3 ways to decay isotopes

- 1. Beta decay: neutron turns into a proton and an electron.
 - Movement to the right on the periodic table

http://library.thinkquest.org/3471/radiation types body.html#alpha

- 2. Electron capture: Proton and electron turn into neutron
 - Movement to the left on the periodic table.

http://lhs2.lps.org/staff/sputnam/chem_notes/electron_capture.gif

- **3.** Alpha decay: (only for heavy elements)
 - Loss of atomic mass (2), 2 protons, 2 neutrons, 2 electron
 - Movement left by 2 on the periodic table

http://library.thinkquest.org/3471/radiation types body.html#alpha

- o Some heavy elements don't become stable until they decay several times
- Radioactive atoms decay at an exponential rate.
- Different isotopes decay at different rates

Comparing decay rates

- Half-life: time it takes for half of the parent isotopes to convert into daughter isotopes
 - No change in the number of isotopes
 - $\circ~$ Change in identity
 - Key to dating: Ratio of daughter/parent
 - \circ 1 HL = 1/1 = 1 (isochron Slope)
 - \circ 2 HL = 3/1 = 3 (isochron Slope)
 - \circ 3 HL = 7/1 = 7 (isochron Slope)
 - 4 HL = 15/1 = 15 (isochron Slope)

What are we dating?

- Time since the sample become a closed system
 - $\circ~$ Allowed atoms to go in and out
 - Example: igneous rock = liquid stage → solid stage
 - Assumptions
 - System has closed from the start
 - No daughter in initial sample
 - There is a robust way of correcting the initial daughter
 - The decays constants are known accurately
 - Concentration of daughter / parent isotopes are correct
- Sedimentary rock is hard to date, made of multiple types of rock, with multiple ages.

Isochron graph

