\documentclass[12pt]{article} % \useAMS % \newcommand{\qed %}{ \hspace{\fill} \framebox(9,10)\\ } %\usepackage{pictex} %\usepackage{graphpap} \usepackage[all]{xy} \xyoption{knot} \xyoption{curve} \newcommand{\answer}{ {\bf Answer: } } \newcommand{\qtangle}{$$ % v twists \xy 0;/r1pc/: ,{\vover \vtwistneg \vtwistneg \vtwistneg }\endxy \xy (0,0) ; (12,0) **\crv{ (6,3) } \endxy %\xy @={(0,0),(6,0)},**@={-}\endxy %\xy 0;/r1pc/: %,{ \xbendr- }\endxy %\xy 0;/r1pc/:+(0,-.5) %,{ \zbendh }\endxy % % h twists \xy 0;/r1pc/: ,{\htwist\hcross\hcross\hcross}\endxy \xy 0;/r1pc/:+(0,1) ,{ \xbendl }\endxy \hspace{-6pc} \xy 0;/r1pc/:+(0,-1) ,{ \hcap- }\endxy %straight piece \xy (0,-8.5) ; (6,-8.5) **\dir{-} \endxy \hspace{1pc} \xy (0,-8.5);(6,-8.5) **\dir{-} \endxy \xy 0;/r1pc/:+(0,-1) ,{ \hcap }\endxy \hspace{-3.4pc} \xy 0;/r1pc/:+(0,-2) ,{ \vunder \vtwist \vtwist \vunder-}\endxy %\hspace{-1pc} \xy 0;/r1pc/:+(0,-6) ,{ \zbendh }\endxy \hspace{-8.29pc} \xy 0;/r1pc/:+(0,-5) ,{ \zbendv }\endxy $$} % end command \newcommand{\degree}{^{\circ} } \newcommand{\lv}{ \left\langle } \newcommand{\rv}{ \right\rangle } % code for enlarging margins, just delete \% % \setlength{\oddsidemargin}{0in} % \setlength{\textwidth}{6.25in} % \setlength{\oddsidemargin}{0in} % \setlength{\textwidth}{6.25in} \newcounter{mycounter} \setcounter{mycounter}{1} \newcommand{\prob}[1]{\begin{enumerate} \item[\themycounter.]% \addtocounter{mycounter}{1} #1 \end{enumerate} } \newcommand{\newprob}[1]{\newpage \begin{enumerate} \item[\themycounter.]% \addtocounter{mycounter}{1} #1 \end{enumerate} } \newcommand{\bigprob}[1]{\begin{enumerate} \item[\themycounter.]% \addtocounter{mycounter}{1} #1 \vspace{2.5in} \end{enumerate} } \newcommand{\donetex}{ \vspace{\fill} \hspace*{\fill} Done in \LaTeX. } \begin{document} \noindent{\tiny mth 112} \centerline{Using \Xy-pic} \bigskip Here is an attempt to draw a rational tangle $(p , q)$. Amazingly enough, there is an extremely simple way to tell if two rational tangles are equivalent. Suppose the two tangles are given by the sequences of integers $-2\ 3\ 2$ and $3\ {-2}\ 3$. We compute the so-called {\bf continued fractions} corresponding to these integers. The continued fraction corresponding to $-2\ 3\ 2$ is produced by, \bigskip \bigskip \begin{figure}[ht] \qtangle %\center{\includegraphics[scale=.5]{thesisfig1.png} } \caption{A Rational Tangle} \end{figure} \vspace{1.5in} \begin{figure}[ht] $$ 2 + {1 \over 3 + (1/-2)} $$ %\center{\includegraphics[scale=.5]{thesisfig1.png} } \caption{Continued Fration} \end{figure} \newpage $$ \xy @={(0,0),(3,0)},**@={-}\endxy $$ \bigskip $$ \xy @={(0,-10),(10,3),(20,-5)}, s0="prev" @@{;"prev";**@{-}="prev"} \endxy $$ % knot code extra % \xy 0;/r1pc/:+(-3,-3) %,{\xbendl }\endxy \donetex \end{document}