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To All

HTML, PDF, and print. This book is freely available as an html eBook, a pdf for reading on a screen, and
a pdf intended for printing. Additionally, a printed and bound copy is available for purchase at low cost.
All versions offer the same content and are synchronized such that cross-references match across versions.
They can each be found at pcc.edu/orcca.

There are some differences between the html eBook, pdf screen version, and pdf-for-print version.

• The html eBook offers interactive elements, easier navigation than print, and its content is accessible
in ways that a pdf cannot be. It has content (particularly in appendices) that is omitted from the pdf
versions for the sake of economy. It requires no more software than a modern web browser with
internet access.

• Two pdf versions can be downloaded and then accessed without the internet. One version is intended
to be read on a screen with a pdf viewer. This version retains full color, has its text centered on the
page, and includes hyperlinking. The other version is intended for printing on two-sided paper and
then binding. Most of its color has been converted with care to gray scale. Text is positioned to the left
or right of each page in a manner to support two-sided binding. Hyperlinks have been disabled.

• Printed and bound copies are available for purchase online. Up-to-date information about purchasing
a copy should be available at pcc.edu/orcca. Contact orcca-group@pcc.edu if you have trouble finding
the latest version online. Any royalties generated from these sales support OER development and
maintenance at PCC and/or scholarships to PCC students.

Copying Content. The source files for this book are available through pcc.edu/orca, and openly licensed
for use. However, it may be more conveneient to copy certain things directly from the html eBook.

The graphs and other images that appear in this manual may be copied in various file formats using the
html eBook version. Below each image are links to .png, .eps, .svg, .pdf, and .tex files for the image.

Mathematical content can be copied from the html eBook. To copy math content into MS Word, right-
click or control-click over the math content, and click to Show Math As MathML Code. Copy the resulting
code, and Paste Special into Word. In the Paste Special menu, paste it as Unformatted Text. To copy
math content into LATEX source, right-click or control-click over the math content, and click to Show Math As
TeX Commands.

Tables can be copied from the html eBook version and pasted into applications like MSWord. However,
mathematical content within tables will not always paste correctly without a little extra effort as described
above.
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Accessibility. The html eBook version is intended to meet or exceed web accessibility standards. If you
encounter an accessibility issue, please report it.

• All graphs and images should have meaningful alt text that communicates what a sighted person
would see, without necessarily giving away anything that is intended to be deduced from the image.

• All math content is rendered using MathJax. MathJax has a contextual menu that can be accessed in
several ways, depending on what operating system and browser you are using. The most common
way is to right-click or control-click on some piece of math content.

• In the MathJax contextual menu, you may set options for triggering a zoom effect on math content,
and also by what factor the zoom will be. Also in the MathJax contextual menu, you can enable the
Explorer, which allows for sophisticated navigation of the math content.

• A screen reader will generally have success verbalizing the math content from MathJax. With cer-
tain screen reader and browser combinations, you may need to set some configuration settings in the
MathJax contextual menu.

Tablets and Smartphones. PreTeXt documents like this book are “mobile-friendly.” When you view the
html version, the display adapts to whatever screen size or window size you are using. A math teacher
will usually recommend that you do not study from the small screen on a phone, but if it’s necessary, the
html eBook gives you that option.

WeBWorK for Online Homework. Most exercises are available in a ready-to-use collection of WeBWorK
problem sets. Visit webwork.pcc.edu/webwork2/orcca-demonstration to see a demonstration WeBWorK
course where guest login is enabled. Anyone interested in using these problem sets may contact the project
leads. The WeBWorK set defintion files and supporting files should be available for download from pcc.edu/
orcca.

Odd Answers. The answers to the odd homework exercises at the end of each section are not printed in
the pdf versions for economy. Instead, a separate pdf with the odd answers is available through pcc.edu/
orcca. Additionally, the odd answers are printed in an appendix in the html eBook.

Interactive and Static Examples. Traditionally, a math textbook has examples throughout each section.
This textbook uses two types of “example”:

Static These are labeled “Example.” Static examples may or may not be subdivided into a “statement”
followed by a walk-through solution. This is basically what traditional examples from math textbooks
do.

Active These are labeled “Checkpoint.” In the html version, active examples have WeBWorK answer
blanks where a reader may try submitting an answer. In the pdf output, active examples are almost
indistinguishable from static examples, but there is a WeBWorK icon indicating that a reader could
interact more actively using the eBook. Generally, a walk-through solution is provided immediately
following the answer blank.
Some readers using the html eBook will skip the opportunity to try an active example and go straight
to its solution. That is OK. Some readers will try an active example once and then move on to just read
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the solution. That is also OK. Some readers will tough it out for a period of time and resist reading the
solution until they answer the active example themselves.
For readers of the pdf, the expectation is to read the example and its solution just as they would read
a static example.
A reader is not required to try submitting an answer to an active example before moving on. A reader
is expected to read the solution to an active example, even if they succeed on their own at finding an
answer.

Reading Questions. Each section has a few “reading questions” immediately before the exercises. These
may be treated as regular homework questions, but they are intended to be something more. The intention
is that reading questions could be used in certain classroom models as a tool to encourage students to do
their assigned reading, and as a tool to measure what basic concepts might have been misunderstood by
students following the reading.

At some point it will be possible for students to log in to the html eBook and record answers to reading
questions for an instructor to review. The infrastructure for that feature is not yet in place at the time of
printing this edition, but please check pcc.edu/orcca for updates.

Alternative Video Lessons. Most sections open with an alternative video lesson (that is only visible in the
html eBook). These video play lists are managed through a YouTube account, and it is possible to swap
videos out for better ones at any time, provided that does not disrupt courses at PCC. Please contact us if
you would like to submit a different video into these video collections.
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Pedagogical Decisions

The authors and the greater PCC faculty have taken various stances on certain pedagogical and notational
questions that arise in basic algebra instruction. We attempt to catalog these decisions here, although this
list is certainly incomplete. If you find something in the book that runs contrary to these decisions, please
let us know.

• Basic math is addressed in an appendix. For the course sequence taught at PCC, this content is pre-
requisite and not within the scope of this book. However it is quite common for students in the basic
algebra sequence to have skills deficiencies in these areas, so we include the basic math appendix. It
should be understood that the content there does not attempt to teach basic math from first principles.
It is itended to be more of a review.

• Interleaving is our preferred approach, compared to a proficiency-based approach. To us, this means
that once the book covers a topic, that topic will be appear in subsequent sections and chapters in
indirect ways.

• We round decimal results to four significant digits, or possibly fewer leaving out trailing zeros. We
do this to maintain consistency with the most common level of precision that WeBWorK uses to assess
decimal answers. We generally round, not truncate, and we use the ≈ symbol. For example, π ≈ 3.142

and Portland’s population is ≈ 609500. On rare occasions where it is the better option, we truncate
and use an ellipsis. For example, π = 3.141 . . ..

• We offer alternative video lessons associated with each section, found at the top of most sections in the
html eBook. We hope these videos provide readers with an alternative to whatever is in the reading,
but there may be discrepancies here and there between the video content and reading content.

• We believe in opening a topic with some level of application rather than abstract examples, whenever
that is possible. From applications and practical questions, we move to motivate more abstract defin-
itions and notation. At first this may feel backwards to some instructors, with some easier examples
following more difficult contextual examples.

• Linear inequalities are not strictly separated from linear equations. The section that teaches how to
solve 2x + 3 = 8 is immediately followed by the section teaching how to solve 2x + 3 < 8. Our aim
is to not treat inequalities as an add-on optional topic, but rather to show how intimately related they
are to corresponding equations.

• When issues of “proper formatting” of student work arise, we value that the reader understand why
such things help the reader to communicate outwardly. We believe that mathematics is about more
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than understanding a topic, but also about understanding it well enough to communicate results to
others. For example we promote progression of equations like

1+ 1+ 1 = 2+ 1

= 3

instead of
1+ 1+ 1 = 2+ 1 = 3.

We want students to understand that the former method makes their work easier for a reader to read.
It is not simply a matter of “this is the standard and this is how it’s done.”

• When solving equations (or systems of linear equations), most examples should come with a check,
intended to communicate to students that checking is part of the process. In Chapters 1–4, these checks
will be complete simplifications using order of operations one step at a time. The later sections may
have more summary checks where steps are skipped or carried out together, or we promote entering
expressions into a calculator to check.

• Within a section, any first context-free example of solving some equation (or system) should summa-
rize with some variant of both “the solution is…” and “the solution set is….” Later examples can mix
it up, but always offer at least one of these.

• With applications of linear equations (not including linear systems), we limit applications to situations
where the setup will be in the form x+expression-in-x = C and also to certain rate problems where the
setup will be in the form at+bt = C. There are other classes of application problem (mixing problems,
interest problems, …) which can be handled with a system of two equations, and we reserve these until
linear systems are covered.

• With simplifications of rational expressions in one variable, we always include domain restrictions that
are lost in the simplification. For example, we would write x(x+1)

x+1
= x, for x ̸= −1. With multivariable

rational expressions, we are content to ignore domain restrictions lost during simplification.



Entering WeBWorK Answers

This preface offers some guidance with syntax for WeBWorK answers. WeBWorK answer blanks appear in
the active reading examples (called “checkpoints”) in the html eBook version of the book. If you are using
WeBWorK for online homework, then you will also enter answers into WeBWorK answer blanks there.

Basic Arithmetic. The five basic arithmetic operations are: addition, subtraction, multiplication, and rais-
ing to a power. The symbols for addition and subtraction are+ and−, and both of these are directly avialable
on most keyboards as + and -.

On paper, multiplication is sometimes written using × and sometimes written using · (a centered dot).
Since these symbols are not available on most keyboards, WeBWorK uses * instead, which is often shift-8
on a full keyboard.

On paper, division is sometimes written using ÷, sometimes written using a fraction layout like 4
2

, and
sometimes written just using a slash, /. The slash is available on most full keyboards, near the question
mark. WeBWorK uses / to indicate division.

On paper, raising to a power is written using a two-dimensional layout like 42. Since we don’t have a
way to directly type that with a simple keyboard, calculators and computers use the caret character, ^, as in
4^2. The character is usually shift-6.

Roots andRadicals. On paper, a square root is represented with a radical symbol like√ . Since a keyboard
does not usually have this symbol, WeBWorK and many computer applications use sqrt( ) instead. For
example, to enter

√
17, type sqrt(17).

Higher-index radicals are written on paper like 4
√
12. Again we have no direct way to write this using

most keyboards. In some WeBWorK problems it is possible to type something like root(4, 12) for the fourth
root of twelve. However this is not enabled for all WeBWorK problems.

As an alternative that you may learn about in a later chapter, 4
√
12 is mathematically equal to 121/4, so it

can be typed as 12^(1/4). Take note of the parentheses, which very much matter.

Common Hiccups with Grouping Symbols. Suppose you wanted to enter x+1
2

. You might type x+1/2,
but this is not right. The computer will use the order of operations and do your division first, dividing 1 by
2. So the computer will see x+ 1

2
. To address this, you would need to use grouping symbols like parentheses,

and type something like (x+1)/2.
Suppose you wanted to enter 61/4, and you typed 6^1/4. This is not right. The order of operations places

a higher priority on exponentiation than division, so it calculates 61 first and then divides the result by 4.
That is simply not the same as raising 6 to the 1

4
power. Again the way to address this is to use grouping

symbols, like 6^(1/4).
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Entering Decimal Answers. Often you will find a decimal answer with decimal places that go on and on.
You are allowed to round, but not by too much. WeBWorK generally looks at how many significant digits
you use, and generally expects you to use four or more correct significant digits.

“Significant digits” and “places past the decimal” are not the same thing. To count significant digits, read
the number left to right and look for the first nonzero digit. Then count all the digits to the right including
that first one.

The number 102.3 has four significant digits, but only one place past the decimal. This number could be
a correct answer to a WeBWorK question. The number 0.0003 has one significant digit and four places past
the decimal. This number might cause you trouble if you enter it, because maybe the “real” answer was
0.0003091, and rounding to 0.0003 was too much rounding.

Special Symbols. There are a handful of special symbols that are easy to write on paper, but it’s not clear
how to type them. Here are WeBWorK’s expectations.

Symbol Name How to Type∞ infinity infinity or inf
π pi pi

∪ union U

R the real numbers R

| such that | (shift-\, where \ is above the enter key)
≤ less than or equal to <=

≥ greater than or equal to >=

̸= not equal to !=
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Chapter 10

Factoring

10.1 Factoring Out the Common Factor

In Chapter 5, we learned how to multiply polynomials, such as when you start with (x+2)(x+3) and obtain
x2 + 5x + 6. This chapter, starting with this section, is about the opposite process—factoring. For example,
starting with x2 + 5x+ 6 and obtaining (x+ 2)(x+ 3). We will start with the simplest kind of factoring: for
example starting with x2 + 2x and obtaining x(x+ 2).

10.1.1 Motivation for Factoring

When you write x2 + 2x, you have an algebraic expression built with two terms—two parts that are added
together. When you write x(x + 2), you have an algebraic expression built with two factors—two parts
that are multiplied together. Factoring is useful, because sometimes (but not always) having your expression
written as parts that are multiplied together makes it easy to simplify the expression.

You’ve seen this with fractions. To simplify 15
35

, breaking down the numerator and denominator into
factors is useful: 3·5

7·5 . Now you can see that the factors of 5 cancel.

3



4 CHAPTER 10. FACTORING

There are other reasons to appreciate the value in
factoring. One reason is that there is a relationship
between a factored polynomial and the horizontal
intercepts of its graph. For example in the graph
of y = (x + 2)(x − 3), the horizontal intercepts are
(−2, 0) and (3, 0). Note the x-values are −2 and
3, and think about what happens when you sub-
situtue those numbers in for x in y = (x+2)(x−3).
We will explore this more fully in Section 13.2.

−3 −2 −1 1 2 3 4

−6

−4

−2

2

4

6

8

(3, 0)(−2, 0) x

y

Figure 10.1.2: A graph of y = (x+ 2)(x− 3)

10.1.2 Identifying the Greatest Common Factor
The most basic technique for factoring involves recognizing the greatest common factor between two ex-
pressions, which is the largest factor that goes in evenly to both expressions. For example, the greatest
common factor between 6 and 8 is 2, since 2 divides nicely into both 6 and 8 and no larger number would
divide nicely into both 6 and 8.

Similarly, the greatest common factor between 4x and 3x2 is x. If you write 4x as a product of its factors,
you have 2 · 2 · x. And if you fully factor 3x2, you have 3 · x · x. The only factor they have in common is x,
so that is the greatest common factor. No larger expression goes in nicely to both expressions.
Example 10.1.3 Finding the Greatest Common Factor. What is the common factor between 6x2 and 70x?
Break down each of these into its factors:

6x2 = 2 · 3 · x · x 70x = 2 · 5 · 7 · x

And identify the common factors:

6x2 =
↓
2 · 3 ·

↓
x · x 70x =

↓
2 · 5 · 7 ·

↓
x

With 2 and x in common, the greatest common factor is 2x.

Checkpoint 10.1.4
a. The greatest common factor between 6x and 8x is .

b. The greatest common factor between 14x2 and 10x is .

c. The greatest common factor between 6y2 and 7y2 is .

d. The greatest common factor between 12xy2 and 9xy is .
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e. The greatest common factor between 6x3, 2x2, and 8x is .

Explanation.

a. Since 6x completely factors as
↓
2 · 3 ·

↓
x ... and 8x completely factors as

↓
2 · 2 · 2 ·

↓
x, ...

... the greatest common factor is 2x.

b. Since 14x2 completely factors as
↓
2 · 7 ·

↓
x · x ... and 10x completely factors as

↓
2 · 5 ·

↓
x, ...

... the greatest common factor is 2x.

c. Since 6y2 completely factors as 2 · 3 · ↓
y ·

↓
y ... and 7y2 completely factors as 7 · ↓

y ·
↓
y, ...

... the greatest common factor is y2.

d. Since 12xy2 completely factors as 2 · 2 ·
↓
3 ·

↓
x ·

↓
y · y ... and 9xy completely factors as

↓
3 · 3 ·

↓
x ·

↓
y, ...

... the greatest common factor is 3xy.

e. Since 6x3 completely factors as
↓
2 · 3 ·

↓
x · x · x ... 2x2 completely factors as

↓
2 ·

↓
x · x, ...and 8x completely

factors as
↓
2 · 2 · 2 ·

↓
x, ...

... the greatest common factor is 2x.

10.1.3 Factoring Out the Greatest Common Factor
We have learned the distributive property: a(b+ c) = ab+ ac. Perhaps you have thought of this as a way
to “distribute” the number a to each of b and c. In this section, we will use the distributive property in the
opposite way. If you have an expression ab+ ac, it is equal to a(b+ c). In that example, we factored out a,
which is the common factor between ab and ac.

The following steps use the distributive property to factor out the greatest common factor between two
or more terms.
Process 10.1.5 Factoring Out the Greatest Common Factor.

1. Identify the greatest common factor in all terms.
2. Write the greatest common factor outside a pair of parentheses with the appropriate addition or subtraction signs

inside.
3. For each term from the original expression, what would you multiply the greatest common factor by to result in

that term? Write your answer in the parentheses.

Example 10.1.6 To factor 12x2 + 15x:
1. The greatest common factor between 12x2 and 15x is 3x.
2. 3x( + )

3. 3x(4x+ 5)
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Example 10.1.7 Factor the polynomial 3x3 + 3x2 − 9.
1. We identify the greatest common factor as 3, because 3 is the only common factor between 3x3, 3x2

and 9.
2. We write:

3x3 + 3x2 − 9 = 3( + − ).

3. We ask the question “3 times what gives 3x3?” The answer is x3. Now we have:

3x3 + 3x2 − 9 = 3(x3 + − ).

We ask the question “3 times what gives 3x2?” The answer is x2. Now we have:

3x3 + 3x2 − 9 = 3(x3 + x2 − ).

We ask the question “3 times what gives 9?” The answer is 3. Now we have:

3x3 + 3x2 − 9 = 3(x3 + x2 − 3).

To check that this is correct, multiplying through 3(x3 + x2 − 3) should give the original expression
3x3 + 3x2 − 9. We check this, and it does.

Checkpoint 10.1.8 Factor the polynomial 4x3 + 12x2 − 12x.
Explanation. In this exercise, 4x is the greatest common factor. We find

4x3 + 12x2 − 12x = 4x( + − )

= 4x(x2 + − )

= 4x(x2 + 3x− )

= 4x(x2 + 3x− 3)

Note that you might fail to recognize that 4x is the greatest common factor. At first you might only find
that, say, 4 is a common factor. This is OK—you can factor out the 4 and continue from there:

4x3 + 12x2 − 12x = 4( + − )

= 4(x3 + − )

= 4(x3 + 3x2 − )

= 4(x3 + 3x2 − 3x)

Now examine the second factor here and there is still a common factor, x. Factoring this out too.

= 4x( + − )

= 4x(x2 + − )

= 4x(x2 + 3x− )

= 4x(x2 + 3x− 3)

So there is more than one way to find the answer.
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10.1.4 Visualizing With Rectangles
In Section 5.4, we learned one way to multiply polynomials using rectangle diagrams. Similarly, we can
factor a polynomial with a rectangle diagram.

Process 10.1.9 Factoring Out the Greatest Common Factor Using Rectangles.
1. Put the terms into adjacent rectangles. Think of these as labeling the areas of each rectangle.
2. Identify the greatest common factor, and mark the height of the overall rectangle with it.
3. Mark the width of each rectangle based on each rectangle’s area and height.
4. Since the overall rectangle’s area equals its width times its height, the height is one factor, and the sum of the

widths is another factor.

Example 10.1.10 We will factor 12x2 + 15x, the same polynomial from the example in Algorithm 10.1.5, so
that you may compare the two styles.

12x2 15x 3x 12x2 15x

4x 5

3x 12x2 15x

So 12x2 + 15x factors as 3x(4x+ 5).

10.1.5 More Examples of Factoring out the Common Factor
Previous examples did not cover every nuance with factoring out the greatest common factor. Here are a
few more factoring examples that attempt to do so.

Example 10.1.11 Factor −35m5 + 5m4 − 10m3.
First, we identify the common factor. The number 5 is the greatest common factor of the three coefficients

(which were −35, 5, and −10) and also m3 is the largest expression that divides m5, m4, and m3. Therefore
the greatest common factor is 5m3.

In this example, the leading term is a negative number. When this happens, we will make it common
practice to take that negative as part of the greatest common factor. So we will proceed by factoring out
−5m3. Note the signs change inside the parentheses.

−35m5 + 5m4 − 10m3 = −5m3( − + )

= −5m3(7m2 − + )

= −5m3(7m2 −m+ )

= −5m3(7m2 −m+ 2)

Example 10.1.12 Factor 14− 7n2 + 28n4 − 21n.
Notice that the terms are not in a standard order, with powers of n decreasing as you read left to right.

It is usually a best practice to rearrange the terms into the standard order first.

14− 7n2 + 28n4 − 21n = 28n4 − 7n2 − 21n+ 14.

The number 7 divides all of the numerical coefficients. Separately, no power of n is part of the greatest
common factor because the 14 term has no n factors. So the greatest common factor is just 7. We proceed by
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factoring that out:

14− 7n2 + 28n4 − 21n = 28n4 − 7n2 − 21n+ 14

= 7
(
4n4 − n2 − 3n+ 2

)
Example 10.1.13 Factor 24ab2 + 16a2b3 − 12a3b2.

There are two variables in this polynomial, but that does not change the factoring strategy. The greatest
numerical factor between the three terms is 4. The variable a divides all three terms, and b2 divides all three
terms. So we have:

24ab2 + 16a2b3 − 12a3b2 = 4ab2
(
6+ 4ab− 3a2

)
Example 10.1.14 Factor 4m2n− 3xy.

There are no common factors in those two terms (unless you want to count 1 or −1, but we do not count
these for the purposes of identifying a greatest common factor). In this situation we can say the polynomial
is prime or irreducible, and leave it as it is.

Example 10.1.15 Factor −x3 + 2x+ 18.
There are no common factors in those three terms, and it would be correct to state that this polynomial

is prime or irreducible. However, since its leading coefficient is negative, it may be wise to factor out a
negative sign. So, it could be factored as −

(
x3 − 2x− 18

). Note that every term is negated as the leading
negative sign is extracted.

10.1.6 Reading Questions
1. Given two terms, how would you describe their “greatest common factor?”
2. If a simplified polynomial has four terms, and you factor out its greatest common factor, how many

terms will remain inside a set of parentheses?

10.1.7 Exercises

Review and Warmup Multiply the polynomials.
1. −4x (x− 2) 2. −x (x− 7) 3. −6x (9x− 9) 4. −7x (4x+ 9)

5. 6x2 (x+ 8) 6. 8x2 (x− 4) 7. 10t2
(
8t2 − 5t

) 8. 7x2
(
5x2 − 9x

)
Identifying Common Factors Find the greatest common factor of the following terms.

9. 4 and 20x 10. 10 and 90y 11. 7y and 28y2

12. 4r and 28r2 13. 10r3 and −100r4 14. 6t3 and −42t4

15. 3t19 and −18t15 16. 9t12 and −81t11 17. 6x17, −12x14, 30x2
18. 3x11, −15x10, 27x3 19. 5x16y7, −40x10y12,

10x4y13

20. 2x16y10, −6x11y11,
10x7y14

Factoring out the Common Factor Factor the given polynomial.
21. 3r+ 3 22. 8r+ 8
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23. 5t− 5 24. 2t− 2

25. −8t− 8 26. −5x− 5

27. 2x− 18 28. 8y+ 32

29. 12y2 + 32 30. 90r2 − 20

31. 18r2 + 9r+ 72 32. 60t2 + 70t+ 60

33. 32t4 − 12t3 + 24t2 34. 10t4 + 12t3 + 4t2

35. 20x5 − 35x4 + 45x3 36. 50x5 + 10x4 + 15x3

37. 28y− 20y2 + 20y3 38. 72y+ 48y2 + 40y3

39. 5r2 + 11 40. 16r2 + 9

41. 8xy+ 8y 42. 9xy+ 9y

43. 10x11y5 + 60y5 44. 2x7y5 + 6y5

45. 6x5y9 − 18x4y9 + 21x3y9 46. 63x5y10 − 35x4y10 + 35x3y10

47. 40x5y6z5 − 10x4y6z4 + 25x3y6z3 48. 24x5y4z9 + 20x4y4z8 + 8x3y4z7
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10.2 Factoring by Grouping
This section covers a technique for factoring polynomials like x3+3x2+2x+6, which factors as (x2 + 2

)
(x+

3). If there are four terms, the technique in this section might help you to factor the polynomial. Additionally,
this technique is a stepping stone to a factoring technique in Section 10.3 and Section 10.4.

10.2.1 Factoring out Common Polynomials
Recall that to factor 3x+ 6, we factor out the common factor 3:

3x+ 6 =
↓
3x+

↓
3 · 2

= 3(x+ 2)

The “3” here could have been something more abstract, and it still would be valid to factor it out:

xA+ 2A = x
↓
A+ 2

↓
A x🍎+ 2🍎 = x

↓
🍎+ 2

↓
🍎

= A(x+ 2) = 🍎(x+ 2)

In fact, even “larger” things can be factored out, as in this example:

x(a+ b) + 2(a+ b) = x

↓︷ ︸︸ ︷
(a+ b) + 2

↓︷ ︸︸ ︷
(a+ b)

= (a+ b)(x+ 2)

In this last example, we factored out the binomial factor (a + b). Factoring out binomials is the essence
of this section, so let’s see that a few more times:

x(x+ 2) + 3(x+ 2) = x

↓︷ ︸︸ ︷
(x+ 2) + 3

↓︷ ︸︸ ︷
(x+ 2)

= (x+ 2)(x+ 3)

z2(2y+ 5) + 3(2y+ 5) = z2

↓︷ ︸︸ ︷
(2y+ 5) + 3

↓︷ ︸︸ ︷
(2y+ 5)

= (2y+ 5)(z2 + 3)

And even with an expression like Q2(Q − 3) +Q − 3, if we re-write it in the right way using a 1 and some
parentheses, then it too can be factored:

Q2(Q− 3) +Q− 3 = Q2(Q− 3) + 1(Q− 3)

= Q2

↓︷ ︸︸ ︷
(Q− 3) + 1

↓︷ ︸︸ ︷
(Q− 3)

= (Q− 3)(Q2 + 1)

The truth is you are unlikely to come upon an expression like x(x + 2) + 3(x + 2), as in these examples.
Why wouldn’t someone have multiplied that out already? Or factored it all the way? So far in this section,
we have only been looking at a stepping stone to a real factoring technique called factoring by grouping.
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10.2.2 Factoring by Grouping
Factoring by grouping is a factoring technique that sometimes works on polynomials with four terms. Here
is an example.
Example 10.2.2 Suppose we must factor x3 − 3x2 + 5x − 15. Note that there are four terms, and they are
written in descending order of the powers of x. “Grouping” means to group the first two terms and the last
two terms together:

x3 − 3x2 + 5x− 15 =
(
x3 − 3x2

)
+ (5x− 15)

Now, each of these two groups has its own greatest common factor we can factor out:

= x2(x− 3) + 5(x− 3)

In a sense, we are “lucky” because we now see matching binomials that can themselves be factored out:

= x2

↓︷ ︸︸ ︷
(x− 3) + 5

↓︷ ︸︸ ︷
(x− 3)

= (x− 3)
(
x2 + 5

)
And so we have factored x3 − 3x2 + 5x− 15 as (x− 3)

(
x2 + 5

). But to be sure, if we multiply this back out,
it should recover the original x3 − 3x2 + 5x − 15. To confirm your factoring is correct, you should always
multiply out your factored result to check that it matches the original polynomial.

Checkpoint 10.2.3 Factor x3 + 4x2 + 2x+ 8.
Explanation. We will break the polynomial into two groups: x3 + 4x2 and 2x+ 8.

x3 + 4x2 + 2x+ 8 =
(
x3 + 4x2

)
+ (2x+ 8)

= x2(x+ 4) + 2(x+ 4)

= (x+ 4)
(
x2 + 2

)
Example 10.2.4 Factor t3 − 5t2 − 3t+ 15. This example has a complication with negative signs. If we try to
break up this polynomial into two groups as (t3 − 5t2

)
− (3t + 15), then we’ve made an error! In that last

expression, we are subtracting a group with the term 15, so overall it subtracts 15. The original polynomial
added 15, so we are off course.

One way to handle this is to treat subtraction as addition of a negative:
t3 − 5t2 − 3t+ 15 = t3 − 5t2 + (−3t) + 15

=
(
t3 − 5t2

)
+ (−3t+ 15)

Now we can proceed to factor out common factors from each group. Since the second group leads with a
negative coefficient, we’ll factor out −3. This will result in the “ + 15” becoming “ − 5.”

= t2(t− 5) + (−3)(t− 5)

= t2

↓︷ ︸︸ ︷
(t− 5) − 3

↓︷ ︸︸ ︷
(t− 5)
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= (t− 5)
(
t2 − 3

)
And remember that we can confirm this is correct by multiplying it out. If we made no mistakes, it should
result in the original t3 − 5t2 − 3t+ 15.

Checkpoint 10.2.5 Factor 6q3 − 9q2 − 4q+ 6.
Explanation. We will break the polynomial into two groups: 6q3 − 9q2 and −4q+ 6.

6q3 − 9q2 − 4q+ 6 =
(
6q3 − 9q2

)
+ (−4q+ 6)

= 3q2(2q− 3) − 2(2q− 3)

= (2q− 3)
(
3q2 − 2

)
Example 10.2.6 Factor x3 − 3x2 + x− 3. To succeed with this example, we will need to “factor out” a trivial
number 1 that isn’t apparent until we make it so.

x3 − 3x2 + x− 3 =
(
x3 − 3x2

)
+ (x− 3)

= x2(x− 3) + 1(x− 3)

= x2

↓︷ ︸︸ ︷
(x− 3) + 1

↓︷ ︸︸ ︷
(x− 3)

= (x− 3)
(
x2 + 1

)
Notice how we changed x − 3 to +1(x − 3), so we wouldn’t forget the +1 in the final factored form. As
always, we should check this is correct by multiplying it out.

Checkpoint 10.2.7 Factor 6t6 + 9t4 + 2t2 + 3.
Explanation. We will break the polynomial into two groups: 6t6 + 9t4 and 2t2 + 3.

6t6 + 9t4 + 2t2 + 3 =
(
6t6 + 9t4

)
+
(
2t2 + 3

)
= 3t4

(
2t2 + 3

)
+ 1
(
2t2 + 3

)
=
(
2t2 + 3

) (
3t4 + 1

)
Example 10.2.8 Factor xy2 − 10y2 − 2x+ 20. The technique can work when there are multiple variables too.

xy2 − 10y2 − 2x+ 20 =
(
xy2 − 10y2

)
+ (−2x+ 20)

= y2(x− 10) + (−2)(x− 10)

= y2

↓︷ ︸︸ ︷
(x− 10)−2

↓︷ ︸︸ ︷
(x− 10)

= (x− 10)
(
y2 − 2

).
Unfortunately, this technique is not guaranteed to work on every polynomial with four terms. In fact, most
randomly selected four-term polynomials will not factor using this method and those selected here should
be considered “nice.” Here is an example that will not factor with grouping:

x3 + 6x2 + 11x+ 6 =
(
x3 + 6x2

)
+ (11x+ 6)

= x2 (x+ 6)︸ ︷︷ ︸
?

+1 (11x+ 6)︸ ︷︷ ︸
?
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In this example, at the step where we hope to see the same binomial appearing twice, we see two different
binomials. It doesn’t mean that this kind of polynomial can’t be factored, but it does mean that “factoring
by grouping” is not going to help. This polynomial actually factors as (x+ 1)(x+ 2)(x+ 3). So the fact that
grouping fails to factor the polynomial doesn’t tell us whether or not it is prime.

10.2.3 Reading Questions

1. Factoring by grouping is a factoring technique for when a polynomial has terms.

10.2.4 Exercises

Review and Warmup Factor the given polynomial.
1. −5t− 5 2. −10x− 10 3. 7x+ 14

4. 4y− 24 5. 30y2 − 100 6. 21r2 + 35

Factoring out Common Polynomials Factor the given polynomial.
7. r(r+ 4) − 6(r+ 4) 8. t(t− 10) − 4(t− 10)

9. x(y+ 9) + 7(y+ 9) 10. x(y− 10) + 2(y− 10)

11. 2x(x+ y) − 9(x+ y) 12. 3x(x+ y) + 7(x+ y)

13. 3y4(4y+ 9) + 4y+ 9 14. 9y3(8y− 7) + 8y− 7

15. 12r4(r+ 10) + 6r3(r+ 10) + 60r2(r+ 10) 16. 10r4(r− 15) − 30r3(r− 15) + 35r2(r− 15)

Factoring by Grouping Factor the given polynomial.
17. t2 + 8t+ 9t+ 72 18. t2 − 5t+ 6t− 30

19. t2 + 2t+ 4t+ 8 20. x2 − 8x+ 10x− 80

21. x3 + 5x2 + 7x+ 35 22. y3 − 2y2 + 5y− 10

23. y3 − 7y2 + 2y− 14 24. r3 + 5r2 + 8r+ 40

25. xy+ 7x+ 4y+ 28 26. xy+ 8x− 9y− 72

27. xy− 9x− 3y+ 27 28. xy+ 10x+ 6y+ 60

29. 2x2 + 4xy+ 9xy+ 18y2 30. 3x2 + 15xy+ 8xy+ 40y2

31. 4x2 + 36xy+ 9xy+ 81y2 32. 5x2 − 5xy+ 7xy− 7y2

33. x3 − 6− 7x3y+ 42y 34. x3 + 7− 2x3y− 14y

35. x3 + 6+ 8x3y+ 48y 36. x3 − 9− 8x3y+ 72y

37. 10t5 + 20t4 − 15t4 − 30t3 + 25t3 + 50t2 38. 24x5 + 48x4 + 16x4 + 32x3 + 40x3 + 80x2
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10.3 Factoring Trinomials with Leading Coefficient One
In Chapter 5, we learned how to multiply binomials like (x+ 2)(x+ 3) and obtain the trinomial x2 + 5x+ 6.
In this section, we will learn how to undo that. So we’ll be starting with a trinomial like x2 + 5x + 6 and
obtaining its factored form (x + 2)(x + 3). The trinomials that we’ll factor in this section all have leading
coefficient 1, but Section 10.4 will cover some more general trinomials.

