
XY-pic Reference Manual

Kristoffer H. Rose
〈krisrose@brics.dk〉×

Ross Moore
〈ross@mpce.mq.edu.au〉†

Version 3.7 〈1999/02/16〉

Abstract

This document summarises the capabilities of the XY-pic
package for typesetting graphs and diagrams in TEX. For
a general introduction as well as availability information
and conditions refer to the User’s Guide [14].

A characteristic of XY-pic is that it is built around a
kernel drawing language which is a concise notation for
general graphics, e.g.,

A

B(/).*-+,jjjjjjjjj
G' 55

was drawn by the XY-pic kernel code

\xy (3,0)*{A} ; (20,6)*+{B}*\cir{} **\dir{-}

? *_!/3pt/\dir{)} *_!/7pt/\dir{:}

?>* \dir{>} \endxy

It is an object-oriented graphic language in the most lit-
eral sense: ‘objects’ in the picture have ‘methods’ describ-
ing how they typeset, stretch, etc. However, the syntax
is rather terse.

Particular applications make use of extensions that
enhance the graphic capabilities of the kernel to handle
such diagrams as

Roundgfed`abc_^]\XYZ[
Square

Bend

&&

which was typeset by

\xy *[o]=<40pt>\hbox{Round}="o"*\frm{oo},

+<5em,-5em>@+,

(46,11)*+\hbox{Square}="s" *\frm{-,},

-<5em,-5em>@+,

"o";"s" **{} ?*+\hbox{Bend}="b"*\frm{.},

"o";"s"."b" **\crvs{-},

"o"."b";"s" **\crvs{-} ?>*\dir{>}

\endxy

using the ‘curve’ and ‘frame’ extensions.
All this is made accessible through the use of features

that provide convenient notation such that users can en-
ter special classes of diagrams in an intuitive form, e.g.,

the diagram

U

y

##HHHHHHHHH
x

%%
X ×Z Y

q

��

p
// X

f

��
Y

g // Z

was typeset using the ‘matrix’ features by the XY-pic input
lines

\xymatrix{

U \ar@/_/[ddr]_y \ar[dr] \ar@/^/[drr]^x \\

& X \times_Z Y \ar[d]^q \ar[r]_p

& X \ar[d]_f \\

& Y \ar[r]^g & Z }

Features exist for many kinds of input; here is a knot
typeset using the ‘knots and links’ feature:

The current implementation is programmed entirely
within “standard TEX and METAFONT”, i.e., using TEX
macros (no \specials) and with fonts designed using
METAFONT. Optionally special ‘drivers’ make it possi-
ble to produce DVI files with ‘specials’ for extra graphics
capabilities, e.g., using PostScript.1

×BRICS, Computer Science, Aarhus University (bld. 540), Ny Munkegade, DK–8000 Aarhus C, Denmark.
†MPCE (Mathematics dept.), Macquarie University, North Ryde, Sydney, Australia NSW 2109.
1
PostScript is a registered Trademark of Adobe, Inc. [1].

1

Contents

I The Kernel 4

1 The XY-pic implementation 4
1.1 Loading XY-pic 4
1.2 Logo, version, and messages 5
1.3 Fonts 5
1.4 Allocations 5

2 Picture basics 6
2.1 Positions 6
2.2 Objects 6
2.3 Connections 6
2.4 Decorations 6
2.5 The XY-pic state 6

3 Positions 7

4 Objects 11

5 Decorations 15

6 Kernel object library 16
6.1 Directionals 16
6.2 Circle segments 18
6.3 Text 18

7 XY-pic options 18
7.1 Loading 19
7.2 Option file format 19
7.3 Driver options 20

II Extensions 20

8 Curve and Spline extension 20
8.1 Curved connections 20
8.2 Circles and Ellipses 24
8.3 Quadratic Splines 24

9 Frame and Bracket extension 24
9.1 Frames 24
9.2 Brackets 26
9.3 Filled regions 26
9.4 Framing as object modifier 27
9.5 Using curves for frames 27

10 More Tips extension 27

11 Line styles extension 27

12 Rotate and Scale extension 29

13 Colour extension 30

14 Pattern and Tile extension 31

15 Import graphics extension 33

16 Movie Storyboard extension 34

17 PostScript backend 34
17.1 Choosing the DVI-driver 34
17.2 Why use PostScript 35

18 TPIC backend 36

19 em-TeX backend 37

20 Necula’s extensions 37
20.1 Expansion 37
20.2 Polygon shapes 37

III Features 37

21 All features 37

22 Dummy option 37

23 Arrow and Path feature 38
23.1 Paths 38
23.2 Arrows 40

24 Two-cell feature 43
24.1 Typesetting 2-cells in Diagrams 43
24.2 Standard Options 44
24.3 Nudging 44
24.4 Extra Options 46
24.5 2-cells in general XY-pictures 47

25 Matrix feature 48
25.1 XY-matrices 48
25.2 New coordinate formats 49
25.3 Spacing and rotation 49
25.4 Entries 50

26 Graph feature 51

27 Polygon feature 53

28 Lattice and web feature 56

29 Circle, Ellipse, Arc feature 58
29.1 Full Circles 58
29.2 Ellipses 58
29.3 Circular and Elliptical Arcs 59

30 Knots and Links feature 61

31 Smart Path option 66

IV Drivers 66

2

32 Support for Specific Drivers 66
32.1 dvidrv driver 66
32.2 DVIPS driver 66
32.3 DVITOPS driver 67
32.4 OzTeX driver 67
32.5 OzTeX v1.7 driver 67
32.6 Textures driver 68
32.7 Textures v1.6 driver 68
32.8 XDVI driver 68
32.9 CMacTeX driver 69

33 Extra features using PostScript drivers 69
33.1 Colour 70
33.2 Frames 70
33.3 Line-styles 70
33.4 Rotations and scaling 70
33.5 Patterns and tiles 71

34 Extra features using tpic drivers 71
34.1 frames. 71

Appendices 71

A Answers to all exercises 71

B Version 2 Compatibility 75
B.1 Unsupported incompatibilities 75
B.2 Obsolete kernel features 75
B.3 Obsolete extensions & features 76
B.4 Obsolete loading 77
B.5 Compiling v2-diagrams 77

C Common Errors 77

References 77

Index 78

List of Figures

1 〈pos〉itions. 8
2 Example 〈place〉s 10
3 〈object〉s. 12
4 〈decor〉ations. 16
5 Kernel library 〈dir〉ectionals 17
6 〈cir〉cles. 19
7 Syntax for curves. 22
8 Plain 〈frame〉s. 25
9 Bracket 〈frame〉s. 25
10 Rotations, scalings and flips 31
11 The 38 standard Macintosh patterns. . 32
12 importing a graphic for labelling . . . 34
13 〈path〉s 39
14 〈arrow〉s. 41
15 Pasting diagram. 44
16 〈twocell〉s 45

17 〈graph〉s 52
18 〈knot-piece〉 construction set 62
19 knot crossings with orientations and

label positions 63
20 knot joins, with orientations, labels

and shifts 65
21 Extension implementation replaced by

use of 〈driver〉 specials. 69

kris.eps

Kristoffer Rose

Ross Moore

ross.eps

Preface

This reference manual gives concise descriptions of
the modules of XY-pic, written by the individual au-
thors. Please direct any TEXnical question or sug-
gestion for improvement directly to the author of the
component in question, preferably by electronic mail
using the indicated address. Complete documents
and printed technical documentation or software is
most useful.

The first part documents the XY-pic kernel which
is always loaded. The remaining parts describe the
three kinds of options: extensions in part II extend
the kernel graphic capabilities, features in part III
provide special input syntax for particular diagram
types, and drivers in part IV make it possible to
exploit the printing capabilities supported by DVI
driver programs. For each option it is indicated how
it should be loaded. The appendices contain answers
to all the exercises, a summary of the compatibil-
ity with version 2, and list some reasons why XY-pic
might sometimes halt with a cryptic TEX error.

License. XY-pic is free software in the sense that it
is available under the following license conditions:

XY-pic: Graphs and Diagrams with TEX
c© 1991–1998 Kristoffer H. Rose
c© 1994–1998 Ross Moore

The XY-pic package is free software; you can redis-
tribute it and/or modify it under the terms of the
GNU General Public License as published by the Free
Software Foundation; either version 2 of the License,
or (at your option) any later version.

The XY-pic package is distributed in the hope that
it will be useful, but without any warranty ; without

3

even the implied warranty of merchantability or fit-
ness for a particular purpose. See the GNU General
Public License for more details.

You should have received a copy of the GNU Gen-
eral Public License along with this package; if not,
write to the Free Software Foundation, Inc., 675 Mass
Ave, Cambridge, MA 02139, USA.

In practice this means that you are free to use
XY-pic for your documents but if you distribute any
part of XY-pic (including modified versions) to some-
one then you are obliged to ensure that the full source
text of XY-pic is available to them (the full text of the
license in the file COPYING explains this in somewhat
more detail ©̂̈).

Notational conventions. We give descriptions of
the syntax of pictures as BNF2 rules; in explana-
tions we will use upper case letters like X and Y for
〈dimen〉sions and lower case like x and y for 〈factor〉s.

Part I

The Kernel
Vers. 3.7 by Kristoffer H. Rose 〈krisrose@brics.dk〉

After giving an overview of the XY-pic environment
in §1, this part document the basic concepts of XY-
picture construction in §2, including the maintained
‘graphic state’. The following sections give the pre-
cise syntax rules of the main XY-pic constructions:
the position language in §3, the object constructions
in §4, and the picture ‘decorations’ in §5. §6 presents
the kernel repertoire of objects for use in pictures;
§7 documents the interface to XY-pic options like the
standard ‘feature’ and ‘extension’ options.

Details of the implementation are not discussed
here but in the complete TEXnical documenta-
tion [15].

1 The XY-pic implementation

This section briefly discusses the various aspects of
the present XY-pic kernel implementation of which the
user should be aware.

1.1 Loading XY-pic

XY-pic is careful to set up its own environment in or-
der to function with a large variety of formats. For

most formats a single line with the command

\input xy

in the preamble of a document file should load the
kernel (see ‘integration with standard formats’ below
for variations possible with certain formats, in par-
ticular LATEX [9]).

The rest of this section describes things you must
consider if you need to use XY-pic together with other
macro packages, style options, or formats. The less
your environment deviates from plain TEX the eas-
ier it should be. Consult the TEXnical documenta-
tion [15] for the exact requirements for other defini-
tions to coexist with XY-pic.

Privacy: XY-pic will warn about control sequences
it redefines—thus you can be sure that there are
no conflicts between XY-pic-defined control sequences,
those of your format, and other macros, provided you
load XY-pic last and get no warning messages like

Xy-pic Warning: ‘ . . . ’ redefined.

In general the XY-pic kernel will check all control
sequences it redefines except that (1) generic tem-
poraries like \next are not checked, (2) predefined
font identifiers (see §1.3) are assumed intentionally
preloaded, and (3) some of the more exotic control
sequence names used internally (like @{-}) are only
checked to be different from \relax.

Category codes: The situation is complicated by
the flexibility of TEX’s input format. The culprit is
the ‘category code’ concept of TEX (cf. [6, p.37]):
when loadedXY-pic requires the characters \{}% (the
first is a space) to have their standard meaning and all
other printable characters to have the same category
as when XY-pic will be used—in particular this means
that (1) you should surround the loading of XY-pic
with \makeatother . . . \makeatletter when load-
ing it from within a LATEX package, and that (2) XY-
pic should be loaded after files that change category
codes like the german.sty that makes " active. Some
styles require that you reset the catcodes for every
diagram, e.g., with french.sty you should use the
command \english before every \xymatrix.
However, it is possible to ‘repair’ the problem in case
any of the characters #$&’+-.<=>‘ change category
code:

\xyresetcatcodes

will load the file xyrecat.tex (version 3.3) to do it.
2BNF is the notation for “meta-linguistic formulae” first used by [10] to describe the syntax of the Algol programming language.

We use it with the conventions of the TEXbook [6]: ‘−→’ is read “is defined to be”, ‘ | ’ is read “or”, and ‘〈empty〉’ denotes “noth-
ing”; furthermore, ‘〈id〉’ denotes anything that expands into a sequence of TEX character tokens, ‘〈dimen〉’ and ‘〈factor〉’ denote
decimal numbers with, respective without, a dimension unit (like pt and mm), 〈number〉 denotes possibly signed integers, and 〈text〉
denotes TEX text to be typeset in the appropriate mode. We have chosen to annotate the syntax with brief explanations of the
‘action’ associated with each rule; here ‘←’ should be read ‘is copied from’.

4

Integration with standard formats This is han-
dled by the xyidioms.tex file and the integration as
a LATEX [9] package by xy.sty.

xyidioms.tex: This included file provides some
common idioms whose definition depends on the used
format such that XY-pic can use predefined dimen-
sion registers etc. and yet still be independent of the
format under which it is used. The current version
(3.4) handles plain TEX (version 2 and 3 [6]), AMS-
TEX (version 2.0 and 2.1 [16]), LATEX (version 2.09 [8]
and 2ε [9]), AMS-LATEX (version 1.0, 1.1 [2], and 1.2),
and eplain (version 2.6 [3])3.

xy.sty: If you use LATEX then this file makes it
possible to load XY-pic as a ‘package’ using the
LATEX 2ε [9] \usepackage command:

\usepackage [〈option〉,. . .] {xy}

where the 〈option〉s will be interpreted as if passed to
\xyoption (cf. §7).

The only exceptions to this are the options hav-
ing the same names as those driver package options
of part IV, which appear in cf. [4, table 11.2, p.317]
or the LATEX 2ε graphics bundle. These will auto-
matically invoke any backend extension required to
best emulate the LATEX 2ε behaviour. (This means
that, e.g., [dvips] and [textures] can be used as
options to the \documentclass command, with the
normal effect.)

The file also works as a LATEX 2.09 [8] ‘style op-
tion’ although you will then have to load options with
the \xyoption mechanism described in §7.

1.2 Logo, version, and messages

Loading XY-pic prints a banner containing the version
and author of the kernel; small progress messages are
printed when each major division of the kernel has
been loaded. Any options loaded will announce them-
self in a similar fashion.

If you refer to XY-pic in your written text (please
do ©̂̈) then you can use the command \Xy-pic to
typeset the “XY-pic” logo. The version of the ker-
nel is typeset by \xyversion and the release date by
\xydate (as found in the banner). By the way, the
XY-pic name4 originates from the fact that the first
version was little more than support for (x, y) coordi-
nates in a configurable coordinate system where the
main idea was that all operations could be specified
in a manner independent of the orientation of the co-
ordinates. This property has been maintained except

that now the package allows explicit absolute orien-
tation as well.

Messages that start with “Xy-pic Warning” are
indications that something needs your attention; an
“Xy-pic Error” will stop TEX because XY-pic does
not know how to proceed.

1.3 Fonts

The XY-pic kernel implementation makes its drawings
using five specially designed fonts:

Font Characters Default
\xydashfont dashes xydash10
\xyatipfont arrow tips, upper half xyatip10
\xybtipfont arrow tips, lower half xybtip10
\xybsqlfont quarter circles for xybsql10

hooks and squiggles
\xycircfont 1/8 circle segments xycirc10

The first four contain variations of characters in a
large number of directions, the last contains 1/8 cir-
cle segments.

Note: The default fonts are not part of the XY-pic
kernel specification: they just set a standard for what
drawing capabilities should at least be required by an
XY-pic implementation. Implementations exploiting
capabilitites of particular output devices are in use.
Hence the fonts are only loaded by XY-pic if the con-
trol sequence names are undefined—this is used to
preload them at different sizes or prevent them from
being loaded at all.

1.4 Allocations

One final thing that you must be aware of is that XY-
pic allocates a significant number of dimension regis-
ters and some counters, token registers, and box reg-
isters, in order to represent the state and do computa-
tions. The current kernel allocates 4 counters, 28 di-
mensions, 2 box registers,4 token registers, 1 read
channel, and 1 write channel (when running under
LATEX; some other formats use slightly more because
standard generic temporaries are used). Options may
allocate further registers (currently loading every-
thing loads 6 dimen-, 3 toks-, 1 box-, and 9 count-
registers in addition to the kernel ones).

3The ‘v2’ feature introduces some name conflicts, in order to maintain compatibility with earlier versions of XY-pic.
4No description of a TEX program is complete without an explanation of its name.

5

2 Picture basics

The basic concepts involved when constructing XY-
pictures are positions and objects, and how they com-
bine to form the state used by the graphic engine.

The general structure of an XY-picture is as fol-
lows:

\xy 〈pos〉 〈decor〉 \endxy

builds a box with an XY-picture (LATEX users may
substitute \begin{xy} . . . \end{xy} if they prefer).
〈pos〉 and 〈decor〉 are components of the special

‘graphic language’ which XY-pictures are specified in.
We explain the language components in general terms
in this § and in more depth in the following §§.

