Functions and their Representations

Using Technology to Explore Functions

Example: Use technology to create a table of function values for the function *F* denoted by $F(x) = \frac{1}{2}x^2 - 21x - 275$

X	F(x)

Use the table to create an appropriate viewing window for *F*.

The x interval could be: _____

The y interval could be: _____

Example: For the function k defined by $k(x) = 15(x+10)^2 - 19$, use technology to determine the following. Round answers as necessary.

a) Any intercepts: _____

b) The vertex:_____

c) The domain:_____

d) The range:_____

Example: Let g(x) = (100 - 3x)(20 + 5x) and h(x) = 215x + 500. Use graphing technology to determine the following.

a) What are the points of intersection for these two functions?

b) Solve g(x) = h(x)

The solution set is _____

- c) Solve g(x) > h(x)The solution set is _____
- d) Solve $g(x) \le h(x)$ The solution set is _____

Example: Graphically solve the following equation or inequality.

a)
$$2x^3 - 5x + 1 = -\frac{1}{2}x + 1$$

The solution set is _____

b) $-0.05x^2 - 2.5x - 20.1 < 0.05x^2 + 1.9x + 19.2$

The solution set is _____