10.3.1 Factoring Trinomials by Listing Factor Pairs
Consider the example x2+5x+6 = (x+2)(x+3). There are at least three things that are important to notice:

• The leading coefficient of x2 + 5x+ 6 is 1.

• The two factors on the right use the numbers 2 and 3, and when you multiply these you get the 6.

• The two factors on the right use the numbers 2 and 3, and when you add these you get the 5.

So the idea is that if you need to factor x2 + 5x + 6 and you somehow discover that 2 and 3 are special
numbers (because 2 · 3 = 6 and 2+ 3 = 5), then you can conclude that (x+ 2)(x+ 3) is the factored form of
the given polynomial.

Example 10.3.2 Factor x2+13x+40. Since the leading coefficient is 1, we are looking to write this polynomial
as (x+ ?)(x+ ?) where the question marks are two possibly different, possibly negative, numbers. We need
these two numbers to multiply to 40 and add to 13. How can you track these two numbers down? Since the
numbers need to multiply to 40, one method is to list all factor pairs of 40 in a table just to see what your
options are. We’ll write every pair of factors that multiply to 40.

1 · 40
2 · 20
4 · 10
5 · 8

−1 · (−40)

−2 · (−20)

−4 · (−10)

−5 · (−8)

We wanted to find all factor pairs. To avoid missing any, we started using 1 as a factor, and then slowly
increased that first factor. The table skips over using 3 as a factor, because 3 is not a factor of 40. Similarly
the table skips using 6 and 7 as a factor. And there would be no need to continue with 8 and beyond, because
we already found “large” factors like 8 as the partners of “small” factors like 5.

There is an entire second column where the signs are reversed, since these are also ways to multiply two
numbers to get 40. In the end, there are eight factor pairs.

We need a pair of numbers that also adds to 13. So we check what each of our factor pairs add up to:
Factor Pair Sum of the Pair
1 · 40 41

2 · 20 22

4 · 10 14

5 · 8 13 (what we wanted)

Factor Pair Sum of the Pair
−1 · (−40) (no need to go this far)
−2 · (−20) (no need to go this far)
−4 · (−10) (no need to go this far)
−5 · (−8) (no need to go this far)

The winning pair of numbers is 5 and 8. Again, what matters is that 5 · 8 = 40, and 5 + 8 = 13. So we can
conclude that x2 + 13x+ 40 = (x+ 5)(x+ 8).
To ensure that we made no mistakes, here are some possible checks.
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Multiply it Out. Multiplying out our answer (x+ 5)(x+ 8) should give us x2 + 13x+ 40.
(x+ 5)(x+ 8) = (x+ 5) · x+ (x+ 5) · 8

= x2 + 5x+ 8x+ 40

✓
= x2 + 13x+ 40

We could also use a rectangular area diagram to
verify the factorization is correct:

x 5

x x2 5x

8 8x 40

Evaluating. If the answer really is (x + 5)(x + 8), then notice how evaluating at −5 would result in 0. So
the original expression should also result in 0 if we evaluate at −5. And similarly, if we evaluate it at −8,
x2 + 13x+ 40 should be 0.

(−5)2 + 13(−5) + 40
?
= 0 (−8)2 + 13(−8) + 40

?
= 0

25− 65+ 40
?
= 0 64− 104+ 40

?
= 0

0
✓
= 0 0

✓
= 0.

This also gives us evidence that the factoring was correct.
Example 10.3.3 Factor y2 − 11y+ 24. The negative coefficient is a small complication from Example 10.3.2,
but the process is actually still the same.
Explanation. We need a pair of numbers that multiply to 24 and add to −11. Note that we do care to keep
track that they sum to a negative total.

Factor Pair Sum of the Pair
1 · 24 25

2 · 12 14

3 · 8 11 (close; wrong sign)
4 · 6 10

Factor Pair Sum of the Pair
−1 · (−24) −25

−2 · (−12) −14

−3 · (−8) −11 (what we wanted)
−4 · (−6) (no need to go this far)

So y2 − 11y + 24 = (y − 3)(y − 8). To confirm that this is correct, we should check. Either by multiplying
out the factored form:

(y− 3)(y− 8) = (y− 3) · y− (y− 3) · 8
= y2 − 3y− 8y+ 24

✓
= y2 − 11y+ 24

y −3

y y2 −3y

−8 −8y 24

Or by evaluating the original expression at 3 and 8:

32 − 11(3) + 24
?
= 0 82 − 11(8) + 24

?
= 0

9− 33+ 24
?
= 0 64− 88+ 24

?
= 0

0
✓
= 0 0

✓
= 0.

Our factorization passes the tests.

Example 10.3.4 Factor z2+5z−6. The negative coefficient is again a small complication from Example 10.3.2,
but the process is actually still the same.
Explanation. We need a pair of numbers that multiply to −6 and add to 5. Note that we do care to keep
track that they multiply to a negative product.
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Factor Pair Sum of the Pair
1 · (−6) −5 (close; wrong sign)
2 · (−3) 14

Factor Pair Sum of the Pair
−1 · 6 5 (what we wanted)
−2 · 3 (no need to go this far)

So z2 + 5z − 6 = (z − 1)(z + 6). To confirm that this is correct, we should check. Either by multiplying out
the factored form:

(z− 1)(z+ 6) = (z− 1) · z+ (z− 1) · 6
= z2 − z+ 6z− 6

✓
= z2 + 5z− 6

z −1

z z2 −z

6 6z −6

Or by evaluating the original expression at 1 and −6:

12 + 5(1) − 6
?
= 0 (−6)2 + 5(−6) − 6

?
= 0

1+ 5− 6
?
= 0 36− 30− 6

?
= 0

0
✓
= 0 0

✓
= 0.

Our factorization passes the tests.

Checkpoint 10.3.5 Factor m2 − 6m− 40.
Explanation. We need a pair of numbers that multiply to −40 and add to −6. Note that we do care to keep
track that they multiply to a negative product and sum to a negative total.

Factor Pair Sum of the Pair
1 · (−40) −39

2 · (−20) −18

4 · (−10) −6 (what we wanted)
(no need to continue) ...

So m2 − 6m− 40 = (m+ 4)(m− 10).

10.3.2 Connection to Grouping
The factoring method we just learned is actually taking a shortcut compared to what we will learn in Sec-
tion 10.4. To prepare yourself for that more complicated factoring technique, you may want to try taking
the “scenic route” instead of that shortcut.
Example 10.3.6 Let’s factor x2+13x+40 again (the polynomial from Example 10.3.2). As before, it is impor-
tant to discover that 5 and 8 are important numbers, because they multiply to 40 and add to 13. As before,
listing out all of the factor pairs is one way to discover the 5 and the 8.

Instead of jumping to the factored answer, we can show how x2+13x+40 factors in a more step-by-step
fashion using 5 and 8. Since they add up to 13, we can write:

x2 +
↓
13x+ 40 = x2 +

↓︷ ︸︸ ︷
5x+ 8x+ 40

We have intentionally split up the trinomial into an unsimplified polynomial with four terms. In Section 10.2,
we handled such four-term polynomials by grouping:

=
(
x2 + 5x

)
+ (8x+ 40)
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Now we can factor out each group’s greatest common factor:

= x(x+ 5) + 8(x+ 5)

= x

↓︷ ︸︸ ︷
(x+ 5) + 8

↓︷ ︸︸ ︷
(x+ 5)

= (x+ 5)(x+ 8)

And we have found that x2 + 13x+ 40 factors as (x+ 5)(x+ 8) without taking the shortcut.
This approach takes more time, and ultimately you may not use it much. However, if you try a few examples
this way, it may make you more comfortable with the more complicated technique in Section 10.4.

10.3.3 Trinomials with Higher Powers
So far we have only factored examples of quadratic trinomials: trinomials whose highest power of the
variable is 2. However, this technique can also be used to factor trinomials where there is a larger highest
power of the variable. It only requires that the highest power is even, that the next highest power is half of
the highest power, and that the third term is a constant term.

In the four examples below, check:
1. if the highest power is even
2. if the next highest power is half of the highest power
3. if the last term is constant

Factor pairs will help with…
• y6 − 23y3 − 50

• h16 + 22h8 + 105

Factor pairs won’t help with…
• y5 − 23y3 − 50

• h16 + 22h8 + 105h2

Example 10.3.7 Factor h16 + 22h8 + 105. This polynomial is one of the examples above where using factor
pairs will help. We find that 7 · 15 = 105, and 7+ 15 = 22, so the numbers 7 and 15 can be used:

h16 + 22h8 + 105 = h16 +
︷ ︸︸ ︷
7h8 + 15h8 +105

=
(
h16 + 7h8

)
+
(
15h8 + 105

)
= h8

(
h8 + 7

)
+ 15

(
h8 + 7

)
=
(
h8 + 7

) (
h8 + 15

)
Actually, once we settled on using 7 and 15, we could have concluded that h16 + 22h8 + 105 factors as(
h8 + 7

) (
h8 + 15

), if we know which power of h to use. We’ll always use half the highest power in these
factorizations.

In any case, to confirm that this is correct, we should check by multiplying out the factored form:
(h8 + 7)(h8 + 15) = (h8 + 7) · h8 + (h8 + 7) · 15

= h16 + 7h8 + 15h8 + 105

✓
= h16 + 22h8 + 15

h8 7

h8 h16 7h8

15 15h8 105

Our factorization passes the tests.
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Checkpoint 10.3.8 Factor y6 − 23y3 − 50.
Explanation. We need a pair of numbers that multiply to −50 and add to −23. Note that we do care to keep
track that they multiply to a negative product and sum to a negative total.

Factor Pair Sum of the Pair
1 · (−50) −49

2 · (−25) −23 (what we wanted)
(no need to continue) ...

So y6 − 23y3 − 50 =
(
y3 − 25

) (
y3 + 2

) .

10.3.4 Factoring in Stages
Sometimes factoring a polynomial will take two or more “stages.” Always begin factoring a polynomial by
factoring out its greatest common factor, and then apply a second stage where you use a technique from this
section. The process of factoring a polynomial is not complete until each of the factors cannot be factored
further.
Example 10.3.9 Factor 2z2 − 6z− 80.
Explanation. We will first factor out the common factor, 2:

2z2 − 6z− 80 = 2
(
z2 − 3z− 40

)
Now we are left with a factored expression that might factor more. Looking inside the parentheses, we ask
ourselves, “what two numbers multiply to be −40 and add to be −3?” Since 5 and −8 do the job the full
factorization is:

2z2 − 6z− 80 = 2
(
z2 − 3z− 40

)
= 2(z+ 5)(z− 8)

Example 10.3.10 Factor −r2 + 2r+ 24.
Explanation. The three terms don’t exactly have a common factor, but as discussed in Section 10.1, when
the leading term has a negative sign, it is often helpful to factor out that negative sign:

−r2 + 2r+ 24 = −
(
r2 − 2r− 24

).
Looking inside the parentheses, we ask ourselves, “what two numbers multiply to be −24 and add to be
−2?” Since −6 and 4 work here and the full factorization is shown:

−r2 + 2r+ 24 = −
(
r2 − 2r− 24

)
= −(r− 6)(r+ 4)

Example 10.3.11 Factor p2q3 + 4p2q2 − 60p2q.
Explanation. First, always look for the greatest common factor: in this trinomial it is p2q. After factoring
this out, we have

p2q3 + 4p2q2 − 60p2q = p2q
(
q2 + 4q− 60

).
Looking inside the parentheses, we ask ourselves, “what two numbers multiply to be −60 and add to be 4?”
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Since 10 and −6 fit the bill, the full factorization can be shown below:

p2q3 + 4p2q2 − 60p2q = p2q
(
q2 + 4q− 60

)
= p2q(q+ 10)(q− 6)

10.3.5 More Trinomials with Two Variables
You might encounter a trinomial with two variables that can be factored using the methods we’ve discussed
in this section. It can be tricky though: x2 + 5xy+ 6y2 has two variables and it can factor using the methods
from this section, but x2 + 5x + 6y2 also has two variables and it cannot be factored. So in examples of this
nature, it is even more important to check that factorizations you find actually work.
Example 10.3.12 Factor x2 + 5xy + 6y2. This is a trinomial, and the coefficient of x is 1, so maybe we can
factor it. We want to write (x+?)(x+?) where the question marks will be something that makes it all multiply
out to x2 + 5xy+ 6y2.

Since the last term in the polynomial has a factor of y2, it is natural to wonder if there is a factor of y in
each of the two question marks. If there were, these two factors of y would multiply to y2. So it is natural
to wonder if we are looking for (x+ ?y)(x+ ?y) where now the question marks are just numbers.

At this point we can think like we have throughout this section. Are there some numbers that multiply
to 6 and add to 5? Yes, specifically 2 and 3. So we suspect that (x+ 2y)(x+ 3y) might be the factorization.

To confirm that this is correct, we should check by multiplying out the factored form:
(x+ 2y)(x+ 3y) = (x+ 2y) · x+ (x+ 2y) · 3y

= x2 + 2xy+ 3xy+ 6y2

✓
= x2 + 5xy+ 6y2

x 2y

x x2 2xy

3y 3xy 6y2

Our factorization passes the tests.
In Section 10.4, there is a more definitive method for factoring polynomials of this form.

10.3.6 Reading Questions
1. To factor x2 + bx+ c, you look for two numbers that do what?
2. How many factor pairs are there for the number 6?

10.3.7 Exercises

Review and Warmup Multiply the polynomials.
1. (y+ 5) (y+ 10) 2. (r+ 1) (r+ 4) 3. (r+ 8) (r− 3)

4. (r+ 4) (r− 8) 5. (t− 10) (t− 4) 6. (t− 4) (t− 10)

7. 3(x+ 2)(x+ 3) 8. −4(y− 1)(y− 9) 9. 2(y− 10)(y− 3)

10. −2(r+ 7)(r+ 6)

Factoring Trinomials with Leading Coefficient One Factor the given polynomial.
11. r2 + 12r+ 20 12. r2 + 13r+ 42 13. r2 + 13r+ 30

14. t2 + 14t+ 40 15. t2 + 3t− 18 16. x2 + 7x− 30
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17. x2 + 2x− 63 18. y2 − y− 30 19. y2 − 7y+ 10

20. r2 − 14r+ 45 21. r2 − 8r+ 15 22. r2 − 10r+ 16

23. t2 + 10t+ 16 24. t2 + 11t+ 30 25. x2 + 11x+ 10

26. x2 + 12x+ 32 27. y2 − 6y− 40 28. y2 + 6y− 7

29. r2 + 3r− 28 30. r2 − 3r− 4 31. r2 − 6r+ 5

32. t2 − 16t+ 63 33. t2 − 7t+ 12 34. x2 − 18x+ 80

35. x2 + x+ 6 36. y2 + 3y+ 10 37. y2 + 9

38. r2 − 4r+ 6 39. r2 + 6r+ 9 40. r2 + 22r+ 121

41. t2 + 14t+ 49 42. t2 + 6t+ 9 43. x2 − 20x+ 100

44. x2 − 12x+ 36 45. y2 − 4y+ 4 46. y2 − 20y+ 100

47. 2r2 − 2r− 40 48. 2r2 − 2r− 4 49. 10r2 − 10

50. 2t2 + 6t− 20 51. 10t2 − 30t+ 20 52. 2x2 − 18x+ 16

53. 3x2 − 15x+ 12 54. 3y2 − 21y+ 18 55. 2y6 + 20y5 + 18y4

56. 2y7 + 14y6 + 12y5 57. 3r6 + 24r5 + 21r4 58. 5r7 + 20r6 + 15r5

59. 10t7 − 20t6 − 30t5 60. 9t4 + 9t3 − 18t2 61. 3x10 − 12x8

62. 5x6 − 20x5 − 25x4 63. 2y7 − 8y6 + 6y5 64. 5y5 − 15y4 + 10y3

65. 3y7 − 12y6 + 9y5 66. 6r4 − 18r3 + 12r2 67. −r2 − 4r+ 45

68. −t2 + 4t+ 12 69. −t2 + 5t+ 24 70. −x2 − 4x+ 5

71. x2 + 12xr+ 20r2 72. y2 + 7yr+ 6r2 73. y2 − 3yt− 10t2

74. y2 − 4yx− 32x2 75. r2 − 7rt+ 12t2 76. r2 − 5ry+ 4y2

77. t2 + 16tx+ 64x2 78. t2 + 2tr+ r2 79. x2 − 12xy+ 36y2

80. x2 − 22xt+ 121t2 81. 4y2 + 20y+ 16 82. 2y2 + 18y+ 16

83. 3x2y+ 15xy+ 18y 84. 2x2y+ 6xy+ 4y 85. 7a2b− 7ab− 14b

86. 10a2b+ 10ab− 20b 87. 2x2y− 22xy+ 20y 88. 9x2y− 27xy+ 18y

89. 3x3y+ 24x2y+ 21xy 90. 2x3y+ 16x2y+ 30xy 91. x2y2 + x2yz− 20x2z2

92. x2y2 + 8x2yz− 9x2z2 93. r2 + 0.9r+ 0.2 94. r2 + 0.9r+ 0.14

95. t2x2 + 6tx+ 5 96. t2y2 + 5ty+ 6 97. x2t2 − 2xt− 24

98. x2r2 + xr− 20 99. y2t2 − 8yt+ 7 100. y2x2 − 9yx+ 14

101. 6y2r2 + 18yr+ 12 102. 5r2y2 + 15ry+ 10 103. 7r2t2 − 7

104. 3t2r2 + 6tr− 24 105. 6x2y3 − 18xy2 + 12y 106. 6x2y3 − 24xy2 + 18y

Factor the given polynomial.
107. (a+ b) x2 + 8(a+ b) x+ 12(a+ b) 108. (a+ b)y2 + 9(a+ b)y+ 18(a+ b)

Challenge
109. What integers can go in the place of b so that the quadratic expression x2 + bx+ 10 is factorable?
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10.4 Factoring Trinomials with a Nontrivial Leading Coefficient
In Section 10.3, we learned how to factor ax2 + bx + c when a = 1. In this section, we will examine the
situation when a ̸= 1. The techniques are similar to those in the last section, but there are a few important
differences that will make-or-break your success in factoring these.

10.4.1 The ACMethod
The ACMethod is a technique for factoring trinomials like 4x2+5x−6, where there is no greatest common
factor, and the leading coefficient is not 1.

Please note at this point that if we try the method in the previous section and ask ourselves the question
“what two numbers multiply to be −6 and add to be 5?,” we might come to the erroneous conclusion that
4x2 + 5x− 6 factors as (x+ 6)(x− 1). If we expand (x+ 6)(x− 1), we get

(x+ 6)(x− 1) = x2 + 5x− 6

This expression is almost correct, except for the missing leading coefficient, 4. Dealing with this missing
coefficient requires starting over with the AC method. If you are only interested in the steps for using the
technique, skip ahead to Algorithm 10.4.3.

The example below explains why the “AC Method” works, which will be more carefully outlined a bit
later. Understanding all of the details might take a few rereads, and coming back to this example after
mastering the algorithm may be the best course of action.
Example 10.4.2 Expand the expression (px+ q)(rx+ s) and analyze the result to gain insight into factoring
4x2 + 5x− 6.
Explanation. Factoring is the opposite process from multiplying polynomials together. We can gain some
insight into how to factor complicated polynomials by taking a closer look at what happens when two
generic polynomials are multiplied together:

(px+ q)(rx+ s) = (px+ q)(rx) + (px+ q)s

= (px)(rx) + q(rx) + (px)s+ qs

= (pr)x2 + qrx+ psx+ qs

= (pr)x2 + (qr+ ps)x+ qs (10.4.1)
When you encounter a trinomial like 4x2 + 5x− 6 and you wish to factor it, the leading coefficient, 4, is the
(pr) from Equation (10.4.1). Similarly, the −6 is the qs, and the 5 is the (qr+ ps).

Now, if you multiply the leading coefficient and constant term from Equation (10.4.1), you have (pr)(qs),
which equals pqrs. Notice that if we factor this number in just the right way, (qr)(ps), then we have two
factors that add to the middle coefficient from Equation (10.4.1), (qr+ ps).

Can we do all this with the example 4x2 + 5x− 6? Multiplying 4 and −6 makes −24. Is there some way
to factor −24 into two factors which add to 5? We make a table of factor pairs for −24 to see:

Factor Pair Sum of the Pair
−1 · 24 23

−2 · 12 10

−3 · 8 5 (what we wanted)
−4 · 6 (no need to go this far)

Factor Pair Sum of the Pair
1 · (−24) (no need to go this far)
2 · (−12) (no need to go this far)
3 · (−8) (no need to go this far)
4 · (−6) (no need to go this far)

So that 5 in 4x2+5x−6, which is equal to the abstract (qr+ps) from Equation (10.4.1), breaks down as −3+8.
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We can take −3 to be the qr and 8 to be the ps. Once we intentionally break up the 5 this way, factoring by
grouping (see Section 10.2) can take over and is guaranteed to give us a factorization.

4x2
︷ ︸︸ ︷
+ 5x−6 = 4x2

︷ ︸︸ ︷
−3x+ 8x−6

Now that there are four terms, group them and factor out each group’s greatest common factor.

=
(
4x2 − 3x

)
+ (8x− 6)

= x(4x− 3) + 2(4x− 3)

= (4x− 3)(x+ 2)

And this is the factorization of 4x2+5x−6. This whole process is known as the “AC method,” since it begins
by multiplying a and c from the generic ax2 + bx+ c.

Here is a summary of the algorithm:

Process 10.4.3 The ACMethod. To factor ax2 + bx+ c:
1. Multiply a · c.
2. Make a table of factor pairs for ac. Look for a pair that adds to b. If you cannot find one, the polynomial is

irreducible.
3. If you did find a factor pair summing to b, replace b with an explicit sum, and distribute x. With the four terms

you have at this point, use factoring by grouping to continue. You are guaranteed to find a factorization.

Example 10.4.4 Factor 10x2 + 23x+ 6.
1. 10 · 6 = 60

2. Use a list of factor pairs for 60 to find that 3 and 20 are a pair that sums to 23.
3. Intentionally break up the 23 as 3+ 20:

10x2
︷ ︸︸ ︷
+ 23x+6

= 10x2
︷ ︸︸ ︷
+ 3x+ 20x+6

=
(
10x2 + 3x

)
+ (20x+ 6)

= x(10x+ 3) + 2(10x+ 3)

= (10x+ 3)(x+ 2)

Example 10.4.5 Factor 2x2 − 5x− 3.
Explanation. Always start the factoring process by examining if there is a greatest common factor. Here
there is not one. Next, note that this is a trinomial with a leading coefficient that is not 1. So the AC Method
may be of help.

1. Multiply 2 · (−3) = −6.
2. Examine factor pairs that multiply to −6, looking for a pair that sums to −5:
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Factor Pair Sum of the Pair
1 ·−6 −5 (what we wanted)
2 ·−3 (no need to go this far)

Factor Pair Sum of the Pair
−1 · 6 (no need to go this far)
−2 · 3 (no need to go this far)

3. Intentionally break up the −5 as 1+ (−6):

2x2
︷ ︸︸ ︷
− 5x−3 = 2x2

︷ ︸︸ ︷
+ x− 6x−3

=
(
2x2 + x

)
+ (−6x− 3)

= x(2x+ 1) − 3(2x+ 1)

= (2x+ 1)(x− 3)

So we believe that 2x2 − 5x − 3 factors as (2x + 1)(x − 3), and we should check by multiplying out the
factored form:

(2x+ 1)(x− 3) = (2x+ 1) · x+ (2x+ 1) · (−3)

= 2x2 + x− 6x− 3

✓
= 2x2 − 5x− 3

2x 1

x 2x2 x

−3 −6x −3

Our factorization passes the tests.

Example 10.4.6 Factor 6p2 + 5pq − 6q2. Note that this example has two variables, but that does not really
change our approach.
Explanation. There is no greatest common factor. Since this is a trinomial, we try the AC Method.

1. Multiply 6 · (−6) = −36.
2. Examine factor pairs that multiply to −36, looking for a pair that sums to 5:

Factor Pair Sum of the Pair
1 ·−36 −35

2 ·−18 −16

3 ·−12 −9

4 ·−9 −5 (close; wrong sign)
6 ·−6 0

Factor Pair Sum of the Pair
−1 · 36 35

−2 · 18 16

−3 · 12 9

−4 · 9 5 (what we wanted)

3. Intentionally break up the 5 as −4+ 9:

6p2
︷ ︸︸ ︷
+ 5pq−6q2 = 6p2

︷ ︸︸ ︷
− 4pq+ 9pq−6q2

=
(
6p2 − 4pq

)
+
(
9pq− 6q2

)
= 2p(3p− 2q) + 3q(3p− 2q)

= (3p− 2q)(2p+ 3q)

So we believe that 6p2 + 5pq − 6q2 factors as (3p − 2q)(2p + 3q), and we should check by multiplying
out the factored form:
(3p− 2q)(2p+ 3q) = (3p− 2q) · 2p+ (3p− 2q) · 3q

= 6p2 − 4pq+ 9pq− 6q2

✓
= 6p2 + 5pq− 6q2

3p −2q

2p 6p2 −4pq

3q 9pq −6q2
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Our factorization passes the tests.

10.4.2 Factoring in Stages
Sometimes factoring a polynomial will take two or more “stages.” For instance you may need to begin
factoring a polynomial by factoring out its greatest common factor, and then apply a second stage where
you use a technique from this section. The process of factoring a polynomial is not complete until each of
the factors cannot be factored further.

Example 10.4.7 Factor 18n2 − 21n− 60.
Explanation. Notice that 3 is a common factor in this trinomial. We should factor it out first:

18n2 − 21n− 60 = 3
(
6n2 − 7n− 20

)
Now we are left with two factors, one of which is 6n2 − 7n− 20, which might factor further. Using the AC
Method:

1. 6 ·−20 = −120

2. Examine factor pairs that multiply to −120, looking for a pair that sums to −7:
Factor Pair Sum of the Pair
1 ·−120 −119

2 ·−60 −58

3 ·−40 −37

4 ·−30 −26

5 ·−24 −19

6 ·−20 −14

8 ·−15 −7 (what we wanted)
10 ·−12 (no need to go this far)

Factor Pair Sum of the Pair
−1 · 120 (no need to go this far)
−2 · 60 (no need to go this far)
−3 · 40 (no need to go this far)
−4 · 30 (no need to go this far)
−5 · 24 (no need to go this far)
−6 · 20 (no need to go this far)
−8 · 15 (no need to go this far)
−10 · 12 (no need to go this far)

3. Intentionally break up the −7 as 8+ (−15):

18n2 − 21n− 60 = 3

(
6n2
︷ ︸︸ ︷
− 7n−20

)
= 3

(
6n2
︷ ︸︸ ︷
+ 8n− 15n−20

)
= 3

((
6n2 + 8n

)
+ (−15n− 20)

)
= 3 (2n(3n+ 4) − 5(3n+ 4))

= 3(3n+ 4)(2n− 5)

So we believe that 18n2 − 21n − 60 factors as 3(3n + 4)(2n − 5), and you should check by multiplying
out the factored form.

Example 10.4.8 Factor −16x3y− 12x2y+ 18xy.
Explanation. Notice that 2xy is a common factor in this trinomial. Also the leading coefficient is negative,
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and as discussed in Section 10.1, it is wise to factor that out as well. So we find:

−16x3y− 12x2y+ 18xy = −2xy
(
8x2 + 6x− 9

)
Now we are left with one factor being 8x2 + 6x− 9, which might factor further. Using the AC Method:

1. 8 ·−9 = −72

2. Examine factor pairs that multiply to −72, looking for a pair that sums to 6:
Factor Pair Sum of the Pair
1 ·−72 −71

2 ·−36 −34

3 ·−24 −21

4 ·−18 −14

6 ·−12 −6 (close; wrong sign)
8 ·−9 −1

Factor Pair Sum of the Pair
−1 · 72 71

−2 · 36 34

−3 · 24 21

−4 · 18 14

−6 · 12 6 (what we wanted)
−8 · 9 (no need to go this far)

3. Intentionally break up the 6 as −6+ 12:

−16x3y− 12x2y+ 18xy = −2xy

(
8x2
︷ ︸︸ ︷
+ 6x−9

)
= −2xy

(
8x2
︷ ︸︸ ︷
− 6x+ 12x−9

)
= −2xy

((
8x2 − 6x

)
+ (12x− 9)

)
= −2xy (2x(4x− 3) + 3(4x− 3))

= −2xy(4x− 3)(2x+ 3)

So we believe that −16x3y − 12x2y + 18xy factors as −2xy(4x − 3)(2x + 3), and you should check by
multiplying out the factored form.

10.4.3 Reading Questions

1. The AC Method is really trying to turn a trinomial into a polynomial with terms so that factoring
by grouping may be used.

2. When you are tyring to factor a polynomial and the leading coefficient is not 1, what should you try
to do before you try the AC Method?

10.4.4 Exercises

Review and Warmup Multiply the polynomials.
1. (4y+ 10) (2y+ 9) 2. (2r+ 9) (4r+ 3) 3. (6r− 8) (3r− 8)

4. (4t− 10) (2t− 7) 5. (3t− 10) (t+ 9) 6. (9x− 6) (x+ 2)

7. (
6x3 + 9

) (
x2 + 3

) 8. (
2y3 + 4

) (
y2 + 10

)
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Factoring Trinomials with a Nontrivial Leading Coefficient Factor the given polynomial.
9. 5y2 + 6y+ 1 10. 3y2 + 17y+ 10 11. 2r2 + 11r− 21

12. 5r2 + 23r− 10 13. 2t2 − 13t+ 15 14. 3t2 − 16t+ 20

15. 5x2 + 6x+ 10 16. 2x2 + 3x+ 6 17. 4x2 + 13x+ 9

18. 6y2 + 23y+ 15 19. 4y2 − 11y− 3 20. 8r2 − r− 7

21. 6r2 − 13r+ 7 22. 4t2 − 17t+ 18 23. 6t2 + 19t+ 10

24. 8x2 + 18x+ 9 25. 10x2 − x− 24 26. 10x2 + 3x− 27

27. 6y2 − 29y+ 9 28. 10y2 − 17y+ 6 29. 18r2 + 27r+ 9

30. 4r2 + 34r+ 16 31. 35t2 + 28t− 7 32. 14t2 − 7t− 21

33. 4x2 − 26x+ 12 34. 15x2 − 24x+ 9 35. 4x9 + 18x8 + 14x7

36. 14y9 + 21y8 + 7y7 37. 16y6 − 8y5 − 24y4 38. 8r9 − 12r8 − 20r7

39. 6r7 − 8r6 + 2r5 40. 10t9 − 35t8 + 15t7 41. 3t2r2 + 13tr+ 12

42. 3x2y2 + 14xy+ 16 43. 2x2t2 + 3xt− 2 44. 2x2r2 − 3xr− 2

45. 5y2x2 − 23yx+ 12 46. 5y2t2 − 14yt+ 8 47. 3r2 + 13rx+ 4x2

48. 5r2 + 17rx+ 14x2 49. 3t2 − 26ty− 9y2 50. 5t2 − 6tr− 8r2

51. 3x2 − 11xr+ 8r2 52. 5x2 − 9xt+ 4t2 53. 4x2 + 11xy+ 7y2

54. 4y2 + 25yx+ 6x2 55. 8y2 − 17yt− 21t2 56. 4r2 − 9ry− 9y2

57. 6r2 − 31rx+ 5x2 58. 8t2 − 17tr+ 2r2 59. 12t2 + 25ty+ 12y2

60. 12x2 + 17xt+ 6t2 61. 9x2 − 9xr− 28r2 62. 15x2 − 7xy− 2y2

63. 4y2 − 16yt+ 7t2 64. 12y2 − 23yr+ 10r2 65. 18r2y2 + 27ry+ 9

66. 15r2t2 + 20rt+ 5 67. 21t2r2 − 7tr− 28 68. 15t2x2 + 12tx− 36

69. 6x9t2 − 26x8t+ 24x7 70. 10x7r2 − 18x6r+ 8x5 71. 10x2 + 22xy+ 12y2

72. 8x2 + 28xy+ 20y2 73. 6a2 + 10ab− 4b2 74. 10a2 + 8ab− 2b2

75. 10x2 − 24xy+ 8y2 76. 9x2 − 12xy+ 3y2 77. 10x2y+ 32xy2 + 6y3

78. 9x2y+ 21xy2 + 6y3

Factor the given polynomial.
79. 12x2(y+ 6) + 28x(y+ 6) + 16(y+ 6) 80. 4x2(y− 6) + 18x(y− 6) + 8(y− 6)

81. 9x2(y+ 9) + 21x(y+ 9) + 6(y+ 9) 82. 25x2(y+ 2) + 30x(y+ 2) + 5(y+ 2)

83. a. Factor the given
polynomial.3x2 + 19x+ 6

b. Use your previous answer to
factor3(y− 7)

2
+ 19(y− 7) + 6

84. a. Factor the given
polynomial.2x2 + 19x+ 9

b. Use your previous answer to
factor2(y+ 3)

2
+ 19(y+ 3) + 9

Challenge
85. What integers can go in the place of b so that the quadratic expression 3x2 + bx+ 8 is factorable?
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10.5 Factoring Special Polynomials
Certain polynomials have patterns that you can train yourself to recognize. And when they have these
patterns, there are formulas you can use to factor them, much more quickly than using the techniques from
Section 10.3 and Section 10.4.

10.5.1 Difference of Squares
If b is some positive integer, then when you multiply (x− b)(x+ b):

(x− b)(x+ b) = x2 − bx+ bx− b2

= x2 − b2.
The −bx and the +bx cancel each other out. So this is telling us that

x2 − b2 = (x− b)(x+ b).
And so if we ever encounter a polynomial of the form x2 − b2 (a “difference of squares”) then we have a
quick formula for factoring it. Just identify what “b” is, and use that in (x− b)(x+ b).

To use this formula, it’s important to recognize which numbers are perfect squares, as in Figure 6.1.4.
Example 10.5.2 Factor x2 − 16.
Explanation. The “16” being subtracted here is a perfect square. It is the same as 42. So we can take b = 4

and write:

x2 − 16 = (x− b)(x+ b)

= (x− 4)(x+ 4)

Checkpoint 10.5.3 Try to factor one yourself:
Factor x2 − 49.