2.1 Positions

All positions may be written <X,Y > where X is the
TEX dimension distance right and Y the distance up
from the zero position 0 of the XY-picture (0 has co-
ordinates <0mm,0mm>, of course). The zero position
of the XY-picture determines the box produced by the
\xy. . . \endxy command together with the four pa-
rameters Xmin, Xmax, Ymin, and Ymax set such that
all the objects in the picture are ‘contained’ in the
following rectangle:

◦
0TEX reference point

•oo
Xmin

//
Xmax

��
Ymin

OO

Ymax

where the distances follow the “up and right > 0”
principle, e.g., the indicated TEX reference point has
coordinates <Xmin,0pt> within the XY-picture. The
zero position does not have to be contained in the pic-
ture, but Xmin ≤ Xmax ∧ Ymin ≤ Ymax always holds.
The possible positions are described in detail in §3.

When an XY-picture is entered in math mode then
the reference point becomes the “vcenter” instead,
i.e., we use the point <Xmin,-\the\fontdimen22>
as reference point.

2.2 Objects

The simplest form of putting things into the picture
is to ‘drop’ an object at a position. An object is like
a TEX box except that it has a general Edge around
its reference point—in particular this has the extents
(i.e., it is always contained within) the dimensions L,
R, U , and D away from the reference point in each
of the four directions left, right, up, and down. Ob-
jects are encoded in TEX boxes using the convention

that the TEX reference point of an object is at its left
edge, thus shifted <−L,0pt> from the center—so a
TEX box may be said to be a rectangular object with
L = 0pt. Here is an example:

◦L R
D

U

TEX reference point
•

The object shown has a rectangle edge but others are
available even though the kernel only supports rect-
angle and circle edges. It is also possible to use entire
XY-pictures as objects with a rectangle edge, 0 as the
reference point, L = −Xmin, R = Xmax, D = −Ymin,
and U = Ymax. The commands for objects are de-
scribed in §4.

2.3 Connections

Besides having the ability to be dropped at a position
in a picture, all objects may be used to connect the
two current objects of the state, i.e., p and c. For
most objects this is done by ‘filling’ the straight line
between the centers with as many copies as will fit
between the objects:

p(/).*-+,

cggggggggggggggggg

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

◦L R
D

U

The ways the various objects connect are described
along with the objects.

2.4 Decorations

When the \xy command reaches something that can
not be interpreted as a continuation of the position
being read, then it is expected to be a decoration,
i.e., in a restricted set of TEX commands which add
to pictures. Most such commands are provided by
the various user options (cf. §7)—only a few are pro-
vided within the kernel to facilitate programming of
such options (and user macros) as described in §5.

2.5 The XY-pic state

Finally we summarise the user-accessible parts of the
XY-picture state of two positions together with the
last object associated with each: the previous, p, is
the position <Xp, Yp> with the object Lp, Rp, Dp,
Up, Edgep, and the current , c, is the position <Xc,
Yc> with the object Lc, Rc, Dc, Uc, Edgec.

Furthermore, XY-pic has a configurable carte-
sian coordinate system described by an origin
position <Xorigin,Yorigin> and two base vectors

6

<Xxbase,Yxbase> and <Xybase,Yybase> accessed by the
usual notation using parentheses:

(x,y) = < Xorigin + x×Xxbase + y ×Xybase ,
Yorigin + x× Yxbase + y × Yybase >

This is explained in full when we show how to set the
base in note 3d of §3.

Finally typesetting a connection will setup a
“placement state” for referring to positions on the
connection that is accessed through a special ? po-
sition construction; this is also discussed in detail in
§3.

The XY-pic state consists of all these parameters
together. They are initialised to zero except for
Xxbase = Yybase = 1mm.

The edges are not directly available but points on
the edges may be found using the different 〈corner〉
forms described in §3.

It is possible to insert an ‘initial’ piece of 〈pos〉
〈decor〉 at the start of every XY-picture with the dec-
laration

\everyxy={ 〈text〉 }

This will act as if the 〈text〉 was typed literally right
after each \xy command, parsing the actual contents
as if it follows this – thus it is recommended that
〈text〉 has the form 〈pos〉, such that users can con-
tinue with 〈pos〉 〈decor〉.

3 Positions

A 〈pos〉ition is a way of specifying locations as well
as dropping objects at them and decorating them—
in fact any aspect of the XY-pic state can be changed
by a 〈pos〉 but most will just change the coordinates
and/or shape of c.

All possible positions are shown in figure 1 with
explanatory notes below.

Exercise 1: Which of the positions 0, <0pt,0pt>,
<0pt>, (0,0), and /0pt/ is different from the oth-
ers?

Notes

3a. When doing arithmetic with + and - then the
resulting current object inherits the size of the
〈coord〉, i.e., the right argument—this will be
zero if the 〈coord〉 is a 〈vector〉.

Exercise 2: How do you set c to an object the
same size as the saved object "ob" but moved
<X,Y >?

3b. Skewing using ! just means that the reference
point of c is moved with as little change to the
shape of the object as possible, i.e., the edge of c
will remain in the same location except that it
will grow larger to avoid moving the reference
point outside c.

Exercise 3: What does the 〈pos〉 . . . !R-L do?
Bug: The result of ! is always a rectangle cur-
rently.

3c. A 〈pos〉 covers another if it is a rectangle with
size sufficiently large that the other is “under-
neath”. The . operation “extends” a 〈pos〉 to
cover an additional one—the reference point of c
is not moved but the shape is changed to a rect-
angle such that the entire p object is covered.
Bug: non-rectangular objects are first “trans-
lated” into a rectangle by using a diagonal
through the object as the diagonal of the rect-
angle.

3d. The operations : and :: set the base used for
〈coord〉inates having the form (x,y). The : op-
eration will set <Xorigin, Yorigin> to p, <Xxbase,
Yxbase> to c − origin, and <Xybase, Yybase> to
<−Yxbase, Xxbase> (this ensures that it is a usual
square coordinate system). The :: operation
may then be used afterwards to make nonsqare
bases by just setting ybase to c − origin. Here
are two examples: firstly 0;<1cm,0cm>: sets the
coordinate system

◦ //

OO

origin
xbase

ybase × (1,1)

while <1cm,.5cm>;<2cm,1.5cm>:<1cm,1cm>::
defines

◦

?
?

?
?

?

__
ybase
before
::

���������

??

OO

origin

xbase
ybase

× (1,1)

where in each case the ◦ is at 0, the base vectors
have been drawn and the × is at (1,1).
When working with cartesian coordinates these
three special 〈factor〉s are particularly useful:

\halfroottwo 0.70710678 ≈ 1
2

√
2

\partroottwo 0.29289322 ≈ 1− 1
2

√
2

\halfrootthree 0.86602540 ≈ 1
2

√
3

More can be defined using \def (or \newcommand
in LATEX).

7

Syntax Action

〈pos〉 −→ 〈coord〉 c← 〈coord〉
| 〈pos〉 + 〈coord〉 c← 〈pos〉+ 〈coord〉3a

| 〈pos〉 - 〈coord〉 c← 〈pos〉 − 〈coord〉3a

| 〈pos〉 ! 〈coord〉 c← 〈pos〉 then skew3b c by 〈coord〉
| 〈pos〉 . 〈coord〉 c← 〈pos〉 but also covering3c 〈coord〉
| 〈pos〉 , 〈coord〉 c← 〈pos〉 then c← 〈coord〉
| 〈pos〉 ; 〈coord〉 c← 〈pos〉, swap p and c, c← 〈coord〉
| 〈pos〉 : 〈coord〉 c← 〈pos〉, set base3d, c← 〈coord〉
| 〈pos〉 :: 〈coord〉 c← 〈pos〉, ybase ← c− origin, c← 〈coord〉
| 〈pos〉 * 〈object〉 c← 〈pos〉, drop3f 〈object〉
| 〈pos〉 ** 〈object〉 c← 〈pos〉, connect3g using 〈object〉
| 〈pos〉 ? 〈place〉 c← 〈pos〉, c← 〈place〉3h

| 〈pos〉 @ 〈stacking〉 c← 〈pos〉, do 〈stacking〉3o

| 〈pos〉 = 〈saving〉 c← 〈pos〉, do 〈saving〉3p

〈coord〉 −→ 〈vector〉 〈pos〉 is 〈vector〉 with zero size
| 〈empty〉 | c reuse last c (do nothing)
| p p

| x | y axis intersection3k with pc

| s〈digit〉 | s{〈number〉} stack3o position 〈digit〉 or 〈number〉 below the top
| "〈id〉" restore what was saved3p as 〈id〉 earlier
| { 〈pos〉 〈decor〉 } the c resulting from interpreting the group3l

〈vector〉 −→ 0 zero
| < 〈dimen〉 , 〈dimen〉 > absolute
| < 〈dimen〉 > absolute with equal dimensions
| (〈factor〉 , 〈factor〉) in current base3d

| a (〈number〉) angle in current base3e

| 〈corner〉 from reference point to 〈corner〉 of c
| 〈corner〉 (〈factor〉) The 〈corner〉 multiplied with 〈factor〉
| / 〈direction〉 〈dimen〉 / vector 〈dimen〉 in 〈direction〉3m

〈corner〉 −→ L | R | D | U offset3n to left, right, down, up side
| CL | CR | CD | CU | C offset3n to center of side, true center
| LD | RD | LU | RU offset3n to actual left/down, . . . corner
| E | P offset3n to nearest/proportional edge point to p

〈place〉 −→ < 〈place〉 | > 〈place〉 shave3h (0)/(1) to edge of p/c, f ← 0/1

| (〈factor〉) 〈place〉 f ← 〈factor〉
| 〈slide〉 pick place3h and apply 〈slide〉
| ! {〈pos〉} 〈slide〉 intercept3j with line setup by 〈pos〉 and apply 〈slide〉

〈slide〉 −→ / 〈dimen〉 / slide3i 〈dimen〉 further along connection
| 〈empty〉 no slide

Figure 1: 〈pos〉itions.

8

3e. An angle α in XY-pic is the same as the coor-
dinate pair (cosα, sinα) where α must be an
integer interpreted as a number of degrees. Thus
the 〈vector〉 a(0) is the same as (1,0) and a(90)
as (0,1), etc.

3f. To drop an 〈object〉 at c with * means to actu-
ally physically typeset it in the picture with ref-
erence position at c—how this is done depends
on the 〈object〉 in question and is described in
detail in §4. The intuition with a drop is that it
typesets something at <Xc,Yc> and sets the edge
of c accordingly.

3g. The connect operation ** will first compute a
number of internal parameters describing the di-
rection from p to c and then typesets a connection
filled with copies of the 〈object〉 as illustrated
in §2.3. The exact details of the connection de-
pend on the actual 〈object〉 and are described in
general in §4. The intuition with a connection
is that it typesets something connecting p and c
and sets the ? 〈pos〉 operator up accordingly.

3h. Using ? will “pick a place” along the most recent
connection typeset with **. What exactly this
means is determined by the object that was used
for the connection and by the modifiers described
in general terms here.

The “shave” modifiers in a 〈place〉, < and >,
change the default 〈factor〉, f , and how it is used,
by ‘moving’ the positions that correspond to (0)
and (1) (respectively): These are initially set
equal to p and c, but shaving will move them
to the point on the edge of p and c where the
connection “leaves/enters” them, and change the
default f as indicated. When one end has already
been shaved thus then subsequent shaves will cor-
respond to sliding the appropriate position(s) a
TEX \jot (usually equal to 3pt) further towards
the other end of the connection (and past it). Fi-
nally the pick action will pick the position located
the fraction f of the way from (0) to (1) where
f = 0.5 if it was not set (by <, >, or explicitly).

All this is probably best illustrated with some
examples: each ⊗ in figure 2 is typeset by
a sequence of the form p; c **@{.} ?〈place〉
*{\oplus} where we indicate the ?〈place〉 in each
case. (We also give examples of 〈slide〉s.)

3i. A 〈slide〉 will move the position a dimension fur-
ther along the connection at the picked position.
For straight connections (the only ones kernel XY-
pic provides) this is the same as adding a vector

in the tangent direction, i.e., ? . . . /A/ is the same
as ? . . . +/A/.

3j. This special 〈place〉 finds the point where the
last connection intercepts with the line from p
to c as setup by the 〈pos〉, thus usually this will
have the form !{〈coord〉;〈coord〉}5, for example,
Bug: Only works for straight arrows at present.

\xy <1cm,0cm>:
(0,0)*=0{+}="+" ;
(2,1)*=0{\times}="*" **@{.} ,
(1,0)*+{A} ; (2,2)*+{B} **@{-}
?!{"+";"*"} *{\bullet}

\endxy

will typeset

+

×

A

B
����������

•

3k. The positions denoted by the axis intersection
〈coord〉inates x and y are the points where the
line through p and c intersects with each axis.
The following figure illustrates this:

origin

xbase
ooooooo

77ybase ?????
__

◦p

◦c

x
•

y
•

Exercise 4: Given predefined points A, B, C,
and D (stored as objects "A", "B", "C", and "D"),
write a 〈coord〉 specification that will return the
point where the linesAB and CD cross (the point
marked with a large circle here):

��������A

��������B �������� C�������� D
��������

3l. A 〈pos〉 〈decor〉 grouped in {}-braces6 is inter-
preted in a local scope in the sense that any p
and base built within it are forgotten afterwards,
leaving only the c as the result of the 〈coord〉.
Note: Only p and base are restored – it is not a
TEX group.

5The braces can be replaced by (*. . . *) once, i.e., there can be no other braces nested inside it.
6One can use (*. . . *) instead also here.

9

GFED@ABC76540123p is circular:

c is a
square
text!

RRRRRRRRRRRRRRRRRRRRRRRRRRR⊕

?(0)

rrrrrr

99

⊕

?(1)

rrrrrr

99

⊕

?

rrrrrr

99

⊕

?(.7)

rrrrrr

99

⊕

?<>(.5)
��⊕

?<>(.2)(.5)

rrrrrr
yy

⊕

?<

rrrrrr
yy⊕

?<<<

rrrrrr

99
⊕

?<<</1cm/

rrrrrr

99
⊕

?<(0)
��

⊕

?>

rrrrrr
yy⊕

?>>>>
��

⊕

?<>(.7)

rrrrrr
yy⊕

?>(.7)
��

Figure 2: Example 〈place〉s

Exercise 5: What effect is achieved by using
the 〈coord〉inate “{;}”?

3m. The vector /Z/, where Z is a 〈dimen〉sion, is the
same as the vector <Z cosα,Z sinα> where α is
the angle of the last direction set by a connec-
tion (i.e., with **) or subsequent placement (?)
position.

It is possible to give a 〈direction〉 as described in
the next section (figure 3, note 4l in particular)
that will then be used to set the value of α. It is
also possible to omit the 〈dimen〉 in which case
it is set to a default value of .5pc.

3n. A 〈corner〉 is an offset from the current <Xc,Yc>
position to a specific position on the edge of the
c object (the two-letter ones may be given in any
combination):

cL // Roo

D

OO

U

��

LD
yyy
<<

RD
VVVkk

LU
111
��

RU
rrryy

CL OOO '' CRdddrr

DC

EEEbb

UC

��

C
oooww

P
ddd 22

p
E

lll
66

The ‘edge point’ E lies on the edge along the line
from p to the centre of the object, in contrast to
the ‘proportional’ point P which is also a point
on the edge but computed in such a way that the
object looks as much ‘away from p’ as possible.

Finally, a following (f) suffix will multiply the
offset vector by the 〈factor〉 f .

Exercise 6: What is the difference between the
〈pos〉itions c?< and c+E?

Exercise 7: What does this typeset?

\xy *=<3cm,1cm>\txt{Box}*\frm{-}
!U!R(.5) *\frm{..}*{\bullet} \endxy

Hint : \frm is defined by the frame extension and
just typesets a frame of the kind indicated by the
argument.

Bug: Currently only the single-letter corners (L,
R, D, U, C, E, and P) will work for any shape—the
others silently assume that the shape is rectan-
gular.

3o. The stack is a special construction useful for stor-
ing a sequence of 〈pos〉itions that are accessible
using the special 〈coord〉inates sn, where n is ei-
ther a single digit or a positive integer in {}s: s0
is always the ‘top’ element of the stack and if the
stack has depth d then the ‘bottom’ element of
the stack has number s{d−1}. The stack is said
to be ‘empty’ when the depth is 0 and then it is
an error to access any of the sn or ‘pop’ which
means remove the top element, shifting what is
in s1 to s0, s2 to s1, etc. Similarly, ‘push c’
means to shift s0 to s1, etc., and then insert the
c as the new s0.

The stack is manipulated as follows:

@〈stacking〉 Action

@+〈coord〉 push 〈coord〉
@-〈coord〉 c← 〈coord〉 then pop
@=〈coord〉 load stack with 〈coord〉
@@〈coord〉 do 〈coord〉 for c← stack
@i initialise
@(enter new frame
@) leave current frame

To ‘load stack’, means to load the entire stack
with the positions set by 〈coord〉 within which ,
means ‘push c’.

10

To ‘do 〈coord〉 for all stack elements’ means to
set c to each element of the stack in turn, from
the bottom and up, and for each interpret the
〈coord〉. Thus the first interpretation has c set
to the bottom element of the stack and the last
has c set to s0. If the stack is empty, the 〈coord〉
is not interpreted at all.

