
Haberman/Kling     MTH 111c 

 

Section II:  Exponential and Logarithmic Functions 
 

 
Module 5:  Logarithmic Functions 

 
 

 EXAMPLE: Consider the exponential function ( ) 2xk x   which is graphed in Figure 1. 

 

 
Figure 1:  The graph of ( )y k x . 

 

Does  k  have an inverse? 
 

The graph of ( ) 2xk x   passes the horizontal line test (no horizontal line crosses the 

graph of  k  more than once), which implies that each output (or  y-value) comes from 

exactly one input (or  x-value).  Thus,  k  is one-to-one, so  k  has an inverse function. 
 

Sketch a graph of 
1k
. 

 

As we learned in Section I: Module 6, the graph of the inverse of a function is the 

reflection of the function about the line y x .  So to graph 
1k 
 we need to reflect the 

graph of  k  about the line y x . 

 

 
Figure 2: The graphs of ( )y k x , 

1( )y k x , and y x . 
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We call the inverses of exponential functions logarithmic functions.  So the inverse of 

( ) 2xk x   is called the base-2 logarithmic function and is written 
1

2( ) log ( )k x x  .  

Notice that the domain of 
1

2( ) log ( )k x x   is  0,  . 

 
 

 

Since all exponential functions have graphs that are similar to that of ( ) 2xk x   

(specifically, the graphs of all exponential functions pass the horizontal line test, so 
all exponential functions are one-to-one), we can conclude that all exponential 
functions have inverse functions.  The inverse of an exponential function is a 

logarithmic function.  The domain of a logarithmic function is  0, . 

 

The inverse of the function ( ) xf x b  (where 0b  ) is the function 

1( ) log ( )bf x x  , the logarithm of base  b. 

 

 
 

 EXAMPLE: If ( ) 7xh x  , then the inverse of  h  is the function 
1

7( ) log ( )h x x  . 

 
 

 
 
 

 EXAMPLE: Consider the function ( ) 10xg x  .  Since  g  is an exponential function, its 

inverse is a logarithmic function.  Both  g  and  
1g 
  are graphed in Figure 3. 

 

 
Figure 3: The graphs of ( )y g x , 

1( )y g x , and y x . 

 

The inverse of ( ) 10xg x   is 
1

10( ) log ( )g x x  , the logarithm of base 10.  This is an 

important and often-used function so it is given a special name, the common logarithm, 

and is denoted 
1( ) log( )g x x  . 
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Now let’s investigate the relationship between the inputs and outputs of a logarithmic function. 
 
 

 EXAMPLE: Consider ( ) 10xg x   and 
1( ) log( )g x x  .  See Tables 1 and 2 below. 

 

Table 1:  ( ) 10xg x   Table 2:  
1( ) log( )g x x   

 x ( )g x   x 1( )g x   

 –2 1
100   1

100  –2  

 –1 1
10   1

10  –1  

 0 1  1 0  

 1 10  10 1  

 2 100  100 2  

 3 1000  1000 3  

 
Recall that the inputs become the outputs and the outputs become the inputs when we 
create the inverse of a function.  Since the input into exponential functions (like 

( ) 10xg x  ) are exponents, the outputs of logarithmic functions (like 
1( ) log( )g x x  ) are 

exponents.  Thus, it is useful to keep the following sentence in mind while working with 
logarithms. 

 
 

 

“The outputs for logarithms are exponents.” 
 

 
 

 EXAMPLE: Simplify the following: 
 

a. 2log (8)  b. 5log (125)  c.  9
1log
3

 

 
 

SOLUTIONS: 

 
a. 

 3
2 2log (8) log 2

3




 

 
 
b. 

 3
5 5log (125) log 5

3




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c. 

   

 

 

9

1
9

1
1 2

9

1 2
9

1log log 3
3

log 9

log 9

1
2









   
 



 

 

 
 

 
 
 

Recall the exponential function ( ) xg x e .  Like all exponential functions, ( ) xg x e  is one-to-

one, so it has an inverse: 
1( ) log ( )g x xe
  .  Just as ( ) xg x e  is an important function, its 

inverse is important and, therefore, has a special name: the natural logarithm, and is usually 

denoted 
1( ) ln( )g x x  . 