Explanation. The “49” being subtracted here is a perfect square. It is the same as 72. So we can take b = 7

and write:
x2 − 49 = (x− b)(x+ b)

= (x− 7)(x+ 7)

We can do a little better. There is nothing special about starting with “x2” in these examples. In full gener-
ality:
Fact 10.5.4 The Difference of Squares Formula. If A and B are any algebraic expressions, then:

A2 − B2 = (A− B)(A+ B).

Example 10.5.5 Factor 1− p2.
Explanation. The “1” at the beginning of this expression is a perfect square; it’s the same as 12. The “p2”
being subtracted here is also perfect square. We can take A = 1 and B = p, and use The Difference of Squares
Formula:

1− p2 = (A− B)(A+ B)

= (1− p)(1+ p)



28 CHAPTER 10. FACTORING

Example 10.5.6 Factor m2n2 − 4.
Explanation. Is the “m2n2” at the beginning of this expression a perfect square? By the rules for exponents,
it is the same as (mn)2, so yes, it is a perfect square and we may take A = mn. The “4” being subtracted
here is also perfect square. We can take B = 2. The Difference of Squares Formula tells us:

m2n2 − 4 = (A− B)(A+ B)

= (mn− 2)(mn+ 2)

Checkpoint 10.5.7 Try to factor one yourself:
Factor 4z2 − 9.

Explanation. The “4z2” at the beginning here is a perfect square. It is the same as (2z)2. So we can take
A = 2z. The “9” being subtracted is also a perfect square, so we can take B = 3:

4z2 − 9 = (A− B)(A+ B)

= (2z− 3)(2z+ 3)

Example 10.5.8 Factor x6 − 9.
Explanation. Is the “x6” at the beginning of this expression is a perfect square? It may appear to be a sixth
power, but it is also a perfect square because we can write x6 =

(
x3
)2. So we may take A = x3. The “9”

being subtracted here is also perfect square. We can take B = 3. The Difference of Squares Formula tells us:

x6 − 9 = (A− B)(A+ B)

= (x3 − 3)(x3 + 3)

Warning 10.5.9 It’s a common mistake to write something like x2 + 16 = (x + 4)(x − 4). This is not what
The Difference of Squares Formula allows you to do, and this is in fact incorrect. The issue is that x2 + 16 is
a sum of squares, not a difference. And it happens that x2 + 16 is actually prime. In fact, any sum of squares
without a common factor will always be prime.

10.5.2 Perfect Square Trinomials
If we expand (A+ B)2:

(A+ B)2 = (A+ B)(A+ B)

= A2 + BA+AB+ B2

= A2 + 2AB+ B2.

The BA and the AB equal each other and double up when added together. So this is telling us that

A2 + 2AB+ B2 = (A+ B)2.

And so if we ever encounter a polynomial of the form A2 + 2AB + B2 (a “perfect square trinomial”) then
we have a quick formula for factoring it.

The tricky part is recognizing when a trinomial you have encountered is in this special form. Ask your-
self:

1. Are the first and last terms perfect square? If so, jot down what A and B would be.
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2. When you multiply 2 with what you wrote down for A and B, i.e. 2AB, do you have the middle term?
If you have this middle term exactly, then your polynomial factors as (A + B)2. If the middle term is
the negative of 2AB, then the sign on your B can be reversed, and your polynomial factors as (A−B)2.

Fact 10.5.10 The Perfect Square Trinomial Formula. If A and B are any algebraic expressions, then:

A2 + 2AB+ B2 = (A+ B)2 and A2 − 2AB+ B2 = (A− B)2

Example 10.5.11 Factor x2 + 6x+ 9.
Explanation. The first term, x2, is clearly a perfect square. So we could take A = x. The last term, 9, is also
a perfect square since it is equal to 32. So we could take B = 3. Now we multiply 2AB = 2 · x · 3, and the
result is 6x. This is the middle term, which is what we hope to see.

So we can use The Perfect Square Trinomial Formula:

x2 + 6x+ 9 = (A+ B)2

= (x+ 3)2

Example 10.5.12 Factor 4x2 − 20xy+ 25y2.
Explanation. The first term, 4x2, is a perfect square because it equals (2x)2. So we could take A = 2x. The
last term, 25y2, is also a perfect square since it is equal to (5y)2. So we could take B = 5y. Now we multiply
2AB = 2 · (2x) · (5y), and the result is 20xy. This is the negative of the middle term, which we can work with.
The factored form will be (A− B)2 instead of (A+ B)2.

So we can use The Perfect Square Trinomial Formula:

4x2 − 20xy+ 25y2 = (A− B)2

= (2x− 5y)2

Checkpoint 10.5.13 Try to factor one yourself:
Factor 16q2 + 56q+ 49.

Explanation. The first term, 16q2, is a perfect square because it equals (4q)2. So we could take A = 4q.
The last term, 49, is also a perfect square since it is equal to 72. So we could take B = 7. Now we multiply
2AB = 2 · (4q) · 7, and the result is 56q. This is the middle term, which is what we hope to see.

So we can use The Perfect Square Trinomial Formula:

16q2 + 56q+ 49 = (A+ B)2

= (4q+ 7)2

Warning 10.5.14 It is not enough to just see that the first and last terms are perfect squares. For example,
9x2 + 10x+ 25 has its first term equal to (3x)2 and its last term equal to 52. But when you examine 2 · (3x) · 5
the result is 30x, not equal to the middle term. So The Perfect Square Trinomial Formula doesn’t apply here.
In fact, this polynomial doesn’t factor at all.

Remark 10.5.15 To factor these perfect square trinomials, we could use methods from Section 10.3 and Sec-
tion 10.4. As an exercise for yourself, try to factor each of the three previous examples using those methods.
The advantage to using The Perfect Square Trinomial Formula is that it is much faster. With some practice,
all of the work for using it can be done mentally.
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10.5.3 Factoring in Stages

Sometimes factoring a polynomial will take two or more “stages.” You might use one of the special patters to
factor something into two factors, and then those factors might factor even more. When the task is to factor a
polynomial, the intention is that you fully factor it, breaking down the pieces into even smaller pieces when
that is possible.

Example 10.5.16 Factor out any greatest common factor. Factor 12z3 − 27z.
Explanation. The two terms of this polynomial have greatest common factor 3z, so the first step in factoring
should be to factor this out:

3z
(
4z2 − 9

) .
Now we have two factors. There is nothing for us to do with 3z, but we should ask if (4z2 − 9

) can factor
further. And in fact, that is a difference of squares. So we can apply The Difference of Squares Formula. The
full process would be:

12z3 − 27z = 3z
(
4z2 − 9

)
= 3z(2z− 3)(2z+ 3)

Example 10.5.17 Recognize a second special pattern. Factor p4 − 1.
Explanation. Since p4 is the same as (p2

)2, we have a difference of squares here. We can apply The Dif-
ference of Squares Formula:

p4 − 1 =
(
p2 − 1

) (
p2 + 1

)
It doesn’t end here. Of the two factors we found, (p2 + 1

) cannot be factored further. But the other one,(
p2 − 1

) is also a difference of squares. So we should apply The Difference of Squares Formula again:

= (p− 1)(p+ 1)
(
p2 + 1

)

Example 10.5.18 Factor 32x6y2 − 48x5y+ 18x4.
Explanation. The first step of factoring any polynomial is to factor out the common factor if possible. For
this trinomial, the common factor is 2x4, so we write

32x6y2 − 48x5y+ 18x4 = 2x4(16x2y2 − 24xy+ 9).

The square numbers 16 and 9 in 16x2y2 − 24xy + 9 hint that maybe we could use The Perfect Square
Trinomial Formula. Taking A = 4xy and B = 3, we multiply 2AB = 2 · (4xy) · 3. The result is 24xy, which is
the negative of our middle term. So the whole process is:

32x6y2 − 48x5y+ 18x4 = 2x4(16x2y2 − 24xy+ 9)

= 2x4(4xy− 3)2
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10.5.4 Reading Questions
1. Describe two special patterns where it is possible to memorize a quick factoring shortcut as discussed

in this section.

10.5.5 Exercises

Review and Warmup Expand the square of a binomial.
1. (10x+ 1)

2 2. (7y+ 5)
2 3. (y− 8)

2

4. (r− 2)
2 5. (

r8 + 1
)2 6. (

t4 − 8
)2

Multiply the polynomials.
7. (t+ 10) (t− 10) 8. (t+ 13) (t− 13) 9. (2x− 2) (2x+ 2)

10. (6x+ 7) (6x− 7) 11. (
4y9 − 7

) (
4y9 + 7

) 12. (
2y6 + 4

) (
2y6 − 4

)
Factoring Factor the given polynomial.

13. r2 − 100 14. r2 − 36 15. t2 − 144

16. 81t2 − 25 17. t2y2 − 100 18. x2t2 − 121

19. 64x2r2 − 49 20. 16y2x2 − 121 21. 36− y2

22. 1− r2 23. 49− 16r2 24. 1− 144t2

25. t4 − 64 26. t4 − 49 27. 121x4 − 144

28. 64x4 − 25 29. y14 − 100 30. y6 − 121

31. 49x4 − 64y4 32. 81x4 − 4y4 33. x14 − 100y12

34. x10 − 121y14 35. t2 + 4t+ 4 36. x2 + 20x+ 100

37. x2 − 12x+ 36 38. y2 − 2y+ 1 39. 100y2 + 20y+ 1

40. 36r2 + 12r+ 1 41. 4r2 − 4r+ 1 42. 81t2 − 18t+ 1

43. 64t2y2 − 16ty+ 1 44. 64t2x2 − 16tx+ 1 45. x2 + 12xr+ 36r2

46. x2 + 22xy+ 121y2 47. y2 − 8yt+ 16t2 48. y2 − 18yr+ 81r2

49. 9r2 + 24ry+ 16y2 50. 64r2 + 48rt+ 9t2 51. 36t2 − 60tr+ 25r2

52. 25t2 − 60tx+ 36x2 53. 81t4 − 16 54. 16x4 − 1

55. 8x2 − 72 56. 6y2 − 96 57. 6y3 − 6y

58. 11r3 − 44r 59. 5r3t3 − 125rt 60. 5t4y4 − 20t2y2

61. 3− 3t2 62. 125− 5t2 63. 27x2 + 18x+ 3

64. 20x2 + 20x+ 5 65. 32y2r2 + 32yr+ 8 66. 90y2x2 + 60yx+ 10

67. 64r2 − 32r+ 4 68. 45r2 − 30r+ 5 69. 25t7 + 10t6 + t5

70. 144t9 + 24t8 + t7 71. 64t5 − 16t4 + t3 72. 16x8 − 8x7 + x6

73. 12x4 + 12x3 + 3x2 74. 75y10 + 30y9 + 3y8 75. 12y6 − 12y5 + 3y4

76. 90r10 − 60r9 + 10r8 77. 5r4 − 80 78. 7r4 − 7

79. t2 + 100 80. t2 + 36 81. 6x3 + 24x
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82. 2x3 + 8x 83. 0.25y− y3 84. 0.01y− y3

Challenge
85. Select the expression which is equivalent to 5552 − 6662.

⊙ 1221(1221)

⊙ 1221(−111)

⊙ −111(−111)

⊙ none of the above



10.6. FACTORING STRATEGIES 33

10.6 Factoring Strategies

10.6.1 Factoring Strategies
Deciding which method to use when factoring a random polynomial can seem like a daunting task. Under-
standing all of the techniques that we have learned and how they fit together can be done using a decision
tree.

Factor
out GCF

A2 − B2

= (A− B)(A+ B)Difference
of Squares

binomial

Try
Grouping

four
terms

Are first and
last terms

perfect
squares?

try the AC method
leading coefficient ̸= 1

find factors of c
that add to bleading coefficient 1no

A2 + 2AB+ B2

= (A+ B)2

try

A2 − 2AB+ B2

= (A− B)2
try

yes

trinomial

Figure 10.6.2: Factoring Decision Tree

Using the decision tree can guide us when we are given an expression to factor.
Example 10.6.3 Factor the expression 4k2 + 12k− 40 completely.
Explanation. Start by noting that the GCF is 4. Factoring this out, we get

4k2 + 12k− 40 = 4
(
k2 + 3k− 10

) .

Following the decision tree, we now have a trinomial where the leading coefficient is 1 and we need to look
for factors of −10 that add to 3. We find that −2 and 5 work. So, the full factorization is:

4k2 + 12k− 40 = 4
(
k2 + 3k− 10

)
= 4(k− 2)(k+ 5)

Example 10.6.4 Factor the expression 64d2 + 144d+ 81 completely.
Explanation. Start by noting that the GCF is 1, and there is no GCF to factor out. We continue along the
decision tree for a trinomial. Notice that both 64 and 81 are perfect squares and that this expression might
factor using the pattern A2+2AB+B2 = (A+B)2. To find A and B, take the square roots of the first and last
terms, so A = 8d and B = 9. We have to check that the middle term is correct: since 2AB = 2(8d)(9) = 144d

matches our middle term, the expression must factor as
64d2 + 144d+ 81 = (8d+ 9)2.
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Example 10.6.5 Factor the expression 10x2y− 12xy2 completely.
Explanation. Start by noting that the GCF is 2xy. Factoring this out, we get

10x2y− 12xy2 = 2xy(5x− 6y).

Since we have a binomial inside the parentheses, the only options on the decision tree for a binomial involve
squares or cubes. Since there are none, we conclude that 2xy(5x− 6y) is the complete factorization.

Example 10.6.6 Factor the expression 9b2 − 25y2 completely.
Explanation. Start by noting that the GCF is 1, and there is no GCF to factor out. We continue along the
decision tree for a binomial and notice that we now have a difference of squares, A2 −B2 = (A−B)(A+B).
To find the values for A and B that fit the patterns, just take the square roots. So A = 3b since (3b)2 = 9b2

and B = 5y since (5y)2 = 25y2. So, the expression must factor as

9b2 − 25y2 = (3b− 5y)(3b+ 5y).

Example 10.6.7 Factor the expression 24w3 + 6w2 − 9w completely.
Explanation. Start by noting that the GCF is 3w. Factoring this out, we get

24w3 + 6w2 − 9w = 3w
(
8w2 + 2w− 3

) .

Following the decision tree, we now have a trinomial inside the parentheses where a ̸= 1. We should try
the AC method because neither 8 nor −3 are perfect squares. In this case, ac = −24 and we must find two
factors of −24 that add to be 2. The numbers 6 and −4 work in this case. The rest of the factoring process is:

24w3 + 6w2 − 9w = 3w

(
8w2
︷ ︸︸ ︷
+ 2w−3

)
= 3w

(
8w2
︷ ︸︸ ︷
+ 6w− 4w−3

)
= 3w

((
8w2 + 6w

)
+ (−4w− 3)

)
= 3w (2w(4w+ 3) − 1(4w+ 3))

= 3w(4w+ 3)(2w− 1)

Example 10.6.8 Factor the expression −6xy+ 9y+ 2x− 3 completely.
Explanation. Start by noting that the GCF is 1, and there is no GCF to factor out. We continue along the
decision tree. Since we have a four-term polynomial, we should try to factor by grouping. The full process
is:

−6xy+ 9y+ 2x− 3 = (−6xy+ 9y) + (2x− 3)

= −3y(2x− 3) + 1(2x− 3)

= (2x− 3)(−3y+ 1)

Note that the negative sign in front of the 3y can be factored out if you wish. That would look like:

= −(2x− 3)(3y− 1)
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Example 10.6.9 Factor the expression 4w3 − 20w2 + 24w completely.
Explanation. Start by noting that the GCF is 4w. Factoring this out, we get

4w3 − 20w2 + 24w = 4w
(
w2 − 5w+ 6

) .

Following the decision tree, we now have a trinomial with a = 1 inside the parentheses. So, we can look for
factors of 6 that add up to −5. Since −3 and −2 fit the requirements, the full factorization is:

4w3 − 20w2 + 24w = 4w
(
w2 − 5w+ 6

)
= 4w(w− 3)(w− 2)

Example 10.6.10 Factor the expression 9− 24y+ 16y2 completely.
Explanation. Start by noting that the GCF is 1, and there is no GCF to factor out. Continue along the
decision tree. We now have a trinomial where both the first term, 9, and last term, 16y2, look like perfect
squares. To use the perfect squares difference pattern, A2 − 2AB + B2 = (A − B)2, recall that we need to
mentally take the square roots of these two terms to find A and B. So, A = 3 since 32 = 9, and B = 4y since
(4y)2 = 16y2. Now we have to check that 2AB matches 24y:

2AB = 2(3)(4y) = 24y.

So the full factorization is:
9− 24y+ 16y2 = (3− 4y)2.

Example 10.6.11 Factor the expression 9− 25y+ 16y2 completely.
Explanation. Start by noting that the GCF is 1, and there is no GCF to factor out. Since we now have a
trinomial where both the first term and last term are perfect squares in exactly the same way as in Example 10.
However, we cannot apply the perfect squares method to this problem because it worked when 2AB = 24y.
Since our middle term is 25y, we can be certain that it won’t be a perfect square.

Continuing on with the decision tree, our next option is to use the AC method. You might be tempted
to rearrange the order of the terms, but that is unnecessary. In this case, ac = 144 and we need to come up
with two factors of 144 that add to be −25. After a brief search, we conclude that those values are −16 and
−9. The remainder of the factorization is:

9
︷ ︸︸ ︷
− 25y+16y2 = 9

︷ ︸︸ ︷
− 16y− 9y+16y2

= (9− 16y) +
(
−9y+ 16y2

)
= 1(9− 16y) − y(9+ 16y)

= (9− 16y)(1− y)

Example 10.6.12 Factor the expression 20x4 + 13x3 − 21x2 completely.
Explanation. Start by noting that the GCF is x2. Factoring this out, we get

20x4 + 13x3 − 21x2 = x2
(
20x2 + 13x− 21

) .

Following the decision tree, we now have a trinomial inside the parentheses where a ̸= 1 and we should try
the AC method. In this case, ac = −420 and we need factors of −420 that add to 13.
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Factor Pair Sum
1 ·−420 −419

2 ·−210 −208

3 ·−140 −137

4 ·−105 −101

Factor Pair Sum
5 ·−84 −79

6 ·−70 −64

7 ·−60 −53

10 ·−42 −32

Factor Pair Sum
12 ·−35 −23

14 ·−30 −16

15 ·−28 −13

20 ·−21 −1

In the table of the factor pairs of −420 we find 15+ (−28) = −13, the opposite of what we want, so we want
the opposite numbers: −15 and 28. The rest of the factoring process is shown:

20x4 + 13x3 − 21x2 = x2
(
20x2

︷ ︸︸ ︷
+ 13x−21

)
= x2

(
20x2

︷ ︸︸ ︷
−15x+ 28x−21

)
= x2

((
20x2 − 15x

)
+ (28x− 21)

)
= x2 (5x(4x− 3) + 7(4x− 3))

= x2(4x− 3)(5x+ 7)

10.6.2 Reading Questions
1. Do you find a factoring flowchart helpful?

10.6.3 Exercises

Strategies Which factoring techniques/tools will be useful for factoring the polynomial below? Check all
that apply.
□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply to the
constant term and sum to the linear coefficient □ The AC Method □ Difference of Squares
□ Difference of Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

1. 64B2 − 216Bb+ 140b2 2. 6m6 + 384m3x3

3. 49n3 − 35n2 − 28n+ 20 4. 4q4 − 2916q

5. 9y2 − 24y+ 16 6. 3r4 − 39r3 + 120r2

7. 40x2 − 408xa+ 432a2 8. b3 − b2 − 2b+ 2

9. 54A6 − 686A3B3 10. 63n− 81

11. 32m3 − 50mp2 12. n3 + 64A3

13. 210q3t− 168q3 − 270q2t+ 216q2 14. 4y5 − 2916y2p3

Factoring Factor the given polynomial.
15. 6x+ 6 16. −3y− 3

17. 36y2 + 27 18. 30r4 − 12r3 + 42r2

19. 6r+ 12r2 + 15r3 20. 8xy+ 8y

21. 54x5y8 − 6x4y8 + 42x3y8 22. t2 − 2t+ 3t− 6

23. xy+ 2x+ 8y+ 16 24. x3 − 3+ 2x3y− 6y
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25. y2 − 3y− 4 26. 5y2 − 2y− 7

27. 2r2y2 + 3ry− 9 28. 2r2 − 6r+ 5

29. 4r2 − 7r− 2 30. 8t2 + 22t+ 15

31. 12t2 − 23t+ 10 32. 3x2 + 10xr+ 3r2

33. 3x2 − 13xy+ 12y2 34. 4y2 + 3yt− 7t2

35. 8y2 + 22yr+ 9r2 36. 8r2 − 18rx+ 9x2

37. 12r2 − 8r− 4 38. 15r2t2 − 3rt− 12

39. 10t9 + 25t8 + 15t7 40. 6t10 − 9t9 + 3t8

41. 6x2 + 20xy+ 14y2 42. 10x2 − 34xy+ 12y2

43. y2 + 9y+ 8 44. y2 − 6y+ 5

45. r2 + 10rx+ 16x2 46. r2y2 − 4ry− 12

47. r2 − 10ry+ 24y2 48. 4t2x2 + 12tx+ 8

49. 2t2 + 8t− 10 50. 3x4 + 18x3 + 24x2

51. 7x9 − 28x8 + 21x7 52. 2x2y+ 6xy+ 4y

53. 2x2y− 18xy+ 28y 54. 2x2y3 − 10xy2 + 8y

55. x2y2 + 6x2yz− 7x2z2 56. r2 + 0.9r+ 0.2

57. t2 − 144 58. t2r2 − 16

59. 9− x2 60. x4 − 121

61. y12 − 49 62. x6 − 36y14

63. 81y4 − 16 64. 3r3 − 147r

65. r2 + 4 66. 32− 8t2

67. t2 + 12t+ 36 68. x2 − 12xy+ 36y2

69. x2 − 18x+ 81 70. 36y2 − 12y+ 1

71. y2 + 18yx+ 81x2 72. 9y2 + 30yr+ 25r2

73. 98r2y2 + 28ry+ 2 74. 4r10 + 4r9 + r8

75. 98t8 + 28t7 + 2t6 76. 0.16t− t3

77. 2x4 − 162 78. x2 − 14x+ 49− 64y2
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10.7 Solving Quadratic Equations by Factoring

10.7.1 Introduction
We have learned how to factor trinomials like x2 + 5x+ 6 into (x+ 2)(x+ 3). This skill can be used to solve
an equation like x2 + 5x + 6 = 0, which is a quadratic equation. Note that we solved equations like this in
Chapter 7, but here we will use factoring, a new method.

Definition 10.7.1 Quadratic Equation. A quadratic equation is is an equation in the form ax2 +bx+ c = 0

with a ̸= 0. We also consider equations such as x2 = x + 3 and 5x2 + 3 = (x + 1)2 + (x + 1)(x − 3) to be
quadratic equations, because we can expand any multiplication, add or subtract terms from both sides, and
combine like terms to get the form ax2 + bx+ c = 0. The form ax2 + bx+ c = 0 is called the standard form
of a quadratic equation. ♢

Before we begin exploring the method of solving quadratic equations by factoring, we’ll identify what
types of equations are quadratic and which are not.

Checkpoint 10.7.3 Identify which of the items are quadratic equations.
a. The equation 2x2 + 5x = 7 (□ is □ is not) a quadratic equation.
b. The equation 5− 2x = 3 (□ is □ is not) a quadratic equation.
c. The equation 15− x3 = 3x2 + 9x (□ is □ is not) a quadratic equation.
d. The equation (x+ 3)(x− 4) = 0 (□ is □ is not) a quadratic equation.
e. The equation x(x+ 1)(x− 1) = 0 (□ is □ is not) a quadratic equation.
f. The expression x2 − 5x+ 6 (□ is □ is not) a quadratic equation.
g. The equation (2x− 3)(x+ 5) = 12 (□ is □ is not) a quadratic equation.

Explanation.
a. The equation 2x2+5x = 7 is a quadratic equation. To write it in standard form, simply subtract 7 from

both sides.
b. The equation 5− 2x = 3 is not quadratic. It is a linear equation.
c. The equation 15+ x3 = 3x2 + 9x is not a quadratic equation because of the x3 term.
d. The equation (x+3)(x−4) = 0 is a quadratic equation. If we expand the left-hand side of the equation,

we would get something in standard form.
e. The equation x(x+ 1)(x− 1) = 0 is not a quadratic equation. If we expanded the left-hand side of the

equation, we would have an expression with an x3 term, which automatically makes it not quadratic.
f. The expression x2 − 5x + 6 is not a quadratic equation; it’s not an equation at all. Instead, this is a

quadratic expression.
g. The equation (2x − 3)(x + 5) = 12 is a quadratic equation. Multiplying out the left-hand side, and

subtracting 12 form both sides, we would have a quadratic equation in standard form.
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Now we’ll look at an application that demonstrates the need and method for solving a quadratic equation
by factoring.
Nita is in a physics class that launches a tennis ball
from a rooftop 80 feet above the ground. They fire
it directly upward at a speed of 64 feet per second
and measure the time it takes for the ball to hit the
ground below. We can model the height of the ten-
nis ball, h, in feet, with the quadratic equation

h = −16t2 + 64t+ 80,

where t represents the time in seconds after the
launch. Using the model we can predict when the
ball will hit the ground.

Figure 10.7.4: A Diagram of the Ball Thrown from
the Roof

The ground has a height of 0, or h = 0. We will substitute 0 for h in the equation and we have
−16t2 + 64t+ 80 = 0

We need to solve this quadratic equation for t to find when the ball will hit the ground.
The key strategy for solving a linear equation is to separate the variable terms from the constant terms

on either side of the equal sign. It turns out that this same method will not work for quadratic equations.
Fortunately, we already have spent a good amount of time discussing a method that will work: factoring.
If we can factor the polynomial on the left-hand side, we will be on the home stretch to solving the whole
equation.

We will look for a common factor first, and see that we can factor out −16. Then we can finish factoring
the trinomial:

−16t2 + 64t+ 80 = 0

−16(t2 − 4t− 5) = 0

−16(t+ 1)(t− 5) = 0

In order to finish solving the equation, we need to understand the following property. This property
explains why it was incredibly important to not move the 80 in our example over to the other side of the
equation before trying to factor.
Fact 10.7.5 Zero Product Property. If the product of two or more numbers is equal to zero, then at least one of the
numbers must be zero.

One way to understand this property is to think about the equation a ·b = 0. Maybe b = 0, because that
would certainly cause the equation to be true. But suppose that b ̸= 0. Then it is safe to divide both sides
by b, and the resulting equation says that a = 0. So no matter what, either a = 0 or b = 0.

To understand this property more, let’s look at a few products:
4 · 7 = 28 4 · 0 = 0 4 · 7 · 3 = 84
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0 · 7 = 0 −4 · 0 = 0 4 · 0 · 3 = 0

When none of the factors are 0, the result is never 0. The only way to get a product of 0 is when one of the
factors is 0. This property is unique to the number 0 and can be used no matter how many numbers are
multiplied together.

Now we can see the value of factoring. We have three factors in our equation

−16(t+ 1)(t− 5) = 0.

The first factor is the number −16. The second and third factors, t+1 and t−5, are expressions that represent
numbers. Since the product of the three factors is equal to 0, one of the factors must be zero.

Since −16 is not 0, either t+ 1 or t− 5 must be 0. This gives us two equations to solve:

t+ 1 = 0 or t− 5 = 0

t+ 1− 1 = 0− 1 or t− 5+ 5 = 0+ 5

t = −1 or t = 5

We have found two solutions, −1 and 5. A quadratic expression will have at most two linear factors, not
including any constants, so it can have up to two solutions.

Let’s check each of our two solutions −1 and 5:

−16t2 + 64t+ 80 = 0 −16t2 + 64t+ 80 = 0

−16(−1)2 + 64(−1) + 80
?
= 0 −16(5)2 + 64(5) + 80

?
= 0

−16(1) − 64+ 80
?
= 0 −16(25) + 320+ 80

?
= 0

−16− 64+ 80
?
= 0 −400+ 320+ 80

?
= 0

0
✓
= 0 0

✓
= 0

We have verified our solutions. While there are two solutions to the equation, the solution −1 is not
relevant to this physics model because it is a negative time which would tell us something about the ball’s
height before it was launched. The solution 5 does make sense. According to the model, the tennis ball will
hit the ground 5 seconds after it is launched.

10.7.2 Further Examples
We’ll now look at further examples of solving quadratic equations by factoring. The general process is
outlined here:
Process 10.7.6 Solving Quadratic Equations by Factoring.
Simplify Simplify the equation using distribution and by combining like terms.
Isolate Move all terms onto one side of the equation so that the other side has 0.
Factor Factor the quadratic expression.
Apply the Zero Product Property Apply the Zero Product Property.
Solve Solve the equation(s) that result after the zero product property was applied.
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Example 10.7.7 Solve x2 − 5x− 14 = 0 by factoring.
Explanation.

x2 − 5x− 14 = 0

(x− 7)(x+ 2) = 0

x− 7 = 0 or x+ 2 = 0

x− 7+ 7 = 0+ 7 or x+ 2− 2 = 0− 2

x = 7 or x = −2

The solutions are −2 and 7, so the solution set is written as {−2, 7}.

Example 10.7.8 Solve x2 − 5x− 14 = 0 by using graphing technology.
Explanation. We have already solved the equation x2 − 5x − 14 = 0 by factoring in Example 10.7.7, and
now we can analyze the significance of the solutions graphically. What will −2 and 7 mean on the graph?
To solve this equation graphically, we first make a
graph of y = x2−5x−14 and of y = 0. Both of these
graphs are shown in Figure 10.7.9 in an appropriate
window.

−4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−18

−12

−6

6

12

y = x2 − 5x− 14

y = 0(−2, 0) (7, 0) x

y

Figure 10.7.9: A graph of y = x2 − 5x− 14 and
y = 0.

From the graph provided we can see that the solutions (the x-values where the graphs intersect) are −2 and
7.
If the two factors of a polynomial happen to be the same, the equation will only have one solution. Let’s
look at an example of that.
Example 10.7.10 A Quadratic Equation with Only One Solution. Solve x2 − 10x+ 25 = 0 by factoring.
Explanation.

x2 − 10x+ 25 = 0

(x− 5)(x− 5) = 0

(x− 5)2 = 0

x− 5 = 0
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x− 5+ 5 = 0+ 5

x = 5

The solution is 5, so the solution set is written as {5}.
While we are examining this problem, let’s compare the algebraic solution to a graphical solution.

To solve this equation graphically, we first make a
graph of y = x2 − 10x + 25 and of y = 0. Both
of these graphs are shown in Figure 10.7.11 in an
appropriate window.

−1 1 2 3 4 5 6 7 8 9 10 11

5

10

15

20

25

30

35

y = x2 − 10x+ 25

y = 0(5, 0) x

y

Figure 10.7.11: A graph of y = x2 − 10x+ 25 and
y = 0.

From the graph provided, we can see that the reason that the equation x2−10x+25 = 0 has only one solution
is that the parabola y = x2 − 10x+ 25 touches the line y = 0 only once. So again, the solution is 5.

Example 10.7.12 Factor Out a Common Factor. Solve 5x2 + 55x+ 120 = 0 by factoring.
Explanation. Note that the terms are all divisible by 5, so we can factor that out to start.

5x2 + 55x+ 120 = 0

5(x2 + 11x+ 24) = 0

5(x+ 8)(x+ 3) = 0

x+ 8 = 0 or x+ 3 = 0

x = −8 or x = −3

The solution set is {−8,−3}.

Example 10.7.13 Factoring Using the ACMethod. Solve 3x2 − 7x+ 2 = 0 by factoring.
Explanation. Recall that we multiply 3 · 2 = 6 and find a factor pair that multiplies to 6 and adds to −7.
The factors are −6 and −1. We use the two factors to replace the middle term with −6x and −x.

3x2 − 7x+ 2 = 0

3x2 − 6x− x+ 2 = 0

(3x2 − 6x) + (−x+ 2) = 0
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3x(x− 2) − 1(x− 2) = 0

(3x− 1)(x− 2) = 0

3x− 1 = 0 or x− 2 = 0

3x = 1 or x = 2

x =
1

3
or x = 2

The solution set is {1
3
, 2
}.

So far the equations have been written in standard form, which is
ax2 + bx+ c = 0

If an equation is not given in standard form then we must rearrange it in order to use the Zero Product
Property.
Example 10.7.14 Writing in Standard Form. Solve x2 − 10x = 24 by factoring.
Explanation. There is nothing like the Zero Product Property for the number 24. We must have a 0 on one
side of the equation to solve quadratic equations using factoring.

x2 − 10x = 24

x2 − 10x− 24 = 24− 24

x2 − 10x− 24 = 0

(x− 12)(x+ 2) = 0

x− 12 = 0 or x+ 2 = 0

x = 12 or x =− 2

The solution set is {−2, 12}.

Example 10.7.15 Writing in Standard Form. Solve (x+ 4)(x− 3) = 18 by factoring.
Explanation. Again, there is nothing like the Zero Product Property for a number like 18. We must expand
the left side and subtract 18 from both sides.

(x+ 4)(x− 3) = 18

x2 + x− 12 = 18

x2 + x− 12− 18 = 18− 18

x2 + x− 30 = 0

(x+ 6)(x− 5) = 0

x+ 6 = 0 or x− 5 = 0

x = −6 or x = 5

The solution set is {−6, 5}.
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Example 10.7.16 A Quadratic Equation with No Constant Term. Solve 2x2 = 5x by factoring.
Explanation. It may be tempting to divide both sides of the equation by x. But x is a variable, and for all
we know, maybe x = 0. So it is not safe to divide by x. As a general rule, never divide an equation by a
variable in the solving process. Instead, we will put the equation in standard form.

2x2 = 5x

2x2 − 5x = 5x− 5x

2x2 − 5x = 0

We can factor out x.

x(2x− 5) = 0

x = 0 or 2x− 5 = 0

x = 0 or 2x = 5

x = 0 or x =
5

2

The solution set is {0, 5
2

}. In general, if a quadratic equation does not have a constant term, then 0 will be
one of the solutions.

While we are examining this problem, let’s compare the algebraic solution to a graphical solution.
To solve this equation graphically, we first make
a graph of y = 2x2 and of y = 5x. Both of these
graphs are shown in Figure 10.7.17 in an appropri-
ate window.