These two operations can be combined to repeat
a particular 〈coord〉 for several points, like this:

\xy
@={(0,-10),(10,3),(20,-5)} @@{*{P}}

\endxy

will typeset

P

P

P

Finally, the stack can be forcibly cleared using
@i, however, this is rarely needed because of @(,
which saves the stack as it is, and then clears it,
such when it has been used (and is empty), and
@) is issued, then it is restored as it was at the
time of the @(.

Exercise 8: How would you change the exam-
ple above to connect the points as shown below?

gggggggggggg

����������

EEEEEEEE

3p. It is possible to define new 〈coord〉inates on the
form "〈id〉" by saving the current c using the
. . . ="〈id〉" 〈pos〉ition form. Subsequent uses of
"〈id〉" will then reestablish the c at the time of
the saving.

Using a "〈id〉" that was never defined is an error,
however, saving into a name that was previously
defined just replaces the definition without warn-
ing, i.e., "〈id〉" always refers to the last thing
saved with that 〈id〉.
However, many other things can be ‘saved’: in
general @〈saving〉 has either of the forms

@:"〈id〉" "〈id〉" restores current
base

@〈coord〉"〈id〉" "〈id〉" reinterprets 〈coord〉
@@"〈id〉" @="〈id〉" reloads this stack

The first form defines "〈id〉" to be a macro that
restores the current base.

The second does not depend on the state at the
time of definition at all; it is a macro definition.

You can pass parameters to such a macro by let-
ting it use coordinates named "1", "2", etc., and
then use ="1", ="2", etc., just before every use
of it to set the actual values of these. Note: it is
not possible to use a 〈coord〉 of the form "〈id〉"
directly: write it as {"〈id〉"}.

Exercise 9: Write a macro "dbl" to double the
size of the current c object, e.g., changing it from
the dotted to the dashed outline in this figure:

+

_ _ _ _ _ _ _ _ _�
�
�
�
�
�

�
�
�
�
�
�

_ _ _ _ _ _ _ _ _

The final form defines a special kind of macro
that should only be used after the @= stack oper-
ation: the entire current stack is saved such that
the stack operation @="〈id〉" will reload it.

Note: There is no distinction between the ‘name
spaces’ of 〈id〉s used for saved coordinates and
other things.

4 Objects

Objects are the entities that are manipulated with
the * and ** 〈pos〉 operations above to actually get
some output in XY-pictures. As for 〈pos〉itions the
operations are interpreted strictly from left to right,
however, the actual object is built before all the
〈modifier〉s take effect. The syntax of objects is given
in figure 3 with references to the notes below. Re-
mark: It is never allowed to include braces {} inside
〈modifier〉s! In case you wish to do something that
requires {. . . } then check in this manual whether you
can use (*. . . *) instead. If not then you will have to
use a different construction!

Notes

4a. An 〈object〉 is built using \objectbox {〈text〉}.
\objectbox is initially defined as

\def\objectbox#1{%
\hbox{$\objectstyle{#1}$}}

\let\objectstyle=\displaystyle

but may be redefined by options or the user.
The 〈text〉 should thus be in the mode required
by the \objectbox command—with the default
\objectbox shown above it should be in math
mode.

11

Syntax Action

〈object〉 −→ 〈modifier〉 〈object〉 apply 〈modifier〉 to 〈object〉
| 〈objectbox〉 build 〈objectbox〉 then apply its 〈modifier〉s

〈objectbox〉 −→ { 〈text〉 } build default4a object
| 〈library object〉 | @〈dir〉 use 〈library object〉 or 〈dir〉ectional (see §6)
| 〈TEX box〉 { 〈text〉 } build box4b object with 〈text〉 using the given 〈TEX box〉

command, e.g., \hbox
| \object 〈object〉 wrap up the 〈object〉 as a finished object box4c

| \composite { 〈composite〉 } build composite object box4d

| \xybox { 〈pos〉 〈decor〉 } package entire XY-picture as object4e

〈modifier〉 −→ ! 〈vector〉 〈object〉 has its reference point shifted4f by 〈vector〉
| ! 〈object〉 has the original reference point reinstated
| 〈add op〉 〈size〉 change 〈object〉 size4g

| h | i 〈object〉 is hidden4h, invisible4i

| [〈shape〉] 〈object〉 is given the specified 〈shape〉4j

| [= 〈shape〉] define 〈shape〉4k to reestablish current object style
| 〈direction〉 set current direction for this 〈object〉

〈add op〉 −→ + | - | = | += | -= grow, shrink, set, grow to, shrink to

〈size〉 −→ 〈empty〉 default size4g

| 〈vector〉 size as sides of rectangle covering the 〈vector〉

〈direction〉 −→ 〈diag〉 〈diag〉onal direction4l

| v 〈vector〉 direction4l of 〈vector〉
| q{ 〈pos〉 〈decor〉 } direction4l from p to c after 〈pos〉 〈decor〉
| 〈direction〉 : 〈vector〉 vector relative to 〈direction〉4m

| 〈direction〉 _ | 〈direction〉 ^ 90◦ clockwise/anticlockwise to 〈direction〉4m

〈diag〉 −→ 〈empty〉 last used direction (not necessarily diagonal4l)
| l | r | d | u left, right, down, up diagonal4l

| ld | rd | lu | ru left/down, . . . diagonal4l

〈composite〉 −→ 〈object〉 first object is required
| 〈composite〉 * 〈object〉 add 〈object〉 to composite object box4d

Figure 3: 〈object〉s.

12

4b. An 〈object〉 built from a TEX box with dimen-
sions w × (h + d) will have Lc = Rc = w/2,
Uc = Dc = (h + d)/2, thus initially be equipped
with the adjustment !C (see note 4f). In partic-
ular: in order to get the reference point on the
(center of) the base line of the original 〈TEX box〉
then you should use the 〈modifier〉 !; to get the
reference point identical to the TEX reference
point use the modifier !!L.

TEXnical remark: Any macro that expands to
something that starts with a 〈box〉 may be used
as a 〈TEX box〉 here.

4c. Takes an object and constructs it, building a box;
it is then processed according to the preceeding
modifiers. This form makes it possible to use
any 〈object〉 as a TEX box (even outside of XY-
pictures) because a finished object is always also
a box.

4d. Several 〈object〉s can be combined into a single
object using the special command \composite
with a list of the desired objects separated with
*s as the argument. The resulting box (and ob-
ject) is the least rectangle enclosing all the in-
cluded objects.

4e. Take an entire XY-picture and wrap it up as a
box as described in §2.1. Makes nesting of XY-
pictures possible: the inner picture will have its
own zero point which will be its reference point
in the outer picture when it is placed there.

4f. An object is shifted a 〈vector〉 by moving the
point inside it which will be used as the refer-
ence point. This effectively pushes the object the
same amount in the opposite direction.

Exercise 10: What is the difference between
the 〈pos〉itions 0*{a}!DR and 0*!DR{a}?

4g. A 〈size〉 is a pair <W,H> of the width and height
of a rectangle. When given as a 〈vector〉 these
are just the vector coordinates, i.e., the 〈vector〉
starts in the lower left corner and ends in the up-
per right corner. The possible 〈add op〉erations
that can be performed are described in the fol-
lowing table.

〈add op〉 description
+ grow
- shrink
= set to
+= grow to at least
-= shrink to at most

In each case the 〈vector〉 may be omitted which
invokes the “default size” for the particular 〈add

op〉:

〈add op〉 default
+ +<2× objectmargin>
- -<2× objectmargin>
= =<objectwidth,objectheight>
+= +=<max(Lc +Rc, Dc + Uc)>
-= -=<min(Lc +Rc, Dc + Uc)>

The defaults for the first three are set with the
commands

\objectmargin 〈add op〉 {〈dimen〉}
\objectwidth 〈add op〉 {〈dimen〉}
\objectheight 〈add op〉 {〈dimen〉}

where 〈add op〉 is interpreted in the same way as
above.

The defaults for +=/-= are such that the result-
ing object will be the smallest containing/largest
contained square.

Exercise 11: How are the objects typeset by
the 〈pos〉itions “*+UR{\sum}” and “*+DL{\sum}”
enlarged?

Bug: Currently changing the size of a circular
object is buggy—it is changed as if it is a rect-
angle and then the change to the R parameter
affects the circle. This should be fixed probably
by a generalisation of the o shape to be ovals or
ellipses with horizontal/vertical axes.

4h. A hidden object will be typeset but hidden from
XY-pic in that it won’t affect the size of the entire
picture as discussed in §2.1.

4i. An invisible object will be treated completely
normal except that it won’t be typeset, i.e., XY-
pic will behave as if it was.

4j. Setting the shape of an object forces the shape of
its edge to be as indicated. The kernel provides
three shapes that change the edge, namely [.],
[], and [o], corresponding to the outlines

× , ×L R
D

U

, and ×g̀afbecdL R

D

U

where the × denotes the point of the reference
position in the object (the first is a point). Ex-
tensions can provide more shapes, however, all
shapes set the extent dimensions L, R, D, and
U .

The default shape for objects is [] and for plain
coordinates it is [.].

13

Furthermore the 〈shape〉s [r], [l], [u], and [d],
are defined for convenience to adjust the object to
the indicated side by setting the reference point
such that the reference point is the same dis-
tance from the opposite of the indicated edge
and the two neighbour edges but never closer
to the indicated side than the opposite edge,
e.g., the object [r]\hbox{Wide text} has refer-
ence point at the × in Wide text× but the object
[d]\hbox{Wide text} has reference point at the
× in Wide text× . Finally, [c] puts the reference
point at the center.

Note: Extensions can add new 〈shape〉 object
〈modifier〉s which are then called 〈style〉s. These
will always be either of the form [〈keyword〉] or
[〈character〉 〈argument〉]. Some of these 〈style〉s
do other things than set the edge of the object.

4k. While typesetting an object, some of the prop-
erties are considered part of the ‘current object
style’. Initially this means nothing but some of
the 〈style〉s defined by extensions have this sta-
tus, e.g., colours [red], [blue] say, using the
xycolor extension, or varying the width of lines
using xyline. Such styles are processed left-to-
right ; for example,

*[red][green][=NEW][blue]{A}

will typeset a blue A and define [NEW] to set the
colour to green (all provided that xycolor has
been loaded, of course).

Saving styles: Once specified for an 〈object〉,
the collection of 〈style〉s can be assigned a name,
using [=〈word〉]. Then [〈word〉] becomes a new
〈style〉, suitable for use with the same or other
〈objects〉s. Use a single 〈word〉 built from ordi-
nary letters. If [〈word〉] already had meaning
the new definition will still be imposed, but the
following type of warning will be issued:

Xy-pic Warning: Redefining style [〈word〉]

The latter warning will appear if the definition
occurs within an \xymatrix. This is perfectly
normal, being a consequence of the way that the
matrix code is handled. Similarly the message
may appear several times if the style definition is
made within an \ar.

The following illustrates how to avoid these mes-
sages by defining the style without typesetting
anything.

\setbox0=\hbox{%
\xy\drop[OrangeRed][=A]{}\endxy}

Note 1: The current colour is regarded as part
of the style for this purpose.

Note 2: Such namings are global in scope. They
are intended to allow a consistent style to be eas-
ily maintained between various pictures and dia-
grams within the same document.

If the same 〈style〉 is intended for several
〈object〉s occurring in succession, the [|*]
〈modifier〉 can be used on the later 〈object〉s.
This only works when [|*] precedes any other
〈style〉 modifiers; it is local in scope, recovering
the last 〈style〉s used at the same level of TEX
grouping.

4l. Setting the current direction is simply pretending
for the typesetting of the object (and the follow-
ing 〈modifier〉s) that some connection set it – the
〈empty〉 case just inherits the previous direction.

It is particularly easy to set 〈diag〉onal directions:

HOINJMKL

dl = ld
������

��

d
�� dr = rd

??????

��

r//

ur = ru
������

??

uOO
ul = lu??????

__

l oo

Alternatively v〈vector〉 sets the direction as if the
connection from 0 to the 〈vector〉 had been type-
set except that the origin is assumed zero such
that directions v(x,y) mean the natural thing,
i.e., is the direction of the connection from (0,0)
to (x,y).

In case the direction is not as simple, you can
construct { 〈pos〉 〈decor〉 } that sets up p and
c such that pc has the desired direction. Note:
that you must use the (*. . . *) form if this is to
appear in an object 〈modifier〉!

Exercise 12: What effect is achieved by using
〈modifier〉s v/1pc/ and v/-1pc/?

4m. Once the initial direction is established as either
the last one or an absolute one then the remain-
der of the 〈direction〉 is interpreted.

Adding a single ^ or _ denotes the result of rotat-
ing the default direction a right angle in the pos-
itive and negative direction, i.e., anti-/clockwise,
respectively. Note: Do not use ^^ but only __
to reverse the direction!

A trailing :〈vector〉 is like v〈vector〉 but uses
the 〈direction〉 to set up a standard square base

14

such that :(0,1) and :(0,-1) mean the same as
:a(90) and :a(-90) and as ^ and _, respectively.

Exercise 13: What effect is achieved by using
〈modifier〉s v/1pc/:(1,0) and v/-1pc/__?

5 Decorations

〈Decor〉ations are actual TEX macros that decorate
the current picture in manners that depend on the
state. They are allowed after the 〈pos〉ition either of
the outer \xy. . . \endxy or inside {. . . }. The possi-
bilities are given in figure 4 with notes below.

Most options add to the available 〈decor〉, in
particular the v2 option loads many more since XY-
pic versions prior to 2.7 provided most features as
〈decor〉.

Notes

5a. Saving and restoring allows ‘excursions’ where
lots of things are added to the picture without
affecting the resulting XY-pic state, i.e., c, p, and
base, and without requiring matching {}s. The
independence of {} is particularly useful in con-
junction with the \afterPOS command, for ex-
ample, the definition

\def\ToPOS{\save\afterPOS{%
\POS**{}?>*@2{>}**@{-}\restore};p,}

will cause the code \ToPOS〈pos〉 to construct a
double-shafted arrow from the current object to
the 〈pos〉 (computed relative to it) such that \xy
*{A} \ToPOS +<10mm,2mm>\endxy will typeset
the pictureA

.6eeeee .

Note: Saving this way in fact uses the same
state as the {} ‘grouping’, so the code p1,
{p2\save}, . . . {\restore} will have c = p1

both at the . . . and at the end!

5b. One very tempting kind of TEX commands to
perform as 〈decor〉 is arithmetic operations on
the XY-pic state. This will work in simple XY-
pictures as described here but be warned: it is
not portable because all XY-pic execution is indi-
rect, and this is used by several options in non-
trivial ways. Check the TEX-nical documenta-
tion [15] for details about this!

Macros that expand to 〈decor〉 will always do the
same, though.

5c. \xyecho will turn on echoing of all interpreted
XY-pic 〈pos〉 characters. Bug: Not completely
implemented yet. \xyverbose will switch on a

tracing of all XY-pic commands executed, with
line numbers. \xytracing traces even more: the
entire XY-pic state is printed after each modifica-
tion. \xyquiet restores default quiet operation.

5d. Ignoring means that the 〈pos〉 〈decor〉 is still
parsed the usual way but nothing is typeset and
the XY-pic state is not changed.

5e. It is possible to save an intermediate form of com-
mands that generate parts of an XY-picture to
a file such that subsequent typesetting of those
parts is significantly faster: this is called com-
piling . The produced file contains code to check
that the compiled code still corresponds to the
same 〈pos〉〈decor〉 as well as efficient XY-code to
redo it; if the 〈pos〉〈decor〉 has changed then the
compilation is redone.

There are two ways to use this. The direct is
to invent a 〈name〉 for each diagram and then
embrace it in \xycompileto{〈name〉}|{. . . } –
this dumps the compiled code into the file
〈name〉.xyc.

When many diagrams are compiled then it
is easier to add \xycompile{. . . } around the
〈pos〉〈decor〉 to be compiled. This will assign
file names numbered consecutively with a 〈prefix〉
which is initially the expansion of \jobname- but
may be set with

\CompilePrefix{〈prefix〉}

This has the disadvantage, however, that if addi-
tional compiled XY-pictures are inserted then all
subsequent pictures will have to be recompiled.
One particular situation is provided, though:
when used within constructions that typeset their
contents more than once (such as most AMS-
LATEX equation constructs) then the declaration

\CompileFixPoint{〈id〉}

can be used inside the environment to fix the
counter to have the same value at every passage.

Finally, when many ‘administrative typesetting
runs’ are needed, e.g., readjusting LATEX cross
references and such, then it may be an advan-
tage to not typeset any XY-pictures at all during
the intermediate runs. This is supported by the
following declarations which for each compilation
creates a special file with the extension .xyd con-
taining just the size of the picture:

\MakeOutlines
\OnlyOutlines
\ShowOutlines

15

Syntax Action

〈decor〉 −→ 〈command〉 〈decor〉 either there is a command. . .
| 〈empty〉 . . . or there isn’t.

