Other Assistive Technologies

Some recent technologies are currently being investigated for their value in accessibility. Many of these technologies are promising, but may be challenging to apply, require specialized hardware that isn't commercially available, or are still being investigated. Three such technologies are described below.

Sonification

Sonification is the presentation of information using non-speech audio. For example, the pitch of a tone might rise and fall to convey the shape of a curve on a graph. Some forms of sonification are built into many applications: for example, a development environment might play an alert tone when the program encounters an error. Other forms of sonification are built into the screen reader program. For example, when a Windows progress bar is displayed, the NVDA screen reader will play a series of rising tones as the progress bar advances. Sonification is a powerful technique for assisting the blind, however making good use of sonification in your course materials may require a certain amount of creativity.

Haptics

Haptics is the presentation of information through the sense of touch. Tactile graphics and Braille displays are both examples of haptic technology. Other examples include having a touch screen vibrate to indicate the outline of a shape as the student traces their finger along the outline, or to "feel" the location of user interface elements on the screen.

Haptic technologies also include the use of "force feedback," where the student interacts with special purpose devices that convey the sense of interacting with a real object by producing pressure or resistance. For example, a force feedback joystick can be used to indicate the weight of an object by producing a force against the student's hand. Some force feedback devices are commercially available (for example, rumble pad video game controllers and force feedback joysticks), but other devices are more experimental and are not commercially available at the present time.

3D Printing

3D printing is a promising new technology that enables the user to create physical objects from models on the computer. Many of these models are available for free, online (for example, see the Thingiverse web site). For example, a model of a human heart can be printed in plastic and given to a blind student in a biology course, or an abstract model representing a linked list data structure can be printed and given to a student in a Computer Science course. Consumer-level 3D printers are available, and are generally much less expensive than many other assistive technologies, because they are targeted at a mass market. Generally, these printers create physical objects (refered to as "parts") out of PLA or ABS plastic. PCC recently launched a "MakerSpace" in HP202 at the Sylvania campus where a variety of 3D printers and other "rapid manufacturing" equipment can be found. Generally, if a model is already available online, then printing it is a simple matter (though, it might take several hours depending on the size and level of detail of the model). However, creating a new model from scratch is fairly complicated technically, and requires familiarity with CAD packages.

Accessibility Survival Guide for Instructors, © 2014 by their respective authors, Marc Goodman, Gayathri Iyer, Supada Amornchat, Karen Sorensen, and Susan Watson