−4 −3 −2 −1 2 3 4
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y = 2x2

y = 5x

(0, 0)

(5
2
, 12.5)

x

y

Figure 10.7.17: A graph of y = 2x2 and y = 5x.
From the graph provided, we can see that the equation 2x2 = 5x has two solutions because the graph of
y = 2x2 crosses the graph of y = 5x twice. Those solutions, the x-values where the graphs cross, appear to
be 0 and 5

2
= 2.5.

Example 10.7.18 Factoring a Special Polynomial. Solve x2 = 9 by factoring.
Explanation. We can put the equation in standard form and use factoring. In this case, we find a difference
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of squares.

x2 = 9

x2 − 9 = 0

(x+ 3)(x− 3) = 0

x+ 3 = 0 or x− 3 = 0

x = −3 or x = 3

The solution set is {−3, 3}.

Example 10.7.19 Solving an Equation with a Higher Degree. Solve 2x3 − 10x2 − 28x = 0 by factoring.
Explanation. Although this equation is not quadratic, it does factor so we can solve it by factoring.

2x3 − 10x2 − 28x = 0

2x(x2 − 5x− 14) = 0

2x(x− 7)(x+ 2) = 0

2x = 0 or x− 7 = 0 or x+ 2 = 0

x = 0 or x = 7 or x = −2

The solution set is {−2, 0, 7}.

10.7.3 Applications
Example 10.7.20 Kicking it on Mars.
Some time in the recent past, Filip traveled to Mars
for a vacation with his kids, Henrik and Karina,
who wanted to kick a soccer ball around in the
comparatively reduced gravity. Karina stood at
point K and kicked the ball over her dad standing
at point F to Henrik standing at pointH. The height
of the ball off the ground, h in feet, can be mod-
eled by the equation h = −0.01

(
x2 − 70x− 1800

),
where x is how far to the right the ball is from Filip.
Note that distances to the left of Filip will be nega-
tive.

a. Find out how high the ball was above the
ground when it passed over Filip’s head.

b. Find the distance from Karina to Henrik.
K F H

Figure 10.7.21: A Soccer Kick on Mars
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Explanation.
a. The ball was neither left nor right of Filip when it went over him, so x = 0. Plugging that value into

our equation for x,

h = −0.01
(
02 − 70(0) − 1800

)
= −0.01(−1800)

= 18

It seems that the soccer ball was 18 feet above the ground when it flew over Filip.
b. The distance from Karina to Henrik is the same as the distance from point K to point H. These are

the horizontal intercepts of the graph of the given formula: h = −0.01
(
x2 − 70x− 1800

). To find the
horizontal intercepts, set h = 0 and solve for x.

0 = −0.01
(
x2 − 70x− 1800

)
Note that we can divide by −0.01 on both sides of the equation to simplify.

0 = x2 − 70x− 1800

0 = (x− 90)(x+ 20)

So, either:

x− 90 = 0 or x+ 20 = 0

x = 90 or x = −20

Since the x-values are how far right or left the points are from Filip, Karina is standing 20 feet left of
Filip and Henrik is standing 90 feet right of Filip. Thus, the two kids are 110 feet apart.

It is worth noting that if this same kick, with same
initial force at the same angle, took place on Earth,
the ball would have traveled less than 30 feet from
Karina before landing!

−20 20 40 60 80

10

20

30

MarsEarth x

y

Figure 10.7.22: A Soccer Kick on Mars and the
Same Kick on Earth
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Example 10.7.23 An Area Application. Rajesh has a hot tub and he wants to build a deck around it. The
hot tub is 7 ft by 5 ft and it is covered by a roof that is 99 ft2. How wide can he make the deck so that it will
be covered by the roof?
Explanation. We will define x to represent the width of the deck (in feet). Here is a diagram to help us
understand the scenario.

7 ft

5 ftx x

x

x

Figure 10.7.24: Diagram for the Deck

The overall length is 7+ 2x feet, because Rajesh is adding x feet on each side. Similarly, the overall width is
5+ 2x feet.

The formula for the area of a rectangle is area = length · width. Since the total area of the roof is 99 ft2,
we can write and solve the equation:

(7+ 2x)(5+ 2x) = 99

4x2 + 24x+ 35 = 99

4x2 + 24x+ 35− 99 = 99− 99

4x2 + 24x− 64 = 0

4(x2 + 6x− 16) = 0

4(x+ 8)(x− 2) = 0

x+ 8 = 0 or x− 2 = 0

x = −8 or x = 2

Since a length cannot be negative, we take x = 2 as the only applicable solution. Rajesh should make the
deck 2 ft wide on each side to fit under the roof.
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10.7.4 Reading Questions
1. If you use factoring to solve a polynomial equation, what number should be the only thing on one side

of the equation?
2. When you are tyring to solve a quadratic equation where the leading coefficient is not 1m and you want

to use factoring, and you have moved all terms to one side so that the other side is 0, what should you
look for before trying anything else?

10.7.5 Exercises

Warmup and Review Factor the given polynomial.
1. 10y− 60 2. 7y+ 63 3. r2 + 3r− 18

4. r2 + 6r− 27 5. 3t2 − 4t+ 1 6. 2t2 − 11t+ 15

7. 30x2 + 12x+ 42 8. 27x2 − 72x+ 72 9. 9y4 − 100

10. 100y4 − 9

Solve Quadratic Equations by Factoring Solve the equation.
11. (x− 1)(x+ 3) = 0 12. (x+ 2)(x− 10) = 0 13. 89(x+ 4)(16x− 5) = 0

14. 90(x+ 7)(9x− 5) = 0 15. x2 + 11x+ 10 = 0 16. x2 + 9x+ 8 = 0

17. x2 − 3x− 28 = 0 18. x2 − 4x− 5 = 0 19. x2 − 11x+ 28 = 0

20. x2 − 13x+ 42 = 0 21. x2 + 16x = −60 22. x2 + 15x = −56

23. x2 + 4x = 21 24. x2 − x = 90 25. x2 − 15x = −50

26. x2 − 17x = −72 27. x2 = 5x 28. x2 = 3x

29. 6x2 = 36x 30. 7x2 = −49x 31. 8x2 = 3x

32. 9x2 = 7x 33. x2 − 24x+ 144 = 0 34. x2 − 2x+ 1 = 0

35. x2 = 4x− 4 36. x2 = 8x− 16 37. 36x2 = −60x− 25

38. 49x2 = −14x− 1 39. 4x2 = −25x− 36 40. 4x2 = −37x− 40

41. x2 − 36 = 0 42. x2 − 81 = 0 43. 25x2 − 144 = 0

44. 25x2 − 9 = 0 45. 81x2 = 121 46. 25x2 = 16

47. x(x+ 11) = 12 48. x(x− 6) = 16 49. x(4x+ 33) = 70

50. x(3x+ 20) = 63 51. (x− 5)(x+ 2) = −6 52. (x− 1)(x+ 4) = −6

53. (x− 1)(3x+ 4) = 2x2 − 2 54. (x− 1)(4x+ 7) = 3x2 − 9 55. x(x− 12) = −3(2x+ 3)

56. x(x− 4) = − (2x+ 1) 57. 49x2 + 84x+ 36 = 0 58. 9x2 + 24x+ 16 = 0

59. (x+ 3)
(
x2 + 17x+ 72

)
=

0

60. (x− 9)
(
x2 + 15x+ 50

)
=

0

61. x
(
x2 − 1

)
= 0

62. x
(
x2 − 4

)
= 0 63. x3 − 8x2 + 15x = 0 64. x3 − 13x2 + 30x = 0

Quadratic Equation Application Problems
65. Two numbers’ sum is 2, and their product is

−35. Find these two numbers.
These two numbers are .

66. Two numbers’ sum is −2, and their product
is −35. Find these two numbers.
These two numbers are .
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67. A rectangle’s base is 9 cm longer than its
height. The rectangle’s area is 136 cm2. Find
this rectangle’s dimensions.
The rectangle’s height is .
The rectangle’s base is .

68. A rectangle’s base is 8 cm longer than its
height. The rectangle’s area is 128 cm2. Find
this rectangle’s dimensions.
The rectangle’s height is .
The rectangle’s base is .

69. A rectangle’s base is 8 in shorter than three
times its height. The rectangle’s area is
35 in2. Find this rectangle’s dimensions.
The rectangle’s height is .
The rectangle’s base is .

70. A rectangle’s base is 2 in shorter than five
times its height. The rectangle’s area is
16 in2. Find this rectangle’s dimensions.
The rectangle’s height is .
The rectangle’s base is .

71. There is a rectangular lot in the garden,
with 9 ft in length and 3 ft in width. You
plan to expand the lot by an equal length
around its four sides, and make the area of
the expanded rectangle 55 ft2. How long
should you expand the original lot in four
directions?

You should expand the original lot by
in four directions.

72. There is a rectangular lot in the garden,
with 6 ft in length and 4 ft in width. You
plan to expand the lot by an equal length
around its four sides, and make the area of
the expanded rectangle 48 ft2. How long
should you expand the original lot in four
directions?

You should expand the original lot by
in four directions.

Challenge
73. Give an example of a cubic equation that has three solutions: one solution is x = 4, the second

solution is x = −2, and the third solution is x = 2
3

.
74. Solve for x in the equation 48x46 − 3x44 = 0.
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10.8 Factoring Chapter Review

10.8.1 Factoring out the GCF
In Section 10.1 we covered how to factor out the greatest common factor. Recall that the greatest common
factor between two expressions is the largest factor that goes in evenly to both expressions.

Example 10.8.1 Finding the Greatest Common Factor. What is the greatest common factor between 12x3y

and 42x2y2?
Explanation. Break down each of these into its factors:

12x3y = (2 · 2) · 3 · (x · x · x) · y 42x2y2 = 2 · 3 · 7 · (x · x) · (y · y)

Identify the common factors:

12x3y =
↓
2 · 2 ·

↓
3 ·

↓
x ·

↓
x · x ·

↓
y 42x2y2 =

↓
2 ·

↓
3 · 7 ·

↓
x ·

↓
x ·

↓
y · y

With 2, 3, two x’s and a y in common, the greatest common factor is 6x2y.

Example 10.8.2 What is the greatest common factor between 18c3y2 and 27y3c?
Explanation. Break down each into factors. You can definitely do this mentally with practice.

18c3y2 = 2 · 3 · 3 · c · c · c · y · y 27y3c = 3 · 3 · 3 · y · y · y · c

And take note of the common factors.

18c3y2 = 2 ·
↓
3 ·

↓
3 ·

↓
c · c · c ·

↓
y ·

↓
y 27y3c =

↓
3 ·

↓
3 · 3 ·

↓
y ·

↓
y · y · c

And so the GCF is 9y2c

Example 10.8.3 Factoring out the Greatest Common Factor. Factor out the GCF from the expression
32mn2 − 24m2n− 12mn.
Explanation. To factor out the GCF from the expression 32mn2 − 24m2n− 12mn, first note that the GCF
to all three terms is 4mn. Begin by writing that in front of a blank pair of parentheses and fill in the missing
pieces.

32mn2 − 24m2n− 12mn = 4mn( − − )

= 4mn(8n− 6m− 3)

Example 10.8.4 Factor out the GCF from the expression 14x3 − 35x2.
Explanation. First note that the GCF of the terms in 14x3 − 35x2 is 7x2. Factoring this out, we have:

14x3 − 35x2 = 7x2 ( − )

= 7x2 (2x− 5)
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Example 10.8.5 Factor out the GCF from the expression 36m3n2 − 18m2n5 + 24mn3.
Explanation. First note that the GCF of the terms in 36m3n2 − 18m2n5 + 24mn3 is 6mn2. Factoring this
out, we have:

36m3n2 − 18m2n5 + 24mn3 = 6mn2
(

− +
)

= 6mn2
(
6m2 − 3mn3 + 4n

)
Example 10.8.6 Factor out the GCF from the expression 42f3w2 − 8w2 + 9f3.
Explanation. First note that the GCF of the terms in 42f3w2 − 8w2 + 9f3 is 1, so we call the expression
prime. The only way to factor the GCF out of this expression is:

42f3w2 − 8w2 + 9f3 = 1
(
42f3w2 − 8w2 + 9f3

)
10.8.2 Factoring by Grouping
In Section 10.2 we covered how to factor by grouping. Recall that factoring using grouping is used on four-
term polynomials, and also later in the AC method in Section 10.4. Begin by grouping two pairs of terms and
factoring out their respective GCF; if all is well, we should be left with two matching pieces in parentheses
that can be factored out in their own right.
Example 10.8.7 Factor the expression 2x3 + 5x2 + 6x+ 15 using grouping.
Explanation.

2x3 + 5x2 + 6x+ 15 =
(
2x3 + 5x2

)
+ (6x+ 15)

= x2 (2x+ 5) + 3 (2x+ 5)

=
(
x2 + 3

)
(2x+ 5)

Example 10.8.8 Factor the expression 2xy− 3x− 8y+ 12 using grouping.
Explanation.

2xy− 3x+ 8y− 12 = (2xy− 3x) + (−8y+ 12)

= x (2y− 3) − 4 (2y− 3)

= (x− 4)(2y− 3)

Example 10.8.9 Factor the expression xy− 2− 2x+ y using grouping.
Explanation. This is a special example because if we try to follow the algorithm without considering the
bigger context, we will fail:

xy− 2− 2x+ y = (xy− 2) + (−2x+ y)

Note that there is no common factor in either grouping, besides 1, but the groupings themselves don’t match.
We should now recognize that whatever we are doing isn’t working and try something else. It turns out
that this polynomial isn’t prime; all we need to do is rearrange the polynomial into standard form where the
degrees decrease from left to right before grouping.

xy− 2− 2x+ y = xy− 2x+ y− 2

= (xy− 2x) + (y− 2)

= x (y− 2) + 1 (y− 2)



52 CHAPTER 10. FACTORING

= (x+ 1)(y− 2)

Example 10.8.10 Factor the expression 15m2 − 3m− 10mn+ 2n using grouping.
Explanation.

15m2 − 3m− 10mn+ 2n =
(
15m2 − 3m

)
+ (−10mn+ 2n)

= 3m (5m− 1) − 2n (5m− 1)

= (3m− 2n)(5m− 1)

10.8.3 Factoring Trinomials with Leading Coefficient 1
In Section 10.3 we covered factoring expressions that look like x2 + bx + c. The trick was to look for two
numbers whose product was c and whose sum was b. Always remember to look for a greatest common
factor first, before looking for factor pairs.
Example 10.8.11 Answer the questions to practice for the factor pairs method.

a. What two numbers multiply to be 6 and add to be 5?
b. What two numbers multiply to be −6 and add to be 5?
c. What two numbers multiply to be −6 and add to be −1?
d. What two numbers multiply to be 24 and add to be −10?
e. What two numbers multiply to be −24 and add to be 2?
f. What two numbers multiply to be −24 and add to be −5?
g. What two numbers multiply to be 420 and add to be 44?
h. What two numbers multiply to be −420 and add to be −23?
i. What two numbers multiply to be 420 and add to be −41?

Explanation.
a. What two numbers multiply to be 6 and add to be 5? The numbers are 2 and 3.
b. What two numbers multiply to be −6 and add to be 5? The numbers are 6 and −1.
c. What two numbers multiply to be −6 and add to be −1? The numbers are −3 and 2.
d. What two numbers multiply to be 24 and add to be −10? The numbers are −6 and −4.
e. What two numbers multiply to be −24 and add to be 2? The numbers are 6 and −4.
f. What two numbers multiply to be −24 and add to be −5? The numbers are −8 and 3.
g. What two numbers multiply to be 420 and add to be 44? The numbers are 30 and 14.
h. What two numbers multiply to be −420 and add to be −23? The numbers are −35 and 12.
i. What two numbers multiply to be 420 and add to be −41? The numbers are −20 and −21.
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Note that for parts g–i, the factors of 420 are important. Below is a table of factors of 420 which will make
it much clearer how the answers were found. To generate a table like this, we start with 1, and we work our
way up the factors of 420.

Factor Pair
1 · 420
2 · 210
3 · 140
4 · 105

Factor Pair
5 · 84
6 · 70
7 · 60
10 · 42

Factor Pair
12 · 35
14 · 30
15 · 28
20 · 21

It is now much easier to see how to find the numbers in question. For example, to find two numbers that
multiply to be−420 and add to be−23, look in the table for two factors that are 23 apart and assign a negative
sign appropriately. As we found earlier, the numbers that are 23 apart are 12 and 35, and making the larger
one negative, we have our answer: 12 and −35.

Example 10.8.12 Factor the expression x2 − 3x− 28

Explanation. To factor the expression x2 − 3x− 28, think of two numbers that multiply to be −28 and add
to be −3. In the Section 10.3, we created a table of all possibilities of factors, like the one shown, to be sure
that we never missed the right numbers; however, we encourage you to try this mentally for most problems.

Factor Pair Sum of the Pair
−1 · 28 27

−2 · 14 12

−4 · 7 3 (close; wrong sign)

Factor Pair Sum of the Pair
1 · (−28) −27

2 · (−14) −12

4 · (−7) −3 (what we wanted)
Since the two numbers in question are 4 and −7 that means that

x2 − 3x− 28 = (x+ 4)(x− 7)

Remember that you can always multiply out your factored expression to verify that you have the correct
answer. We will use the FOIL expansion.

(x+ 4)(x− 7) = x2 − 7x+ 4x− 28

✓
= x2 − 3x− 28

Example 10.8.13 Factoring in Stages. Completely factor the expression 4x3 − 4x2 − 120x.
Explanation. Remember that some expressions require more than one step to completely factor. To factor
4x3 − 4x2 − 120x, first, always look for any GCF; after that is done, consider other options. Since the GCF is
4x, we have that

4x3 − 4x2 − 120x = 4x
(
x2 − x− 30

) .
Now the factor inside parentheses might factor further. The key here is to consider what two numbers
multiply to be −30 and add to be −1. In this case, the answer is −6 and 5. So, to completely write the
factorization, we have:

4x3 − 4x2 − 120x = 4x
(
x2 − x− 30

)
= 4x(x− 6)(x+ 5)

Example 10.8.14 Factoring Expressions with Higher Powers. Completely factor the expression p10−6p5−
72.
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Explanation. If we have a trinomial with an even exponent on the leading term, and the middle term
has an exponent that is half the leading term exponent, we can still use the factor pairs method. To factor
p10 − 6p5 − 72, we note that the middle term exponent 5 is half of the leading term exponent 10, and that
two numbers that multiply to be −72 and add to be −6 are −12 and 6. So the factorization of the expression
is

p10 − 6p5 − 72 =
(
p5 − 12

) (
p5 + 6

)
Example 10.8.15 Factoring Expressions with Two Variables. Completely factor the expression x2 − 3xy−
70y2.
Explanation. If an expression has two variables, like x2 − 3xy − 70y2, we pretend for a moment that the
expression is x2−3x−70. To factor this expression we ask ourselves “what two numbers multiply to be −70

and add to be −3?” The two numbers in question are 7 and −10. So x2 − 3x− 70 factors as (x+ 7)(x− 10).
To go back to the original problem now, make the two numbers 7y and −10y. So, the full factorization is

x2 − 3xy− 70y2 = (x+ 7y)(x− 10y)

With problems like this, it is important to verify the your answer to be sure that all of the variables ended
up where they were supposed to. So, to verify, FOIL your answer.

(x+ 7y)(x− 10y) = x2 − 10xy+ 7yx− 70y2

= x2 − 10xy+ 7xy− 70y2

✓
= x2 − 3xy− 70y2

Example 10.8.16 Completely factor the expressions.
a. x2 − 11x+ 30

b. −s2 + 3s+ 28

c. g2 − 3g− 24

d. w2 −wr− 30r2

e. z8 + 2z4 − 63

Explanation.
a. x2 − 11x+ 30 = (x− 6)(x− 5)

b. −s2 + 3s+ 28 = −
(
s2 − 3s− 28

)
= −(s− 7)(s+ 4)

c. g2 − 3g− 24 is prime. No two integers multiply to be −24 and add to be −3.
d. w2 −wr− 30r2 = (w− 6r)(w+ 5r)

e. z8 + 2z4 − 63 =
(
z4 − 7

) (
z4 + 9

)
10.8.4 Factoring Trinomials with Non-Trivial Leading Coefficient
In Section 10.4 we covered factoring trinomials of the form ax2 + bx+ c when a ̸= 1 using the AC method.
Example 10.8.17 Using the ACMethod. Completely factor the expression 9x2 − 6x− 8.
Explanation. To factor the expression 9x2 − 6x− 8, we first find ac:

1. 9 · (−8) = −72.



10.8. FACTORING CHAPTER REVIEW 55

2. Examine factor pairs that multiply to −72, looking for a pair that sums to −6:
Factor Pair Sum of the Pair
1 ·−72 −71

2 ·−36 −34

3 ·−24 −21

4 ·−18 −14

6 ·−12 −6

8 ·−9 (no need to go this far)

Factor Pair Sum of the Pair
−1 · 72 (no need to go this far)
−2 · 36 (no need to go this far)
−3 · 24 (no need to go this far)
−4 · 18 (no need to go this far)
−6 · 12 (no need to go this far)
−8 · 9 (no need to go this far)

3. Intentionally break up the −6 as 6+ (−12) and then factor using grouping:

9x2
︷ ︸︸ ︷
− 6x−8 = 9x2

︷ ︸︸ ︷
+ 6x− 12x−8

=
(
9x2 + 6x

)
+ (−12x− 8)

= 3x(3x+ 2) − 4(3x+ 2)

= (3x+ 2)(3x− 4)

Example 10.8.18 Completely factor the expression 3x2 + 5x− 6.
Explanation. First note that there is no GCF besides 1 and that ac = −18. To look for two factors of −18

that add up to 5, we will make a factor pair table.
Factor Pair Sum of the Pair
1 ·−18 −17

2 ·−9 −7

3 ·−6 −3

Factor Pair Sum of the Pair
−1 · 18 17

−2 · 9 7

−3 · 6 3

Since none of the factor pairs of −18 sum to 5, we must conclude that this trinomial is prime. The only way
to factor it is 3x2 + 5x− 6 = 1

(
3x2 + 5x− 6

).
Example 10.8.19 Completely factor the expression 3y2 + 20y− 63.
Explanation. First note that ac = −189. Looking for two factors of −189 that add up to 20, we find 27 and
−7. Breaking up the +20 into +27− 7, we can factor using grouping.

3y2
︷ ︸︸ ︷
+ 20y−63 = 3y2

︷ ︸︸ ︷
+ 27y− 7y−63

=
(
3y2 + 27y

)
+ (−7y− 63)

= 3y(y+ 9) − 7(y+ 9)

= (y+ 9)(3y− 7)

Example 10.8.20 Factoring in Stages with the ACMethod. Completely factor the expression 8y3 + 54y2 +
36y.
Explanation. Recall that some trinomials need to be factored in stages: the first stage is always to factor
out the GCF. To factor 8y3 + 54y2 + 36y, first note that the GCF of the three terms in the expression is 2y.
Then apply the AC method:

8y3 + 54y2 + 36y = 2y
(
4y2 + 27y+ 18

)
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Now we find ac = 4 · 18 = 72. What two factors of 72 add up to 27? After checking a few numbers, we find
that 3 and 24 fit the requirements. So:

= 2y

(
4y2
︷ ︸︸ ︷
+27y+18

)
= 2y

(
4y2
︷ ︸︸ ︷
+3y+ 24y+18

)
= 2y

((
4y2 + 3y

)
+ (24y+ 18)

)
= 2y (y(4y+ 3) + 6(4y+ 3))

= 2y(4y+ 3) (y+ 6)

Example 10.8.21 Completely factor the expression 18x3 + 26x2 + 4x.
Explanation. First note that there is a GCF of 2x which should be factored out first. Doing this leaves us
with 18x3+ 26x2+ 8x = 2x

(
9x2 + 13x+ 4

). Now we apply the AC method on the factor in the parentheses.
So, ac = 36, and we must find two factors of 36 that sum to be 13. These two factors are 9 and 4. Now we
can use grouping.

18x3 + 26x2 + 8x = 2x

(
9x2
︷ ︸︸ ︷
+ 13x+4

)
= 2x

(
9x2
︷ ︸︸ ︷
+ 9x+ 4x+4

)
= 2x

((
9x2 + 9x

)
+ (4x+ 4)

)
= 2x (9x(x+ 1) + 4(x+ 1))

= 2x(x+ 1)(9x+ 4)

10.8.5 Factoring Special Forms
In Section 10.5 we covered how to factor binomials and trinomials using formulas. Using these formulas,
when appropriate, often drastically increased the speed of factoring. Below is a summary of the formulas
covered. For each, consider that A and B could be any algebraic expressions.

Difference of Squares A2 − B2 = (A+ B)(A− B)

Perfect Square Sum A2 + 2AB+ B2 = (A+ B)2

Perfect Square Difference A2 − 2AB+ B2 = (A+ B)2

Example 10.8.22 Factoring the Form A2 − 2AB+ B2. Completely factor the expression 16y2 − 24y+ 9.
Explanation. To factor 16y2 − 24y+ 9 we notice that the expression might be of the form A2 − 2AB+ B2.
To find A and B, we mentally take the square root of both the first and last terms of the original expression.
The square root of 16y2 is 4y since (4y)2 = 42y2 = 16y2. The square root of 9 is 3. So, we conclude that
A = 4y and B = 3. Recall that we now need to check that the 24y matches our 2AB. Using our values for A
and B, we indeed see that 2AB = −2(4y)(3) = 24y. So, we conclude that

16y2 − 24y+ 9 = (4y− 3)2.
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Example 10.8.23 Mixed Special Forms Factoring.
a. Completely factor the expression 9w2 + 12w+ 4.
b. Completely factor the expression 4q2 − 81.
c. Completely factor the expression 9p2 + 25.
d. Completely factor the expression 121b2 − 36.
e. Completely factor the expression 25u2 − 70u+ 49.

Explanation. The first step for each problem is to try to fit the expression to one of the special factoring
forms.

a. To factor 9w2 + 12w + 4 we notice that the expression might be of the form A2 + 2AB + B2 where
A = 3w and B = 2. With this formula we need to check the value of 2AB which in this case is
2AB = 2(3w)(2) = 12w. Since the value of 2AB is correct, the expression must factor as

9w2 + 12w+ 4 = (3w+ 2)2

b. To factor 4q2 − 81 we notice that the expression is of the form A2 −B2 where A = 2q and B = 9. Thus,
the expression must factor as

4q2 − 81 = (2q− 9)(2q+ 9)

c. To factor 9p2 + 25 we notice that the expression is of the form A2 +B2. This is called a sum of squares.
If you recall from the section, the sum of squares is always prime. So 9p2 + 25 is prime.

d. To completely factor the expression 121b2 − 36 first note that the expression is of the form A2 − B2

where A = 11b and B = 6. So, the expression factors as

121b2 − 36 = (11b+ 6)(11b− 6).

e. To completely factor the expression 25u2 − 70u + 49 first note that the expression might be of the
form A2 − 2AB + B2 where A = 5u and B = 7. Now, we check that 2AB matches the middle term:
2AB = 2(5u)(7) = 70u. So, the expression factors as

25u2 − 70u+ 49 = (5u− 7)2.

10.8.6 Factoring Strategies
In Section 10.6 we covered a factoring decision tree to help us decide what methods to try when factoring a
given expression. Remember to always factor out the GCF first.
Example 10.8.24 Factor the expressions using an effective method.

a. 24xy− 20x− 18y+ 15.
b. 12t2 + 36t+ 27.

c. 8u2 + 14u− 9.
d. 18c2 − 98p2.

Explanation.
a. To factor the expression 24xy−20x−18y+15, we first look for a GCF. Since the GCF is 1, we can move
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further on the flowchart. Since this is a four-term polynomial, we will try grouping.

24xy− 20x− 18y+ 15 = 24xy+ (−20x) + (−18y) + 15

= (24xy− 20x) + (−18y+ 15)

= 4x(6y− 5) + (−3)(6y− 5)

= 4x
︷ ︸︸ ︷
(6x− 5) − 3

︷ ︸︸ ︷
(6x− 5)

= (6x− 5)(4x− 3)

b. To factor the expression 12t2 + 36t+ 27, we first look for a GCF. Since the GCF is 3, first we will factor
that out.

12t2 + 36t+ 27 = 3
(
4t2 + 12t+ 9

)
Next, we can note that the first and last terms are perfect squares where A2 = 4t2 and B = 9; so A = 2t

and B = 3. To check the middle term, 2AB = 12t. So the expression factors as a perfect square.

12t2 + 36t+ 27 = 3
(
4t2 + 12t+ 9

)
= 3(2t+ 3)2

c. To factor the expression 8u2+14u−9, we first look for a GCF. Since the GCF is 1, we can move further
on the flowchart. Since the expression is a trinomial with leading coefficient other than 1, we should
try the AC method. Note that AC = −72 and factor pairs of −72 that add up to 14 are 18 and −4.

8u2 + 14u− 9 = 8u2 + 18u− 4u− 9

=
(
8u2 + 18

)
+ (−4u− 9)

= 2u(4u+ 9) − 1(4u+ 9)

= (2u− 1)(4u+ 9)

d. To factor the expression 18c2 − 98p2, we first look for a GCF. Since the GCF is 2, first we will factor
that out.

18c2 − 98p2 = 2
(
9c2 − 49p2

)
Now we notice that we have a binomial where both the first and second terms can be written as squares:
9c2 = (3c)2 and 49p2 = (7p)2.

18c2 − 98p2 = 2
(
9c2 − 49p2

)
= 2(3c− 7p)(3c+ 7p)

10.8.7 Solving Quadratic Equations by Factoring
In Section 10.7 we covered the zero product property and learned an algorithm for solving quadratic equa-
tions by factoring.
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Example 10.8.25 Solving Using Factoring. Solve the quadratic equations using factoring.
a. x2 − 2x− 15 = 0

b. 4x2 − 40x = −96

c. 6x2 + x− 12 = 0

d. (x− 3)(x+ 2) = 14

e. x3 − 64x = 0

Explanation.
a. Use factor pairs.

x2 − 2x− 15 = 0

(x− 5)(x+ 3) = 0

x− 5 = 0 or x+ 3 = 0

x = 5 or x = −3

So the solution set is {5,−3}.
b. Start by putting the equation in standard form and factoring out the greatest common factor.

4x2 − 40x = −96

4x2 − 40x+ 96 = 0

4
(
x2 − 10x+ 24

)
= 0

4(x− 6)(x− 4) = 0

x− 6 = 0 or x− 4 = 0

x = 6 or x = 4

So the solution set is {4, 6}.
c. Use the AC method.

6x2 + x− 12 = 0

Note that a · c = −72 and that 9 ·−8 = −72 and 9− 8 = 1

6x2 + 9x− 8x− 12 = 0(
6x2 + 9x

)
+ (−8x− 12) = 0

3x (2x+ 3) −4 (2x+ 3) = 0

(2x+ 3) (3x− 4) = 0

2x+ 3 = 0 or 3x− 4 = 0

x = −
3

2
or x =

4

3

So the solution set is {−3
2
, 4
3

}.
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d. Start by putting the equation in standard form.

(x− 3)(x+ 2) = 14

x2 − x− 6 = 14

x2 − x− 20 = 0

(x− 5)(x+ 4) = 0

x− 5 = 0 or x+ 4 = 0

x = 5 or x = −4

So the solution set is {5,−4}.
e. Even though this equation has a power higher than 2, we can still find all of its solutions by following

the algorithm. Start by factoring out the greatest common factor.

x3 − 64x = 0

x
(
x2 − 64

)
= 0

x(x− 8)(x+ 8) = 0

x = 0 or x− 8 = 0 or x+ 8 = 0

x = 0 or x = 8 or x = −8

So the solution set is {0, 8,−8}.

10.8.8 Exercises

Factoring out the Common Factor
1. Find the greatest common

factor of the following
terms.
3r and 15r2

2. Find the greatest common
factor of the following
terms.
9r and 72r2

3. Find the greatest common
factor of the following
terms.
6t11 and −60t10

4. Find the greatest common
factor of the following
terms.
3t16 and −12t15

5. Find the greatest common
factor of the following
terms.
6x20y8, −18x17y9,
12x12y10

6. Find the greatest common
factor of the following
terms.
3x20y4, −21x18y9,
15x17y11

7. Factor the given
polynomial.
90x2 − 40x+ 10

8. Factor the given
polynomial.
80y2 − 60y+ 30

9. Factor the given
polynomial.
28y2 − 27

10. Factor the given
polynomial.
4r2 − 3

11. Factor the given
polynomial.
r(r− 8) + 9(r− 8)

12. Factor the given
polynomial.
t(t+ 5) + 6(t+ 5)
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Factoring by Grouping Factor the given polynomial.
13. t2 − 2t+ 4t− 8 14. x2 + 8x+ 10x+ 80 15. x3 − 5x2 + 8x− 40

16. x3 + 10x2 + 6x+ 60 17. xy+ 5x− 10y− 50 18. xy− 6x+ 5y− 30

19. 7x2 + 63xy+ 8xy+ 72y2 20. 8x2 − 16xy+ 5xy− 10y2

Factoring Trinomials with Leading Coefficient One Factor the given polynomial.
21. t2 + 10t+ 21 22. t2 + 10t+ 9 23. x2 − x− 30

24. x2 − 5x− 24 25. x2 + x+ 4 26. y2 + 5

27. y2 − 4y+ 4 28. r2 − 20r+ 100 29. 6r2 − 24r+ 18

30. 6t2 − 18t+ 12 31. −t2 − 5t+ 24 32. −x2 + 4x+ 5

33. x2 − xr− 6r2 34. x2 + 5xr− 6r2 35. y2 − 8yx+ 15x2

36. y2 − 7yx+ 10x2

Factoring Trinomials with a Nontrivial Leading Coefficient Factor the given polynomial.
37. 3r2 + 23r− 8 38. 3r2 + 5r− 28 39. 3t2 + 6t+ 7

40. 3t2 + t+ 6 41. 4x2 − 8x+ 3 42. 6x2 − 17x+ 5

43. 18x2 − 30x+ 12 44. 8y2 − 12y+ 4 45. 4y9 − 22y8 + 24y7

46. 4r10 − 22r9 + 18r8 47. 6r2x2 − 21rx− 27 48. 20t2r2 + 10tr− 30

49. 6x2 + 20xy+ 16y2 50. 10x2 + 35xy+ 15y2

Factoring Special Polynomials Factor the given polynomial.
51. x2 − 100 52. x2 − 36 53. 4y2 − 9

54. 100y2 − 121 55. r14 − 36 56. r6 − 4

57. 100t2 − 20t+ 1 58. 36t2 − 12t+ 1 59. 49t2 − 56tx+ 16x2

60. 121x2 − 88xr+ 16r2 61. 16x4 − 1 62. 81y4 − 16

63. 4y3 − 100y 64. 8r3 − 128r 65. 6r3t4 − 150rt2

66. 3t3r3 − 108tr 67. 48− 3t2 68. 3− 3t2

69. x2 + 49 70. x2 + 9

Factoring Strategies Which factoring techniques/tools will be useful for factoring the polynomial below?
Check all that apply.
□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply to the
constant term and sum to the linear coefficient □ The AC Method □ Difference of Squares
□ Difference of Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

71. 49a2 − 70ap+ 25p2 72. 9c2 − 81cA+ 72A2

Factor the given polynomial.
73. 6r− 8r2 + 6r3 74. 7xy+ 7y

75. 4t2 − 16ty+ 7y2 76. t2 − 7t− 18

77. 4t2 + 36tr+ 81r2 78. x2y2 + 4x2yz− 5x2z2



62 CHAPTER 10. FACTORING

79. 15x2 + 26xt+ 7t2 80. y2 − 11y+ 24

81. 16y4 − 81 82. 2r3 − 2r

Solving Quadratic Equations by Factoring Solve the equation.
83. x2 − 4x− 21 = 0 84. x2 + 2x− 24 = 0 85. x2 + 19x = −90

86. x2 + 17x = −70 87. x2 = 8x 88. x2 = 6x

89. x2 − 8x+ 16 = 0 90. x2 − 12x+ 36 = 0 91. 4x2 = −27x− 44

92. 4x2 = −23x− 28

93. A rectangle’s base is 1 in shorter than twice its height. The rectangle’s area is 45 in2. Find this rectan-
gle’s dimensions.