〈command〉 −→ \save 〈pos〉 save state5a, then do 〈pos〉
| \restore restore state5a saved by matcing \save
| \POS 〈pos〉 interpret 〈pos〉
| \afterPOS { 〈decor〉 } 〈pos〉 interpret 〈pos〉 and then perform 〈decor〉
| \drop 〈object〉 drop 〈object〉 as the 〈pos〉 * operation
| \connect 〈object〉 connect with 〈object〉 as the 〈pos〉 ** operation
| \relax do nothing
| 〈TEX commands〉 any TEX commands5b and user-defined macros

that neither generates output (watch out for stray
spaces!), nor changes the grouping, may be used

| \xyverbose | \xytracing | \xyquiet tracing5c commands
| \xyignore {〈pos〉 〈decor〉} ignore5d XY-code
| \xycompile {〈pos〉 〈decor〉} compile5e to file 〈prefix〉〈no〉.xyc
| \xycompileto{〈name〉}{〈pos〉〈decor〉} compile5e to file 〈name〉.xyc

Figure 4: 〈decor〉ations.

\NoOutlines

The first does no more. The second uses the
file to typesets a dotted frame of the appropri-
ate size instead of the picture (unless the picture
has changed and is recompiled, then it is type-
set as always and the .xyd file is recreated for
subsequent runs). The third shows the outlines
as dotted rectangles. The last switches outline
processing completely off.

6 Kernel object library

In this section we present the library objects provided
with the kernel language—several options add more
library objects. They fall into three types: Most of
the kernel objects (including all those usually used
with ** to build connections) are directionals, de-
scribed in §6.1. The remaining kernel library objects
are circles of §6.2 and text of §6.3.

6.1 Directionals

The kernel provides a selection of directionals: ob-
jects that depend on the current direction. They all
take the form

\dir〈dir〉

to typeset a particular 〈dir〉ectional object. All have
the structure

〈dir〉 −→ 〈variant〉{〈main〉}

with 〈variant〉 being 〈empty〉 or one of the characters
^_23 and 〈main〉 some mnemonic code.

We will classify the directionals primarily in-
tended for building connections as connectors and
those primarily intended for placement at connection
ends or as markers as tips.

Figure 5 shows all the 〈dir〉ectionals defined by
the kernel with notes below; each 〈main〉 type has a
line showing the available 〈variant〉s. Notice that only
some variants exist for each 〈dir〉—when a nonexist-
ing variant of a 〈dir〉 is requested then the 〈empty〉
variant is used silently. Each is shown in either of the
two forms available in each direction as applicable:
connecting a © to a (typeset by **\dir〈dir〉) and
as a tip at the end of a dotted connection of the same
variant (i.e., typeset by the 〈pos〉 **\dir〈variant〉{.}
?> *\dir〈dir〉).

As a special case an entire 〈object〉 is allowed as
a 〈dir〉 by starting it with a *: \dir* is equivalent to
\object.

Notes

6a. You may use \dir{} for a “dummy” directional
object (in fact this is used automatically by
**{}). This is useful for a uniform treatment of
connections, e.g., making the ? 〈pos〉 able to find
a point on the straight line from p to c without
actually typesetting anything.

16

Dummy6a

\dir{}

Plain connectors6b

\dir{-} '!&"%#$
iiiiiiiii \dir2{-} '!&"%#$

iiiiiiiii
iiiiiiiii \dir3{-} '!&"%#$

iiiiiiiii
iiiiiiiii

iiiiiiiii

\dir{.} '!&"%#$ \dir2{.} '!&"%#$ \dir3{.} '!&"%#$
\dir{~} '!&"%#$ 4t4t4t4t4t \dir2{~} '!&"%#$

4t4t4t4t4t
4t4t4t4t4t \dir3{~} '!&"%#$

4t4t4t4t4t
4t4t4t4t4t

4t4t4t4t4t

\dir{--} '!&"%#$
iiiii \dir2{--} '!&"%#$

iiiii
iiiii \dir3{--} '!&"%#$

iiiii
iiiii

iiiii

\dir{~~} '!&"%#$
4t

4t
4t \dir2{~~} '!&"%#$

4t
4t

4t
4t

4t
4t \dir3{~~} '!&"%#$

4t
4t

4t
4t

4t
4t

4t
4t

4t

Plain tips6c

\dir{>}
44

\dir^{>}
4

\dir_{>}
4

\dir2{>} 08 \dir3{>} i/:

\dir{<}
tt

\dir^{<}
t

\dir_{<}
t

\dir2{<} px \dir3{<} ioz

\dir{|}
)

\dir^{|}
)

\dir_{|}
)

\dir2{|}
))

\dir3{|}
))

\dir{(}
' �

\dir^{(}
' �

\dir_{(}
�'

\dir{)}
gG \dir^{)}

G g
\dir_{)} gG

\dir^{‘}
'

\dir_{‘}
�

\dir^{’}
G

\dir_{’} g

Constructed tips6d

\dir{>>} 44 44 \dir^{>>} 4 4 \dir_{>>} 4 4 \dir2{>>} 08 08 \dir3{>>} i/:i/:

\dir{<<}
tttt

\dir^{<<}
tt

\dir_{<<}
tt

\dir2{<<}
pxpx \dir3{<<}

iozioz

\dir{||}
))

\dir^{||}
))

\dir_{||}
))

\dir2{||}
))))

\dir3{||}
))))

\dir{|-}
)i

\dir^{|-}
)i

\dir_{|-}
)i

\dir2{|-}
)i)i \dir3{|-}

)i)i)i

\dir{>|}
)44

\dir{>>|}
)44 44 \dir{|<}

)tt
\dir{|<<}

) tttt
\dir{*} •

\dir{+}
)i

\dir{x}
N� \dir{/}

�
\dir{//}

� �
\dir{o} ◦

Figure 5: Kernel library 〈dir〉ectionals

17

6b. The plain connectors group contains basic direc-
tionals that lend themself to simple connections.

By default XY-pic will typeset horizontal and ver-
tical \dir{-} connections using TEX rules. Un-
fortunately rules is the feature of the DVI format
most commonly handled wrong by DVI drivers.
Therefore XY-pic provides the 〈decor〉ations

\NoRules
\UseRules

that will switch the use of such off and on.

As can be seen by the last two columns, these
(and most of the other connectors) also ex-
ist in double and triple versions with a 2
or a 3 prepended to the name. For conve-
nience \dir{=} and \dir{:} are synonyms for
\dir2{-} and \dir2{.}, respectively; similarly
\dir{==} is a synonym for \dir2{--}.

6c. The group of plain tips contains basic objects
that are useful as markers and arrowheads mak-
ing connections, so each is shown at the end of a
dotted connection of the appropriate kind.

They may also be used as connectors and will
build dotted connections. e.g., **@{>} typesets

444444444444

Exercise 14: Typeset the following two +s and
a tilted square:

+
+o

//o

Hint : the dash created by \dir{-} has the length
5pt (here).

6d. These tips are combinations of the plain tips
provided for convenience (and optimised for ef-
ficiency). New ones can be constructed using
\composite and by declarations of the form

\newdir 〈dir〉 {〈composite〉}

which defines \dir〈dir〉 as the 〈composite〉 (see
note 4d for the details).

6.2 Circle segments

Circle 〈object〉s are round and typeset a segment of
the circle centered at the reference point. The syntax
of circles is described in figure 6 with explanations
below.

The default is to generate a full circle with the
specified radius, e.g.,

\xy*\cir<4pt>{}\endxy typesets “��������”
\xy*{M}*\cir{}\endxy — “M '!&"%#$”

All the other circle segments are subsets of this and
have the shape that the full circle outlines.

Partial circle segments with 〈orient〉ation are the
part of the full circle that starts with a tangent vec-
tor in the direction of the first 〈diag〉onal (see note 4l)
and ends with a tangent vector in the direction of the
other 〈diag〉onal after a clockwise (for _) or anticlock-
wise (for ^) turn, e.g.,

\xy*\cir<4pt>{l^r}\endxy typesets “���� ”
\xy*\cir<4pt>{l_r}\endxy — “���� ”
\xy*\cir<4pt>{dl^u}\endxy — “�����”
\xy*\cir<4pt>{dl_u}\endxy — “��� ”
\xy*+{M}*\cir{dr_ur}\endxy — “ M8?9:;<”

If the same 〈diag〉 is given twice then nothing is type-
set, e.g.,

\xy*\cir<4pt>{u^u}\endxy typesets “ ”

Special care is taken to setup the 〈diag〉onal defaults:

• After ^ the default is the diagonal 90◦ anticlock-
wise from the one before the ^.

• After _ the default is the diagonal 90◦ clockwise
from the one before the _.

The 〈diag〉 before ^ or _ is required for \cir 〈objects〉.

Exercise 15: Typeset the following shaded circle
with radius 5pt: '!&"%#$!"#$!"#$!"#$

6.3 Text

Text in pictures is supported through the 〈object〉
construction

\txt 〈width〉 〈style〉 {〈text〉}

that builds an object containing 〈text〉 typeset to
〈width〉 using 〈style〉; in 〈text〉 \\ can be used as an
explicit line break; all lines will be centered. 〈style〉
should either be a font command or some other stuff
to do for each line of the 〈text〉 and 〈width〉 should
be either <〈dimen〉> or 〈empty〉.

7 XY-pic options

Note: LATEX 2ε users should also consult the para-
graph on “xy.sty” in §1.1.

18

Syntax Action

\cir 〈radius〉 { 〈cir〉 } 〈cir〉cle segment with 〈radius〉

〈radius〉 −→ 〈empty〉 use Rc as the radius
| 〈vector〉 use X of the 〈vector〉 as radius

〈cir〉 −→ 〈empty〉 full circle of 〈radius〉
| 〈diag〉 〈orient〉 〈diag〉 partial circle from first 〈diag〉onal through to the second

〈diag〉onal in the 〈orient〉ation
〈orient〉 −→ ^ anticlockwise

| _ clockwise

Figure 6: 〈cir〉cles.

7.1 Loading

XY-pic is provided with a growing number of options
supporting specialised drawing tasks as well as exotic
output devices with special graphic features. These
should all be loaded using this uniform interface in
order to ensure that the XY-pic environment is prop-
erly set up while reading the option.

\xyoption { 〈option〉 }
\xyrequire { 〈option〉 }

\xyoption will cause the loading of an XY-pic option
file which can have one of several names. These are
tried in sequence: xy〈option〉.tex, xy〈option〉.doc,
xy〈short〉.tex, and xy〈short〉.doc, where 〈short〉 is
〈option〉 truncated to 6 (six) characters to conform
with the TWG-TDS [17].

\xyrequire is the same except it is ignored if an
option with the same name is already present (thus
does not check the version etc.).

Sometimes some declarations of an option or
header file or whatever only makes sense after some
particular other option is loaded. In that case the
code should be wrapped in the special command

\xywithoption { 〈option〉 } { 〈code〉 }

which indicates that if the 〈option〉 is already loaded
then 〈code〉 should be executed now, otherwise it
should be saved and if 〈option〉 ever gets loaded
then 〈code〉 should be executed afterwards. Note:
The 〈code〉 should allow more than one execution;
it is saved with the catcodes at the time of the
\xywithoption command.

Finally, it is possible to declare 〈code〉 as
some commands to be executed before every ac-
tual execution of \xywithoption{〈option〉}{. . . },
and similarly 〈code〉 to be executed before ev-
ery \xyoption{〈option〉} and \xyrequire{〈option〉}

(collectively called ‘requests’)::

\xyeverywithoption { 〈option〉 } { 〈code〉 }
\xyeveryrequest { 〈option〉 } { 〈code〉 }

This is most often used by an option to activate some
hook every time it is requested itself.

7.2 Option file format

Option files must have the following structure:

%% 〈identification〉
%% 〈copyright, etc.〉
\ifx\xyloaded\undefined \input xy \fi

\xyprovide{〈option〉}{〈name〉}{〈version〉}%
{〈author〉}{〈email〉}{〈address〉}

〈body of the option〉
\xyendinput

The 6 arguments to \xyprovide should contain the
following:

〈option〉 Option load name as used in the \xyoption
command. This should be safe and distinguish-
able for any operating system and is thus lim-
ited to characters chosen among the lowercase
letters (a–z), digits (0–9), and dash (-), and all
options should be uniquely identifiable by the
first 6 (six) characters only.

〈name〉 Descriptive name for the option.

〈version〉 Identification of the version of the option.

〈author〉 The name(s) of the author(s).

〈email〉 The electronic mail address(es) of the au-
thor(s) or the affiliation if no email is available.

〈address〉 The postal address(es) of the author(s).

19

This information is used not only to print a nice ban-
ner but also to (1) silently skip loading if the same
version was preloaded and (2) print an error message
if a different version was preloaded.

The ‘dummy’ option described in §22 is a minimal
option using the above features. It uses the special
DOCMODE format to include its own documentation for
this document (like all official XY-pic options) but this
is not a requirement.

7.3 Driver options

The 〈driver〉 options described in part IV require spe-
cial attention because each driver can support several
extension options, and it is sometimes desirable to
change 〈driver〉 or even mix the support provided by
several.7

A 〈driver〉 option is loaded as other options with
\xyoption{〈driver〉} (or through LATEX 2ε class or
package options as described in §1.1). The special
thing about a 〈driver〉 is that loading it simply de-
clares the name of it, establishes what extensions it
will support, and selects it temporarily. Thus the
special capabilities of the driver will only be exploited
in the produced DVI file if some of these extensions
are also loaded and if the driver is still selected when
output is produced. Generally, the order in which the
options are loaded is immaterial. (Known exceptions
affect only internal processing and are not visible to
the user in terms of language and expected output.)
In particular one driver can be preloaded in a format
and a different one used for a particular document.

The following declarations control this:

\UseSingleDriver forces one driver only
\MultipleDrivers allows multiple drivers
\xyReloadDrivers resets driver information

The first command restores the default behaviour:
that ony one 〈driver〉 is allowed, i.e., each loading
of a 〈driver〉 option cancels the previous. The sec-
ond allows consecutive loading of drivers such that
when loading a 〈driver〉 only the extensions actually
supported are selected, leaving other extensions sup-
ported by previously selected drivers untouched. Be-
ware that this can be used to create DVI files that
cannot be processed by any actual DVI driver pro-
gram!

The last command is sometimes required to reset
the XY-pic 〈driver〉 information to a sane state, for
example, after having applied one of the other two
in the middle of a document, or when using simple
formats like plain TEX that do not have a clearly dis-
tinguished preamble.

As the above suggests it sometimes makes sense
to load 〈driver〉s in the actual textual part of a doc-
ument, however, it is recommended that only drivers
also loaded in the preamble are reloaded later, and
that \xyReloadDrivers is used when there is doubt
about the state of affairs. In case of confusion
the special command \xyShowDrivers will list all
the presently supported and selected driver-extension
pairs to the TEX log.

It is not difficult to add support for additional
〈driver〉s; how is described in the TEXnical documen-
tation.

Most extensions will print a warning when a capa-
bility is used which is not supported by the presently
loaded 〈driver〉. Such messages are only printed once,
however, (for some formats they are repeated at the
end). Similarly, when the support of an extension
that exploits a particular 〈driver〉 is used a warn-
ing message will be issued that the DVI file is not
portable.

Part II

Extensions
This part documents the graphic capabilities added
by each standard extension option. For each is indi-
cated the described version number, the author, and
how it is loaded.

Many of these are only fully supported when a
suitable driver option (described in part IV) is also
loaded, however, all added constructions are always
accepted even when not supported.

8 Curve and Spline extension

Vers. 3.7 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{curve}

This option provides XY-pic with the ability to type-
set spline curves by constructing curved connections
using arbitrary directional objects and by encircling
objects similarly. Warning : Using curves can be
quite a strain on TEX’s memory; you should there-
fore limit the length and number of curves used on a
single page. Memory use is less when combined with
a backend capable of producing its own curves; e.g.,
the PostScript backend).

8.1 Curved connections

Simple ways to specify curves in XY-pic are as follows:

**\crv{〈poslist〉} curved connection
7The kernel support described here is based on the (now defunct) xydriver include file by Ross Moore.

20

**\crvs{〈dir〉} get 〈poslist〉 from the stack
\curve{〈poslist〉} as a 〈decor〉ation

in which 〈poslist〉 is a list of valid 〈pos〉itions. The
decoration form \curve is just an abbreviation for
\connect\crv. As usual, the current p and c are
used as the start and finish of the connection, respec-
tively. Within 〈poslist〉 the 〈pos〉itions are separated
by &. A full description of the syntax for \crv is given
in figure 7.

A

B
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

0

1

2

4

If 〈poslist〉 is empty a straight connection is com-
puted. When the length of 〈poslist〉 is one or two then
the curve is uniquely determined as a single-segment
Bézier quadratic or cubic spline. The tangents at p
and c are along the lines connecting with the adjacent
control point. With three or more 〈pos〉itions a cubic
B-spline construction is used. Bézier cubic segments
are calculated from the given control points.

The previous picture was typeset using:

\xy (0,20)*+{A};(60,0)*+{B}
**\crv{}
**\crv{(30,30)}
**\crv{(20,40)&(40,40)}
**\crv{(10,20)&(30,20)&(50,-20)&(60,-10)}
\endxy

except for the labels, which denote the number of en-
tries in the 〈poslist〉. (Extending this code to include
the labels is set below as an exercise).

The ?-operator of §3 (note 3h) is used to find ar-
bitrary 〈place〉s along a curve in the usual way.