 
 
 

 EXAMPLE: Simplify the following: 
 

a.  4ln e  b.  1
ln

e
 c. ln ( )e  

 
 

SOLUTIONS: 

 
 

a.  

 4ln 4 (since the natural logarithm has base )e e  

 
 

b.  

   11
ln ln

1

e
e

 

 

 
 

c.  

 1ln ( ) ln

1

e e


 

 
 

 



 5 
 

LOG LAWS 
 
 
There are a few “laws” that are unique to logarithmic expressions.  As you will (hopefully) 
notice these laws are analogous to the laws of exponents.  Let’s start with the Log-of-Products 
Law. 
 
 

 

LOG-OF-PRODUCTS LAW: 
 

If , ,m n b  , then  log ( ) log ( ) log ( )b b bm n m n   . 
 

 
 
PROOF: We will prove the log-of-products law by using the common logarithm (i.e., the base 

10 logarithm).  This law also holds for all other bases as well. 

 

Let log( )x m  and log( )y m . 

Then 10xm   and 10yn  . 

 
So  
 

 

 

log( ) log 10 10

l

10

l

og 10

log( ) log( og ( ) log ( ))

(since the common logarithm has base )

(since    and  )

x y

x y

m n

x y

m x y mn m



  







 

 

 

 

 
 

 

 
 

 EXAMPLE: log(2) log(5)  

 
 
SOLUTION: 

 

log( 2) log(5) log(2 5)

log(10)

1

(using the log-of-products law)  




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LOG-OF-POWERS LAW: 
 

If , and m b p  , then   log log ( )p
b bm p m  . 

 

 
 

PROOF: We will prove the log-of-powers law by using the common logarithm (i.e., the base 10 

logarithm).  This law also holds for all other bases as well. 
 

Let log( )x m .  Then 10xm  .  So  

 

   

 

log (

log log 10

log 10

log( )) (since  )

p
p x

x p

m

x

x m

p

p m



 
  



 



 

 

 

 
 
 

 
 
 
 

 EXAMPLE: Solve  3log 9 4x   for  x. 

 
 
SOLUTION: 

 

 
 

 

3

3

2
3

log 9 4

log 9 4

log 3 4

2 4

2

(using the log-of-powers law)

x

x

x

x

x



  

  

  

 
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LOG-OF-QUOTIENTS LAW: 
 

If , ,m n b  , then  log log ( ) log ( )b b b

m

n
m n    

 
. 

 

 
 
 
PROOF: We will prove the log-of-quotients law by using the common logarithm (i.e., the 

logarithm of base 10).  This law also holds for all other bases as well. 

 
Our proof will utilize the log-of-products and log-of-powers laws. 
 

   
 
 1

1

1

log log

log( ) log

log( ) log

log( ) ( 1) log( )

log( ) log( )

(using the log-of-products law)

(using the log-of-powers law)

m

n n

n

m

m

m n

m n

m n



 

 

 

   

 

 

 
 
 

 
 
 
 

 EXAMPLE: 3 3log (12) log (4)  

 
 
SOLUTION: 

 

 3 3 3

3

12
4

log (12) log (4) log

log (3)

1

(using the log-of-quotients law) 




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SOLVING LOGARITHMIC EQUATIONS 
 
 

 EXAMPLE: Solve  
2

3log ( 8 ) 2x x    for  x. 

 
 
SOLUTION: 

 
2

3

2 2

2

log ( 8 ) 2

8 3

8 9 0

( 9)( 1) 0

9 1

(we first translate the logarithmic equation

into its "exponential" equivalent

o

)

r

x x

x x

x x

x x

x x

 

  

   

   

   

 

 
CHECK: 

 
We need to check our work.  It is always a good idea to check, but when solving 
logarithmic equations it is especially important since the log-laws allow for the 
possibility that we will find TOO MANY solutions.  Sometimes we will do ALL of the 
math correctly, but still get an incorrect solution!  So it is necessary to check your 
solutions to logarithmic equations in order to rule out any extraneous solutions. 

