MTH 261 Linear Algebra Summer 2017

The Matrix of a Linear Transformation

Find partners, and follow the instructions. You will not turn this in, but you must be working diligently to get attendance credit.

1. Let T from \mathbb{R}^2 to \mathbb{R}^3 be such that

$$T: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x+y \\ 2x+y \\ 3x-y \end{bmatrix}$$

- (a) Find the matrix for T with respect to the standard coordinate vectors, A_T .
- (b) Find $T\left(\begin{bmatrix} 2\\ -2 \end{bmatrix}\right)$ in two ways: by directly using the rule for T and by using the matrix A_T .

2. Identify the space of 2×2 matrices with \mathbb{R}^4 by identifying each matrix in

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

with a coordinate vector from \mathbb{R}^4 . Let T be the linear transformation from $M_{2\times 2}$ to \mathbb{R}^2 given by $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto \begin{bmatrix} a+d \\ b-c \end{bmatrix}$.

- (a) Find A_T . (A_T is a matrix do you understand what dimensions it should have?)
- (b) Find $T\left(\begin{bmatrix} 1 & 2\\ 3 & 2 \end{bmatrix}\right)$ in two ways: by directly using the rule for T and by using the matrix A_T .

- 3. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the operator that rotates \mathbb{R}^2 about the origin counterclockwise by an angle of 45°.
 - (a) Find the matrix for T with respect to the standard basis.
 - (b) Find $T\left(\begin{bmatrix}10\\2\end{bmatrix}\right)$.

4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that first rotates vectors about the origin by 90° clockwise, and then reflects perpendicularly through the line ℓ .