Exercise 16: Extend the code given for the curves
in the previous picture so as to add the labels giving
the number of control points.

Using ? will set the current direction to be tan-
gential at that 〈place〉, and one can 〈slide〉 specified
distances along the curve from a found 〈place〉 using
the ?. . . /〈dimen〉/ notation:

A

B

oo

NN

⊕x⊕
x′

⊗

Q

P

NNNNNNNNNNNNNNNNN

Exercise 17: Suggest code to produce something
like the above picture; the spline curve is the same as
in the previous picture. Hints: The line is 140pt long
and touches 0.28 of the way from A to B and the x
is 0.65 of the way from A to B.

The positions in 〈poslist〉 specify control points
which determine the initial and final directions of
the curve—leaving p and arriving at c—and how the
curve behaves in between, using standard spline con-
structions. In general, control points need not lie
upon the actual curve.

A natural spline parameter varies in the interval
[0, 1] monotonically along the curve from p to c. This
is used to specify 〈place〉s along the curve, however
there is no easy relation to arc-length. Generally the
parameter varies more rapidly where the curvature is
greatest. The following diagram illustrates this effect
for a cubic spline of two segments (3 control points).

A

B
TTTTTTTTTTTTTTTT

��

��

��

��
��

yy ��
rr **�

(<)

(>)

.1

.9YYYYYYYYYYYYYYYYY

.2

.8\\\\\\\\\\\\\\
.3

.7^^^^^^^^^^
.4 .6______

.5

Exercise 18: Write code to produce a picture such
as the one above. (Hint : Save the locations of places
along the curve for later use with straight connec-
tions.)

To have the same 〈pos〉 occuring as a multiple
control point simply use a delimiter, which leaves the
〈pos〉 unchanged. Thus \curve{〈pos〉&} uses a cubic
spline, whereas \curve{〈pos〉} is quadratic.

Repeating the same control point three times in
succession results in straight segments to that con-
trol point. Using the default styles this is an expen-
sive way to get straight lines, but it allows for extra
effects with other styles.

21

Syntax Action

\curve〈modifier〉{〈curve-object〉〈poslist〉} construct curved connection

〈modifier〉 −→ 〈empty〉 zero or more modifiers possible; default is ~C
| ~〈curve-option〉 〈modifier〉 set 〈curve-option〉

〈curve-option〉 −→ p | P | l | L | c | C show only8d control points (p=points), joined by lines
(l=lines), or curve only (c=curve)

| pc | pC | Pc | PC show control points8f and curve8e

| lc | lC | Lc | LC show lines joining8g control points and curve8e

| cC plot curve twice, with and without specified formatting
〈curve-object〉 −→ 〈empty〉 use the appropriate default style

| ~*〈object〉 〈curve-object〉 specify the “drop” object8a and maybe more8c

| ~**〈object〉 〈curve-object〉 specify “connect” object8b and maybe more8c

〈poslist〉 −→ 〈empty〉 | 〈pos〉 〈delim〉 〈poslist〉 list of positions for control points
| ~@ | ~@ 〈delim〉 〈poslist〉 add the current stack8h to the control points

〈delim〉 −→ & allowable delimiter

Figure 7: Syntax for curves.

Notes

8a. The “drop” object is set once, then “dropped”
many times at appropriately spaced places along
the curve. If directional, the direction from p to
c is used. Default behaviour is to have tiny dots
spaced sufficiently closely as to give the appear-
ance of a smooth curve. Specifying a larger size
for the “drop” object is a way of getting a dotted
curve (see the example in the next note).

8b. The “connect” object is also dropped at each
place along the curve. However, if non-empty,
this object uses the tangent direction at each
place. This allows a directional object to be spec-
ified, whose orientation will always match the
tangent. To adjust the spacing of such objects,
use an empty “drop” object of non-zero size as
shown here:

A

B

.. .
.

.
��
��
$$ '')) ++ -- .. // 00 11 22

33 44

\xy (0,0)*+{A}; (50,-10)*+{B}
**\crv{~*=<4pt>{.} (10,10)&(20,0)&(40,15)}
\crv{~*=<8pt>{}~!/-5pt/\dir{>}(10,-20)
&(40,-15)} \endxy

When there is no “connect” object then the tan-
gent calculations are not carried out, resulting in

a saving of time and memory; this is the default
behaviour.

8c. The “drop” and “connect” objects can be spec-
ified as many times as desired. Only the last
specification of each type will actually have any
effect. (This makes it easy to experiment with
different styles.)

8d. Complicated diagrams having several spline
curves can take quite a long time to process and
may use a lot of TEX’s memory. A convenient
device, especially while developing a picture, is
to show only the location of the control points or
to join the control points with lines, as a stylized
approximation to the spline curve. The 〈curve-
option〉s ~p and ~l are provided for this purpose.
Uppercase versions ~P and ~L do the same thing
but use any 〈curve-object〉s that may be speci-
fied, whereas the lowercase versions use plain de-
faults: small cross for ~p, straight line for ~l.
Similarly ~C and ~c set the spline curve using any
specified 〈curve-option〉s or as a (default) plain
curve.

8e. Use of ~p, ~l, etc. is extended to enable both the
curve and the control points to be easily shown in
the same picture. Mixing upper- and lower-case
specifies whether the 〈curve-option〉s are to be
applied to the spline curve or the (lines joining)
control points. See the examples accompanying
the next two notes.

22

8f. By default the control points are marked with a
small cross, specified by *\dir{x}. The “con-
nect” object is ignored completely.

A

B
5u

5u 5u

......
....
...
...
...
...
.....
....................................

was typeset by . . .

\xy (0,0)*+{A};(50,-10)*+{B}
**\crv~pC{~*=<\jot>{.}(10,-10)&(20,15)
&(40,15)} \endxy

8g. With lines connecting control points the default
“drop” object is empty, while the “connect” ob-
ject is \dir{-} for simple straight lines. If non-
empty, the “drop” object is placed at each con-
trol point. The “connect” object may be used to
specify a fancy line style.

A

B

⊕�
�

�
�

�
�

�

⊕TTTT

2
2

2
2

2
2

2
2

was typeset by . . .

\xy (0,0)*+{A};(50,-10)*+{B}
\crv~Lc{~\dir{--}~*{\oplus}
(20,20)&(35,15)} \endxy

8h. When a stack of 〈pos〉itions has been established
using the @i and @+ commands, these positions
can be used and are appended to the 〈poslist〉.

Intersection with a curved connection Just as
the intersection of two lines (3j) can be found, so can
the intersection of a straight line with a curved con-
nection, or the intersection of a curve with a straight
connection.

A

B
C

D

cc vvvvvvvvvvvv

⊕

A

B
C

D

vvvvvvvvvvvv

cc
⊕

\xy*+{A}="A";p+/r5pc/+(0,15)*+{B}="B"
,p+<1pc,3pc>*+{C}="C"

,"A"+<4pc,-1pc>*+{D}="D",{\ar@/_/"C"}
,?!{"A";"B"**@{-}}*++{\oplus}

\endxy \quad \xy
+{A}="A";p+/r5pc/+(0,15)+{B}="B",
,p+<1pc,3pc>*+{C}="C"
,"A"+<4pc,-1pc>*+{D}="D","A";"B"**@{-}
,?!{"D",{\ar@/_/"C"}}*++{\oplus}

\endxy

When the line separates the end-points of a curve
an intersection can always be found. If there is more
than one then that occurring earliest along the curve
is the one found.

If the line does not separate the end-points then
there may be no intersection with the curve. If there
is one then either the line is tangential or necessarily
there will also be at least one other intersection. A
message

perhaps no curve intersection, or many.

is written to the log-file, but a search for an inter-
section will still be performed and a “sensible” place
found on the curve. In the usual case of a single
quadratic or cubic segment, the place nearest the line
is found and the tangent direction is established.

The following examples show this, and show how
to get the place on the line nearest to the curve.

A

B

C

D

NN

ffffffffffffff

K�&&&&&
⊗

A

B

C

D

RR

jjjjjjjjjjjjjjjjj
⊗

\xy *+{A}="A";p+/r5pc/+(0,15)*+{B}="B",
,p-<.5pc,2pc>*+{C}="C","A"+<6pc,-.5pc>
,*+{D}="D","A",{\ar@/_25pt/"B"}
,?!{"C";"D"**@{-}}*\dir{x}="E"
,+/_2pc/="F";"E"**@{-},?!{"C";"D"}
,*{\otimes}\endxy\qquad\xy
+{A}="A";p+/r5pc/+(0,15)+{B}="B",
,p-<.5pc,2pc>*+{C}="C"
,"A"+<7pc,.5pc>*+{D}="D","A"
,{\ar@/_40pt/"B"},?!{"C";"D"**@{-}}
,*{\otimes}\endxy

Sometimes TEX will run short of memory when many
curves are used without a backend with special sup-
port for curves. In that case the following commands,
that obey normal TEX groupings, may be helpful:

\SloppyCurves
\splinetolerance{〈dimen〉}

allow adjustment of the tolerance used to typeset
curves. The first sets tolerance to .8pt, after which

23

\splinetolerance{0pt} resets to the original de-
fault of fine curves.

8.2 Circles and Ellipses

Here we describe the means to a specify circles of arbi-
trary radius, drawn with arbitrary line styles. When
large-sized objects are used they are regularly spaced
around the circle. Similarly ellipses may be speci-
fied, but only those having major/minor axes aligned
in the standard directions; spacing of objects is no
longer regular, but is bunched toward the narrower
ends.

Such a circle or ellipse is specified using. . .

\xycircle〈vector〉{〈style〉}

where the components of the 〈vector〉 determine the
lengths of the axis for the ellipse; thus giving a cir-
cle when equal. The 〈style〉 can be any 〈conn〉, as
in 14 that works with curved arrows—many do. Al-
ternatively 〈style〉 can be any 〈object〉, which will be
placed equally-spaced about the circle at a separa-
tion to snugly fit the 〈object〉s. If 〈empty〉 then a
solid circle or ellipse is drawn.

•

•
?????????

c

//0022336699@@IIQQ ZZ bb gg jj kk mm nn pp qq ss
uu ww
|| ��
��
��%%

((++
,,..//

oorrvv
zz
��
��
		

��
��
��
��
!!
&& ** -- 11 44

88
==
CC
GG
KK
NN
RR
UU
YY
^^
dd

hhlloo

................
..
...
..

\xy 0;/r5pc/:*\dir{*}
;p+(.5,-.5)*\dir{*}="c"

,**\dir{-},*+!UL{c},"c"
,*\xycircle(1,.4){++\dir{<}}
,*\xycircle(1,1){++\dir{>}}
,*\xycircle<15pt,10pt>{}
;*\xycircle<10pt>{{.}}
\endxy

8.3 Quadratic Splines

Quadratic Bézier splines, as distinct from cubic
Bézier splines, are constructed from parabolic arcs,
using ‘control points’ to determine the tangents where
successive arcs are joined.

Various implementations of such curves exist.
The one adopted here is consistent with the xfig
drawing utility and tpic implementations. These
have the property of beginning and ending with

straight segments, half the length to the correspond-
ing adjacent control-point. Furthermore the mid-
point between successive control-points lies on the
spline, with the line joining the control-points being
tangent there.

Such curves are specified, either as a 〈decor〉 or as
an 〈object〉, using. . .

\qspline{〈style〉}

where the start and end of the curve are at p and
c respectively. The control-points are taken from the
current stack, see 3o. If this stack is empty then a
straight line is constructed.

The following example compares the quadratic
spline with the gentler curving B-spline having the
same control points, using \crvs.

P

+

+

+ C

����

\xy /r1.5pc/:,+<5pc,3pc>*+{P};p
@(,+(2,2)*{+}@+, +(2,-2)*{+}@+
,+(2,2)*{+}@+, +(2,0)*+{C}="C"
,*\qspline{},"C",**\crvs{.}
,@i @)\endxy

9 Frame and Bracket extension

Vers. 3.7 by Kristoffer H. Rose 〈krisrose@brics.dk〉
Load as: \xyoption{frame}

The frame extension provides a variety of ways to
puts frames in XY-pictures.

The frames are XY-pic 〈object〉s on the form

\frm{ 〈frame〉 }

to be used in 〈pos〉itions: Dropping a frame with
*. . . \frm{〈frame〉} will frame the c object; connect-
ing with **. . . \frm{. . . 〈frame〉} will frame the result
of c.p.

Below we distinguish between ‘ordinary’ frames,
‘brackets’ and ‘fills’; last we present how some frames
can be added to other objects using object modifier
〈shape〉s.

9.1 Frames

Figure 8 shows the possible frames and the applicable
〈modifier〉s with reference to the notes below.

24

Framed with
\frm{}
frame9a

Framed with
\frm{.}
frame9b

Framed with
\frm<44pt>{.}

frame9b

Framed with
\frm{-}
frame9b

Framed with
\frm<8pt>{-}

frame9b

?> =<
89 :;

Framed with
\frm<44pt>{-}

frame9b

_^]\XY Z[

Framed with
\frm{=}
frame9b

Framed with
\frm<8pt>{=}

frame9b

?> =<
89 :;
/. -,
() *+

Framed with
\frm<44pt>{=}

frame9b

^]\XY Z[^]\XY Z[

Framed with
\frm{--}
frame9b

_ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _

Framed with
\frm{o-}
frame9b

�� _ _ _ _ ���

�

�

��� _ _ _ _ ��
Framed with

\frm<44pt>{--}

frame9b

_v
�

_ _ _ _ _

�
6T

�� ���
6

T _ _ _ _ __ v
�

Framed with
\frm{,}
frame9c

Framed with
\frm<5pt>{,}

frame9c

Framed with
\frm{-,}
frame9c

Framed with
\frm{o}
frame9d

wvutpqrs Framed with
\frm<8pt>{o}

frame9d

?>=<89:; Framed with
\frm{.o}
frame9d

Framed with
\frm{oo}
frame9d

wvutpqrswvutpqrs Framed with
\frm<8pt>{oo}

frame9d

?>=<89:;'&%$!"# Framed with
\frm{-o}
frame9d

_j
x

� �

*
8

JW

�
*

8
J W _ j x

�

Framed with
\frm{e}
frame9e

onmlhijk Framed with
\frm<20pt,8pt>{e}

frame9e

WVUTPQRS Framed with
\frm{.e}
frame9e

Framed with
\frm{ee}
frame9e

onmlhijkgfed`abc Framed with
\frm<20pt,8pt>{ee}

frame9e

WVUTPQRSONMLHIJK Framed with
\frm{-e}
frame9e

_n
�

� �
.

BT

�
.

B
T _ n �

�

These are
overlayed
with the
\frm{.}

frame above
to show the
way they are
centered on
the object

Figure 8: Plain 〈frame〉s.

Framed with
\frm{_\}}

frame9f︸ ︷︷ ︸
Framed with
\frm{^\}}

frame9f

︷ ︸︸ ︷
Framed with
\frm{\{}
frame9f

 Framed with
\frm{\}}
frame9f

Framed with
\frm{_)}
frame9g︸ ︸

Framed with
\frm{^)}
frame9g

︷ ︷
Framed with
\frm{(}
frame9g

 Framed with
\frm{)}
frame9g

Figure 9: Bracket 〈frame〉s.

25

Notes

9a. The \frm{} frame is a dummy useful for not
putting a frame on something, e.g., in macros
that take a 〈frame〉 argument.

9b. Rectangular frames include \frm{.}, \frm{-},
\frm{=}, \frm{--}, \frm{==}, and \frm{o-}.
They all make rectangular frames that essentially
trace the border of a rectangle-shaped object.

The 〈frame〉s \frm{-} and \frm{=} allow an op-
tional corner radius that rounds the corners of
the frame with quarter circles of the specified ra-
dius. This is not allowed for the other frames—
the \frm{o-} frame always gives rounded cor-
ners of the same size as the used dashes (when
\xydashfont is the default one then these are
5pt in radius).

Exercise 19: How do you think the author
typeset the following?

A/.-,()*+
B76540123

9c. The frame \frm{,} puts a shade, built from
rules, into the picture beneath the (assumed rect-
angular) object, thereby giving the illusion of
‘lifting’ it; \frm<〈dimen〉>{,} makes this shade
〈dimen〉 deep.

\frm{-,} combines a \frm{-} with a \frm{,}.

9d. Circles done with \frm{o} have radius as (R +
L)/2 and with \frm<〈dimen〉>{o} have radius
as the 〈dimen〉; \frm{oo} makes a double cir-
cle with the outermost circle being the same as
that of \frm{o}.

Exercise 20: What is the difference between
*\cir{} and *\frm{o}?

9e. Ellipses specified using \frm{e} have axis lengths
(R + L)/2 and (U + D)/2, while those with
\frm<〈dimen,dimen〉>{e} use the given lengths
for the axes. \frm{ee} makes a double ellipse
with outermost ellipse being the same as that of
\frm{e}.

Without special support to render the ellipses,
either via a 〈driver〉 or using the arc feature, the
ellipse will be drawn as a circle of radius approx-
imately the average of the major and minor axes.

To Do: Allow 〈frame variant〉s like those used
for directionals, i.e., \frm2{-} should be the same as
\frm{=}. Add \frm{o,} and more brackets.