The rectangle’s height is .
The rectangle’s base is .

94. A rectangle’s base is 1 in shorter than five times its height. The rectangle’s area is 120 in2. Find this
rectangle’s dimensions.

The rectangle’s height is .
The rectangle’s base is .



Chapter 11

Functions

11.1 Function Basics
In this section, we will introduce a topic that will be essential for continued mathematical learning: func-
tions. Functions should be thought of as machines that turn one number into another number, much like a
cash register can turn a number of pounds of fruit into a price.

11.1.1 Informal Definition of a Function
We are familiar with the √ symbol. This symbol is used to turn num-
bers into their square roots. Sometimes it’s simple to do this on paper
or in our heads, and sometimes it helps to have a calculator. We can
see some calculations in Figure 11.1.2.

√
9 = 3√
1/4 = 1/2√
2 ≈ 1.41

Figure 11.1.2: Values of √x

The √ symbol represents a process; it’s a way for us to turn numbers into other numbers. This idea of
having a process for turning numbers into other numbers is the fundamental topic of this chapter.
Definition 11.1.3 Function (Informal Definition). A function is a process for turning numbers into (poten-
tially) different numbers. The process must be consistent, in that whenever you apply it to some particular
number, you always get the same result. ♢

Section 11.5 covers a more technical definition for functions, and covers topics that are more appropriate
when using that definition. Definition 11.1.3 is so broad that you probably use functions all the time.
Example 11.1.4 In each of these examples, some process is used for turning one number into another.

• If you convert a person’s birth year into their age, you are using a function.
• If you look up the Kelly Blue Book value of a Honda Odyssey based on how old it is, you are using a

function.
• If you use the expected guest count for a party to determine how many pizzas you should order, you

are using a function.

63
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The √ function is consistent; for example, every time you evaluate√
9, you always get 3. One interesting fact is that √ is not found on

most keyboards, and yet computers can still find square roots. Com-
puter technicians write sqrt( ) when they want to compute a square
root, as we see in Figure 11.1.5.

sqrt(9) = 3

sqrt(1/4) = 1/2

sqrt(2) ≈ 1.41

Figure 11.1.5: Values of sqrt(x)
The parentheses in sqrt ( ) are very important. To see why, try to put yourself in the “mind” of a computer.
The computer will recognize sqrt and know that it needs to compute a square root but without parentheses
it will think that it needs to compute sqrt4 and then put a 9 on the end, which would produce a final result
of 29. This is probably not what was intended. And so the purpose of the parentheses in sqrt(49) is to be
deliberately clear.

Functions have their own names. We’ve seen a function named sqrt, but any name you can imagine is
allowable. In the sciences, it is common to name functions with whole words, like weight or health_index.
In math, we often abbreviate such function names to w or h. And of course, since the word “function” itself
starts with “f,” we will often name a function f.
Warning 11.1.6 Notation Ambiguity. In some contexts, the symbol t might represent a variable (a number
that is represented by a letter) and in other contexts, t might represent a function (a process for changing
numbers into other numbers). By staying conscious of the context of an investigation, we avoid confusion.

Next we need to discuss how we go about using a function’s name.

Definition 11.1.7 Function Notation. The standard notation for referring to functions involves giving the
function itself a name, and then writing:

name
of

function

input


♢

Example 11.1.8 f(13) is pronounced “f of 13.” The word “of” is very important, because it reminds us that f
is a process and we are about to apply that process to the input value 13. So f is the function, 13 is the input,
and f(13) is the output we’d get from using 13 as input.

f(x) is pronounced “f of x.” This is just like the previous example, except that the input is not any specific
number. The value of x could be 13 or any other number. Whatever x’s value, f(x) means the corresponding
output from the function f.

BudgetDeficit(2017) is pronounced “BudgetDeficit of 2017.” This is probably about a function that takes
a year as input, and gives that year’s federal budget deficit as output. The process here of changing a year
into a dollar amount might not involve any mathematical formula, but rather looking up information from
the Congressional Budget Office’s website.

Note 11.1.9 While a function has a name like f, and the input to that function often has a variable name like
x, the expression f(x) represents the output of the function. To be clear, f(x) is not a function. Rather, f is a
function, and f(x) its output when the number x was used as input.

Checkpoint 11.1.10 Suppose you see the sentence, “If x is the number of software licenses you buy for your
office staff, then c(x) is the total cost of the licenses.”

a. In the function notation, what represents input? .



11.1. FUNCTION BASICS 65

b. What is the function here? .

c. What represents output? .

Explanation. The input is x, the function is c, and c(x) is the output from c when the input is x.

Warning 11.1.11 More Notation Ambiguity. As mentioned in Warning 11.1.6, we need to remain conscious
of the context of any symbol we are using. Consider the expression a(b). This could easily mean the output
of a function a with input b. It could also mean that two numbers a and b need to be multiplied. It all
depends on the context in which these symbols are being used.

Sometimes it’s helpful to think of a function as a machine, as in
Figure 11.1.12. A function has the capacity to take in all kinds of
different numbers into it’s hopper (feeding tray) as inputs and
transform them into their outputs.

Figure 11.1.12: Imagining a function
as a machine. (Image by Duane
Nykamp using Mathematica.)

11.1.2 Tables and Graphs

Since functions are potentially complicated, we want ways to understand them more easily. Two basic tools
for understanding a function better are tables and graphs.

Example 11.1.13 A Table for the Budget Deficit Function. Consider the function BudgetDeficit, that takes
a year as its input and outputs the US federal budget deficit for that year. For example, the Congressional
Budget Office’s website tells us that BudgetDeficit(2009) is $1.41 trillion. If we’d like to understand this
function better, we might make a table of all the inputs and outputs we can find. Using the CBO’s website
(www.cbo.gov/topics/budget), we can put together Table 11.1.14.
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input
x (year)

output
BudgetDeficit(x) ($trillion)

2007 0.16

2008 0.46

2009 1.4

2010 1.3

2011 1.3

2012 1.1

2013 0.68

2014 0.48

2015 0.44

2016 0.59

2017 0.67

2018 0.78

Table 11.1.14: The Federal Budget Deficit

How is this table helpful? There are things about
the function that we can see now by looking at the
numbers in this table.

• We can see that the budget deficit had a spike
between 2008 and 2009.

• And it fell again between 2012 and 2013.
• It appears to stay roughly steady for several

years at a time, with occasional big jumps or
drops.

These observations help us understand the func-
tion BudgetDeficit a little better.

Checkpoint 11.1.15 According to Table 11.1.14, what is the value of BudgetDeficit(2015)?
Explanation. Table 11.1.14 shows that when the input is 2015, the output is 0.44. So BudgetDeficit(2015) =
0.44. In context, that means that in 2015 the budget deficit was $0.44 trillion.

Example 11.1.16 A Table for the Square Root Function. Let’s return to our example of the function sqrt.
Tabulating some inputs and outputs reveals Figure 11.1.17.

input, x output, sqrt(x)
0 0

1 1

2 ≈ 1.41

3 ≈ 1.73

4 2

5 ≈ 2.24

6 ≈ 2.45

7 ≈ 2.65

8 ≈ 2.83

9 3

Figure 11.1.17

How is this table helpful? Here are some observa-
tions that we can make now.

• We can see that when input numbers in-
crease, so do output numbers.

• We can see even though outputs are increas-
ing, they increase by less and less with each
step forward in x.

These observations help us understand sqrt a lit-
tle better. For instance, based on these observa-
tions which do you think is larger: the difference
between sqrt(23) and sqrt(24), or the difference be-
tween sqrt(85) and sqrt(86)?

Checkpoint 11.1.18 According to Figure 11.1.17, what is the value of sqrt(6)?
Explanation. Figure 11.1.17 shows that when the input is 6, the output is about 2.45. So sqrt(6) ≈ 2.45.
Another powerful tool for understanding a function better is a graph. Given a function f, one way to make
its graph is to take a table of input and output values, and read each row as the coordinates of a point in the
xy-plane.
Example 11.1.19 A Graph for the Budget Deficit Function. Returning to the function BudgetDeficit that
we studied in Example 11.1.13, in order to make a graph of this function we view Table 11.1.14 as a list of
points with x and y coordinates, as in Figure 11.1.20. We then plot these points on a set of coordinate axes, as
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in Figure 11.1.21. The points have been connected with a curve so that we can see the overall pattern given
by the progression of points. Since there was not any actual data for inputs in between any two years, the
curve is dashed. That is, this curve is dashed because it just represents someone’s best guess as to how to
connect the plotted points. Only the plotted points themselves are precise.

(input, output)
(x,BudgetDeficit(x))
(2007, 0.16)

(2008, 0.46)

(2009, 1.4)

(2010, 1.3)

(2011, 1.3)

(2012, 1.1)

(2013, 0.68)

(2014, 0.48)

(2015, 0.44)

(2016, 0.59)

(2017, 0.67)

(2018, 0.78)

Figure 11.1.20
2008 2010 2012 2014 2016 2018

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x (year)

y ($trillion)

Figure 11.1.21: y = BudgetDeficit(x)
How has this graph helped us to understand the function better? All of the observations that we made in
Example 11.1.13 are perhaps even more clear now. For instance, the spike in the deficit between 2008 and
2009 is now visually apparent. Seeking an explanation for this spike, we recall that there was a financial
crisis in late 2008. Revenue from income taxes dropped at the same time that federal money was spent to
prevent further losses.

Example 11.1.22 A Graph for the Square Root Function. Let’s now construct a graph for sqrt. Tabulating
inputs and outputs gives the points in Figure 11.1.23, which in turn gives us the graph in Figure 11.1.24.

(input, output)
(x, sqrt(x))

(0, 0)

(1, 1)

≈ (2, 1.41)

≈ (3, 1.73)

(4, 2)

≈ (5, 2.24)

≈ (6, 2.45)

≈ (7, 2.65)

≈ (8, 2.83)

(9, 3)

Figure 11.1.23

1 2 3 4 5 6 7 8 9

1

2

3

x

y

Figure 11.1.24: y = sqrt(x)
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Just as in the previous example, we’ve plotted points where we have concrete coordinates, and then we
have made our best attempt to connect those points with a curve. Unlike the previous example, here we
believe that points will continue to follow the same pattern indefinitely to the right, and so we have added
an arrowhead to the graph.

What has this graph done to improve our understanding of sqrt? As inputs (x-values) increase, the
outputs (y-values) increase too, although not at the same rate. In fact we can see that our graph is steep on
its left, and less steep as we move to the right. This confirms our earlier observation in Example 11.1.16 that
outputs increase by smaller and smaller amounts as the input increases.

Remark 11.1.25 Graph of a Function. Given a function f, when we refer to a graph of f we are not referring
to an entire picture, like Figure 11.1.24. A graph of f is only part of that picture—the curve and the points
that it connects. Everything else (axes, tick marks, the grid, labels, and the surrounding white space) is just
useful decoration so that we can read the graph more easily.

Remark 11.1.26 A Common Wording Misunderstanding. It is common to refer to the graph of f as the
graph of the equation y = f(x). However, we should avoid saying “the graph of f(x).” That would indicate
a misunderstanding of our notation. Since f(x) is the output for a certain input x. That means that f(x) is
just a number and not worthy of a two-dimensional picture.

While it is important to be able to make a graph of a function f, we also need to be capable of looking at
a graph and reading it well. A graph of f provides us with helpful specific information about f; it tells us
what f does to its input values. When we were making graphs, we plotted points of the form

(input, output)

Now given a graph of f, we interpret coordinates in the same way.
Example 11.1.27 In Figure 11.1.28 we have a graph of a function f. If we wish to find f(1), we recognize that
1 is being used as an input. So we would want to find a point of the form (1, ). Seeking out x-coordinate
1 in Figure 11.1.28, we find that the only such point is (1, 2). Therefore the output for 1 is 2; in other words
f(1) = 2.

1 2 3 4

1

2

3

x

y

Figure 11.1.28: y = f(x)
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Checkpoint 11.1.29 Use the graph of f in Figure 11.1.28 to find f(0), f(3), and f(4).
a. f(0) b. f(3) c. f(4)

Explanation.

a. f(0) = 0.5, since (0, 0.5) is on
the graph.

b. f(3) = 3, since (3, 3) is on the
graph.

c. f(4) = 2, since (4, 2) is on the
graph.

Example 11.1.30 Unemployment Rates.
Suppose that u is the unemployment function of
time. That is, u(t) is the unemployment rate in the
United States in year t. The graph of the equation
y = u(t) is given in Figure 11.1.31 (data.bls.gov/
timeseries/LNS14000000).

2008 2010 2012 2014 2016 2018

2

4

6

8

10

t

y (%)

Figure 11.1.31: Unemployment in the United
States

What was the unemployment in 2008? It is a straightforward matter to use Figure 11.1.31 to find that unem-
ployment was almost 6% in 2008. Asking this question is exactly the same thing as asking to find u(2008).
That is, we have one question that can either be asked in an everyday-English way or which can be asked
in a terse, mathematical notation-heavy way:
“What was unemployment in 2008?” “Find u(2008).”
If we use the table to establish that u(2009) ≈ 9.25, then we should be prepared to translate that into
everyday-English using the context of the function: In 2009, unemployment in the u.s. was about 9.25%.

If we ask the question “when was unemployment at 5%,” we can read the graph and see that there were
two such times: mid-2007 and about 2016. But there is again a more mathematical notation-heavy way to
ask this question. Namely, since we are being told that the output of u is 5, we are being asked to solve the
equation u(t) = 5. So the following communicate the same thing:
“When was unemployment at 5%?” “Solve the equation u(t) = 5.”
And our answer to this question is:
“Unemployment was at 5% in mid-2007 and about
2016.”

“t ≈ 2007.5 or t ≈ 2016.”

Checkpoint 11.1.32 Use the graph of u in Figure 11.1.31 to answer the following.
a. Find u(2011) and interpret it.
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Interpretation:
b. Solve the equation u(t) = 6 and interpret your solution(s).

t ≈ or t ≈
Interpretation:

Explanation.
a. u(2011) ≈ 9; In 2011 the US unemployment rate was about 9%.
b. t ≈ 2008 or t ≈ 2014; The points at which unemployment was 6% were in early 2008 and early 2014.

11.1.3 Translating Between Four Descriptions of the Same Function

We have noted that functions are complicated, and we want ways to make them easier to understand. It’s
common to find a problem involving a function and not know how to find a solution to that problem. Most
functions have at least four standard ways to think about them, and if we learn how to translate between
these four perspectives, we often find that one of them makes a given problem easier to solve.
The four modes for working with a given function
are

• a verbal description
• a table of inputs and outputs
• a graph of the function
• a formula for the function

This has been visualized in Figure 11.1.33.

A function, f

Verbal
Description

Table of
Inputs and

Outputs
Graph

Formula

Figure 11.1.33: Function Perspectives

Example 11.1.34 Consider a function f that squares its input and then adds 1. Translate this verbal descrip-
tion of f into a table, a graph, and a formula.
Explanation.
To make a table for f, we’ll have to select some
input x-values. These choices are left entirely up
to us, so we might as well choose small, easy-
to-work-with values. However we shouldn’t shy
away from negative input values. Given the ver-
bal description, we should be able to compute a
column of output values. Figure 11.1.35 is one pos-
sible table that we might end up with.

x f(x)

−2 (−2)2 + 1 = 5

−1 (−1)2 + 1 = 2

0 02 + 1 = 1

1 12 + 1 = 2

2 5

3 10

4 17

Figure 11.1.35
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Once we have a table for f, we can make a graph for
f as in Figure 11.1.36, using the table to plot points.

−2 −1 1 2 3 4

5

10

15

x

y

Figure 11.1.36: y = f(x)

Lastly, we must find a formula for f. This means we need to write an algebraic expression that says the
same thing about f as the verbal description, the table, and the graph. For this example, we can focus on the
verbal description. Since f takes its input, squares it, and adds 1, we have that

f(x) = x2 + 1.

Example 11.1.37 Let F be the function that takes a Celsius temperature as input and outputs the correspond-
ing Fahrenheit temperature. Translate this verbal description of F into a table, a graph, and a formula.
Explanation. To make a table for F, we will need to rely on what we know about Celsius and Fahrenheit
temperatures. It is a fact that the freezing temperature of water at sea level is 0 ◦C, which equals 32 °F.
Also, the boiling temperature of water at sea level is 100 ◦C, which is the same as 212 °F. One more piece
of information we might have is that standard human body temperature is 37 ◦C, or 98.6 °F. All of this is
compiled in Figure 11.1.38. Note that we tabulated inputs and outputs by working with the context of the
function, not with any computations.

C F(C)

0 32

37 98.6

100 212

Figure 11.1.38

Once a table is established, making
a graph by plotting points is a sim-
ple matter, as in Figure 11.1.39. The
three plotted points seem to be in a
straight line, so we think it is reason-
able to connect them in that way.

20 40 60 80 100

50

100

150

200

32

212

98.6

C

y

Figure 11.1.39: y = F(C)
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To find a formula for F, the verbal definition is not of much direct help. But F’s graph does seem to be a
straight line. And linear equations are familiar to us. This line has a y-intercept at (0, 32) and a slope we can
calculate: 212−32

100−0
= 180

100
= 9

5
. So the equation of this line is y = 9

5
C+ 32. On the other hand, the equation of

this graph is y = F(C), since it is a graph of the function F. So evidently,

F(C) =
9

5
C+ 32.

11.1.4 Reading Questions
1. When g is a function, how should you say out loud “g(x)?”
2. There are four main ways to communicate how a function turns its inputs into its outputs. What are

they?
3. What is usually an acceptable way to type “the square root of x” if you have to type it using a regular

keyboard?

11.1.5 Exercises

Review and Warmup
1. Locate each point in the graph:

Write each point’s position as an ordered
pair, like (1, 2).

A = B =

C = D =

2. Locate each point in the graph:

Write each point’s position as an ordered
pair, like (1, 2).

A = B =

C = D =

3. Evaluate 2t− 1

8t
for t = −4. 4. Evaluate 6t− 4

8t
for t = 10.

5. a. Evaluate 2x2 when x = 4.
b. Evaluate (2x)

2 when x = 4.
6. a. Evaluate 3x2 when x = 2.

b. Evaluate (3x)
2 when x = 2.
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Function Formulas and Evaluation Evaluate the function at the given values.
7. H(x) = x− 4

a. H(5)

b. H(−2)

c. H(0)

8. G(x) = x− 1

a. G(3)

b. G(−5)

c. G(0)

9. F(x) = 4x

a. F(3)

b. F(−4)

c. F(0)

10. G(x) = 10x

a. G(1)

b. G(−5)

c. G(0)

11. H(x) = −3x+ 5

a. H(4)

b. H(−2)

c. H(0)

12. K(x) = −5x+ 9

a. K(3)

b. K(−2)

c. K(0)

13. K(x) = −x+ 9

a. K(2)

b. K(−5)

c. K(0)

14. f(x) = −x+ 6

a. f(4)

b. f(−1)

c. f(0)

15. g(x) = x2 − 8

a. g(4)

b. g(−2)

c. g(0)

16. h(t) = t2 − 3

a. h(4)

b. h(−4)

c. h(0)

17. F(y) = −y2 + 9

a. F(1)

b. F(−2)

c. F(0)

18. F(x) = −x2 − 3

a. F(5)

b. F(−2)

c. F(0)

19. G(t) = 6

a. G(3)

b. G(6)

c. G(0)

20. H(y) = −7

a. H(2)

b. H(−7)

c. H(0)

21. K(x) =
7x

2x+ 10

a. K(5)

b. K(−1)

22. K(x) =
7x

−10x+ 4

a. K(5)

b. K(−6)

23. f(x) =
3

x− 2
.

a. f(1)

b. f(2)

24. g(x) = −
70

x− 7
.

a. g(14)

b. g(7)

25. h(x) = −3x− 4

a. h(7)

b. h(−4)

26. F(x) = −6x+ 3

a. F(5)

b. F(−5)

27. F(x) =
x2 + 5x− 5

a. F(1)

b. F(−3)

28. G(x) = x2 + 2x

a. G(0)

b. G(−3)

29. H(x) =
−3x2 + 5x+ 3

a. H(2)

b. H(−2)

30. K(x) =
−2x2 − 2x− 1

a. K(1)

b. K(−3)

31. K(x) =
√
x.

a. K(49)

b. K
(
64
9

)
c. K(−6)

32. f(x) =
√
x.

a. f(16)

b. f
(
4
9

)
c. f(−6)

33. g(x) = 3
√
x

a. g(−1)

b. g
(
64
27

)
34. h(x) = 3

√
x

a. h(−27)

b. h
(

1
27

)
35. F(x) = −12

a. F(4)

b. F(−8)

36. F(x) = 15

a. F(7)

b. F(−2)
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Function Formulas and Solving Equations
37. Solve for x, where G(x) = 12x+ 6.

a. G(x) = −42

b. G(x) = −3

38. Solve for x, where H(x) = −8x− 5.
a. H(x) = 19

b. H(x) = 7

39. Solve for x, where K(x) = x2 + 7.
a. K(x) = 8

b. K(x) = 6

40. Solve for x, where K(x) = x2 − 1.
a. K(x) = 8

b. K(x) = −4

41. Solve for x, where f(x) = x2 + x− 73.
f(x) = −1

42. Solve for x, where g(x) = x2 + 3x− 25.
g(x) = −7

43. If h is a function defined by h(y) = 4y+ 9,
a. Find h(0).
b. Solve h(y) = 0.

44. If f is a function defined by f(y) = −4y+ 2,
a. Find f(0).
b. Solve f(y) = 0.

45. If H is a function defined by H(r) = 4r2 − 4,
a. Find H(0).
b. Solve H(r) = 0.

46. If h is a function defined by h(r) = r2 − 1,
a. Find h(0).
b. Solve h(r) = 0.

47. If f is a function defined by
f(t) = t2 − 9t+ 18,

a. Find f(0).
b. Solve f(t) = 0.

48. If G is a function defined by
G(t) = t2 + 2t− 35,

a. Find G(0).
b. Solve G(t) = 0.

Functions and Points on a Graph

49. a. If K(4) = 2, then the point is
on the graph of K.
b. If (3, 0) is on the graph of K, then K(3) =

.

50. a. If f(10) = 12, then the point
is on the graph of f.
b. If (10, 7) is on the graph of f, then f(10) =

.

51. If g(r) = x, then the point is on
the graph of g.

52. If h(y) = r, then the point is on
the graph of h.

53. If (t, x) is on the graph of h, then h(t) =

.
54. If (r, y) is on the graph of F, then F(r) =

.

55. For the function G, when x = 1, the output is 0.
Choose all true statements.

□ G(1) = 0 □ G(0) = 1 □ The function’s value is 1 at 0. □ The point (1, 0) is
on the graph of the function. □ The function’s value is 0 at 1. □ The point (0, 1) is
on the graph of the function.
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56. For the function H, when x = −2, the output is −11.
Choose all true statements.

□ The function’s value is −2 at −11. □ The point (−11,−2) is on the graph of the function.
□H(−11) = −2 □ The point (−2,−11) is on the graph of the function. □ The function’s
value is −11 at −2. □ H(−2) = −11

Function Graphs
57. Use the graph of K below

to evaluate the given
expressions. (Estimates
are OK.)

a. K(−1) =

b. K(3) =

58. Use the graph of K below
to evaluate the given
expressions. (Estimates
are OK.)

a. K(−3) =

b. K(1) =

59. Use the graph of f below
to evaluate the given
expressions. (Estimates
are OK.)

a. f(−2) =

b. f(7) =

60. Use the graph of g below
to evaluate the given
expressions. (Estimates
are OK.)

a. g(−4) =

b. g(0) =

61. Use the graph of h below
to evaluate the given
expressions. (Estimates
are OK.)

a. h(−2) =

b. h(1) =

62. Use the graph of h below
to evaluate the given
expressions. (Estimates
are OK.)

a. h(2) =

b. h(3) =
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63. Function f is graphed.

a. Find f(−5).
b. Solve f(x) = 0.

64. Function f is graphed.

a. Find f(2).
b. Solve f(x) = −2.

65. Function f is graphed.

a. Find f(2) = .
b. Solve f(x) = 3.

66. Function f is graphed.

a. Find f(3) = .
b. Solve f(x) = 0.

67. Function f is graphed.

a. Find f(−1) = .
b. Solve f(x) = 1.

68. Function f is graphed.

a. Find f(−1) = .
b. Solve f(x) = 2.

Function Tables
69. Use the table of values for g below to

evaluate the given expressions.
x 0 2 4 6 8

g(x) 6.1 9.3 6.2 9.7 4.5

a. g(2) =

b. g(8) =

70. Use the table of values for h below to
evaluate the given expressions.

x −1 0 1 2 3

h(x) 2.8 9.1 0.1 −1.4 9.4

a. h(0) =

b. h(2) =
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71. Make a table of values for the function G,
defined by G(x) = −2x2. Based on values in
the table, sketch a graph of G.

x G(x)

72. Make a table of values for the function H,
defined by H(x) =

2x + 2

x2 + 3
. Based on values

in the table, sketch a graph of H.
x H(x)

Translating Between Different Representations of a Function
73. Here is a verbal description of a function G.

“Cube the input x to obtain the output y.”

a. Give a numeric representation of G.
x 0 1 2 3 4

G(x)

b. Give a formula for G.

74. Here is a verbal description of a function H.
“Cube the input x to obtain the output y.”

a. Give a numeric representation of H.
x 0 1 2 3 4

H(x)

b. Give a formula for H.
75. Here is a verbal description of a function K.

“Double the input x and then subtract three
to obtain the output y.”

a. Give a numeric representation of K:
x 0 1 2 3 4

K(x)

b. Give a formula for K.

76. Here is a verbal description of a function K.
“Quadruple the input x and then subtract
seven to obtain the output y.”

a. Give a numeric representation of K:
x 0 1 2 3 4

K(x)

b. Give a formula for K.
77. Express the function f numerically with the

table.
f(x) = 2x3 −

1

2
x2

x −3 −2 −1 0 1 2 3

f(x)

On graphing paper, you should be able to
give a graphical representation of f too.

78. Express the function g numerically with the
table.

g(x) = x2 −
1

2
x

x −3 −2 −1 0 1 2 3

g(x)

On graphing paper, you should be able to
give a graphical representation of g too.

79. Express the function h numerically with the
table.

h(x) =
8− x

7+ x

x −3 −2 −1 0 1 2 3

h(x)

On graphing paper, you should be able to
give a graphical representation of h too.

80. Express the function h numerically with the
table.

h(x) =
5− x

4+ x

x −3 −2 −1 0 1 2 3

h(x)

On graphing paper, you should be able to
give a graphical representation of h too.
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Functions in Context
81. Phil started saving in a piggy bank on his birthday. The function f(x) = 2x+ 2 models the amount

of money, in dollars, in Phil’s piggy bank. The independent variable represents the number of days
passed since his birthday.

Interpret the meaning of f(4) = 10.

⊙ A. Four days after Phil started his piggy bank, there were $10 in it.
⊙ B. The piggy bank started with $10 in it, and Phil saves $4 each day.
⊙ C. The piggy bank started with $4 in it, and Phil saves $10 each day.
⊙ D. Ten days after Phil started his piggy bank, there were $4 in it.

82. An arcade sells multi-day passes. The function g(x) = 1
3
x models the number of days a pass will

work, where x is the amount of money paid, in dollars.
Interpret the meaning of g(12) = 4.

⊙ A. Each pass costs $12, and it works for 4 days.
⊙ B. If a pass costs $4, it will work for 12 days.
⊙ C. If a pass costs $12, it will work for 4 days.
⊙ D. Each pass costs $4, and it works for 12 days.

83. Maygen will spend $175 to purchase some bowls and some plates. Each bowl costs $3, and each
plate costs $5. The function p(b) = −3

5
b+ 35 models the number of plates Maygen will purchase,

where b represents the number of bowls Maygen will purchase.
Interpret the meaning of p(45) = 8.

⊙ A. If 45 bowls are purchased, then 8 plates will be purchased.
⊙ B. $8 will be used to purchase bowls, and $45 will be used to purchase plates.
⊙ C. If 8 bowls are purchased, then 45 plates will be purchased.
⊙ D. $45 will be used to purchase bowls, and $8 will be used to purchase plates.

84. Carly will spend $450 to purchase some bowls and some plates. Each plate costs $2, and each bowl
costs $9. The function q(x) = −2

9
x+ 50 models the number of bowls Carly will purchase, where x

represents the number of plates to be purchased.
Interpret the meaning of q(27) = 44.

⊙ A. 44 plates and 27 bowls can be purchased.
⊙ B. $44 will be used to purchase bowls, and $27 will be used to purchase plates.
⊙ C. $27 will be used to purchase bowls, and $44 will be used to purchase plates.
⊙ D. 27 plates and 44 bowls can be purchased.

85. Find a formula for the function f that gives the number of hours in x years.
86. Find a formula for the function f that gives the number of minutes in x days.
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87. Suppose that M is the function that computes how many miles are in x feet. Find the formula for
M. If you do not know how many feet are in one mile, you can look it up on Google.

Evaluate M(13000) and interpret the result.
There are about miles in feet.

88. Suppose that K is the function that computes how many kilograms are in x pounds. Find the
formula for K. If you do not know how many pounds are in one kilogram, you can look it up on
Google.

Evaluate K(159) and interpret the result.
Something that weighs pounds would weigh about kilograms.

89. Suppose that f is the function that the phone company uses to determine what your bill will be
(in dollars) for a long-distance phone call that lasts t minutes. Each call costs a fixed price of $2.65
plus 11 cents per minute. Write a formula for this linear function f.

90. Suppose that f is the function that gives the total cost (in dollars) of downhill skiing x times during
a season with a $500 season pass. Write a formula for f.

91. Suppose that f is the function that tells you how many dimes are in x dollars. Write a formula for
f.

92. The function C models the the number of customers in a store t hours since the store opened.
t 0 1 2 3 4 5 6 7

C(t) 0 40 78 95 99 78 39 0

a. Find C(6).
b. Interpret the meaning of C(6).

⊙ A. There were 39 customers in the store 6 hours after the store opened.
⊙ B. In 6 hours since the store opened, the store had an average of 39 customers per hour.
⊙ C. There were 6 customers in the store 39 hours after the store opened.
⊙ D. In 6 hours since the store opened, there were a total of 39 customers.

c. Solve C(t) = 78 for t. t =
d. Interpret the meaning of Part c’s solution(s).

⊙ A. There were 78 customers in the store 2 hours after the store opened.
⊙ B. There were 78 customers in the store 2 hours after the store opened, and again 5

hours after the store opened.
⊙ C. There were 78 customers in the store 5 hours after the store opened.
⊙ D. There were 78 customers in the store either 2 hours after the store opened, or 5

hours after the store opened.
93. Let s(t) = 13t2 − 3t+ 200, where s is the position (in mi) of a car driving on a straight road at time

t (in hr). The car’s velocity (in mi/hr) at time t is given by v(t) = 26t− 3.
a. Using function notation, express the car’s position after 1.5 hours. The answer here is not a

formula, it’s just something using function notation like f(8).
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b. Where is the car then? The answer here is a number with units.
c. Use function notation to express the question, “When is the car going 59

mi
hr ?” The answer is

an equation that uses function notation; something like f(x)=23. You are not being asked to
actually solve the equation, just to write down the equation.

d. Where is the car when it is going 75
mi
hr ? The answer here is a number with units. You are

being asked a question about its position, but have been given information about its speed.
94. Let s(t) = 13t2 + t+ 100, where s is the position (in mi) of a car driving on a straight road at time

t (in hr). The car’s velocity (in mi/hr) at time t is given by v(t) = 26t+ 1.
a. Using function notation, express the car’s position after 3.4 hours. The answer here is not a

formula, it’s just something using function notation like f(8).
b. Where is the car then? The answer here is a number with units.
c. Use function notation to express the question, “When is the car going 58

mi
hr ?” The answer is

an equation that uses function notation; something like f(x)=23. You are not being asked to
actually solve the equation, just to write down the equation.

d. Where is the car when it is going 27
mi
hr ? The answer here is a number with units. You are

being asked a question about its position, but have been given information about its speed.
95. Describe your own example of a function that has real context to it. You will need some kind of

input variable, like “number of years since 2000” or “weight of the passengers in my car.” You will
need a process for using that number to bring about a different kind of number. The process does
not need to involve a formula; a verbal description would be great, as would a formula.

