponential functions.

(Here’s a link to the Desmos file used in the graph so that you can investigate on your own: www.desmos.com/calculator/dknkn1pbnv.)

Key Point: Any positive increasing exponential function eventually grows faster than any power function.