9.2 Brackets

The possible brackets are shown in figure 9 with notes
below.

Notes

9f. Braces are just the standard plain TEX large
braces inserted correctly in XY-pic pictures with
the ‘nib’ aligned with the reference point of the
object they brace.

Exercise 21: How do you think the author
typeset the following?

A

B

︷ ︸︸ ︷
︸ ︷︷ ︸

9g. Parenthesis are like braces except they have no
nib and thus do not depend on where the refer-
ence point of c is.

Bug: The brackets above require that the com-
puter modern cmex font is loaded in TEX font posi-
tion 3.

9.3 Filled regions

In addition to the above there is a special frame that
“fills” the inside of the current object with ink: \frm
{*} and \frm {**}; the latter is intended for em-
phasizing and thus “strokes” the outline, using the
thinnest black line available on the printer or out-
put device; furthermore it moits the actual filling
in case this would obscure further text typeset on
top. Some alteration to the shape is possible, using
\frm<dimen>{}. Hence rectangular, oval, circular
and elliptical shapes can be specified for filling. The
following examples illustrate this in each case:

〈object〉 \frm{*} \frm{**} \frm<6pt>{*}

However, filling non-rectangular shapes will result in
a rectangle unless a driver is used that supports ar-
bitrary filling. With some drivers the above fills will
thus all be identical, as rectangular.

26

9.4 Framing as object modifier

In addition, frames may be accessed using the special
[F〈frame〉] object modifier 〈shape〉s that will add the
desired 〈frame〉 to the current object. The frame ap-
propriate to the edge of the object will be chosen
(presently either rectangular or elliptical).

If shape modifiers need to be applied to the
〈frame〉 alone then they can be included using : as
separator. Thus [F-:red] will make a red frame
(provided the color extension is active, of course).
Additionally the variant of frames using <〈dimen〉>
can be accessed by specifying [. . . :<〈dimen〉>].

Here are some simple examples using this feature.

text with background

bold white on black

\xy *+<1.5pt>[F**:white]++[F**:red]
\txt{text with background}
,+!D+/d1pc/,*++[F**:black][white]
\txt\bf{bold white on black}\endxy

Notice that when multiple frame-modifiers are
used, the frames are actually placed in reverse or-
der, so that earlier ones are printed on top of later
ones.

To Do: The frame option is not quite com-
plete yet: some new frames and several new brackets
should be added.

9.5 Using curves for frames

If the curve option is loaded, then circular and ellipti-
cal frames of arbitrary radius can be constructed, by
specifying \UseCurvedFrames. This can be negated
by \UseFontFrames. Both of these commands obey
normal TEX grouping. Furthermore, dotted and
dashed frames now have a regular spacing of their
constituent objects. The usual warnings about mem-
ory requirements for large numbers of curves apply
here also.

10 More Tips extension

Vers. 3.3 by Kristoffer H. Rose 〈kris@diku.dk〉
Load as: \xyoption{tips}

This extension provides several additional styles of
‘tips’ for use (primarily) as arrow heads, and makes
it possible to define customised tips. This is used
to support tips that mimic the style of the Computer
Modern fonts8 by Knuth (see [7] and [6, appendix F])
and of the Euler math fonts distributed by the AMS.

Font selection is done with the command

\SelectTips {〈family〉} {〈size〉}

where the 〈family〉 and 〈size〉 should be selected from
the following table.

Family 10 11 12
xy //− +3 _*4 //− +3 _*4 //− +3 _ *4

cm //− +3 _*4 //− +3 _*4 //− +3 _ *4

eu //− %9 _%9 //− %9 _%9 //− %9 _ %9

Once a selection is made, the following commands
are available:

\UseTips activate selected tips
\NoTips deactivate

They are local and thus can be switched on and/or off
for individual pictures using the TEX grouping mech-
anism, e.g.,

\SelectTips{cm}{10}
\xy*{} \ar
@{*{\UseTips\dir_{<<}}-*{\NoTips\dir{>}}}
(20,5)*{} \endxy

will typeset

ss

33gggggggggggg

regardless of which tips are used otherwise in the doc-
ument.

11 Line styles extension

Vers. 3.6 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{line}

This extension provides the ability to request vari-
ous effects related to the appearance of straight lines;
e.g.. thickness, non-standard dashing, and colour.

These are effects which are not normally avail-
able within TEX. Instead they require a suitable
‘back-end’ option to provide the necessary \special
commands, or extra fonts, together with appropriate
commands to implement the effects. Thus

Using this extension will have no
effect on the output unless used with
a backend that explicitly supports it.

The extension provides special effects that can be
used with any XY-pic 〈object〉, by defining [〈shape〉]
modifiers. The modification is local to the 〈object〉
currently being built, so will have no effect if this
object is never actually used.

8This function was earlier supported by the cmtip extension which is still included in the distribution but is now obsolete.

27

Adjusting line thickness The following table
lists the modifiers primarily to alter the thickness of
lines used by XY-pic. They come in two types — ei-
ther a single keyword, or using the key-character |
with the following text parsed.

[thicker] double line thickness
[thinner] halve line thickness
[|(〈num〉)] multiple of usual thickness
[|<〈dimen〉>] set thickness to 〈dimen〉
[|〈dimen〉] also sets to 〈dimen〉
[|=〈word〉] make [〈word〉] set current

style settings
[|*] reuse previous style
[butt] butt cap at ends
[roundcap] round cap at ends
[projcap] projecting square cap.

Later settings of the linewidth override earlier set-
tings; multiple calls to [thicker] and [thinner]
compound, but the other variants set an absolute
thickness. The line-thickness specification affects
arrow-tips as well as the thickness of straight lines
and curves. Three kinds of line-caps are available;
they are discussed below in the section on ‘poly-lines’.

CP

//
//
//

//

\xy/r8pc/:*++\txt\huge{C}="c"
,0*++\txt\huge{P}="p",
,"p",{\ar@*{[|(1)]}"p";"c"<20pt>}
,"p",{\ar@*{[|(4)]}"p";"c"<14pt>}
,"p",{\ar@*{[|(10)]}"p";"c"<4pt>}
,"p",{\ar@*{[|(20)]}"p";"c"<-16pt>}
\endxy

Using the PostScript back-end, the size of the
arrow-head grows aesthetically with the thickness of
the line used to draw it. This growth varies as the
square-root of the thickness; thus for very thick lines
(20+ times normal) the arrowhead begins to merge
with the stem.

The diagram in figure 10, page 31, uses different
line-thicknesses and colours.

Poly-lines By a ‘poly-line’ we mean a path built
from straight line segments having no gaps where
each segment abuts the next. The poly-line could
be the edges of a polygon, either closed or open if the
end-points are different.

The reason for considering a poly-line as a sep-
arate 〈object〉, rather than simply as a 〈path〉 built
from straight lines, becomes apparent only when the

lines have appreciable thickness. Then there are sev-
eral standard ways to fashion the ‘joins’ (where seg-
ments meet). Also the shape of the ‘caps’ at either
end of the poly-line can be altered.

The following modifiers are used to determine the
shapes of the line ‘caps’ and ‘joins’:

[|J〈val〉] join style, 〈val〉 = 0, 1 or 2
[mitre] mitre-join, same as [|J0]
[roundjoin] round join, same as [|J1]
[bevel] bevel-join, same as [|J2]
[|C〈val〉] end-cap, 〈val〉 = 0, 1 or 2
[butt] “butt” cap, same as [|C0]
[roundcap] round cap, same as [|C1]
[projcap] “projecting square” cap,

same as [|C2]
[|M(〈num〉)] set mitrelimit to 〈num〉≥ 1

These effects are currently implemented only
with the PostScript back-end or when using
\xypolyline (described below) with a PostScript

〈driver〉. In this case the ‘cap’ setting can be applied
to any segment, straight or curved, whether part of
a poly-line or not; however the ‘join’ setting applies
only to poly-lines. Arrow-tips are not affected. The
defaults are to use round joins and round-cap ends.

Adjusting the miter-limit affects how far miters
are allowed to protrude when two wide lines meet
at small angles. The 〈num〉 is in units of the line-
thickness. Higher values mean using bevels only at
smaller angles, while the value of 1 is equivalent to
using bevels at all angles. The default miter-limit is
10.

The path taken by the ‘poly-line’ this is read as
the list of 〈pos〉itions in the current ‘stack’, ignoring
size extents. The macro \xypolyline is used as a
〈decor〉; it reads the 〈pos〉itions from the stack, but
leaves the stack intact for later use.

The following diagram illustrates the use of line-
thickness, line-joins and line-caps with poly-lines. It
contains an example of each of the styles.

A B

\xycompileto{poly}%
{/r4pc/:,*[|<5pt>][thicker]\xybox{%
*+(3,2){}="X"

;@={p+CU,p+LU,p+LD,p+RD,p+RU,p+CU}
,{0*[miter]\xypolyline{}}
,{\xypolyline{*}},@i@)

,"X",*+(2.5,1.5){}="X"

28

,@={!CU,!LU,!LD,!RD,!RU,!CU}
,{0*[gray][roundjoin]\xypolyline{}}
,{0*[gray]\xypolyline{*}},@i@)

,"X",*+(2,1){}="X"
,@={!CU,!LU,!LD,!RD,!RU,!CU}
,{0*[white]\xypolyline{*}}
,{0*[bevel]\xypolyline{}},@i@)

,"X"-(.7,0)*++\txt\LARGE{A}="a"
,"X"+(.7,0)*++\txt\LARGE{B}="b"
,{\ar@{-}@*{[butt][thinner]}"a";"b"<1pc>}
,{\ar@{-}@*{[roundcap][thinner]}"a";"b"}
,{\ar@{-}@*{[projcap][thinner]}"a";"b"<-1pc>}
}}

Note the use of {0*[...]\xypolyline{..}} to apply
style-modifiers to a polyline. The @={!..} method
for loading the stack gives equivalent results to us-
ing ;@={p+..}, since \xypolyline ignores the edge
extents of each 〈pos〉 in the stack.

Note also that the argument #1 to \xypolyline
affects what is typeset. Allowable arguments are:

\xypolyline{} solid line
\xypolyline{.} dotted line
\xypolyline{-} dashed line
\xypolyline{*} fill enclosed polygon
\xypolyline{?} fill enclosed polygon using

even-odd rule
\xypolyline{{*}} use \dir{*} for lines
\xypolyline{<toks>} using \dir{<toks>}

The latter cases one has **\dir{...} being used
to connect the vertices of the polyline, with {{*}}
being needed to get **\dir{*}. Similarly **\dir is
used when a 〈driver〉 is not available to specifically
support polylines; in particular the two ‘fill’ options
* and ? will result in a dotted polygon outline the
region intended to be filled.

In all cases it is up to the user to load the stack be-
fore calling \xypolyline{. . . }. A particularly com-
mon case is the outline of an existing XY-pic 〈object〉,
as in the example above. Future extensions to \frm
will provide a simplified mechanism whereby the user
need not call \xypolyline explicitly for such effects.

12 Rotate and Scale extension

Vers. 3.3 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{rotate}

This extension provides the ability to request that
any object be displayed rotated at any angle as well
as scaled in various ways.

These are effects which are not normally avail-
able within TEX. Instead they require a suitable
‘back-end’ option to provide the necessary \special

commands, or extra fonts, together with appropriate
commands to implement the effects. Thus

Using this extension will have no
effect on the output unless used with
a backend that explicitly supports it.

The extension provides special effects that can be
used with any XY-pic 〈object〉 by defining [〈shape〉]
modifiers. The modification is local to the 〈object〉
currently being built, so will have no effect if this
object is never actually used.

The following table lists the modifiers that have
so far been defined. They come in two types – either a
single keyword, or a key-character with the following
text treated as a single argument.

[@] align with current direc-
tion

[@〈direction〉] align to 〈direction〉
[@!〈number〉] rotate 〈number〉 degrees
[*〈number〉] scale by 〈number〉
[*〈num〉x,〈num〉y] scale x and y separately
[left] rotate anticlockwise by

90◦
[right] rotate (clockwise) by 90◦

[flip] rotate by 180◦; same as
[*-1,-1]

[dblsize] scale to double size
[halfsize] scale to half size

These [〈shape〉] modifiers specify transformations
of the 〈object〉 currently being built. If the object
has a rectangle edge then the size of the rectangle is
transformed to enclose the transformed object; with
a circle edge the radius is altered appropriately.

Each successive transformation acts upon the re-
sult of all previous. One consequence of this is that
the order of the shape modifiers can make a signif-
icant difference in appearance—in general, transfor-
mations do not commute. Even successive rotations
can give different sized rectangles if taken in the re-
verse order.

Sometimes this change of size is not desirable.
The following commands are provided to modify this
behaviour.

\NoResizing prevents size adjustment
\UseResizing restores size adjustments

The \NoResizing command is also useful to have at
the beginning of a document being typeset using a
driver that cannot support scaling effects, in partic-
ular when applied to whole diagrams. In any case an
unscaled version will result, but now the spacing and
positioning will be appropriate to the unscaled rather
than the scaled size.

29

Scaling and Scaled Text The 〈shape〉 modifier
can contain either a single scale factor, or a pair in-
dicating different factors in the x- and y-directions.
Negative values are allowed, to obtain reflections in
the coordinate axes, but not zero.

Rotation and Rotated Text Within [@...] the
... are parsed as a 〈direction〉 locally, based on
the current direction. The value of count regis-
ter \Direction contains the information to deter-
mine the requested direction. When no 〈direction〉 is
parsed then [@] requests a rotation to align with the
current direction.

The special sequence [@!...] is provided to pass
an angle directly to the back-end. The XY-pic size
and shape of the 〈object〉 with \rectangleEdge is
unchanged, even though the printed form may appear
rotated. This is a feature that must be implemented
specially by the back-end. For example, using the
PostScript back-end, [@!45] will show the object
rotated by 45◦ inside a box of the size of the unro-
tated object.

To Do: Provide example of repeated, named
transformation.

Reflections Reflections can be specified by a com-
bination of rotation and a flip — either [hflip] or
[vflip].

Shear transformations To Do: Provide the
structure to support these; then implement it in
PostScript.

Example The diagram in figure 10 illustrates many
of the effects described above as well as some addi-
tional ones defined by the color and rotate exten-
sions.

Exercise 22: Suggest the code used by the author
to typeset 10.

The actual code is given in the solution to the
exercise. Use it as a test of the capabilities of your
DVI-driver. The labels should fit snugly inside the
accompanying rectangles, rotated and flipped appro-
priately.

Bug: This figure also uses colours, alters line-
thickness and includes some PostScript drawing.
The colours may print as shades of gray, with the
line from A to B being thicker than normal. The
wider band sloping downwards may have different
width and length according to the DVI-driver used;
this depends on the coordinate system used by the
driver, when ‘raw’ PostScript code is included.

13 Colour extension

Vers. 3.3 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{color}

This extension provides the ability to request that
any object be displayed in a particular colour.

It requires a suitable ‘driver’ option to provide
the necessary \special commands to implement the
effects. Thus

Using this extension will have no effect
on the output unless used with a

dvi-driver that explicitly supports it.

Colours are specified as a 〈shape〉 modifier which
gives the name of the colour requested. It is applied
to the whole of the current 〈object〉 whether this be
text, an XY-pic line, curve or arrow-tip, or a compos-
ite object such as a matrix or the complete picture.
However some DVI drivers may not be able to sup-
port the colour in all of these cases.

[〈colour name〉] use named colour

\newxycolor{〈name〉}{〈code〉} define colour
\UseCrayolaColors load colour names

If the DVI-driver cannot support colour then a re-
quest for colour only produces a warning message in
the log file. After two such messages subsequent re-
quests are ignored completely.

Named colours and colour models New colour
names are created with \newxycolor, taking two ar-
guments. Firstly a name for the colour is given, fol-
lowed by the code which will ultimately be passed to
the output device in order to specify the colour. If
the current driver cannot support colour, or grayscale
shading, then the new name will be recognised, but
ignored during typesetting.

For PostScript devices, the XY-ps PostScript

dictionary defines operators rgb, cmyk and gray cor-
responding to the standard RGB and CMYK colour
models and grayscale shadings. Colours and shades
are described as: r g b rgb or c m y k cmyk or s
gray, where the parameters are numbers in the range
0 ≤ r, g, b, c,m, y, k, s ≤ 1. The operators link to the
built-in colour models or, in the case of cmyk for ear-
lier versions of PostScript, give a simple emulation
in terms of the RGB model.

Saving colour and styles When styles are saved
using [=〈word〉], see , then the current colour setting
(if any) is saved also. Subsequent use of [〈word〉]
recovers the colour and accompanying line-style set-
tings.

30

A

B

♥

♣ll

label 1 .label 2×
label 3

label 4
label 5×

label 6
label 7

label 8

special effect: aligned text

Figure 10: Rotations, scalings and flips

Further colour names are defined by the command
\UseCrayolaColours that loads the crayon option,
in which more colours are defined. Consult the file
xyps-col.doc for the colours and their specifications
in the RGB or CMYK models.

xycrayon.tex: This option provides the com-
mand to install definitions for the 68 colours recog-
nised by name by Tomas Rokicki’s dvips driver [11].
This command must be called from a 〈driver〉-file
which can actually support the colours.