Give your function a name. Write the symbol(s) that you would use to represent input. Write
the symbol(s) that you would use to represent output.

96. The following figure has the graph y = d(t), which models a particle’s distance from the starting line
in feet, where t stands for time in seconds since timing started.

a. Find d(7).
b. Interpret the meaning of d(7).

⊙ A. In the first 7 seconds, the particle moved a total of 9 feet.
⊙ B. The particle was 9 feet away from the starting line 7 seconds since timing started.
⊙ C. In the first 9 seconds, the particle moved a total of 7 feet.
⊙ D. The particle was 7 feet away from the starting line 9 seconds since timing started.
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c. Solve d(t) = 6 for t. t =
d. Interpret the meaning of part c’s solution(s).

⊙ A. The particle was 6 feet from the starting line 2 seconds since timing started, or 8 seconds
since timing started.

⊙ B. The particle was 6 feet from the starting line 2 seconds since timing started, and again
8 seconds since timing started.

⊙ C. The particle was 6 feet from the starting line 2 seconds since timing started.
⊙ D. The particle was 6 feet from the starting line 8 seconds since timing started.

97. The following figure has the graph y = d(t), which models a particle’s distance from the starting line
in feet, where t stands for time in seconds since timing started.

a. Find d(9).
b. Interpret the meaning of d(9).

⊙ A. The particle was 2.5 feet away from the starting line 9 seconds since timing started.
⊙ B. The particle was 9 feet away from the starting line 2.5 seconds since timing started.
⊙ C. In the first 9 seconds, the particle moved a total of 2.5 feet.
⊙ D. In the first 2.5 seconds, the particle moved a total of 9 feet.

c. Solve d(t) = 5 for t. t =
d. Interpret the meaning of part c’s solution(s).

⊙ A. The particle was 5 feet from the starting line 1 seconds since timing started.
⊙ B. The particle was 5 feet from the starting line 1 seconds since timing started, and again

8 seconds since timing started.
⊙ C. The particle was 5 feet from the starting line 1 seconds since timing started, or 8 seconds

since timing started.
⊙ D. The particle was 5 feet from the starting line 8 seconds since timing started.

98. Use the graph of h in the figure to fill in the table.
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x −2 −1 0 1 2

h(x)

a. Evaluate h(3) − h(0).
b. Evaluate h(2) − h(−1).
c. Evaluate 2h(−1).
d. Evaluate h(0) + 3.

99. Use the given graph of a function f, along with a, b, c, d, e, and h to answer the following questions.
Some answers are points, and should be entered as ordered pairs. Some answers ask you to solve for
x, so the answer should be in the form x=...

a. What are the coordinates of the point P?
b. What are the coordinates of the point Q?
c. Evaluate f(b). (The answer is symbolic, not a specific number.)
d. Solve f(x) = e for x. (The answer is symbolic, not a specific number.)
e. Suppose c = f(z). Solve the equation z = f(x) for x.
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11.2 Domain and Range
A function is a process for turning input values into output values. Occasionally a function f will have input
values for which the process breaks down.

11.2.1 Domain
Example 11.2.2 Let P be the population of Portland as a function of the year. According to Google1 we can
say that:

P(2016) = 639863 P(1990) = 487849

But what if we asked to find P(1600)? The question doesn’t really make sense anymore. The Multnomah
tribe lived in villages in the area, but the city of Portland was not incorporated until 1851. We say that
P(1600) is undefined.

Example 11.2.3 If m is a person’s mass in kg, let w(m) be their weight in lb. There is an approximate formula
for w:

w(m) ≈ 2.2m

From this formula we can find:

w(50) ≈ 110 w(80) ≈ 176

which tells us that a 50- kg person weighs 110 lb, and an 80- kg person weighs 176 lb.
What if we asked for w(−100)? In the context of this example, we would be asking for the weight of a

person whose mass is −100 kg. This is clearly nonsense. That means that w(−100) is undefined. Note that the
context of the example is telling us that w(−100) is undefined even though the formula alone might suggest
that w(−100) = −220.

Example 11.2.4 Let g have the formula
g(x) =

x

x− 7
.

For most x-values, g(x) is perfectly computable:

g(2) = −
2

5
g(14) = 2.

But if we try to compute g(7), we run into an issue of arithmetic.

g(7) =
7

7− 7

=
7

0

The expression 7
0

is undefined. There is no number that this could equal.
1https://www.google.com/publicdata/explore?ds=kf7tgg1uo9ude_&met_y=population&hl=en&dl=en#!ctype=l&strail=false

&bcs=d&nselm=h&met_y=population&scale_y=lin&ind_y=false&rdim=country&idim=place:4159000&ifdim=country
&hl=en_US&dl=en&ind=false
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Checkpoint 11.2.5 If f(x) = x+ 2

x+ 8
, find an input for f that would cause an undefined output.

The number would cause an undefined output.
Explanation. Trying −8 as an input value would not work out; it would lead to division by 0.
These examples should motivate the following definition.
Definition 11.2.6 Domain. The domain of a function f is the collection of all of its valid input values. ♢

Example 11.2.7 Referring to the functions from Examples 11.2.2–11.2.4
• The domain of P is all years starting from 1851 and later. It would also be reasonable to say that the

domain is actually all years from 1851 up to the current year, since we cannot guarantee that Portland
will exist forever.

• The domain of w is all positive real numbers. It is nonsensical to have a person with negative mass or
even one with zero mass. While there is some lower bound for the smallest mass a person could have,
and also an upper bound for the largest mass a person could have, these boundaries are gray. We can
say for sure that non-positive numbers should never be used as inputs for w.

• The domain of g is all real numbers except 7. This is the only number that causes a breakdown in g’s
formula.

11.2.2 Interval, Set, and Set-Builder Notation
Communicating the domain of a function can be wordy. In mathematics, we can communicate the same
information using concise notation that is accepted for use almost everywhere. Table 11.2.8 contains example
functions from this section and their domains, and demonstrates interval notation for these domains. Basic
interval notation is covered in Section 1.3, but some of our examples here go beyond what that section covers.

Function Verbal Domain Number Line Illustration Interval Notation
P from
Exam-
ple 11.2.2

all years 1851
and greater 1000 2000 3000

1851
0 t

[1851,∞)

w from
Exam-
ple 11.2.3

all real numbers
greater than 0 −10 −5 5 10

0
0 m

(0,∞)

g from
Exam-
ple 11.2.4

all real numbers
except 7 −10 −5 5 10

7
0 x

(−∞, 7) ∪ (7,∞)

Figure 11.2.8: Domains from Earlier Examples

Again, basic interval notation is covered in Section 1.3, but one thing appears in Table 11.2.8 that is not
explained in that earlier section: the ∪ symbol, which we see in the domain of g.

Occasionally there is a need to consider number line pictures such as Figure 11.2.9, where two or more
intervals appear.
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−10 −5 5 100 x

Figure 11.2.9: A number line with a union of two intervals

This picture is trying to tell you to consider numbers that are between −5 and 1, together with numbers that
are between 4 and 7. That word “together” is related to the word “union,” and in math the union symbol,
∪, captures this idea. It means to combine two ideas together, even if they are separate ideas. Think of it as
putting everything from two baskets into one basket: a basket of oranges and a basket of apples combined
into one big basket still contains oranges and apples, but now it can be thought of as a single idea. So we
can write the numbers in this picture as

[−5, 1] ∪ (4, 7]

(which uses interval notation).
With the domain of g in Table 11.2.8, the number line picture shows us another “union” of two intervals.

They are very close together, but there are still two separated intervals in that picture: (−∞, 7) and (7,∞).
Their union is represented by (−∞, 7) ∪ (7,∞).
Checkpoint 11.2.10 What is the domain of the function sqrt , where sqrt(x) = √

x, using interval notation?
Explanation. The function sqrt cannot take a negative number as an input. It can however take any positive
number as input, or the number 0 as input. Representing this on a number line, we find the domain is [0,∞)
in interval notation.
Checkpoint 11.2.11 What is the domain of the function ℓ where ℓ(x) = 2

x−3
, using interval notation?

Explanation. The function ℓ cannot take a 3 as an input. It can however take any other number as input.
Representing this on a number line, we have an interval (−∞, 3) to the left of 3, and (3,∞) to the right of 3.
So we find the domain is (−∞, 3) ∪ (3,∞).
Sometimes we will consider collections of only a short list of numbers. In those cases, we use set notation
(first introduced in Section A.6). With set notation, we have a list of numbers in mind, and we simply list all
of those numbers. Curly braces are standard for surrounding the list. Table 11.2.12 illustrates set notation
in use.

Picture of Set Set Notation

−10 −5 5 10

−2 3

0 x
{−2, 3}

−10 −5 5 10

−5 1 3 5

0 x
{−5, 1, 3, 5}

−10 −5 5 10

−2 5

0 x
{−2} ∪ (5,∞)

Figure 11.2.12: Set Notation

Checkpoint 11.2.13 A change machine lets you put in an x-dollar bill, and gives you f(x) nickels in return
equal in value to x dollars. Any current, legal denomination of US paper money can be fed to the change
machine. What is the domain of f?
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Explanation. The current, legal denominations of US paper money are $1, $2, $5, $10, $20, $50, and $100.
So the domain of f is the set {1, 2, 5, 10, 20, 50, 100}.
While most collections of numbers that we will encounter can be described using a combination of interval
notation and set notation, there is another commonly used notation that is very useful in algebra: set-builder
notation, which was introduced in Section 1.3. Set-builder notation also uses curly braces. Set-builder
notation provides a template for what a number that is under consideration might look like, and then it
gives you restrictions on how to use that template. A very basic example of set-builder notation is

{x | x ≥ 3}.

Verbally, this is “the set of all x such that x is greater than or equal to 3.” Table 11.2.14 gives more examples
of set-builder notation in use.

Picture of Set Set Notation

−10 −5 5 10

−2 3

0 x
{x | −2 < x ≤ 3}

−10 −5 5 10

1 3

0 x
{x | x < 1 or x > 3}

Figure 11.2.14: Set-Builder Notation

Checkpoint 11.2.15What is the domain of the function sqrt , where sqrt(x) = √
x, using set-builder notation?

Explanation. The function sqrt cannot take a negative number as an input. It can however take any positive
number as input, or the number 0 as input. Representing this on a number line, we find the domain is
{x | x ≥ 0} in set-builder notation.

Example 11.2.16 What is the domain of the function A, where A(x) = 2x+1
x2−2x−8

?
Note that if you plugged in some value for x, the only thing that might go wrong is if the denominator

equals 0. So a bad value for x would be when

x2 − 2x− 8 = 0

(x+ 2)(x− 4) = 0

Here, we used a basic factoring technique from Section 10.3. To continue, either

x+ 2 = 0 or x− 4 = 0

x = −2 or x = 4.

These are the bad x-values because they lead to division by 0 in the formula for A. So on a number line, if
we wanted to picture the domain of A, we would make a sketch like:

−10 −5 5 10

−2 4

0 x

So the domain is the union of three intervals: (−∞,−2) ∪ (−2, 4) ∪ (4,∞).
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Example 11.2.17 What is the domain of the function B, where B(x) =
√
7− x+ 3?

Note that if you plugged in some value for x, the only thing that might go wrong is if the value in the
radical is negative. So the good values for x would be when

7− x ≥ 0

7 ≥ x

x ≤ 7

So on a number line, if we wanted to picture the domain of B, we would make a sketch like:

−10 −5 5 10

7

0 x

So the domain is the interval (−∞, 7].
There are three main properties of functions that cause numbers to be excluded from a domain, which are
summarized here.

List 11.2.18: Summary of Domain Restrictions

Denominators Division by zero is undefined. So if a function contains an expression in a
denominator, it will only be defined where that expression is not equal to zero.
Example 11.2.16 demonstrates this.

Square Roots The square root of a negative number is undefined. So if a function contains a
square root, it will only be defined when the expression inside that radical is greater than
or equal to zero. (This is actually true for any even nth radical.)
Example 11.2.17 demonstrates this.

Context Some numbers are nonsensical in context. If a function has real-world context, then
this may add additional restrictions on the input values.
Example 11.2.3 demonstrates this.

11.2.3 Range
The domain of a function is the collection of its valid inputs; there is a similar notion for output.

Definition 11.2.19 Range. The range of a function f is the collection of all of its possible output values. ♢

Example 11.2.20Let f be the function defined by the formula f(x) = x2. Finding f’s domain is straightforward.
Any number anywhere can be squared to produce an output, so f has domain (−∞,∞). What is the range
of f?
Explanation. We would like to describe the collection of possible numbers that f can give as output. We
will use a graphical approach. Figure 11.2.21 displays a graph of f, and the visualization that reveals f’s
range.
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−6 −4 −2 2 4 6

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−2

2

4

6

x

y

Figure 11.2.21: y = f(x) where f(x) = x2. The second graph illustrates how to visualize the range. In the
third graph, the range is marked as an interval on the y-axis.

Output values are the y-coordinates in a graph. If we “slide the ink” left and right over to the y-axis to
emphasize what the y-values in the graph are, we have y-values that start from 0 and continue upward
forever. Therefore the range is [0,∞).

Example 11.2.22 Given the function g graphed in Figure 11.2.23, find the domain and range of g.

−1 1

1

2

3

x

y

Figure 11.2.23: y = g(x)

Explanation. To find the domain, we can visualize all of the x-values that are valid inputs for this function
by “sliding the ink” down onto the x-axis. The arrows at the far left and far right of the curve indicate that
whatever pattern we see in the graph continues off to the left and right. Here, we see that the arms of the
graph appear to be tapering down to the x-axis and extending left and right forever. Every x-value can be
used to get an output for the function, so the domain is (−∞,∞).

If we visualize the possible outputs by “sliding the ink” sideways onto the y-axis, we find that outputs
as high as 3 are possible (including 3 itself). The outputs appear to get very close to 0 when x is large, but
they aren’t quite equal to 0. So the range is (0, 3].
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−1 1

1

2

3

x

y

Figure 11.2.24: Domain of g

−1 1

1

2

3

x

y

Figure 11.2.25: Range of g

Checkpoint 11.2.26 Given the function h graphed below, find the domain and range of h. Note there is an
invisible vertical line at x = 2, and the two arms of the graph are extending downward (and upward) forever,
getting arbitrarily close to that vertical line, but never touching it. Also note that the two arms extend forever
to the left and right, getting arbitrarily close to the x-axis, but never touching it.

The domain of h is and the range of h is .
Explanation. To find the domain, we try to visualize all of the x-values that are valid inputs for this func-
tion. The arrows pointing left and right on the curve indicate that whatever pattern we see in the graph
continues off to the left and right. So for x-values far to the right or left, we will be able to get an output for
h.

The arrows pointing up and down are supposed to indicate that the curve will get closer and closer to
the vertical line x = 2 after the curve leaves the viewing window we are using. So even when x is some
number very close to 2, we will be able to get an output for h.
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The one x-value that doesn’t behave is x = 2. If we tried to use that as an input, there is no point on the
graph directly above or below that on the x-axis. So the domain is (−∞, 2) ∪ (2,∞).

To find the range, we try to visualize all of the y-values that are possible outputs for this function. Sliding
the ink of the curve left/right onto the y-axis reveals that y = 0 is the only y-value that we could never obtain
as an output. So the range is (−∞, 0) ∪ (0,∞).

The examples of finding domain and range so far have all involved either a verbal description of a function,
a formula for that function, or a graph of that function. Recall that there is a fourth perspective on functions:
a table. In the case of a table, we have very limited information about the function’s inputs and outputs. If
the table is all that we have, then there are a handful of input values listed in the table for which we know
outputs. For any other input, the output is undefined.

Example 11.2.27 Consider the function k given in Figure 11.2.28. What is the domain and range of k?
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x k(x)

3 4

8 5

10 5

Figure 11.2.28

Explanation. All that we know about k is that k(3) = 4, k(8) = 5, and k(10) = 5. Without any other
information such as a formula for k or a context for k that tells us its verbal description, we must assume
that its domain is {3, 8, 10}; these are the only valid input for k. Similarly, k’s range is {4, 5}.

Note that we have used set notation, not interval notation, since the answers here were lists of x-values
(for the domain) and y-values (for the range). Also note that we could graph the information that we have
about k in Figure 11.2.29, and the visualization of “sliding ink” to determine domain and range still works.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

(3, 4)

(3, 4) (3, 4)

x

y

Figure 11.2.29

Warning 11.2.30 Finding Range from a Formula. Sometimes it is possible to find the range of a function
using its formula without seeing its graph or a table. However, this often requires advanced techniques
learned in calculus. Therefore when you are asked to find the range of a function based on its formula
alone, your approach should be to examine a graph.

11.2.4 Reading Questions
1. Use a complete sentence to describe what is the domain of a function.
2. When you have a formula for a function, what is one thing that might tell you a number that is excluded

from the domain?
3. To find the range of a function, it’s more helpful to have its than its formula.
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11.2.5 Exercises

Review and Warmup
1. For the interval expressed in the number

line, write it using set-builder notation and
interval notation.

2. For the interval expressed in the number
line, write it using set-builder notation and
interval notation.

3. For the interval expressed in the number
line, write it using set-builder notation and
interval notation.

4. For the interval expressed in the number
line, write it using set-builder notation and
interval notation.

5. Solve this compound inequality, and write
your answer in interval notation.
x ≥ −2 and x ≤ −1

6. Solve this compound inequality, and write
your answer in interval notation.
x ≥ 2 and x < 4

7. Solve this compound inequality, and write
your answer in interval notation.
x ≥ 2 or x ≤ −2

8. Solve this compound inequality, and write
your answer in interval notation.
x > −1 or x < −5

Domain and Range From a Graph A function is graphed. Find its domain and range.
9. 10. 11.

12. 13. 14.
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15. 16. 17.

18. 19. 20.

21. 22. 23.

24. 25. 26.
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27. 28. 29.

30. 31. 32.

33. 34. 35.

36.

Domain From a Formula
37. Find the domain of H where

H(x) = −7x+ 4.
38. Find the domain of K where K(x) = 7x− 8.
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39. Find the domain of K where K(x) =
5

6
x4. 40. Find the domain of f where f(x) =

2

5
x3.

41. Find the domain of g where g(x) = |6x− 3|. 42. Find the domain of h where
h(x) = |−2x+ 6|.

43. Find the domain of h where h(x) =
2x

x+ 9
. 44. Find the domain of F where F(x) =

5x

x− 5
.

45. Find the domain of G where G(x) =
x

2x+ 3
. 46. Find the domain of H where

H(x) =
4x

7x+ 10
.

47. Find the domain of K where
K(x) =

4x+ 8

x2 − 11x+ 30
.

48. Find the domain of K where
K(x) = −

3x+ 5

x2 − x− 30
.

49. Find the domain of f where f(x) =
10x+ 4

x2 + 9x
. 50. Find the domain of g where g(x) =

3x− 8

x2 + 3x
.

51. Find the domain of h where h(x) =
1− 4x

x2 − 49
. 52. Find the domain of h where h(x) =

9x+ 9

x2 − 81
.

53. Find the domain of F where
F(x) =

2x− 3

16x2 − 49
.

54. Find the domain of G where
G(x) =

6− 5x

81x2 − 4
.

55. Find the domain of H where H(x) =
8x− 6

x2 + 3
. 56. Find the domain of K where K(x) =

x+ 2

x2 + 10
.

57. Find the domain of the function.
K(x) = − 6√

x−10

58. Find the domain of the function.
f(x) = 8√

x−1

59. Find the domain of the function.
g(x) =

√
6− x

60. Find the domain of the function.
h(x) =

√
3− x

61. Find the domain of the function.
h(x) =

√
9+ 13x

62. Find the domain of the function.
F(x) =

√
6+ 11x

63. Find the domain of A where A(x) =
x+ 13

x2 − 9
. 64. Find the domain of m where

m(x) =
x+ 16

x2 − 361
.

65. Find the domain of b where
b(x) =

16x− 2

x2 + 7x− 98
.

66. Find the domain of m where
m(x) =

16x− 11

x2 + 7x− 98
.

67. Find the domain of r where r(x) =

√
2+ x

8− x
. 68. Find the domain of B where B(x) =

√
4+ x

4− x
.

Domain and Range Using Context

69. Thanh bought a used car for $7,800. The car’s value decreases at a constant rate each year. After 5
years, the value decreased to $6,300.

Use a function to model the car’s value as the number of years increases. Find this function’s
domain and range in this context.

The function’s domain in this context is .
The function’s range in this context is .
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70. Carmen bought a used car for $8,400. The car’s value decreases at a constant rate each year. After
10 years, the value decreased to $5,400.

Use a function to model the car’s value as the number of years increases. Find this function’s
domain and range in this context.

The function’s domain in this context is .
The function’s range in this context is .

71. Assume a car uses gas at a constant rate. After driving 25 miles since a full tank of gas was pur-
chased, there was 9 gallons of gas left; after driving 65 miles since a full tank of gas was purchased,
there was 7.4 gallons of gas left.

Use a function to model the amount of gas in the tank (in gallons). Let the independent variable
be the number of miles driven since a full tank of gas was purchased. Find this function’s domain
and range in this context.

The function’s domain in this context is .
The function’s range in this context is .

72. Assume a car uses gas at a constant rate. After driving 30 miles since a full tank of gas was pur-
chased, there was 13.2 gallons of gas left; after driving 60 miles since a full tank of gas was pur-
chased, there was 11.4 gallons of gas left.

Use a function to model the amount of gas in the tank (in gallons). Let the independent variable
be the number of miles driven since a full tank of gas was purchased. Find this function’s domain
and range in this context.

The function’s domain in this context is .
The function’s range in this context is .

73. Joseph inherited a collection of coins when he was 14 years old. Ever since, he has been adding
into the collection the same number of coins each year. When he was 20 years old, there were 510

coins in the collection. When he was 30 years old, there were 910 coins in the collection. At the age
of 51, Joseph donated all his coins to a museum.

Use a function to model the number of coins in Joseph’s collection, starting in the year he inher-
ited the collection, and ending in the year the collection was donated. Find this function’s domain
and range in this context.

The function’s domain in this context is .
The function’s range in this context is .

74. Virginia inherited a collection of coins when she was 15 years old. Ever since, she has been adding
into the collection the same number of coins each year. When she was 20 years old, there were 330

coins in the collection. When she was 30 years old, there were 530 coins in the collection. At the
age of 57, Virginia donated all her coins to a museum.

Use a function to model the number of coins in Virginia’s collection, starting in the year she
inherited the collection, and ending in the year the collection was donated. Find this function’s
domain and range in this context.

The function’s domain in this context is .
The function’s range in this context is .
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75. Assume a tree grows at a constant rate. When the tree was planted, it was 4 feet tall. After 8 years,
the tree grew to 10.4 feet tall.

Use a function to model the tree’s height as years go by. Assume the tree can live 190 years,
find this function’s domain and range in this context.

The function’s domain in this context is .
The function’s range in this context is .

76. Assume a tree grows at a constant rate. When the tree was planted, it was 2.1 feet tall. After 10

years, the tree grew to 8.1 feet tall.
Use a function to model the tree’s height as years go by. Assume the tree can live 170 years,

find this function’s domain and range in this context.
The function’s domain in this context is .
The function’s range in this context is .

77. An object was shot up into the air at an initial vertical speed of 384 feet per second. Its height
as time passes can be modeled by the quadratic function f, where f(t) = −16t2 + 384t. Here t

represents the number of seconds since the object’s release, and f(t) represents the object’s height
in feet.

Find the function’s domain and range in this context.
The function’s domain in this context is .
The function’s range in this context is .

78. An object was shot up into the air at an initial vertical speed of 416 feet per second. Its height
as time passes can be modeled by the quadratic function f, where f(t) = −16t2 + 416t. Here t

represents the number of seconds since the object’s release, and f(t) represents the object’s height
in feet.

Find the function’s domain and range in this context.
The function’s domain in this context is .
The function’s range in this context is .

79. From a clifftop over the ocean 376.32 m above sea level, an object was shot straight up into the
air with an initial vertical speed of 110.74 m

s . On its way down it missed the cliff and fell into the
ocean, where it floats on the surface. Its height (above sea level) as time passes can be modeled by
the quadratic function f, where f(t) = −4.9t2 + 110.74t+ 376.32. Here t represents the number of
seconds since the object’s release, and f(t) represents the object’s height (above sea level) in meters.

Find the function’s domain and range in this context.
The function’s domain in this context is .
The function’s range in this context is .

80. From a clifftop over the ocean 324.87 m above sea level, an object was shot straight up into the
air with an initial vertical speed of 93.59 m

s . On its way down it missed the cliff and fell into the
ocean, where it floats on the surface. Its height (above sea level) as time passes can be modeled by
the quadratic function f, where f(t) = −4.9t2 + 93.59t+ 324.87. Here t represents the number of
seconds since the object’s release, and f(t) represents the object’s height (above sea level) in meters.

Find the function’s domain and range in this context.
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The function’s domain in this context is .
The function’s range in this context is .

81. You will build a rectangular sheep pen next to a river. There is no need to build a fence along the
river, so you only need to build three sides. You have a total of 460 feet of fence to use. Find the
dimensions of the pen such that you can enclose the maximum area.

Use a function to model the area of the rectangular pen, with respect to the length of the width
(the two sides perpendicular to the river). Find the function’s domain and range in this context.

The function’s domain is .
The function’s range is .

82. You will build a rectangular sheep pen next to a river. There is no need to build a fence along the
river, so you only need to build three sides. You have a total of 480 feet of fence to use. Find the
dimensions of the pen such that you can enclose the maximum area.

Use a function to model the area of the rectangular pen, with respect to the length of the width
(the two sides perpendicular to the river). Find the function’s domain and range in this context.

The function’s domain is .
The function’s range is .

83. A student’s first name is a function of their student identification number.
(a) Describe the domain for this function in a sentence. Specifics are not needed.
(b) Describe the range for this function in a sentence. Specifics are not needed.

84. The year a car was made is a function of its VIN (Vehicle Identification Number).
(a) Describe the domain for this function in a sentence. Specifics are not needed.
(b) Describe the range for this function in a sentence. Specifics are not needed.

Challenge
85. For each part, sketch the graph of a function with the given domain and range.

a. The domain is (0,∞) and the range is (−∞, 0).
b. The domain is (1, 2) and the range is (3, 4).
c. The domain is (0,∞) and the range is [2, 3].
d. The domain is (1, 2) and the range is (−∞,∞).
e. The domain is (−∞,∞) and the range is (−1, 1).
f. The domain is (0,∞) and the range is [0,∞).
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11.3 Using Technology to Explore Functions
Graphing technology allows us to explore the properties of functions more deeply than we can with only
pencil and paper. It can quickly create a table of values, and quickly plot the graph of a function. Such tech-
nology can also evaluate functions, solve equations with functions, find maximum and minimum values,
and explore other key features.

There are many graphing technologies currently available, including (but not limited to) physical (hand-
held) graphing calculators, Desmos, GeoGebra, Sage, and WolframAlpha.

This section will focus on how technology can be used to explore functions and their key features. Al-
though the choice of particular graphing technology varies by each school and curriculum, the main ways
in which technology is used to explore functions is the same and can be done with each of the technologies
above.

11.3.1 Finding an Appropriate Window
With a simple linear equation like y = 2x + 5, most graphing technologies will show this graph in a good
window by default. A common default window goes from x = −10 to x = 10 and y = −10 to y = 10.

What if we wanted to graph something with a much larger magnitude though, such as y = 2000x+5000?
If we tried to view this for x = −10 to x = 10 and y = −10 to y = 10, the function would appear as an almost
vertical line since it has such a steep slope.

Using technology, we will create a table of values for this function as shown in Figure 11.3.2(a). Then
we will set the x-values for which we view the function to go from x = −5 to x = 5 and the y-values from
y = −20,000 to y = 20,000. The graph is shown in Figure 11.3.2(b).

x y = 2000x+ 5000

−5 −5000

−4 −3000

−3 −1000

−2 1000

−1 3000

0 5000

1 7000

2 9000

3 11000

4 13000

5 15000

(a) A table of values

−4 −3 −2 −1 1 2 3 4

-15000

-10000

-5000

5000

10000

15000

x

y

(b) Graphed with an appropriate window
Figure 11.3.2: Creating a table of values to determine an appropriate graphing window

Now let’s practice finding an appropriate viewing window with a less familiar function.



100 CHAPTER 11. FUNCTIONS

Example 11.3.3 Find an appropriate window for q(x) = x3

100
− 2x+ 1.

Entering this function into graphing technology,
we input q(x)=(x^3)/100-2x+1. A default window
will generally give us something like this:

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

x

y

Figure 11.3.4: Function q graphed in the default
window.

We can tell from the lower right corner of Fig-
ure 11.3.4 that we’re not quite viewing all of the
important details of this function. To determine a
better window, we could use technology to make a
table of values. Another more rudimentary option
is to double the viewing constraints for x and y, as
shown in Figure 11.3.5. Many graphing technolo-
gies have the ability to zoom in and out quickly.

−16 −12 −8 −4 4 8 12 16

−16

−12

−8

−4

4

8

12

16

x

y

Figure 11.3.5: Function q graphed in an expanded
window.

11.3.2 Using Technology to Determine Key Features of a Graph
The key features of a graph can be determined using graphing technology. Here, we’ll show how to deter-
mine the x-intercepts, y-intercepts, and maximum/minimum values using technology.

Example 11.3.6Graph the function given by p(x) = −1000x2−100x+40. Determine an appropriate viewing
window, and then use graphing technology to determine the following:
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a. Determine the x-intercepts of the function.
b. Determine the y-intercept of the function.
c. Determine the maximum function value and where it occurs.

Explanation.
To start, we’ll take a quick view of this function in a
default window. We can see that we need to zoom
in on the x-values, but we need to zoom out on the
y-values.
From the graph we see that the x-values might as
well run from about −0.5 to 0.5, so we will look
at x-values in that window in increments of 0.1,
as shown in Table 11.3.8(a). This table allows us
to determine an appropriate viewing window for
y = p(x) which is shown in Figure 11.3.8(b). The
table suggests we should go a little higher than 40

on the y-axis, and it would be OK to go the same
distance in the negative direction to keep the x-axis
centered.

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

x

y

Figure 11.3.7: Graph of y = p(x) in an
inappropriate window

x p(x)

−0.5 −160

−0.4 −80

−0.3 −20

−0.2 20

−0.1 40

0 40

0.1 20

0.2 −20

0.3 −80

0.4 −160

0.5 −260

(a) Function values for y = p(x)

−0.4 −0.3 −0.2 −0.1 0.1 0.2 0.3 0.4

−40

−20

20

40

(−0.2562, 0) (0.1562, 0)

(0, 40)(−0.05, 42.5)

x

y

(b) Graph of y = p(x) in an appropriate window
showing key features

Figure 11.3.8: Creating a table of values to determine an appropriate graphing window
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We can now use Figure 11.3.8(b) to determine the x-intercepts, the y-intercept, and the maximum function
value.

a. To determine the x-intercepts, we will find the points where y is zero. These are about (−0.2562, 0)
and (0.1562, 0).

b. To determine the y-intercept, we need the point where x is zero. This point is (0, 40).
c. The highest point on the graph is the vertex, which is about (−0.05, 42.5). So the maximum function

value is 42.5 and occurs at −0.05.
d. We can see that the function is defined for all x-values, so the domain is (−∞,∞). The maximum

function value is 42.5, and there is no minimum function value. Thus the range is (−∞, 42.5].

Example 11.3.9 Graphing Technology Limitations.
If we use graphing technology to graph the func-
tion g where g(x) = 0.0002x2+ 0.00146x+ 0.00266,
we may be mislead by the way values are rounded.
Without technology, we know that this function
is a quadratic function and therefore has at most
two x-intercepts and has a vertex that will deter-
mine the minimum function value. However, us-
ing technology we could obtain a graph with the
following key points:

1 2 3

−0.04

−0.02

0.02

0.04

(−3.8, 0)

(−3.65, 0)

(−3.5, 0)

x

y

Figure 11.3.10: Misleading graph
This looks like there are three x-intercepts, which we know is not possible for a quadratic function. We
can evaluate g at x = −3.65 and determine that g(−3.65) = −0.0000045, which is approximately zero when
rounded. So the true vertex of this function is (−3.65,−0.0000045), and the minimum value of this function
is −0.0000045 (not zero).

Every graphing tool generally has some type of limitation like this one, and it’s good to be aware that
these limitations exist.

11.3.3 Solving Equations and Inequalities Graphically Using Technology
To algebraically solve an equation like h(x) = v(x) for

h(x) = −0.01(x− 90)(x+ 20) and v(x) = −0.04(x− 10)(x− 80),
we’d start by setting up

−0.01(x− 90)(x+ 20) = −0.04(x− 10)(x− 80)

To solve this, we’d then simplify each side of the equation, set it equal to zero, and finally use the quadratic
formula like we did in Section 7.2.



11.3. USING TECHNOLOGY TO EXPLORE FUNCTIONS 103

An alternative is to graphically solve this equation, which is done by graphing

y = −0.01(x− 90)(x+ 20) and y = −0.04(x− 10)(x− 80).

−40 −20 20 40 60 80

−30

−20

−10

10

20

30

40

50

(22.46, 28.677)

(74.207, 14.878)

x

y

Figure 11.3.11: Points of intersection for
h(x) = v(x)

The points of intersection, (22.46, 28.677) and
(74.207, 14.878), show where these functions are
equal. This means that the x-values give the so-
lutions to the equation −0.01(x − 90)(x + 20) =
−0.04(x−10)(x−80). So the solutions are approxi-
mately 22.46 and 74.207, and the solution set is ap-
proximately {22.46, 74.207}.

