Worksheet # 2

Don't forget to use your neighbors and play around with the ideas presented here.

1. Everyone knows the formula $Area = width \times length$ for a rectangular field. The formula gets more complicated if you want to construct two corrals of equal size as in the figure below.

Come up with an equation that represents the *Area* of the two corrals. Enter it into the **Numeric Solver** in your calculator and answer the following questions.

Find the Area if:

w = 15	l = 27	A =

w = 55 l = 220 A =

1

mth 93

Bradford

w = 55	l = 550	A =
w = 200	l = 75	A =
w = -8	l = 103	A =

Find the *width* if:

l = 100	A = 6785	w =
l = 525	A = 185,000	w =
l = 430	A = 260,580	w =
l = 600	A = 878,400	w =

Find the length if:

w = 25	A = 6,250	l =
w = 73.5	A = 12,300	l =
w = 79	A = 22,752	l =
$w = \frac{1}{100}$	A = 3	l =

Find the equation for the *Perimeter* of our two corrals and enter it into the **Numeric Solver**. Answer the following questions.

Find the *Perimeter* if:

w = 25 l = 36 P =

w = 120	l = 180	P =

$$w = 43.789$$
 $l = 59.231$ $P =$

Find length if:

w = 75	P = 550	l =
w = 23	P = 293	l =
w = 100	P = 726	l =
w = 2,250	P = 1,000	l =

Find the *width* if:

l = 32.3	P = 185.3	w =
l = 37	P = 160	w =
l = 200	P = 1367	w =
l = 8	P = .01	w =

2. Let's investigate an equation that can have more than one solution. Enter the following using the *times* button, \times ,

$$a \cdot x^{\wedge} 2 + b \cdot x + c = 0$$

into your Numeric Solver.

Give the variables the following values,

a = -1 , b = 2.5 , c = 21 .

The remaining unknown \mathbf{x} has two possible solutions. One near -5 and one near 5. Find them.

Give the variables the values a=-.1 , b=.5 , c=5 , and find the two solutions.

Given $a=\frac{1}{6}$, $b=3+\frac{1}{3}$, $c=5+\frac{1}{3}.$ Both the solutions for ${\bf x}$ are negative. Find them.

Given a=.25 , b=-7 , c=49. There is only one solution for ${\bf x}.$ Find it.

Suppose we want x = 2 to be a solutions of the equation. Let b = 6 and c = -3. What does the **Numeric Solver** get for a?

3. Let us use the **Numeric Solver** for economics, enter the following cost function.

$$cost = fixed + a \cdot q^{\wedge}3 + b \cdot q^{\wedge}2 + c \cdot q$$

Give the variables the following values, fixed = 2000 a = .0033b = -1.5c = 225

To find the cost producing a quantity of 150 units make q = 150. Find the cost.

Find the cost for q = 50, 100, and 200.

Find what quantity keeps cost at \$12000.

Change our variables to a = .5 , b = -2 , c = 100. What happens to cost?

Solve the following systems of equations.

Done in $T_E X$.