14 Pattern and Tile extension

Vers. 3.4 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{tile}

This extension provides the ability to request that a
filled region be tiled using a particular pattern.

This is an effect not normally available within
TEX. Instead it requires a suitable 〈driver〉 option to
provide the necessary \special commands, together
with any extra commands needed to implement the
effects. Thus

Using this extension will have no effect
on the output unless used with a

dvi-driver that explicitly supports it.

All effects defined in the tile extension can be im-
plemented using most PostScript 〈driver〉s, loaded
as \xyoption{〈driver〉}.

Patterns Patterns are specified as a 〈shape〉 modi-
fier, similar to the way colours are specified by name.
The pattern is applied to the whole of the current
〈object〉 whether this be text, an XY-pic line, curve
or arrow-tip, or a composite object such as a matrix

or the complete picture. However some DVI-drivers
may not support use of patterns in all cases.

If the current DVI-driver cannot support patterns
then a request for one simply produces a warning
message in the log file. After two such messages sub-
sequent requests are ignored completely.

[〈name〉] use named pattern

\newxypattern{〈name〉}{〈data〉}
specify new pattern using 〈data〉

\UsePatternFile{〈file〉}
sets default file for patterns

\LoadAllPatterns{〈file〉}
load all patterns in 〈file〉

\LoadPattern{〈name〉}{〈file〉}
load named pattern from 〈file〉

\AliasPattern{〈alias〉}{〈name〉}{〈file〉}
let 〈alias〉 denote pattern from 〈file〉.

Although pattern data may be specified directly us-
ing \newxypattern, it is more usual to load it from
a 〈file〉 in which many patterns are defined by name,
each on a separate line. By convention such files al-
ways end in .xyp (XY-pattern) so no extension should
be specified. The pattern is then requested using ei-
ther the name supplied in the file or by an alias. Once
\UsePatternFile has been used, then a null 〈file〉 ar-
gument to the other commands will still find patterns
in the default file. The default remains in effect for
the current level of TEX grouping.

For example, the following picture

uses ‘filled’ frames from the frame feature:

31

mac01 mac02 mac03 mac04 mac05 mac06 mac07 mac08

mac09 mac10 mac11 mac12 mac13 mac14 mac15 mac16

mac17 mac18 mac19 mac20 mac21 mac22 mac23 mac24

mac25 mac26 mac27 mac28 mac29 mac30 mac31 mac32

mac33 mac34 mac35 mac36 mac37 mac38

Figure 11: The 38 standard Macintosh patterns.

\AliasPattern{bricks}{mac12}{xymacpat}
\AliasPattern{bars}{mac08}{xymacpat}
\xy *+<5pc,3.1pc>{},{*[bricks]\frm{**}}
,*+<2.5pc>[o]{},*[bars]\frm{**}

\endxy

Pattern data A region is tiled using copies of a
single ‘cell’ regularly placed so as to seamlessly tile
the entire region. The 〈data〉 appearing as an argu-
ment to \newxypattern is ultimately passed to the
dvi-driver.

The simplest form of pattern data is: 〈num〉 〈Hex-
data〉, where the data is a 16-character string of
Hexadecimal digits; i.e. 0–9, A–F . Each Hex-digit
equates to 4 binary bits, so this data contains 64 bits
representing pixels in an 8 × 8 array. The 〈num〉 is
an integer counting the number of ‘0’s among the 64
bits. Taken as a fraction of 64, this number or its
complement, represents the average density of ‘on’
pixels within a single cell of the pattern. Drivers un-
able to provide the fine detail of a pattern may simply
use this number, or its complement, as a gray-level
or part of a colour specification for the whole region
to be tiled.

The file xymacpat.xyp contains defining data for the
38 standard patterns available with the Macintosh
Operating system. Figure 11 displays all these pat-
terns.

Rotating and Resizing Patterns Some imple-
mentations of patterns are sufficiently versatile to al-
low extra parameters to affect the way the pattern
data is interpreted. PostScript is one such imple-
mentation in which it is possible to rotate the whole

pattern and even to expand or contract the sizes of
the basic cell.

Due to the raster nature of output devices, not
all such requests can be guaranteed to produce aes-
thetic results on all devices. In practice only rota-
tions through specific angles (e.g 30◦, 45◦, 60◦) and
particular scaling ratios can be reliably used. Thus
there is no sophisticated interface provided by XY-pic
to access these features. However the ‘PostScript

escape’ mechanism does allow a form of access, when
a PostScript 〈driver〉 is handling pattern requests.

Special PostScript operators pa and pf set
the pattern angle (normally 0) and ‘frequency’ mea-
sured in cells per inch. Hence, when used as an
〈object〉-modifier, [! 30 pa 18.75 pq] rotates the
pattern by 30◦ clockwise and uses a smaller pat-
tern cell (larger frequency). The default frequency
of 12.5 = 300/(8× 3) means that each pixel in a pat-
tern cell corresponds, on a device of resolution 300dpi,
to a 3 × 3 square of device pixels; on such a device
18.75 uses 2× 2 squares.

At 300dpi a frequency of 9.375 = 300/(8 × 4)
uses 4 × 4 squares. These match the natural size
for pixels on a 75dpi screen and are pretty close for
72dpi screens. Though appropriate for screen dis-
plays, these are ‘too chunky’ for high quality printed
work. Doubling the frequency is too fine for some
patterns, hence the intermediate choice of 12.5 as de-
fault. In order for printed output to match the screen
view, a PostScript operator macfreq has been de-
fined to facilitate requests for 9.375, via [!macfreq].

The next diagram displays changes to the fre-

32

quency.

filled
pattern

9.375

filled
pattern

12.5

filled
pattern

18.75

filled
pattern

37.5

filled
pattern

9.375

filled
pattern

12.5

filled
pattern

18.75

filled
pattern

37.5

Saving patterns: When styles are saved using
〈word〉], see note 4k of §4, then the current pattern
(if any) is also saved. Subsequent use of [〈word〉]
recovers the pattern as well as colour and line-style
settings. This includes any explicit variations applied
using the “Style Escape” mechanism.

Here is a variation of an earlier example, with ex-
tra effects.

WVUTPQRS Kilroy
was here

\UsePatternFile{xymacpat}
\AliasPattern{bricks}{mac12}{}
\LoadPattern{mac28}{}\LoadPattern{mac05}{}
\xy *=0[! macfreq -45 pa][mac28][|=Bars]{}
,*+<12pc,4pc>{}*[bricks]\frm{**}
,-<3.5pc,0pt>,*+<2.65pc>[o]{},*[Bars]\frm{**}
,*[thicker]\frm{o},+<6pc,0pt>
,*+<5pc, 2.7pc>{},*[mac05]\frm{**},*\frm{-,}
,*[white]\txt\Large\bf\sf{Kilroy\\was here}
\endxy

15 Import graphics extension

Vers. 3.6 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{import}

This feature provides the ability to easy add labels
and annotations to graphics prepared outside TEX or
LATEX. An XY-pic graphics environment is established
whose coordinates match that within the contents of
the imported graphic, making it easy to specify ex-
actly where a label should be placed, or arrow drawn
to highlight a particular feature.

A command \xyimport is defined which is used,
in conjunction with imported graphics, to establish
a coordinate system appropriate to the particular
graphics. This enables 〈pos〉itions within the graphic
to be easily located, either for labelling or adding ex-
tra embellishing features. It is used in either of the
follow ways:

\xyimport(width,height){〈graphic〉}

\xyimport(width,height)(x-off,y-off){〈graphic〉}

Normally the 〈graphics〉 will be a box containing a
graphic imported using the commands from packages
such as graphics, epsf or epsfig, or using other
commands provided by the local TEX implementa-
tion. However the 〈graphic〉 could be any balanced
TEX material whatsoever; provided it occupies non-
zero size, both vertically and horizontally.

The width and height are 〈number〉s given in the
coordinate system for the contents of the 〈graphics〉.
These are not dimensions, but coordinate-lengths, us-
ing the units appropriate to the picture displayed by
〈graphic〉.

When provided, (x-off,y-off) give the distance
in coordinate units from bottom-left corner to where
the origin of coordinates should be located, usually
within area covered by the 〈graphic〉. Usually the
negatives of these numbers will give the coordinate
location of the bottom-left corner of the 〈graphic〉. If
no offsets are supplied then the origin is presumed to
lie at the bottom-left corner.

Normally the \xyimport command is used at the
beginning of an \xy..\endxy environment. It is not
necessary to give any basis setup, for this is deduced
by measuring the dimensions of the 〈graphic〉 and
using the supplied width, height and offsets. The
〈graphic〉 itself defines named 〈pos〉 called "import",
located at the origin and having appropriate extents
to describe the area covered by the 〈graphic〉. This
makes it particularly easy to surround the 〈graphic〉
with a frame, as on the left side of figure 12, or to
draw axes passing through the origin.

Here is the code used to apply the labelling in
figure 12:

\def\ellipA{\resizebox{6cm}{!}{%
\includegraphics{import1.eps}}}

\xy
\xyimport(3.7,3.7)(1.4,1.4){\ellipA}*\frm{-}
,!D+<2pc,-1pc>*+!U\txt{%
framed contents of graphics file}\endxy

\qquad\qquad
\xy\xyimport(3.7,3.7)(1.4,1.4){\ellipA}
,!D+<2pc,-1pc>*+!U\txt{Rational points
on the elliptic curve: $x^3+y^3=7$}

,(1,0)*+!U{1},(-1,0)*+!U{-1}
,(0,1)*+!R{1},(0,-1)*+!R{-1}
,(2,-1)*+!RU{P},(-1,2)*+!RU{-P}
,(1.3333,1.6667)*+!UR{-2P}
,(1.6667,1.3333)*!DL{\;2P}
,(-.5,1.9)*++!DL{3P},(1.9,-.5)*!DL{\;-3P}
,(-1,2.3)*+++!D{\infty}*=0{},{\ar+(-.2,.2)}
,(.5,2.3)*+++!D{\infty}*=0{},{\ar+(-.2,.2)}
,(2.3,-1)*+++!L{\infty}*=0{},{\ar+(.2,-.2)}
\endxy

33

import1.eps

framed contents of graphics file

import1.eps

Rational points on the elliptic curve: x3 + y3 = 7

1−1

1

−1
P

−P
−2P 2P

3P

−3P

∞__???
∞__???

∞
��???

Figure 12: importing a graphic for labelling

This example uses the LATEX 2ε standard
graphics package to import the graphics file
import1.eps; other packages could have been used
instead. e.g. epsfig, epsf, or the \picture
or \illustration commands in Textures on the
Macintosh.

The only possible problems that can occur are
when the graphics package is loaded after XY-pic has
been loaded. Generally it is advisable to have XY-pic
loading after all other macro packages.

16 Movie Storyboard extension

Vers. 3.5 by Kristoffer H. Rose 〈krisrose@brics.dk〉
Load as: \xyoption{movie}

This extension interprets the \scene primitive of the
movie class, setting the progress indicators to dummy
values. The following assumes that your are familiar
with the movie class.

The size of the frame is determined by the com-
mand

\MovieSetup{width=width,height=height,. . . }

(the . . . indicate the other arguments required by the
movie class but silently ignored by the XY-pic movie
extension).

Note: This extension still experimental and sub-
ject to change. The only documentation is in the
movie.cls source file.

17 PostScript backend

Vers. 3.7 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{ps}

XY-ps is a ‘back-end’ which provides XY-pic with the
ability to produce DVI files that use PostScript

\specials for drawing rather than the XY-pic fonts.
In particular this makes it possible to print XY-pic

DVI files on systems which do not have the ability
to load the special fonts. The penalty is that the
generated DVI files will only function with one par-
ticular DVI driver program. Hence whenever XY-ps is
activated it will warn the user:

XY-pic Warning: The produced DVI file
is not portable: It contains PostScript

\specials for 〈one particular〉 driver

A more complete discussion of the pros and cons of
using this backend is included below.

17.1 Choosing the DVI-driver

Including \xyoption{ps} within the document
preamble, tells XY-pic that the PostScript alterna-
tive to the fonts should be used, provided the means
to do this is also specified. This is done by also speci-
fying a dvi-driver which is capable of recognising and
interpreting \special commands. Although the file
xyps.tex is read when the option request is encoun-
tered, the macros contained therein will have no effect
until an appropriate driver has also been loaded.

34

With LATEX 2ε both the backend and driver may
be specified, along with other options, via a single
\usepackage command, see [4, page 317]; e.g.

\usepackage[ps,textures,color,arrow]{xy}

The rebindings necessary to support PostScript are
not effected until the \begin{document} command is
encountered. This means that an alternative driver
may be selected, by another \xyoption{〈driver〉},
at any time until the \begin{document}. Only the
macros relevant to last named 〈driver〉 will actually
be installed.

The following table describes available support for
PostScript drivers. Please consult the individual
driver sections in part IV for the exact current list.
For each 〈driver〉 there is a corresponding file named
xy〈driver〉.tex which defines the necessary macros,
as well as a documentation file named xy〈driver〉.doc.
The spelling is all lower-case, designed to be both de-
scriptive and unique for the 1st 8 characters of the
file names.

〈driver〉 Description
dvips Tomas Rokicki’s dvips

dvips Karl Berry’s dvipsk
dvips Thomas Kiffe’s dvips for Macintosh
textures Blue Sky Research’s Textures v1.7+
16textures Blue Sky Research’s Textures v1.6
oztex Andrew Trevorrow’s OzTEX v1.8+
17oztex Andrew Trevorrow’s OzTEX v1.7

Other DVI-drivers may also work using one of
these files, if they use conventions similar to dvips,
OzTEX or Textures. Alternatively it should not be
too difficult to write the files required, using these
as a basis indicating the type of information needed
to support the specific \special commands. Any-
one attempting to do this should inform the author
and convey a successful implementation to him for
inclusion within the XY-pic distribution.

Note: In some previous versions of XY-
pic the PostScript backend and driver were
loaded simultaneously by a command of the
form \UsePSspecials{〈driver〉}. For backward-
compatibility these commands should still work,
but now loading the latest version of the given
〈driver〉. However their future use is discouraged
in favour of the option-loading mechanism, via
\xyoption{〈driver〉}. This latter mechanism is more
flexible, both in handling upgrades of the actual
driver support and in being extensible to support
more general forms of \special commands.

Once activated the PostScript backend can be

turned off and on again at will, using the user follow-
ing commands:

\NoPSspecials cancels PostScript

\UsePSspecials {} restores PostScript

These obey normal TEX scoping rules for environ-
ments; hence it is sufficient to specify \NoPSspecials
within an environment or grouping. Use of Post-

Script will be restored upon exiting from the envi-
ronment.

17.2 Why use PostScript

At some sites users have difficulty installing the ex-
tra fonts used by XY-pic. The .tfm files can always
be installed locally but it may be necessary for the
.pk bitmap fonts (or the .mf METAFONT fonts) to
be installed globally, by the system administrator, for
printing to work correctly. If PostScript is avail-
able then XY-ps allows this latter step to be bypassed.

Note: with XY-ps it is still necessary to have the
.tfm font metric files correctly installed, as these con-
tain information vital for correct typesetting.

Other advantages obtained from using XY-ps are the
following:

• Circles and circle segments can be set for arbi-
trary radii.

• solid lines are straighter and cleaner.

• The range of possible angles of directionals is
greatly increased.

• Spline curves are smoother. True dotted and
dashed versions are now possible, using equally
spaced segments which are themselves curved.

• The PostScript file produced by a driver from
an XY-ps DVI file is in general significantly
smaller than one produced by processing an ‘or-
dinary’ DVI file using the same driver. One rea-
son for this is that no font information for the
XY-pic fonts is required in the PostScript file;
this furthermore means that the use of XY-pic
does not in itself limit the PostScript file to
a particular resolution.9

• The latest version of XY-pic now enables special
effects such as variable line thickness, gray-level
and colour. Also, rotation of text and (por-
tions of) diagrams is now supported with some
drivers. Similarly whole diagrams can be scaled
up or down to fit a given area on the printed
page. Future versions will allow the use of re-
gions filled with colour and/or patterns, as well
as other attractive effects.

9Most TEX PostScript drivers store the images of characters used in the text as bitmaps at a particular resolution. This means
that the PostScript file can only be printed without loss of quality (due to bitmap scaling) at exactly this resolution.

35

Some of the above advantages are significant, but
they come at a price. Known disadvantages of using
XY-ps include the following:

• A DVI file with specials for a particular Post-

Script driver can only be previewed if a pre-
viewer is available that supports exactly the
same \special format. A separate Post-

Script previewer will usually be required.

However recent versions of xdvi sup-
port viewing of PostScript using either
the GhostScript program or via “Display
PostScript”. The PostScript produced by
XY-ps can be viewed this way

• DVI files created using XY-ps in fact lose their
“device-independence”. So please do not dis-
tribute DVI files with PostScript specials—
send either the TEX source code, expecting the
recipient to have XY-pic ©̂̈, or send a (com-
pressed) PostScript file.

The latter comment applies to files in which any spe-
cial ‘back-end’ support is required, not just to Post-

Script. Of course it can be ignored when you know
the configuration available to the intended recipient.