Similarly, to graphically solve an equation like h(x) = 25 for

h(x) = −0.01(x− 90)(x+ 20),

we can graph
y = −0.01(x− 90)(x+ 20) and y = 25

−40 −20 20 40 60 80

−30

−20

−10

10

20

30

40

50

(12.
807

, 25
)

(57.
913

, 25
)

x

y

Figure 11.3.12: Points of intersection for h(x) = 25

The points of intersection are (12.807, 25) and
(57.913, 25), which tells us that the solutions to
h(x) = 25 are approximately 12.807 and 57.913.
The solution set is approximately {12.807, 57.913}.
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Example 11.3.13 Use graphing technology to solve the following inequalities:
a. −20t2 − 70t+ 300 ≥ −5t+ 300 b. −20t2 − 70t+ 300 < −5t+ 300

Explanation. To solve these inequalities graphically, we will start by graphing the equations y = −20t2 −
70t+ 300 and y = −5t+ 300 and determining the points of intersection:

−8 −6 −4 −2 2 4

−100

100

200

300(−3.25, 316.25)
(0, 300)

x

y

Figure 11.3.14: Points of intersection for y = −20t2 − 70t+ 300 and y = −5t+ 300

a. To solve −20t2 − 70t + 300 ≥ −5t + 300, we need to determine where the y-values of the graph of
y = −20t2 − 70t + 300 are greater than the y-values of the graph of y = −5t + 300 in addition to the
values where the y-values are equal. This region is highlighted in Figure 11.3.15.

−8 −6 −4 −2 2 4

−100

100

200

300(−3.25, 316.25)
(0, 300)

t

y

Figure 11.3.15

We can see that this region includes all values of
t between, and including, t = −3.25 and t = 0.
So the solutions to this inequality include all val-
ues of t for which −3.25 ≤ t ≤ 0. We can write
this solution set in interval notation as [−3.25, 0]
or in set-builder notation as {t | −3.25 ≤ t ≤ 0}.

b. To now solve −20t2 − 70t + 300 < −5t + 300, we will need to determine where the y-values of the
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graph of y = −20t2 − 70t+ 300 are less than the y-values of the graph of y = −5t+ 300. This region is
highlighted in Figure 11.3.16.

−8 −6 −4 −2 2 4

−100

100

200

300(−3.25, 316.25)
(0, 300)

t

y

Figure 11.3.16

We can see that −20t2 − 70t + 300 < −5t + 300

for all values of t where t < −3.25 or t > 0. We
can write this solution set in interval notation as
(−∞,−3.25) ∪ (0,∞) or in set-builder notation
as {t | t < −3.25 or t > 0}.

11.3.4 Reading Questions

1. If you use technology to create a graph of a function, you will have to choose a good to
capture all of its features.

2. Describe the process to graphically solve an equation in the form f(x) = g(x).

11.3.5 Exercises

Using Technology to Create a Table of Function Values Use technology to make a table of values for the
function.

1. H(x) = −3x2 + 14x+ 3

x H(x)
2. K(x) = 3x2 − 8x− 3

x K(x)
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3. f(x) = −0.2x2 + 80x+ 93

x f(x)
4. g(x) = −3x2 − 160x+ 38

x g(x)

5. h(x) = 7x3 + 10x− 18

x h(x)
6. h(x) = −2x3 + 190x− 74

x h(x)

Determining Appropriate Windows
7. Let f(x) = −5670x+ 4316. Choose an

appropriate window for graphing f that
shows its key features.
The x-interval could be and
the y-interval could be .

8. Let f(x) = 633x+ 787. Choose an
appropriate window for graphing f that
shows its key features.
The x-interval could be and
the y-interval could be .

9. Let f(x) = −742x2 − 210x− 6418. Choose
an appropriate window for graphing f that
shows its key features.
The x-interval could be and
the y-interval could be .

10. Let f(x) = −852x2 − 622x+ 6289. Choose
an appropriate window for graphing f that
shows its key features.
The x-interval could be and
the y-interval could be .

11. Let f(x) = 0.00049x2 + 0.0011x− 0.59.
Choose an appropriate window for
graphing f that shows its key features.
The x-interval could be and
the y-interval could be .

12. Let f(x) = −0.00012x2 − 0.0028x+ 0.58.
Choose an appropriate window for
graphing f that shows its key features.
The x-interval could be and
the y-interval could be .

Finding Points of Intersection
13. Use technology to determine how many

times the equations
y = (370− 13x)(−307+ 20x) and y = 4000

intersect. They intersect (□ zero times
□ one time □ two times □ three times)
.

14. Use technology to determine how many
times the equations
y = (−214− 8x)(416+ 6x) and y = 3000

intersect. They intersect (□ zero times
□ one time □ two times □ three times)
.
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15. Use technology to determine how many
times the equations y = −2x3 − x2 + 4x and
y = 3x+ 1 intersect. They intersect
(□ zero times □ one time □ two times
□ three times) .

16. Use technology to determine how many
times the equations y = 9x3 − 3x2 − 3x and
y = x+ 2 intersect. They intersect (□ zero
times □ one time □ two times □ three
times) .

17. Use technology to determine how many
times the equations y = 0.1

(
6x2 + 1

) and
y = −0.74(6x− 8) intersect. They intersect
(□ zero times □ one time □ two times
□ three times) .

18. Use technology to determine how many
times the equations y = 0.2

(
7x2 + 9

) and
y = 0.57(3x+ 6) intersect. They intersect
(□ zero times □ one time □ two times
□ three times) .

19. Use technology to determine how many
times the equations y = 1.4(x− 8)

2
− 2.35

and y = 0.1x intersect. They intersect
(□ zero times □ one time □ two times
□ three times) .

20. Use technology to determine how many
times the equations y = 1.85(x− 1)

2
+ 5.2

and y = −x intersect. They intersect
(□ zero times □ one time □ two times
□ three times) .

Using Technology to Find Key Features of a Graph
21. For the function j defined by

j(x) = −
2

5
(x− 3)2 + 6,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.

22. For the function k defined by

k(x) = 2(x+ 1)2 + 10,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.

23. For the function L defined by

L(x) = 3000x2 + 10x+ 4,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.

24. For the function M defined by

M(x) = −(300x− 2950)2,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.
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25. For the function N defined by

N(x) = (300x− 1.05)2,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.

26. For the function B defined by

B(x) = x2 − 0.05x+ 0.0006,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.

Solving Equations and Inequalities Graphically Using Technology
27. Let s(x) = 1

5
x2 − 2x+ 10 and

t(x) = −x+ 40. Use graphing technology to
determine the following.

a. What are the points of intersection for
these two functions?

b. Solve s(x) = t(x).
c. Solve s(x) > t(x).
d. Solve s(x) ≤ t(x).

28. Let w(x) = 1
4
x2 − 3x− 8 and m(x) = x+ 12.

Use graphing technology to determine the
following.

a. What are the points of intersection for
these two functions?

b. Solve w(x) = m(x).
c. Solve w(x) > m(x).
d. Solve w(x) ≤ m(x).

29. Let f(x) = 4x2 + 5x− 1 and g(x) = 5. Use
graphing technology to determine the
following.

a. What are the points of intersection for
these two functions?

b. Solve f(x) = g(x).
c. Solve f(x) < g(x).
d. Solve f(x) ≥ g(x).

30. Let p(x) = 6x2 − 3x+ 4 and k(x) = 7. Use
graphing technology to determine the
following.

a. What are the points of intersection for
these two functions?

b. Solve p(x) = k(x).
c. Solve p(x) < k(x).
d. Solve p(x) ≥ k(x).

31. Let q(x) = −4x2 − 24x+ 10 and
r(x) = 2x+ 22. Use graphing technology to
determine the following.

a. What are the points of intersection for
these two functions?

b. Solve q(x) = r(x).
c. Solve q(x) > r(x).
d. Solve q(x) ≤ r(x).

32. Let h(x) = −10x2 − 5x+ 3 and
j(x) = −3x− 9. Use graphing technology to
determine the following.

a. What are the points of intersection for
these two functions?

b. Solve h(x) = j(x).
c. Solve h(x) > j(x).
d. Solve h(x) ≤ j(x).
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33. Use graphing technology to solve the
equation 0.4x2 + 0.5x− 0.2 = 2.4.
Approximate the solution(s) if necessary.

34. Use graphing technology to solve the
equation −0.25x2 − 2x+ 1.75 = 4.75.
Approximate the solution(s) if necessary.

35. Use graphing technology to solve the
equation (200+ 5x)(100− 2x) = 15000.
Approximate the solution(s) if necessary.

36. Use graphing technology to solve the
equation (200− 5x) (100+ 10x) = 20000.
Approximate the solution(s) if necessary.

37. Use graphing technology to solve the
equation 2x3 − 5x+ 1 = −1

2
x+ 1.

Approximate the solution(s) if necessary.

38. Use graphing technology to solve the
equation −x3 + 8x = −4x+ 16.
Approximate the solution(s) if necessary.

39. Use graphing technology to solve the
equation
−0.05x2−2.03x−19.6 = 0.05x2+1.97x+19.4.
Approximate the solution(s) if necessary.

40. Use graphing technology to solve the
equation −0.02x2 + 1.97x− 51.5 =

0.05 (x− 50)
2
− 0.03 (x− 50) . Approximate

the solution(s) if necessary.
41. Use graphing technology to solve the

equation −200x2 + 60x− 55 = −20x− 40.
Approximate the solution(s) if necessary.

42. Use graphing technology to solve the
equation 150x2 − 20x+ 50 = 100x+ 40.
Approximate the solution(s) if necessary.

43. Use graphing technology to solve the
inequality 2x2 + 5x− 3 > −5. State the
solution set using interval notation, and
approximate if necessary.

44. Use graphing technology to solve the
inequality −x2 + 4x− 7 > −12. State the
solution set using interval notation, and
approximate if necessary.

45. Use graphing technology to solve the
inequality 10x2 − 11x+ 7 ≤ 7. State the
solution set using interval notation, and
approximate if necessary.

46. Use graphing technology to solve the
inequality −10x2 − 15x+ 4 ≤ 9. State the
solution set using interval notation, and
approximate if necessary.

47. Use graphing technology to solve the
inequality −x2 − 6x+ 1 > x+ 5. State the
solution set using interval notation, and
approximate if necessary.

48. Use graphing technology to solve the
inequality 3x2 + 5x− 4 > −2x+ 1. State the
solution set using interval notation, and
approximate if necessary.

49. Use graphing technology to solve the
inequality −10x+ 4 ≤ 20x2 − 34x+ 6. State
the solution set using interval notation, and
approximate if necessary.

50. Use graphing technology to solve the
inequality −15x2 − 6 ≤ 10x− 4. State the
solution set using interval notation, and
approximate if necessary.

51. Use graphing technology to solve the
inequality 1

2
x2 + 3

2
x ≥ 1

2
x− 3

2
. State the

solution set using interval notation, and
approximate if necessary.

52. Use graphing technology to solve the
inequality 3

4
x ≥ 1

4
x2 − 3x. State the solution

set using interval notation, and
approximate if necessary.
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11.4 Simplifying Expressions with Function Notation
In this section, we will discuss algebra simplification that will appear in many facets of education. Simpli-
fication is a skill, like cooking noodles or painting a wall. It may not always be exciting, but it does serve a
purpose. Also like cooking noodles or painting a wall, it isn’t usually difficult, and yet there are common
avoidable mistakes that people make. With practice from this section, you’ll have experience to prevent
yourself from overcooking the noodles or ruining your paintbrush.

11.4.1 Negative Signs in and out of Function Notation
Let’s start by reminding ourselves about the meaning of function notation. When we write f(x), we have a
process f that is doing something to an input value x. Whatever is inside those parentheses is the input to
the function. What if we use something for input that is not quite as simple as “x?”
Example 11.4.2 Find and simplify a formula for f(−x), where f(x) = x2 + 3x− 4.
Explanation. Those parentheses encase “−x,” so we are meant to treat “−x” as the input. The rule that we
have been given for f is

f(x) = x2 + 3x− 4.
But the x’s that are in this formula are just place-holders. What f does to a number can just as easily be
communicated with

f( ) = ( )2 + 3( ) − 4.
So now that we are meant to treat “−x” as the input, we will insert “−x” into those slots, after which we can
do more familiar algebraic simplification:

f( ) = ( )2 + 3( ) − 4

f(−x) = (−x)2 + 3(−x) − 4

= x2 − 3x− 4

The previous example contrasts nicely with this one:
Example 11.4.3 Find and simplify a formula for −f(x), where f(x) = x2 + 3x− 4.
Explanation. Here, the parentheses only encase “x.” The negative sign is on the outside. So the way to see
this expression is that first f will do what it does to x, and then that result will be negated:

−f(x) = −(x2 + 3x− 4)

= −x2 − 3x+ 4

Note that the answer to this exercise, which was to simplify −f(x), is different from the answer to Exam-
ple 11.4.2, which was to simplify f(−x). In general you cannot pass a negative sign in and out of function
notation and still have the same quantity.
In Example 11.4.2 and Example 11.4.3, we are working with the expressions f(−x) and −f(x), and trying to
find “simplified” formulas. If it seems strange to be doing these things, perhaps this applied example will
help.
Checkpoint 11.4.4 The NASDAQ Composite Index measures how well a portion of the stock market is
doing. Suppose N(t) is the value of the index t days after January 1, 2018. A formula for N is N(t) =
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3.34t2 + 26.2t+ 6980.
What if you wanted a new function, B, that gives the value of the NASDAQ index t days before January 1,

2018? Technically, t days before is the same as negative t days after. So B(t) is the same as N(−t), and now
the expression N(−t) means something. Find a simplified formula for N(−t).

N(−t)

Explanation.
N( ) = 3.34( )2 + 26.2( ) + 6980

N(−t) = 3.34(−t)2 + 26.2(−t) + 6980

= 3.34t2 − 26.2t+ 6980

11.4.2 Other Nontrivial Simplifications
Example 11.4.5 Find and simplify a formula for h(5x), where h(x) = x

x−2
.

Explanation. The parentheses encase “5x,” so we are meant to treat “5x” as the input.

h( ) =
( )

( ) − 2

h(5x) =
5x

5x− 2

=
5x

5x− 2

Example 11.4.6 Find and simplify a formula for 1
3
g(3x), where g(x) = 2x2 + 8.

Explanation. Do the 1
3

and the 3 cancel each other? No. The 3 is part of the input, affecting x right away.
Then g does whatever it does to 3x, and then we multiply the result by 1

3
. Since the function g acts “in

between,” we don’t have the chance to cancel the 3 with the 1
3

. Let’s see what actually happens:
Those parentheses encase “3x,” so we are meant to treat “3x” as the input. We will keep the 1

3
where it

is until it is possible to simplify:

1

3
g( ) =

1

3

(
2( )2 + 8

)
1

3
g(3x) =

1

3

(
2(3x)2 + 8

)
=

1

3

(
2
(
9x2
)
+ 8
)

=
1

3

(
18x2 + 8

)
= 6x2 +

8

3

Example 11.4.7 If k(x) = x2 − 3x, find and simplify a formula for k(x− 4).
Explanation. This type of exercise is often challenging for algebra students. But let’s focus on those paren-
theses one more time. They encase “x− 4,” so we are meant to treat “x− 4” as the input.

k( ) = ( )2 − 3( )

k(x− 4) = (x− 4)2 − 3(x− 4)
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= x2 − 8x+ 16− 3x+ 12

= x2 − 11x+ 28

Checkpoint 11.4.8 If q(x) = x+
√
x+ 8, find and simplify a formula for q(x+ 5).

q(x+ 5)

Explanation. Starting with the generic formula for q:

q( ) = ( ) +
√
( ) + 8

q(x+ 5) = x+ 5+
√
x+ 5+ 8

= x+ 5+
√
x+ 13

Example 11.4.9 If f(x) = 1
x

, find and simplify a formula for f(x+ 3) + 2.
Explanation. Do not be tempted to add the 3 and the 2. The 3 is added to input before the function f does
its work. The 2 is added to the result after f has done its work.

f( ) + 2 =
1

( )
+ 2

f(x+ 3) + 2 =
1

x+ 3
+ 2

This last expression is considered fully simplified. However you might combine the two terms using a
technique from Section 12.3.
The tasks we have practiced in this section are the kind of tasks that will make it easier to understand
interesting and useful material in college algebra and calculus.

11.4.3 Reading Questions
1. Explain how f(x+ 2) probably does not mean that f is being multiplied by x+ 2.

11.4.4 Exercises

Review and Warmup
1. Use the distributive

property to write an
equivalent expression to
5(n+ 5) that has no
grouping symbols.

2. Use the distributive
property to write an
equivalent expression to
2(q+ 9) that has no
grouping symbols.

3. Use the distributive
property to write an
equivalent expression to
−4(x− 6) that has no
grouping symbols.

4. Use the distributive
property to write an
equivalent expression to
−7(r+ 3) that has no
grouping symbols.

5. Multiply the polynomials.
2 (y+ 1)

2

6. Multiply the polynomials.
4 (y+ 7)

2

7. Expand the square of a
binomial.
(4y+ 9)

2

8. Expand the square of a
binomial.
(10r+ 3)

2
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Simplifying Function Expressions
9. Simplify G(r+ 7), where G(r) = 7− 3r. 10. Simplify g(t+ 2), where g(t) = 7− 7t.
11. Simplify K(−t), where K(t) = 5+ t. 12. Simplify F(−x), where F(x) = 7+ 8x.
13. Simplify g(x+ 4), where g(x) = 6− 4.4x. 14. Simplify K(y+ 8), where K(y) = 6+ 7.3y.
15. Simplify F(y− 5

7
), where F(y) = −3

4
+ 7

9
y. 16. Simplify g(y+ 3

5
), where g(y) = −1

7
+ 7

5
y.

17. Simplify H(r) + 1, where H(r) = −6r+ 6. 18. Simplify F(r) + 5, where F(r) = 6r+ 5.
19. Simplify f(t) + 8, where f(t) = 5+ 1.1t. 20. Simplify H(t) + 3, where H(t) = 5− 3.4t.
21. Simplify F(7x), where F(x) = −8x2 + 5x+ 7. 22. Simplify f(3x), where f(x) = 4x2 + 4x− 1.
23. Simplify H(−y), where H(y) = y2 − y+ 4. 24. Simplify h(−y), where h(y) = 8y2 − 5y+ 4.
25. Simplify 5f(y), where f(y) = 7y2 + 4y+ 7. 26. Simplify 8G(r), where G(r) = 2r2 + 4r− 1.
27. Simplify h(r− 5), where

h(r) = −2.4r2 + 3r+ 7.
28. Simplify f(t+ 3), where

f(t) = −6.9t2 + 3t− 2.
29. Simplify G(t) + 2, where

G(t) = 5t2 + 3t+ 7.
30. Simplify h(x) + 5, where

h(x) = 3x2 − 2x+ 3.
31. Simplify g(x+ 9), where g(x) =

√
3− 7x. 32. Simplify g(x+ 6), where g(x) =

√
2+ 2x.

33. Simplify h(x) + 3, where h(x) =
√
2+ 6x. 34. Simplify F(x) + 9, where F(x) =

√
2− x.

35. Simplify G(x+ 6), where
G(x) = 7x+

√
2− 5x.

36. Simplify G(x+ 3), where
G(x) = −2x+

√
1+ 7x.

37. Simplify K(t+ 4), where K(t) = 7
t+1

. 38. Simplify G(t+ 8), where G(t) = − 2
−3t+1

.
39. Simplify h(−3x), where h(x) = 5x

x2+6
. 40. Simplify K(7x), where K(x) = 6x

x2−2
.

41. Let f be a function given by f(x) = −4x− 8.
Find and simplify the following:

a. f(x) + 5 =

b. f(x+ 5) =

c. 5f(x) =

d. f(5x) =

42. Let f be a function given by f(x) = −4x− 1.
Find and simplify the following:

a. f(x) + 3 =

b. f(x+ 3) =

c. 3f(x) =

d. f(3x) =
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43. Let f be a function given by f(x) = 3x2 + 4x.
Find and simplify the following:

a. f(x) − 2 =

b. f(x− 2) =

c. −2f(x) =

d. f(−2x) =

44. Let f be a function given by
f(x) = −4x2 − 2x. Find and simplify the
following:

a. f(x) − 3 =

b. f(x− 3) =

c. −3f(x) =

d. f(−3x) =

Applications
45. A circular oil slick is expanding with radius, r in feet, at time t in hours given by r = 18t − 0.3t2,

for t in hours, 0 ≤ t ≤ 10.

Find a formula for A = f(t), the area of the oil slick as a function of time.
A = f(t)
with
(Be sure to include units!)

46. Suppose T(t) represents the temperature outside, in Fahrenheit, at t hours past noon, and a formula
for T is T(t) = 28t

t2+1
+ 56.

If we introduce F(t) as the temperature outside, in Fahrenheit, at t hours past 1:00pm, then
F(t) = T(t+ 1). Find a simplified formula for T(t+ 1).

T(t+ 1)

47. Suppose G(t) represents how many gigabytes of data has been downloaded t minutes after you
started a download, and a formula for G is G(t) = 20− 80

t+4
.

If we introduce M(t) as how many megabytes of data has been downloaded t minutes after
you started a download, then M(t) = 1024G(t). Find a simplified formula for 1024G(t).

1024G(t)
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11.5 Technical Definition of a Function
In Section 11.1, we discussed a conceptual understanding of functions and Definition 11.1.3. In this section
we’ll start with a more technical definition of what is a function, consistent with the ideas from Section 11.1.

11.5.1 Formally Defining a Function
Definition 11.5.2 Function (Technical Definition). A function is a collection of ordered pairs (x, y) such
that any particular value of x is paired with at most one value for y. ♢

How is this definition consistent with the informal Definition 11.1.3, which describes a function as a
process? Well, if you have a collection of ordered pairs (x, y), you can choose to view the left number as an
input, and the right value as the output. If the function’s name is f and you want to find f(x) for a particular
number x, look in the collection of ordered pairs to see if x appears among the first coordinates. If it does,
then f(x) is the (unique) y-value it was paired with. If it does not, then that x is just not in the domain of f,
because you have no way to determine what f(x) would be.
Example 11.5.3 Using Definition 11.5.1, a function f could be given by {(1, 4), (2, 3), (5, 3), (6, 1)}.

a. What is f(1)? Since the ordered pair (1, 4) appears in the collection of ordered pairs, f(1) = 4.
b. What is f(2)? Since the ordered pair (2, 3) appears in the collection of ordered pairs, f(2) = 3.
c. What is f(3)? None of the ordered pairs in the collection start with 3, so f(3) is undefined, and we

would say that 3 is not in the domain of f.

Example 11.5.4 A Function Given as a Table.
Consider the function g expressed by Figure 11.5.5.
How is this “a collection of ordered pairs?” With
tables the connection is most easily apparent. Pair
off each x-value with its y-value.

x g(x)

12 0.16

15 3.2

18 1.4

21 1.4

24 0.98

Figure 11.5.5
In this case, we can view this function as:

{(12, 0.16), (15, 3.2), (18, 3.2), (21, 1.4), (24, 0.98)} .

Example 11.5.6 A Function Given as a Formula. Consider the function h expressed by the formula h(x) =
x2. How is this “a collection of ordered pairs?”

This time, the collection is really big. Imagine an x-value, like x = 2. We can calculate that f(2) = 22 = 4.
So the input 2 pairs with the output 4 and the ordered pair (2, 4) is part of the collection.

You could move on to any x-value, like say x = 2.1. We can calculate that f(2.1) = 2.12 = 4.41. So the
input 2.1 pairs with the output 4.41 and the ordered pair (2.1, 4.41) is part of the collection.

The collection is so large that we cannot literally list all the ordered pairs as was done in Example 11.5.3
and Example 11.5.4. We just have to imagine this giant collection of ordered pairs. And if it helps to con-
ceptualize it, we know that the ordered pairs (2, 4) and (2.1, 4.41) are included.
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Example 11.5.7 A Function Given as a Graph. Consider the functions p and q expressed in Figure 11.5.8
and Figure 11.5.9. How is each of these “a collection of ordered pairs?”

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 11.5.8: y = p(x)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 11.5.9: y = q(x)

In Figure 11.5.8, we see that p(1) = 4, p(2) = 3, p(5) = 3, and p(6) = 1. The graph literally is the collection

{(1, 4), (2, 3), (5, 3), (6, 1)} .

In Figure 11.5.9, we can see a few whole number function values, like q(0) = 0 and q(1) = 2. But the
entire curve has infinitely many points on it and we’d never be able to list them all. We just have to imagine
the giant collection of ordered pairs. And if it helps to conceptualize it, we know that the ordered pairs (0, 0)
and (1, 2) are included.

Checkpoint 11.5.10 The graph below is of y = f(x).

Write the function f as a set of ordered pairs.
Explanation. The function can be expressed as the set {(−5, 2), (−2,−3), (4, 3)}.
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11.5.2 Identifying What is Not a Function
Just because you have a set of order pairs, a table, a graph, or an equation, it does not necessarily mean that
you have a function. Conceptually, whatever you have needs to give consistent outputs if you feed it the
same input. More technically, the set of ordered pairs is not allowed to have two ordered pairs that have
the same x-value but different y-values.

Example 11.5.11 Consider each set of ordered pairs. Does it make a function?
a. {(5, 9) , (3, 2) , (1

2
, 0.6

)
, (5, 1)

}
b.
{
(−5, 12) , (3, 7) ,

(√
2, 1
)
, (−0.9, 4)

} c.
{
(5, 9) , (3, 9) ,

(
4.2,

√
2
)
,
(
4
3
, 1
2

)}
d.
{
(5, 9) , (0.7, 2) ,

(√
25, 3

)
,
(
2
3
, 3
2

)}
Explanation.

a. This set of ordered pairs is not a function. The problem is that it has both (5, 9) and (5, 1). It uses the
same x-value paired with two different y-values. We have no clear way to turn the input 5 into an
output.

b. This set of ordered pairs is a function. It is a collection of ordered pairs, and the x-values are never
reused.

c. This set of ordered pairs is a function. It is a collection of ordered pairs, and the x-values are never
reused. You might note that the output value 9 appears twice, but that doesn’t matter. That just tells
us that the function turns 5 into 9 and it also turns 3 into 9.

d. This set of ordered pairs is not a function, but it’s a little tricky. One of the ordered pairs uses
√
25 as

an input value. But that is the same as 5, which is also used as an input value.
Now that we understand how some sets of ordered pairs might not be functions, what about tables, graphs,
and equations? If we are handed one of these things, can we tell whether or not it is giving us a function?

Checkpoint 11.5.12 Does This Table Make a Function? Which of these tables make y a function of x?
a.

x y

2 1

3 1

4 2

5 2

6 2

This table (□ does
□ does not) make y a func-
tion of x.

b.
x y

8 3

9 2

5 1

2 0

8 1

This table (□ does
□ does not) make y a func-
tion of x.

c.
x y

5 9

5 9

6 2

6 2

6 2

This table (□ does
□ does not) make y a func-
tion of x.

Explanation.
a. This table does make y a function of x. In the table, no x-value is repeated.
b. This table does not make y a function of x. In the table, the x-value 8 is repeated, and it is paired with

two different y-values, 3 and 1.
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c. This table does make y a function of x, but you have to think carefully. It’s true that the x-value 5 is used
more than once in the table. But in both places, the y-value is the same, 9. So there is no conceptual
issue with asking for f(5); it would definitely be 9. Similarly, the repeated use of 6 as an x-value is not
a problem since it is always paired with output 2.

Example 11.5.13 Does This Graph Make a Function? Which of these graphs make y a function of x?
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Figure 11.5.14
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Figure 11.5.15
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Figure 11.5.16
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Figure 11.5.17
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Figure 11.5.18
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Figure 11.5.19
Explanation. The graph in Figure 11.5.14 does not make y a function of x. Two ordered pairs on that graph
are (−3, 1) and (−3,−2), so an input value is used twice with different output values.

The graph in Figure 11.5.15 does not make y a function of x. There are many ordered pairs with the same
input value but different output values. For example, (2,−2) and (2, 4).

The graph in Figure 11.5.16 does make y a function of x. It appears that no matter what x-value you
choose on the x-axis, there is exactly one y-value paired up with it on the graph.

The graph in Figure 11.5.17 does make y a function of x, but we should discuss. The hollow dots on the
line indicate that the line goes right up to that point, but never reaches it. We say there is a “hole” in the
graph at these places. For two of these holes, there is a separate ordered pair immediately above or below the
hole. The graph has the ordered pair (−4, 4). It also has ordered pairs like (very close to −4,very close to 0),
but it does not have (−4, 0). Overall, there is no x-value that is used twice with different y-values, so this
graph does make y a function of x

The graph in Figure 11.5.15 does not make y a function of x. There are many ordered pairs with the same
input value but different output values. For example, (0, 1), (0, 3), (0,−1), (0, 5), and (0,−6) all use x = 0.

The graph in Figure 11.5.15 does not make y a function of x. There are many ordered pairs with the
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same input value but different output values. For example at x = 2, there is both a positive and a negative
associated y-value. It’s hard to say exactly what these y-values are, but we don’t have to.
This last set of examples might reveal something to you. For instance in Figure 11.5.15, the issue is that there
are places on the graph with the same x-value, but different y-values. Visually, what that means is there are
places on the graph that are directly above/below each other. Thinking about this leads to a quick visual
“test” to determine if a graph gives y as a function of x.
Fact 11.5.20 Vertical Line Test. Given a graph in the xy-plane, if a vertical line ever touches it in more than one
place, the graph does not give y as a function of x. If vertical lines only ever touch the graph once or never at all, then
the graph does give y as a function of x.

Example 11.5.21 In each graph from Example 11.5.13, we can apply the Vertical Line Test.
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Figure 11.5.22: A vertical line
touching the graph twice makes
this graph not give y as a function
of x.
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Figure 11.5.23: A vertical line
touching the graph twice makes
this graph not give y as a function
of x.
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Figure 11.5.24: All vertical lines
only touch the graph once, so this
graph does give y as a function of
x.
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Figure 11.5.25: All vertical lines
only touch the graph once, or not
at all, so this graph does give y as
a function of x.
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Figure 11.5.26: A vertical line
touching the graph more than
once makes this graph not give y

as a function of x.
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Figure 11.5.27: A vertical line
touching the graph more than
once makes this graph not give y

as a function of x.
Lastly, we come to equations. Certain equations with variables x and y clearly make y a function of x. For
example, y = x2 + 1 says that if you have an x-value, all you have to do is substitute it into that equation
and you will have determined an output y-value. You could then name the function f and give a formula
for it: f(x) = x2 + 1.
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With other equations, it may not be immediately clear whether or not they make y a function of x.
Example 11.5.28 Do each of these equations make y a function of x?

a. 2x+ 3y = 5 b. y = ±
√
x+ 4 c. x2 + y2 = 9

Explanation.
a. The equation 2x+ 3y = 5 does make y a function of x. Here are three possible explanations.

i. You recognize that the graph of this equation would be a non-vertical line, and so it would pass
the Vertical Line Test.

ii. Imagine that you have a specific value for x and you substitute it in to 2x + 3y = 5. Will you be
able to use algebra to solve for y? All you will need is to simplify, subtract from both sides, and
divide on both sides, so you will be able to determine y.

iii. Can you just isolate y in terms of x? Yes, a few steps of algebra can turn 2x+3y = 5 into y = 5−2x
3

.
Now you have an explicit formula for y in terms of x, so y is a function of x.

b. The equation y = ±
√
x+ 4 does not make y a function of x. Just having the ± (plus or minus) in

the equation immediately tells you that for almost any valid x-value, there would be two associated
y-values.

c. The equation x2 + y2 = 9 does not make y a function of x. Here are three possible explanations.
i. Imagine that you have a specific value for x and you substitute it in to x2 + y2 = 9. Will you

be able to use algebra to solve for y? For example, if you substitute in x = 1, then you have
1+ y2 = 9, which simplifies to y2 = 8. Can you really determine what y is? No, because it could
be

√
8 or it could be −

√
8. So this equation does not provide you with a way to turn x-values into

y-values.
ii. Can you just isolate y in terms of x? You might get started and use algebra to convert x2+y2 = 9

into y2 = 9− x2. But what now? The best you can do is acknowledge that y is either the positive
or the negative square root of 9 − x2. You might write y = ±

√
9− x2. But now for almost any

valid x-value, there are two associated y-values.
iii. You recognize that the graph of this equation would be a circle with radius 3, and so it would not

pass the Vertical Line Test.

Checkpoint 11.5.29 Do each of these equations make y a function of x?
a. 5x2 − 4y = 12

This equation (□ does
□ does not) make y a func-
tion of x.

b. 5x− 4y2 = 12

This equation (□ does
□ does not) make y a func-
tion of x.

c. x =
√
y

This equation (□ does
□ does not) make y a func-
tion of x.

Explanation.
a. The equation 5x2 − 4y = 12 does make y a function of x. You can isolate y in terms of x. A few steps of

algebra can turn 5x2 − 4y = 12 into y = 5x2−12
4

. Now you have an explicit formula for y in terms of x,
so y is a function of x.

b. The equation 5x − 4y2 = 12 does not make y a function of x. You cannot isolate y in terms of x. You
might get started and use algebra to convert 5x − 4y2 = 12 into y2 = 5x−12

4
. But what now? The best
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you can do is acknowledge that y is either the positive or the negative square root of 5x−12
4

. You might
write y = ±

√
5x−12

4
. But now for almost any valid x-value, there are two associated y-values.

c. The equation x =
√
y does make y a function of x. If you try substituting a non-negative x-value, then

you can square both sides and you know exactly what the value of y is.
If you try substituting a negative x-value, then you are saying that √y is negative which is impossible.
So for negative x, there are no y-values. This is not a problem for the equation giving you a function.
This just means that the domain of that function does not include negative numbers. Its domain would
be [0,∞).

11.5.3 Reading Questions
1. Suppose you have a “relation”. That is, a set of order pairs, a table of x- and y-values, a graph, or an

equation in x and y. What is the one thing that could happen that would make the relation not be a
function?

2. Explain how to use the vertical line test.

11.5.4 Exercises

Determining If Sets of Ordered Pairs Are Functions
1. Do these sets of ordered pairs make functions of x? What are their domains and ranges?

a.
{
(−10, 10), (2, 0)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

b.
{
(−9, 3), (−6, 2), (−4, 6)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

c.
{
(3, 9), (10, 0), (3, 0), (3, 4)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

d.
{
(−8, 6), (−10, 10), (−8, 7), (3, 10), (8, 3)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

2. Do these sets of ordered pairs make functions of x? What are their domains and ranges?
a.
{
(0, 7), (3, 4)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
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ordered pairs has domain and range .

b.
{
(−3, 3), (3, 3), (6, 0)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

c.
{
(9, 9), (6, 2), (8, 6), (9, 10)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

d.
{
(−8, 0), (0, 5), (1, 7), (4, 9), (0, 8)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

3. Does the following set of ordered pairs make for a function of x?{
(−1, 2), (−1, 5), (−7, 6), (−6, 2), (8, 9)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of

ordered pairs has domain and range .
4. Does the following set of ordered pairs make for a function of x?{

(−10, 9), (6, 4), (−8, 5), (1, 2), (−9, 9)
}

This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

Domain and Range
5. Below is all of the information that exists about a function H.