 
 

 

2
3

2
3

3

3

2
3

log ( 8 ) 2

log ( 8 ) 2

log (81 72) 2

log (9) 2

9 (9) (9

log

?

?

?

)

3

9

2

So  is a solution.

x

x

x 

 

 







  

 

2
3

2
3

3

3

2
3

log ( 8 ) 2

log ( 8 ) 2

log (1 8) 2

log (9) 2

1 ( 1) ( 1)

1

?

log 3 2

?

?

So   is a solution.

x

x x 

 

 









   

 

 
 

Since both 9 and –1 check, the solution set for the equation 
2

3log ( 8 ) 2x x   is 

 9, 1  
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 EXAMPLE: Solve  ln(2 5) 0x     for  x. 

 
 
SOLUTION: 

 

0

ln (2 5) 0

2 5

2 1 5

4
2

2

(first we translate the logarithmic equation

into its "exponential" equivalent)

x

x e

x

x

 

  

  


   

 

 
 

CHECK: 

 

ln (2 5) 0

ln (2 5) 0

ln( 4 5) 0

ln(1)

2 ?( 2

?

0

)

2So   is a solution.

x

x

 

 

 





  

 

 

Therefore, the solution set for the equation ln(2 5) 0x    is {–2}. 

 

 
 

 

 
 

 EXAMPLE: Solve  2 2log ( ) log ( 2) 3t t     for  t. 

 
 
SOLUTION: 

 

 

2 2

2

3

2

log ( ) log ( 2) 3

log ( 2) 3

( 2) 2

2 8

(use the log-of-product law to obtain a

single logarithmicexpression on left side)

(translate the logarithmic equation into

its "exponential" equivalent)

t t

t t

t t

t t

  

  

  

   0

( 4)( 2) 0

4 2or

t t

t t



   

   
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CHECK: 

 

2 2

2 2

log ( ) log ( 2) 3

log ( ) log (4 4 4 2

4

3?)

Negative numbers are not in the

domains of logarithmic functions

 

.

So is not a solu io n.t

t t

t    







  

 

 

 
2 2

2 2

2 2

log ( ) log ( 2) 3

log ( ) log ( 2) 3

log (2) log (4)

?

? 3

1

2 2 2

2

2 3

So  is a solution.

t t

t



  

  







 

 
Therefore, the solution set for the equation 2 2log ( ) log ( 2) 3t t    is {2} . 

 
 

 

 
 

 EXAMPLE: Solve  5 52log ( ) log (2 1)m m    for  m. 

 
 

SOLUTION 
 

This equation has logarithms of the same base on both sides.  Since logarithmic functions 
are one-to-one, once we get isolated logarithmic expressions on both sides of the equation, 
we can set the “inputs” equal. 
 

 

5 5

2
5 5

2

2log ( ) log (2 1)

log log (2 1)

2 1

(use the log-of-powers law to obtain an isolated
 logarithmic expression on the left side)

(since the logarithimic functions are one-to-one, the

"inputs" must

m m

m m

m m

 

  

  

2 2 1 0

( 1)( 1) 0

1

 be equal if the outputs are equal)

m m

m m

m

   

   

 

 

 
CHECK: 

 

5 5

5 5

5

1 1 (1

2log ( ) log (2 1)

2log ( ) log (2 1)

2 0 log (1

?

)

0 0

)

?

1So    is a solution.

m

m m



 





 
 

 

Therefore, the solution set for the equation 5 52log ( ) log (2 1)m m   is {1}.  
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 EXAMPLE: Solve  ln(2) ln(3 1) 1w     for  w. 

 
 
SOLUTION 
 
 

 

1

ln(2) ln(3 1) 1

ln 2(3 1) 1

2(3 1)

6

(use the log-of-powers law to obtain an isolated

 logarithmic expression on the left side)

(translate the logarithmic equation into its  
"exponential" equivalent)

w

w

w e

  

  

  

 2

6 2

2

6

w

w

w

e

e

e

 

  


 

 

 
 

CHECK: 

 

 

 
 

 
 

2 2
2 2

2

2

2 2

6 6

2

6

?

ln(2) ln(3 1) 1

ln(2) ln 3 1 1

ln(2) ln 1

ln(2) ln 1

ln 2 1

l

?