PostScript header file: With some DVI-drivers
it is more efficient to have the PostScript com-
mands that XY-ps needs loaded initially from a sepa-
rate “header” file. To use this facility the following
commands are available. . .

\UsePSheader {}
\UsePSheader {<filename>}
\dumpPSdict {<filename>}
\xyPSdefaultdict

Normally it is sufficient to invoke \UsePSheader{},
which invokes the default name of xy37dict.pro, re-
ferring to the current version of XY-pic. The optional
〈filename〉 allows a different file to be used. Plac-
ing \dumpPSdict{..} within the document preamble
causes the dictionary to be written to the supplied
〈filename〉.

See the documentation for the specific driver to
establish where the dictionary file should be located
on any particular TEX system. Usually it is suffi-
cient to have a copy in the current working directory.
Invoking the command \dumpPSdict{} will place a
copy of the requisite file, having the default name, in
the current directory. This file will be used as the
dictionary for the current processing, provided it is
on the correct directory path, so that the driver can
locate it when needed. Consult your local system
administrator if you experience difficulties.

18 TPIC backend

Vers. 3.3 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{tpic}

This option allows the XY-pic fonts to be replaced by
tpic \specials, when used with a dvi-driver capa-
ble of supporting them. Extra capabilities include
smoother lines, evenly spaced dotted/dashed curves,
variable line-widths, gray-scale fills of circles, ellipses
and polygonal regions.

Use of tpic \specials offers an alternative to
the XY-pic fonts. However they require a dvi-driver
that is capable of recognizing and interpreting them.
One such viewer is xdvik, Karl Berry’s modification
to the xdvi viewer on unix

10 systems running X-
windows or a derivative. dvipsk, Karl Berry’s mod-
ification to dvips also handles tpic \specials, so
xdvik/dvipsk is an good combination for quality
screen-display and PostScript printing.

Once loaded using \xyoption{tpic}, with an ap-
propriate 〈driver〉 also specified either already or sub-
sequently, the following commands are available to
turn the tpic backend off/on.

\NoTPICspecials turns off tpic specials.
\UseTPICspecials reinstates tpic specials.

There is a limit to the number of points allowable
in a path. For paths constructed by XY-pic, which
includes spline curves, when the limit is reached the
path is automatically flushed and a new path com-
menced. The following command can be used to cus-
tomise this limit—initially set at 300 for use with
xdvi—to suit alternative 〈driver〉s.

\maxTPICpoints{〈num〉} set maximum for paths

Of the curves defined in the xycurve extension, only
solid spline curves are supported. This is done by
treating the spline as a polygon (poly-line) with many
segments. The dotted or dashed variants do not work
correctly.

Implementations of tpic draw dashed polygons
such that the start and finish of each segment is solid.
Since these segments can be very short, the effect is
simply to create a solid line. Similarly the shortness
of the segments tends to give nothing at all for large
portions of a dotted curve. What is needed is an im-
plementation whereby the on/off nature of a dashed
or dotted polygon is determined by the accumulated
length, not the length along just the current segment.

10
Unix is a trademark of Bell Labs.

36

19 em-TeX backend

Vers. 3.3 by Ross Moore 〈ross@mpce.mq.edu.au〉
Load as: \xyoption{emtex}

Eberhard Matte’s em-TEX implementation provides
a suite of \special commands to facilitate the draw-
ing of lines, both on-screen and with various printing
devices. This ‘back-end’ extension allows the lines in
XY-pic diagrams to be drawn using these methods.

Note that this extension does not have to be used
with em-TEX. Better results may be obtained using
the PostScript back-end and dvips 〈driver〉, since
a version of dvips is available for em-TEX. How-
ever, in particular for screen previewing purposes, it
may be convenient to use this back-end. Further-
more note that dvips is capable of supporting em-
TEX\specials.

Once loaded using \xyoption{emtex}, with an
appropriate 〈driver〉 also specified either already or
subsequently, the following commands are available
to turn the em-TEX backend off/on.

\NoEMspecials turns off em-TEX specials.
\UseEMspecials reinstates em-TEX specials.

Of the curves defined in the xycurve extension, only
solid spline curves are supported. This is done by
treating the spline as a polygon (poly-line) with many
segments.

20 Necula’s extensions

Vers. 0.0 by George C. Necula 〈necula@cs.cmu.edu〉
Load as: \xyoption{necula}

This option contains two extensions of the XY-pic
kernel: A way to expand TEX macros in object
〈modifier〉s, and a way to specify arbitrary polygons
as the 〈shape〉 of an object.

20.1 Expansion

The special syntax e|〈macros〉| is introduced in an
object 〈modifier〉s and 〈coord〉inates. It expands the
given TEX 〈macros〉 (with \edef) before reinterpre-
tation as a 〈modifier〉 of 〈coord〉, respectively.

This code may become part of the XY-pic kernel
at a certain point.

20.2 Polygon shapes

A polygon 〈shape〉 is specified as

[P:〈pos〉,. . . ,〈pos〉]

where [P:p1,. . . ,pn] denotes the shape obtained by
tracking the edge with each pi a position relative to
the object reference point. 〈vector〉s and 〈corner〉s
can be used directly; otherwise use -p to get the rel-
ative position.

Note: Do not use {} or [] in the 〈pos〉itions.
Bug: The algorithm assumes that the reference

point is always inside the polygon.
It is possible to frame polygons is also possible.
Bug: This code should be merged with the

‘frame’ and ‘poly’ options.
The example at the end of §?? illustrates the ex-

tensions.

Part III

Features
This part documents the notation added by each
standard feature option. For each is indicated the
described version number, the author, and how it is
loaded.

The first two, ‘all’ and ‘dummy’, described in §§21
and 22, are trivial features that nevertheless prove
useful sometimes. The next two, ‘arrow’ and ‘2cell’,
described in §23 and 24, provide special commands
for objects that ‘point’. The following, ‘matrix’
in §25, ‘graph’ in §26, ‘poly’ in §27, and ‘knot’ in §30,
are input modes that support different overall struc-
turing of (parts of) XY-pictures.

21 All features

Vers. 3.3 by Kristoffer H. Rose 〈krisrose@brics.dk〉
Load as: \xyoption{all}

As a special convenience, this feature loads a subset
of XY-pic,11 namely the extensions: curve (cf. §8),
frame (§9), cmtip (§10), line (§11), rotate (§12),
color (§13), and the following features: matrix
(§25), arrow (§23), and graph (§26).

22 Dummy option

Vers. 3.3 by Kristoffer H. Rose 〈krisrose@brics.dk〉
Load as: \xyoption{dummy}

This option is provided as a template for new options,
it provides neither features nor extensions but it does
count how many times it is requested.

11The name ‘all’ hints at the fact that these were all the available options at the time ‘all’ was added.

37

23 Arrow and Path feature

Vers. 3.5 by Kristoffer H. Rose 〈krisrose@brics.dk〉
Load as: \xyoption{arrow}

This feature provides XY-pic with the arrow paradigm
presented in [12].

Note: \PATH command incompatibly changed for
version 3.3 (the \ar command is unaffected).

The basic concept introduced is the path: a con-
nection that starts from c (the current object), ends
at a specified object, and may be split into sev-
eral segments between intermediate specified objects
that can be individually labelled, change style, have
breaks, etc.
§23.1 is about the \PATH primitive, including the

syntax of paths, and §23.2 is about the \ar customi-
sation of paths to draw arrows usingXY-pic directional
objects.

23.1 Paths

The fundamental commands of this feature are \PATH
and \afterPATH that will parse the 〈path〉 according
to the grammar in figure 13 with notes below.

Notes

23a. An 〈action〉 can be either of the characters =/.
The associated 〈stuff〉 is saved and used to call

\PATHaction〈action〉{〈stuff〉}

before and after each segment (including all
〈labels〉) for = and /, respectively.

The default \PATHaction macro just expands to
“\POS 〈stuff〉 \relax” thus 〈stuff〉 should be of
the form 〈pos〉 〈decor〉. The user can redefine
this—in fact the \ar command described in §23.2
below is little more than a special \PATHaction
command and a clever defaulting mechanism.

23b. It is possible to include a number of de-
fault 〈labels〉 before the 〈labels〉 of the
actual 〈segment〉 are interpreted, using
~〈which〉{〈labels〉}. The specified 〈which〉 deter-
mines for which segments the indicated 〈labels〉
should be prefixed as follows:

〈which〉 applied to. . .
< next segment only
> last segment only
= every segment

(when several apply to the same segment they
are inserted in the sequence <>+).

This is useful to draw connections with a ‘center
marker’ in particular with arrows, e.g., the ‘map-
sto’ example explained below can be changed into
a ‘breakto’ example: typing

\xy*+{0}\PATH
~={**\dir{-}}
~>{|>*\dir{>}}
~+{|*\dir{/}}
’(10,1)*+{1} ’(20,-2)*+{2} (30,0)*+{3}

\endxy

will typeset

0 1bbbb �
2

UUUU 	 3eeee � 22

Note, however, that what goes into ~+{. . . } is
〈labels〉 and thus not a 〈pos〉 – it is not an action
in the sense explained above.

23c. Specifying ~{〈stuff〉} will set the “failure contin-
uation” to 〈stuff〉. This will be inserted when the
last 〈segment〉 is expected—it can even replace it
or add more 〈segment〉s, i.e.,

\xy *+{0} \PATH ~={**\dir{-}}
~{’(20,-2)*+{2} (30,0)*+{3}} ’(10,1)*+{1}

\endxy

is equivalent to

\xy *+{0} \PATH ~={**\dir{-}}
’(10,1)*+{1} ’(20,-2)*+{2} (30,0)*+{3}

\endxy

typesetting

0 1bbbb
2

UUUU 3eeee

because when \endxy is seen then the parser
knows that the next symbol is neither of the char-
acters ~’‘ and hence that the last 〈segment〉 is to
be expected. Instead, however, the failure con-
tinuation is inserted and parsed, and the 〈path〉
is finished by the inserted material.

Failure continuations can be nested:

\xy *+{0} \PATH ~={**\dir{-}}
~{~{(30,0)*+{3}}
’(20,-2)*+{2}} ’(10,1)*+{1}

\endxy

will also typeset the connected digits.

23d. A “straight segment” is interpreted as follows:

1. First p is set to the end object of the previ-
ous segment (for the first segment this is c
just before the path command) and c is set
to the 〈pos〉 starting the 〈segment〉, and the
current 〈slide〉 is applied.

38

Syntax Action

\PATH 〈path〉 interpret 〈path〉
\afterPATH{〈decor〉} 〈path〉 interpret 〈path〉 and then run 〈decor〉

〈path〉 −→ ~ 〈action〉 { 〈stuff〉 } 〈path〉 set 〈action〉23a to 〈stuff〉
| ~ 〈which〉 { 〈labels〉 } 〈path〉 add 〈labels〉 prefix for some segments23b

| ~ { 〈stuff〉 } 〈path〉 set failure continuation23c to 〈stuff〉
| ’ 〈segment〉 〈path〉 make straight segment23d

| ‘ 〈turn〉 〈segment〉 〈path〉 make turning segment23f

| 〈segment〉 make last segment23g

〈turn〉 −→ 〈diag〉 〈turnradius〉 1/4 turn23f starting in 〈diag〉
| 〈cir〉 〈turnradius〉 explicit turn23f

〈turnradius〉 −→ 〈empty〉 use default turn radius
| / 〈dimen〉 set turnradius to 〈dimen〉

〈segment〉 −→ 〈path-pos〉 〈slide〉 〈labels〉 segment23e with 〈slide〉 and 〈labels〉

〈slide〉 −→ 〈empty〉 | < 〈dimen〉 > optional slide23h: 〈dimen〉 in the “above” direction

〈labels〉 −→ ^ 〈anchor〉 〈it〉 〈alias〉 〈labels〉 label with 〈it〉23i above 〈anchor〉
| _ 〈anchor〉 〈it〉 〈alias〉 〈labels〉 label with 〈it〉23i below 〈anchor〉
| | 〈anchor〉 〈it〉 〈alias〉 〈labels〉 break with 〈it〉23j at 〈anchor〉
| 〈empty〉 no more labels

〈anchor〉 −→ - 〈anchor〉 | 〈place〉 label/break placed relative to the 〈place〉 where - is a
synonym for <>(.5)

〈it〉 −→ 〈digit〉 | 〈letter〉 | {〈text〉} | 〈cs〉 〈it〉 is a default label23k

| * 〈object〉 〈it〉 is an 〈object〉
| @ 〈dir〉 〈it〉 is a 〈dir〉ectional
| [〈shape〉] 〈it〉 use [〈shape〉] for 〈it〉

〈alias〉 −→ 〈empty〉 | ="〈id〉" optional name for label object23l

Figure 13: 〈path〉s

2. Then the = and < segment actions are ex-
panded (in that sequence) and the < action
is cleared. The resulting p and c become the
start and end object of the segment.

3. Then all 〈labels〉 (starting with the ones de-
fined as described in note 23b below).

23e. A segment is a part of a 〈path〉 between a previ-
ous and a new target given as a 〈path-pos〉: nor-
mally this is just a 〈pos〉 as described in §3 but
it can be changed to something else by changing
the control sequence \PATHafterPOS to be some-
thing other than \afterPOS.

23f. A turning segment is one that does not go all
the way to the given 〈pos〉 but only as far as re-
quired to make a turn towards it. The c is set
to the actual turn object after a turning segment
such that subsequent turning or other segments

will start from there, in particular the last seg-
ment (which is always straight) can be used to
finish a winding line.

What the turn looks like is determined by the
〈turn〉 form:

〈empty〉 Nothing between the ‘ and the 〈pos〉
is interpreted the same as giving just the
〈diag〉 last used out of a turn.

〈diag〉 Specifying a single 〈diag〉 d is the same as
specifying either of the 〈cir〉cles d^ or d_, de-
pending on whether the specified 〈pos〉 has
its center ‘above’ or ‘below’ the line from p
in the 〈diag〉onal direction.

〈cir〉 When a full explicit 〈cir〉cle is available
then the corresponding 〈cir〉cle object is
placed such that its ingoing direction is a
continuation of a straight connection from p
and the outgoing direction points such that

39

a following straight (or last) segment will
connect it to c (with the same slide).

Here is an example using all forms of 〈turn〉s:

base

A

GF oo a

B

@A�� b
C

ABECD//
c

E??????????????????

__

d

oo
e

was typeset by

\xy <4pc,0pc>:(0,0)
*+\txt{base}="base"
\PATH ~={**\dir{-}?>*\dir{>}}

‘l (-1,-1)*{A} ^a
‘ (1,-1)*{B} ^b
‘_ul (1, 0)*{C} ^c
‘ul^l "base" ^d

"base" ^e
\endxy

Bug: Turns are only really resonable for paths
that use straight lines like the one above.

Note: Always write a valid 〈pos〉 after a 〈turn〉,
otherwise any following ^ or _ labels can con-
fuse the parser. So if you intend the ^r in ‘^r
to be a label then write ‘,^r, using a dummy ,
〈pos〉ition.

The default used for turnradius can be set by the
operation

\turnradius 〈add op〉 {〈dimen〉}

that works like the kernel \objectmargin etc.
commands; it defaults to 10pt.

Exercise 23: Typeset

A@GAFBECD@GAFBE
99

using 〈turn〉s.

23g. The last segment is exactly as a straight one ex-
cept that the > action (if any) is executed (and
cleared) just after the < action.

23h. “Sliding” a segment means moving each of the
p, c objects in the direction perpendicular to the
current direction at each.

23i. Labelling means that 〈it〉 is dropped relative to
the current segment using a ? 〈pos〉ition. This
thus depends on the user setting up a connection
with a ** 〈pos〉 as one of the actions—typically
the = action is used for this (see note 23d for the

details). The only difference between ^ and _ is
that they shift the label in the ^ respectively _
direction; for straight segments it is placed in the
“superscript” or “subscript” position.

Labels will be separated from the connection by
the labelmargin that you can set with the opera-
tion

\labelmargin 〈add op〉 {〈dimen〉}

that works like the kernel \objectmargin com-
mand; in fact labelmargin defaults to use object-
margin if not set.

23j. Breaking means to “slice a hole” in the connec-
tion and insert 〈it〉 there. This is realized by
typesetting the connection in question in subseg-
ments, one leading to the break and one contin-
uing after the break as described in notes 23a
and 23d.

The special control sequence \hole is provided
to make it easy to make an empty break.

23k. Unless 〈it〉 is a full-fledged 〈object〉 (by using
the * form), it is typeset using a \labelbox ob-
ject (initially similar to \objectbox of basic XY-
pic but using \labelstyle for the style).

Remark: You can only omit the {}s around sin-
gle letters, digits, and control sequences.

23l. A label is an object like any other in the XY-
picture. Inserting an 〈alias〉 ="〈id〉" saves the
label object as "〈id〉" for later reference.

Exercise 24: Typeset

A
33fffffffff

label
��55

23.2 Arrows

Arrows are paths with a particularly easy syntax for
setting up arrows with tail , stem, and head in the
style of [12]. This is provided by a single 〈decor〉ation
the syntax of which is described in figure 14 (with the
added convention that a raised ‘*’ means 0 or more
repetitions of the preceeding nonterminal).

40