1

?

?

n

So   is a solution.

e e

e

e

e

e

w

w

e



 



  

    
















 

 

Therefore, the solution set for the equation ln(2) ln(3 1) 1w    is 
2

6

e  
 
 

. 
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CHANGE-OF-BASE FORMULA 
 

Suppose you wanted to estimate 7log (13) .  Most calculators generally only have “buttons” for 

the natural and common logarithms (i.e., the base 10 and base  e  logarithms).  Since 7log (13)  

has base 7, we need to change its base in order to estimate it on our calculators.  In order to 

derive the change-of-base formula, let 7log (13)x   and solve for  x  only using functions that 

are easy to approximate on a calculator: 
 

   

   

 
 

 
 

7

7

log (13)

7 13

7 13

ln 7 ln 13

ln 13

ln 7

ln 13
log (13) .

ln 7

ln ln

So 

x

x

x

x

x



 

 

  

 



 

 

Now we can estimate 7log (13)  since the natural logarithm is programmed into our calculators 

and we can calculate 
 
 

ln 13

ln 7
. 

 

 
 7

ln 13
log (13)

ln 7

1.318





 

 
There is no reason why we couldn’t have used a different logarithm, like the common 

logarithm, when we solved for  x  above.  Thus, we can obtain the following change of base 

formula. 
 
 

 

CHANGE-OF-BASE FORMULA 
 

In general, for any , ,a b x  , 
log ( )

log ( )
log ( )

b

b

a

x
x

a
 . 

 

(This formula is most useful when we take  b  to be either 10 or  e,  

since we have the common and natural logarithms in our calculators.) 
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 EXAMPLE: Solve   2
2log 2 3x x  . Watch the domain! 

 

 

CLICK HERE FOR THE SOLUTION 

 
 

 

 EXAMPLE: Solve     2
2 2log 2 5 log 3 2x x x     . 

 

 

CLICK HERE FOR THE SOLUTION 

 
 

 

 EXAMPLE: Solve     3 32log log 2 1x x   . 

 

 

CLICK HERE FOR THE SOLUTION 

 
 

 

 EXAMPLE: Solve       2log log 4 log 1x x   . 

 

 

CLICK HERE FOR THE SOLUTION 

 
 

 

 EXAMPLE: Solve         ln ln 1 ln 1 ln 3x x x x      . 

 

 

CLICK HERE FOR THE SOLUTION 

 

http://mediasite.pcc.edu/Mediasite/Viewer/?peid=52785cf5499a408bb8f380423057d4431d
http://mediasite.pcc.edu/Mediasite/Viewer/?peid=99234439ac484be49e235b4d4c9356bd1d
http://mediasite.pcc.edu/Mediasite/Viewer/?peid=29cafa9277ad4df084ce0894f37a40711d
http://mediasite.pcc.edu/Mediasite/Viewer/?peid=ef937e40298d4138b1d22608ccc646371d
http://mediasite.pcc.edu/Mediasite/Viewer/?peid=4569adc122214b8595a80a3f25d1f61b1d
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 EXAMPLE: Solve  
 ln 2x

x e x . 

 

 

CLICK HERE FOR THE SOLUTION 

 
 

 

 EXAMPLE: Solve  
 log

3
x

x . 

 

 

CLICK HERE FOR THE SOLUTION 

 
 

 

 

 EXAMPLE: Prove or disprove the formula  
 

 
   

ln
ln ln

ln

x
x y

y
  . 

 

 

CLICK HERE FOR THE SOLUTION 

 
 

http://mediasite.pcc.edu/Mediasite/Viewer/?peid=20b58951324a4e638973c4c164e82aa61d
http://mediasite.pcc.edu/Mediasite/Viewer/?peid=70b9828fb9394e85819693b2fcfd7d0c1d
http://spot.pcc.edu/~kkling/Logarithm_Example_8/Logarithm_Example_8.html