H(1) = 3 H(3) = 1 H(6) = 4

Write H as a set of ordered pairs.
H has domain and range .

6. Below is all of the information about a function K.
K(a) = 2 K(b) = 1

K(c) = −2 K(d) = 2

Write K as a set of ordered pairs.
K has domain and range .
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Determining If Graphs Are Functions
7. Decide whether each graph shows a relationship where y is a function of x.

The first graph (□does □does not) give a function of x. The second graph (□does □does
not) give a function of x.

8. Decide whether each graph shows a relationship where y is a function of x.

The first graph (□does □does not) give a function of x. The second graph (□does □does
not) give a function of x.

9. The following graphs show two relationships. Decide whether each graph shows a relationship
where y is a function of x.

The first graph (□does □does not) give a function of x. The second graph (□does □does
not) give a function of x.
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10. The following graphs show two relationships. Decide whether each graph shows a relationship
where y is a function of x.

The first graph (□does □does not) give a function of x. The second graph (□does □does
not) give a function of x.

Determining If Tables Are Functions Determine whether or not the following table could be the table of
values of a function. If the table can not be the table of values of a function, give an input that has more than
one possible output.

11.
Input Output
2 −1

4 1

6 −4

8 18

−2 −10

Could this be the table of values for a
function? (□ yes □ no)
If not, which input has more than one
possible output? (□ -2 □ 2 □ 4 □ 6
□ 8 □ None, the table represents a
function.)

12.
Input Output
2 4

4 −13

6 13

8 6

−2 −11

Could this be the table of values for a
function? (□ yes □ no)
If not, which input has more than one
possible output? (□ -2 □ 2 □ 4 □ 6
□ 8 □ None, the table represents a
function.)

13.
Input Output
−4 13

−3 2

−2 11

−3 13

−1 −18

Could this be the table of values for a
function? (□ yes □ no)
If not, which input has more than one
possible output? (□ -4 □ -3 □ -2 □ -1
□ None, the table represents a function.)

14.
Input Output
−4 −8

−3 4

−2 −14

−3 19

−1 0

Could this be the table of values for a
function? (□ yes □ no)
If not, which input has more than one
possible output? (□ -4 □ -3 □ -2 □ -1
□ None, the table represents a function.)
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Determining If Equations Are Functions
15. Select all of the following relations that make y a function of x. There are several correct answers.

□ y = ±
√
81− x2 □ y = x2 □ x = y3 □ y = 3

√
x □ y = 1

x2 □ y = |x|

□ x2 + y2 = 81 □ 5x+ 4y = 1 □ y = x+7
8−x

□ |y| = x □ y =
√
81− x2

□ x = y2

16. Select all of the following relations that make y a function of x. There are several correct answers.
□ x = y2 □ 5x + 5y = 1 □ x2 + y2 = 16 □ y = 1

x3 □ |y| = x

□ x = y3 □ y =
√
36− x2 □ y = x5 □ y = ±

√
36− x2 □ y = |x|

□ y = x+2
4−x

□ y = 8
√
x

17. Some equations involving x and y define y as a function of x, and others do not. For example, if
x + y = 1, we can solve for y and obtain y = 1 − x. And we can then think of y = f(x) = 1 − x.
On the other hand, if we have the equation x = y2 then y is not a function of x, since for a given
positive value of x, the value of y could equal √x or it could equal −√

x. Select all of the following
relations that make y a function of x. There are several correct answers.
□ |y|− x = 0 □ y+ x2 = 1 □ y2 + x2 = 1 □ 3x+ 5y+ 9 = 0 □ y− |x| = 0

□ x+ y = 1 □ y6 + x = 1 □ y3 + x4 = 1

On the other hand, some equations involving x and y define x as a function of y (the other way
round).

Select all of the following relations that make x a function of y. There are several correct an-
swers.
□ y2+ x2 = 1 □ 3x+ 5y+ 9 = 0 □ |y|− x = 0 □ y− |x| = 0 □ y4+ x5 = 1

18. Some equations involving x and y define y as a function of x, and others do not. For example, if
x + y = 1, we can solve for y and obtain y = 1 − x. And we can then think of y = f(x) = 1 − x.
On the other hand, if we have the equation x = y2 then y is not a function of x, since for a given
positive value of x, the value of y could equal √x or it could equal −√

x. Select all of the following
relations that make y a function of x. There are several correct answers.
□ y6 + x = 1 □ y− |x| = 0 □ |y|− x = 0 □ y+ x2 = 1 □ 4x+ 2y+ 4 = 0

□ y3 + x4 = 1 □ x+ y = 1 □ y2 + x2 = 1

On the other hand, some equations involving x and y define x as a function of y (the other way
round).

Select all of the following relations that make x a function of y. There are several correct an-
swers.
□ y4+ x5 = 1 □ y− |x| = 0 □ y2+ x2 = 1 □ |y|− x = 0 □ 4x+ 2y+ 4 = 0
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11.6 Functions Chapter Review
11.6.1 Function Basics
In Section 11.1 we defined functions informally, as well as function notation. We saw functions in four forms:
verbal descriptions, formulas, graphs and tables.

Example 11.6.1 Informal Definition of a Function. Determine whether each example below describes a
function.

a. The area of a circle given its radius. b. The number you square to get 9.

Explanation.
a. The area of a circle given its radius is a function because there is a set of steps or a formula that changes

the radius into the area of the circle. We could write A(r) = πr2.
b. The number you square to get 9 is not a function because the process we would apply to get the result

does not give a single answer. There are two different answers, −3 and 3. A function must give a
single output for a given input.

Example 11.6.2 Tables and Graphs. Make a table and a graph of the function f, where f(x) = x2.
Explanation.
First we will set up a table with
negative and positive inputs and
calculate the function values. The
values are shown in Figure 11.6.3,
which in turn gives us the graph in
Figure 11.6.4.

input, x output, f(x)
−3 9

−2 4

−1 1

0 0

1 2

2 4

3 9

Figure 11.6.3
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Figure 11.6.4: y = f(x) = x2

Example 11.6.5 Translating between Four Descriptions of the Same Function. Consider a function f that
triples its input and then adds 4. Translate this verbal description of f into a table, a graph, and a formula.
Explanation.
To make a table for f, we’ll have to select some in-
put x-values so we will choose some small nega-
tive and positive values that are easy to work with.
Given the verbal description, we should be able to
compute a column of output values. Table 11.6.6 is
one possible table that we might end up with.

x f(x)

−2 3(−2) + 4 = −2

−1 3(−1) + 4 = 1

0 3(0) + 4 = 4

1 3(1) + 4 = 7

2 3(2) + 4 = 10

Figure 11.6.6
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Once we have a table for f, we can make a graph for
f as in Figure 11.6.7, using the table to plot points.
Lastly, we must find a formula for f. This means
we need to write an algebraic expression that says
the same thing about f as the verbal description,
the table, and the graph. For this example, we can
focus on the verbal description. Since f takes its
input, triples it, and adds 4, we have the formula

f(x) = 3x+ 4.
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Figure 11.6.7: y = f(x)

11.6.2 Domain and Range
In Section 11.2 we saw the definition of domain and range, and three types of domain restrictions. We also
learned how to write the domain and range in interval and set-builder notation.

Example 11.6.8 Determine the domain of p, where p(x) =
x

2x− 1
.

Explanation. This is an example of the first type of domain restriction, when you have a variable in the
denominator. The denominator cannot equal 0 so a bad value for x would be when

2x− 1 = 0

2x = 1

x =
1

2

The domain is all real numbers except 1
2

.

Example 11.6.9 What is the domain of the function C, where C(x) =
√
2x− 3− 5?

Explanation. This is an example of the second type of domain restriction where the value inside the radical
cannot be negative. So the good values for x would be when

2x− 3 ≥ 0

2x ≥ 3

x ≥ 3

2

So on a number line, if we wanted to picture the domain of C, we would make a sketch like:

−10 −5 5 10

3/2

0 x
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The domain is the interval [3
2
,∞).

Example 11.6.10 Range.
Find the range of the function q using its graph
shown in Figure 11.6.11.
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Figure 11.6.11: y = q(x). The range is marked as
an interval on the y-axis.

Explanation. The range is the collection of possible numbers that q can give for output. Figure 11.6.11
displays a graph of q, with the range shown as an interval on the y-axis.

The output values are the y-coordinates so we can see that the y-values start from 1 and continue down-
ward forever. Therefore the range is (−∞, 1].

11.6.3 Using Technology to Explore Functions
In Section 11.3 we covered how to find a good graphing window and use it to identify all of the key features of
a function. We also learned how to solve equations and inequalities using a graph. Here are some examples
for review.
Example 11.6.12 Finding an AppropriateWindow. Graph the function t, where t(x) = (x+10)2−15, using
technology and find a good viewing window.
Explanation.
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Figure 11.6.13: y = t(x) in the
viewing window of −7 to 7 on the
x and y axes. We need to zoom
out and move our window to the
left.
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Figure 11.6.14: y = t(x) in a good
viewing window.

After some trial and error we
found this window that goes from
−20 to 2 on the x-axis and −20 to
100 on the y-axis.

Now we can see the vertex and all of the intercepts and we will identify them in the next example.
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Example 11.6.15 Using Technology to Determine Key Features of a Graph. Use the previous graph in
figure 11.6.14 to identify the intercepts, minimum or maximum function value, and the domain and range
of the function t, where t(x) = (x+ 10)2 − 15.
Explanation.
From our graph we can now identify the ver-
tex at (−10,−15), the y-intercept at (0, 85), and
the x-intercepts at approximately (−13.9, 0) and
(−6.13, 0).
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(−10,−15)

(−13.9, 0)

(0, 85)

(−6.13, 0) x

y

Figure 11.6.16: y = t(x) = (x+ 10)2 − 15.

Example 11.6.17 Solving Equations and Inequalities Graphically Using Technology. Use graphing tech-
nology to solve the equation t(x) = 40, where t(x) = (x+ 10)2 − 15.
Explanation.
To solve the equation t(x) = 40, we need to graph
y = t(x) and y = 40 on the same axes and find the
x-values where they intersect.
From the graph we can see that the intersec-
tion points are approximately (−17.4, 40) and
(−2.58, 40). The solution set is {−17.4,−2.58}.
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Figure 11.6.18: y = t(x) where
t(x) = (x+ 10)2 − 15 and y = 40.
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11.6.4 Simplifying Expressions with Function Notation

In Section 11.4 we learned about the difference between f(−x) and −f(x) and how to simplify them. We
also learned how to simplify other changes to the input and output like f(3x) and 1

3
f(x). Here are some

examples.

Example 11.6.19 Negative Signs in and out of Function Notation. Find and simplify a formula for f(−x)
and −f(x), where f(x) = −3x2 − 7x+ 1.
Explanation. To find f(−x), we use an input of −x in our function f and simplify to get:

f(−x) = −3(−x)2 − 7(−x) + 1

= −3x2 + 7x+ 1

To find −f(x), we take the opposite of the function f and simplify to get:

−f(x) = −(−3x2 − 7x+ 1)

= 3x2 + 7x− 1

Example 11.6.20 Other Nontrivial Simplifications. If g(x) = 2x2 − 3x− 5, find and simplify a formula for
g(x− 1).
Explanation. To find g(x − 1), we put in (x − 1) for the input. It is important to keep the parentheses
because we have exponents and negative signs in the function.

g(x− 1) = 2(x− 1)2 − 3(x− 1) − 5

= 2(x2 − 2x+ 1) − 3x+ 3− 5

= 2x2 − 4x+ 2− 3x− 2

= 2x2 − 7x

11.6.5 Technical Definition of a Function

In Section 11.5 we gave a formal definition of a function 11.5.2 and learned to identify what is and is not a
function with sets or ordered pairs, tables and graphs. We also used the vertical line test 11.5.20.

Example 11.6.21 Formally Defining a Function. We learned that sets of ordered pairs, tables and graphs
can meet the formal definition of a function. Here is an example that shows a function in all three forms.
We can verify that each input has at most one output.
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{(1, 4), (2, 4), (3, 3), (4, 6), (5,−2)}

Figure 11.6.22: The function f

represented as a collection of
ordered pairs.

x f(x)

1 4

2 4

3 3

4 6

5 −2

Figure 11.6.23: The function f

represented as a table.
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Figure 11.6.24: The function f

represented as a graph.

Example 11.6.25 Identifying What is Not a Function. Identify whether each graph represents a function
using the vertical line test 11.5.20.
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Figure 11.6.26
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Figure 11.6.27
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Figure 11.6.28
Explanation.
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Figure 11.6.29: A vertical line
touching the graph twice makes
this graph not give y as a function
of x.
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Figure 11.6.30: A vertical line
touching the graph twice makes
this graph not give y as a function
of x.
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Figure 11.6.31: All vertical lines
only touch the graph once, so this
graph does give y as a function of
x.
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11.6.6 Exercises

Function Basics

1. Randi will spend $225 to purchase some bowls and some plates. Each plate costs $8, and each bowl
costs $5. The function q(x) = −8

5
x+ 45 models the number of bowls Randi will purchase, where

x represents the number of plates to be purchased.
Interpret the meaning of q(35) = −11.

⊙ A. −$11 will be used to purchase bowls, and $35 will be used to purchase plates.
⊙ B. −11 plates and 35 bowls can be purchased.
⊙ C. 35 plates and −11 bowls can be purchased.
⊙ D. $35 will be used to purchase bowls, and −$11 will be used to purchase plates.

2. Douglas will spend $150 to purchase some bowls and some plates. Each plate costs $5, and each
bowl costs $6. The function q(x) = −5

6
x+ 25 models the number of bowls Douglas will purchase,

where x represents the number of plates to be purchased.
Interpret the meaning of q(12) = 15.

⊙ A. $15 will be used to purchase bowls, and $12 will be used to purchase plates.
⊙ B. 12 plates and 15 bowls can be purchased.
⊙ C. 15 plates and 12 bowls can be purchased.
⊙ D. $12 will be used to purchase bowls, and $15 will be used to purchase plates.

3. Evaluate the function at the given values.
G(x) = −

9

x− 7
.

a. G(8)

b. G(7)

4. Evaluate the function at the given values.
G(x) =

40

x+ 8
.

a. G(2)

b. G(−8)
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5. Use the graph of H below to evaluate the
given expressions. (Estimates are OK.)

a. H(−4) =

b. H(11) =

6. Use the graph of K below to evaluate the
given expressions. (Estimates are OK.)

a. K(−3) =

b. K(5) =

7. Use the table of values for f below to
evaluate the given expressions.

x −5 −1 3 7 11

f(x) −1.5 −1.2 7.3 6.2 5.6

a. f(3) =

b. f(7) =

8. Use the table of values for f below to
evaluate the given expressions.

x 0 2 4 6 8

f(x) 7.3 −1.3 1.3 7.3 −1.6

a. f(0) =

b. f(8) =

9. Make a table of values for the function h,
defined by h(x) = −4x2. Based on values in
the table, sketch a graph of h.

x h(x)

10. Make a table of values for the function H,
defined by H(x) =

2x − 3

x2 + 3
. Based on values

in the table, sketch a graph of H.
x H(x)

11. The following figure has the graph y = d(t), which models a particle’s distance from the starting line
in feet, where t stands for time in seconds since timing started.
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a. Find d(7).
b. Interpret the meaning of d(7).

⊙ A. The particle was 9 feet away from the starting line 7 seconds since timing started.
⊙ B. The particle was 7 feet away from the starting line 9 seconds since timing started.
⊙ C. In the first 9 seconds, the particle moved a total of 7 feet.
⊙ D. In the first 7 seconds, the particle moved a total of 9 feet.

c. Solve d(t) = 3 for t. t =
d. Interpret the meaning of part c’s solution(s).

⊙ A. The particle was 3 feet from the starting line 1 seconds since timing started, and again
9 seconds since timing started.

⊙ B. The particle was 3 feet from the starting line 9 seconds since timing started.
⊙ C. The particle was 3 feet from the starting line 1 seconds since timing started.
⊙ D. The particle was 3 feet from the starting line 1 seconds since timing started, or 9 seconds

since timing started.

12. The following figure has the graph y = d(t), which models a particle’s distance from the starting line
in feet, where t stands for time in seconds since timing started.

a. Find d(8).
b. Interpret the meaning of d(8).

⊙ A. In the first 2 seconds, the particle moved a total of 8 feet.
⊙ B. The particle was 8 feet away from the starting line 2 seconds since timing started.
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⊙ C. In the first 8 seconds, the particle moved a total of 2 feet.
⊙ D. The particle was 2 feet away from the starting line 8 seconds since timing started.

c. Solve d(t) = 3 for t. t =
d. Interpret the meaning of part c’s solution(s).

⊙ A. The particle was 3 feet from the starting line 3 seconds since timing started, or 7 seconds
since timing started.

⊙ B. The particle was 3 feet from the starting line 3 seconds since timing started.
⊙ C. The particle was 3 feet from the starting line 7 seconds since timing started.
⊙ D. The particle was 3 feet from the starting line 3 seconds since timing started, and again

7 seconds since timing started.

Domain and Range A function is graphed.
13. 14. 15.

16. 17. 18.

19. Find the domain of t where t(x) =

√
8+ x

5− x
. 20. Find the domain of C where

C(x) =

√
10+ x

2− x
.

21. An object was shot up into the air at an initial vertical speed of 512 feet per second. Its height as time
passes can be modeled by the quadratic function f, where f(t) = −16t2 + 512t. Here t represents the
number of seconds since the object’s release, and f(t) represents the object’s height in feet.

Find the function’s domain and range in this context.
The function’s domain in this context is .
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The function’s range in this context is .

22. An object was shot up into the air at an initial vertical speed of 544 feet per second. Its height as time
passes can be modeled by the quadratic function f, where f(t) = −16t2 + 544t. Here t represents the
number of seconds since the object’s release, and f(t) represents the object’s height in feet.

Find the function’s domain and range in this context.
The function’s domain in this context is .
The function’s range in this context is .

Using Technology to Explore Functions
23. Use technology to make a table of values for

the function H defined by
H(x) = −4x2 + 16x+ 1.

x H(x)

24. Use technology to make a table of values for
the function K defined by
K(x) = 2x2 − 7x− 2.

x K(x)

25. Choose an appropriate window for
graphing the function f defined by
f(x) = −1184x− 7607 that shows its key
features.
The x-interval could be and
the y-interval could be .

26. Choose an appropriate window for
graphing the function f defined by
f(x) = −139x+ 159 that shows its key
features.
The x-interval could be and
the y-interval could be .

27. Use technology to determine how many
times the equations y = −5x3 + 2x2 + x and
y = 6x+ 4 intersect. They intersect
(□ zero times □ one time □ two times
□ three times) .

28. Use technology to determine how many
times the equations y = −3x3 − x2 + 9x and
y = −5x+ 6 intersect. They intersect
(□ zero times □ one time □ two times
□ three times) .

29. For the function L defined by

L(x) = 3000x2 + 10x+ 4,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.

30. For the function M defined by

M(x) = −(300x− 2950)2,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.
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31. Let f(x) = 4x2 + 5x− 1 and g(x) = 5. Use
graphing technology to determine the
following.

a. What are the points of intersection for
these two functions?

b. Solve f(x) = g(x).
c. Solve f(x) < g(x).
d. Solve f(x) ≥ g(x).

32. Let p(x) = 6x2 − 3x+ 4 and k(x) = 7. Use
graphing technology to determine the
following.

a. What are the points of intersection for
these two functions?

b. Solve p(x) = k(x).
c. Solve p(x) < k(x).
d. Solve p(x) ≥ k(x).

33. Use graphing technology to solve the
equation −0.02x2 + 1.97x− 51.5 =

0.05 (x− 50)
2
− 0.03 (x− 50) . Approximate

the solution(s) if necessary.

34. Use graphing technology to solve the
equation −200x2 + 60x− 55 = −20x− 40.
Approximate the solution(s) if necessary.

35. Use graphing technology to solve the
inequality −15x2 − 6 ≤ 10x− 4. State the
solution set using interval notation, and
approximate if necessary.

36. Use graphing technology to solve the
inequality 1

2
x2 + 3

2
x ≥ 1

2
x− 3

2
. State the

solution set using interval notation, and
approximate if necessary.
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Simplifying Expressions with Function Notation
37. Let f be a function given by

f(x) = −3x2 + 3x. Find and simplify the
following:

a. f(x) − 3 =

b. f(x− 3) =

c. −3f(x) =

d. f(−3x) =

38. Let f be a function given by f(x) = 3x2 − 4x.
Find and simplify the following:

a. f(x) − 4 =

b. f(x− 4) =

c. −4f(x) =

d. f(−4x) =

39. Simplify F(r) + 6, where F(r) = 3− 5.1r. 40. Simplify g(r) + 9, where g(r) = 2+ 6.5r.

Technical Definition of a Function

41. Does the following set of ordered pairs make for a function of x?{
(−3, 3), (−5, 9), (−5, 0), (1, 7), (−6, 3)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of

ordered pairs has domain and range .

42. Does the following set of ordered pairs make for a function of x?{
(−8, 9), (5, 5), (−3, 9), (−1, 2), (−8, 10)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of

ordered pairs has domain and range .

43. Below is all of the information that exists about a function f.
f(−2) = 1 f(0) = 5 f(1) = 2

Write f as a set of ordered pairs.
f has domain and range .

44. Below is all of the information about a function f.
f(a) = 5 f(b) = 6

f(c) = 3 f(d) = 6

Write f as a set of ordered pairs.
f has domain and range .

45. The following graphs show two relationships. Decide whether each graph shows a relationship
where y is a function of x.
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The first graph (□does □does not) give a function of x. The second graph (□does □does
not) give a function of x.

46. The following graphs show two relationships. Decide whether each graph shows a relationship
where y is a function of x.

The first graph (□does □does not) give a function of x. The second graph (□does □does
not) give a function of x.

47. Some equations involving x and y define y as a function of x, and others do not. For example, if
x + y = 1, we can solve for y and obtain y = 1 − x. And we can then think of y = f(x) = 1 − x.
On the other hand, if we have the equation x = y2 then y is not a function of x, since for a given
positive value of x, the value of y could equal √x or it could equal −√

x. Select all of the following
relations that make y a function of x. There are several correct answers.
□ y3 + x4 = 1 □ y+ x2 = 1 □ y2 + x2 = 1 □ y6 + x = 1 □ y− |x| = 0

□ 5x+ 8y+ 9 = 0 □ x+ y = 1 □ |y|− x = 0

On the other hand, some equations involving x and y define x as a function of y (the other way
round).

Select all of the following relations that make x a function of y. There are several correct an-
swers.
□ |y|− x = 0 □ 5x+ 8y+ 9 = 0 □ y2+ x2 = 1 □ y− |x| = 0 □ y4+ x5 = 1

48. Some equations involving x and y define y as a function of x, and others do not. For example, if
x + y = 1, we can solve for y and obtain y = 1 − x. And we can then think of y = f(x) = 1 − x.
On the other hand, if we have the equation x = y2 then y is not a function of x, since for a given
positive value of x, the value of y could equal √x or it could equal −√

x. Select all of the following
relations that make y a function of x. There are several correct answers.
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□ |y|− x = 0 □ y+ x2 = 1 □ x+y = 1 □ y2 + x2 = 1 □ 6x+ 5y+ 4 = 0

□ y3 + x4 = 1 □ y6 + x = 1 □ y− |x| = 0

On the other hand, some equations involving x and y define x as a function of y (the other way
round).

Select all of the following relations that make x a function of y. There are several correct an-
swers.
□ y2+ x2 = 1 □ |y|− x = 0 □ y− |x| = 0 □ y4+ x5 = 1 □ 6x+ 5y+ 4 = 0

Determine whether or not the following table could be the table of values of a function. If the table can not
be the table of values of a function, give an input that has more than one possible output.

49.
Input Output
2 7

4 −18

6 10

8 −4

−2 1

Could this be the table of values for a
function? (□ yes □ no)
If not, which input has more than one
possible output? (□ -2 □ 2 □ 4 □ 6
□ 8 □ None, the table represents a
function.)

50.
Input Output
2 12

4 9

6 −14

8 −15

−2 1

Could this be the table of values for a
function? (□ yes □ no)
If not, which input has more than one
possible output? (□ -2 □ 2 □ 4 □ 6
□ 8 □ None, the table represents a
function.)

51.
Input Output
−4 6

−3 2

−2 0

−3 13

−1 −3

Could this be the table of values for a
function? (□ yes □ no)
If not, which input has more than one
possible output? (□ -4 □ -3 □ -2 □ -1
□ None, the table represents a function.)

52.
Input Output
−4 −14

−3 4

−2 17

−3 19

−1 15

Could this be the table of values for a
function? (□ yes □ no)
If not, which input has more than one
possible output? (□ -4 □ -3 □ -2 □ -1
□ None, the table represents a function.)



Chapter 12

Rational Functions and Equations

12.1 Introduction to Rational Functions
In this chapter we will learn about rational functions, which are ratios of two polynomial functions. Creating
this ratio inherently requires division, and we’ll explore the effect this has on the graphs of rational functions
and their domain and range.

12.1.1 Graphs of Rational Functions
Example 12.1.2
When a drug is injected into a patient, the drug’s
concentration in the patient’s bloodstream can be
modeled by the function C, with formula

C(t) =
3t

t2 + 8

where C(t) gives the drug’s concentration, in mil-
ligrams per liter, t hours since the injection. A new
injection is needed when the concentration falls to
0.35 milligrams per liter. Using graphing technol-
ogy, we will graph y = 3t

t2+8
and y = 0.35 to exam-

ine the situation and answer some important ques-
tions. 1 2 3 4 5 6 7 8 9 10 11

0.25

0.5

0.75

y = C(t)

y = 0.35

(1.066,0.35)
(7.506,0.35)

(2.828,0.53)

t, time in hours

y, concentration (mg per liter)

Figure 12.1.3: Graph of C(t) = 3t
t2+8

a. What is the concentration after 10 hours?
b. After how many hours since the first injection is the drug concentration greatest?

141
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c. After how many hours since the first injection should the next injection be given?
d. What happens to the drug concentration if no further injections are given?

Explanation.
a. To determine the concentration after 10 hours, we will evaluate C at t = 10. After 10 hours, the

concentration will be about 0.2777 mg
L .

C(10) =
3(10)

102 + 8

=
30

108

=
5

18

≈ 0.2777

b. Using the graph, we can see that the maximum concentration of the drug will be 0.53 mg
L and will occur

after about 2.828 hours.
c. The approximate points of intersection (1.066, 0.35) and (7.506, 0.35) tell us that the concentration of

the drug will reach 0.35 mg
L after about 1.066 hours and again after about 7.506 hours. Given the rising,

then falling shape of the graph, this means that another dose will need to be administered after about
7.506 hours.

d. From the initial graph, it appears that the concentration of the drug will diminish to zero with enough
time passing. Exploring further, we can see both numerically and graphically that for larger and larger
values of t, the function values get closer and closer to zero. This is shown in Figure 12.1.4 and Fig-
ure 12.1.5.

t C(t)

24 0.123 . . .

48 0.062 . . .

72 0.041 . . .

96 0.031 . . .

120 0.020 . . .

Figure 12.1.4: Numerical Values for
C(t) = 3t

t2+8

24 48 72 96

0.25

0.5

0.75

y = C(t)

t, time in hours

concentration (mg per liter)

Figure 12.1.5: Graph of C(t) = 3t
t2+8

In Section 12.5, we’ll explore how to algebraically solve C(t) = 0.35. For now, we will rely on technology to
make the graph and determine intersection points.

The function C, where C(t) = 3t
t2+8

, is a rational function, which is a type of function defined as follows.
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Definition 12.1.6 Rational Function. A rational function f is a function in the form

f(x) =
P(x)

Q(x)

where P and Q are polynomial functions, but Q is not the constant zero function. ♢

Checkpoint 12.1.7 Identify which of the following are rational functions and which are not.
a. f defined by f(x) = 25x2+3

25x2+3
(□ is □ is not) a rational function.

b. Q defined by Q(x) = 5x2+3
√
x

2x
(□ is □ is not) a rational function.

c. g defined by g(t) = t
√
5−t3

2t+1
(□ is □ is not) a rational function.

d. P defined by P(x) = 5x+3
|2x+1|

(□ is □ is not) a rational function.

e. h defined by h(x) = 3x+1
x2+1

(□ is □ is not) a rational function.

Explanation.

a. f defined by f(x) = 25x2+3
25x2+3

is a rational function as its formula is a polynomial divided by another
polynomial.

b. Q defined by Q(x) = 5x2+3
√
x

2x
is not a rational function because the numerator contains √

x and is
therefore not a polynomial.

c. g defined by g(t) = t
√
5−t3

2t+1
is a rational function as its formula is a polynomial divided by another

polynomial.
d. P defined by P(x) = 5x+3

|2x+1|
is not a rational function because the denominator contains the absolute

value of an expression with variables in it.

e. h defined by h(x) = 3x+1
x2+1

is not a rational function because the numerator contains 3x, which has a
variable in the exponent.

A rational function’s graph is not always smooth like the one shown in Example 12.1.3. It could have breaks,
as we’ll see now.

Example 12.1.8 Build a table and sketch the graph of the function f where f(x) = 1
x−2

. Find the function’s
domain and range.

Since x = 2 makes the denominator 0, the function will be undefined for x = 2. We’ll start by choosing
various x-values and plotting the associated points.



144 CHAPTER 12. RATIONAL FUNCTIONS AND EQUATIONS

x f(x) Point
−6 1

−6−2
−0.125 (−6,−0.125)

−4 1
−4−2

≈ −0.167
(
−4,−1

6

)
−2 1

−2−2
−0.25 (−2,−0.25)

0 1
0−2

−0.5 (0,−0.5)

1 1
1−2

−1 (1,−1)

2 1
2−2

undefined
3 1

3−2
1 (3, 1)

4 1
4−2

0.5 (4, 0.5)

Figure 12.1.9: Initial Values of f(x) = 1
x−2

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 12.1.10: Initial Points for f(x) = 1
x−2

Note that extra points were chosen near x = 2 in the Figure 12.1.9, but it’s still not clear on the graph what
happens really close to x = 2. It will be essential that we include at least one x-value between 1 and 2 and
also between 2 and 3.

Further, we’ll note that dividing one number by a number that is close to 0 yields a large number. For
example, 1

0.0005
= 2000. In fact, the smaller the number is that we divide by, the larger our result becomes.

So when x gets closer and closer to 2, then x − 2 gets closer and closer to 0. And then 1
x−2

takes very large
values.

When we plot additional points closer and closer to 2, we get larger and larger results. To the left of 2, the
results are negative, so the connected curve has an arrow pointing downward there. The opposite happens
to the right of x = 2, and an arrow points upward. We’ll also draw the vertical line x = 2 as a dashed line to
indicate that the graph never actually touches it.

x f(x) Point
−6 1

−6−2
−0.125 (−6,−0.125)

−4 1
−4−2

≈ −0.167
(
−4,−1

6

)
−2 1

−2−2
−0.25 (−2,−0.25)

0 1
0−2

−0.5 (0,−0.5)

1 1
1−2

−1 (1,−1)

1.5 1
1.5−2

−2 (1.5,−2)

1.8 1
1.8−2

−5 (1.8,−5)

2 1
2−2

undefined
2.1 1

2.2−2
5 (2.2, 5)

2.5 1
2.5−2

2 (2.5, 2)

3 1
3−2

1 (3, 1)

4 1
4−2

0.5 (4, 0.5)

Figure 12.1.11: Values of f(x) = 1
x−2

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 12.1.12: Full Graph of f(x) = 1
x−2
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Note that in Figure 12.1.12, the line y = 0 was also drawn as a dashed line. This is because the values of
y = f(x) will get closer and closer to zero as the inputs become more and more positive (or negative).

We know that the domain of this function is (−∞, 2) ∪ (2,∞) as the function is undefined at 2. We can
determine this algebraically, and it is also evident in the graph.

We can see from the graph that the range of the function is (−∞, 0) ∪ (0,∞). See Checkpoint 11.2.26 for
a discussion of how to see the range using a graph like this one.

Remark 12.1.13 The line x = 2 in Example 12.1.8 is referred to as a vertical asymptote. The line y = 0

is referred to as a horizontal asymptote. We’ll use this vocabulary when referencing such lines, but the
classification of vertical asymptotes and horizontal asymptotes is beyond the scope of this book.

Example 12.1.14 Algebraically find the domain of g(x) = 3x2

x2−2x−24
. Use technology to sketch a graph of

this function.
Explanation. To find a rational function’s domain, we set the denominator equal to 0 and solve:

x2 − 2x− 24 = 0

(x− 6)(x+ 4) = 0

x− 6 = 0 or x+ 4 = 0

x = 6 or x = −4

Since x = 6 and x = −4 will cause the denominator to be 0, they are excluded from the domain. The
function’s domain is {x | x ̸= 6, x ̸= −4}. In interval notation, the domain is (−∞,−4) ∪ (−4, 6) ∪ (6,∞).

To begin creating this graph, we’ll use technology to create a table of function values, making sure to
include values near both −4 and 6. We’ll sketch an initial plot of these.

x 3x2

x2−2x−24
x 3x2

x2−2x−24

−10 3.125 1 −0.12

−9 3.24 2 −0.5

−8 3.428 . . . 3 −1.285

−7 3.769 . . . 4 −3

−6 4.5 5 −8.333 . . .

−5 6.818 . . . 6 undefined
−4 undefined 7 13.363 . . .

−3 −3 8 8

−2 −0.75 9 6.230 . . .

−1 −0.142 . . . 10 5.357 . . .

0 0 . . .

Figure 12.1.15: Numerical Values for g

−10 −8 −6 −4 −2 2 4 6 8 10

−12

−8

−4

4

8

12

x

y

Figure 12.1.16: Initial Set-Up to Graph g

We can now begin to see what happens near x = −4 and x = 6. These are referred to as vertical asymptotes
and will be graphed as dashed vertical lines as they are features of the graph but do not include function
values.

The last thing we need to consider is what happens for large positive values of x and large negative
values of x. Choosing a few values, we find:
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x g(x)

1000 3.0060 . . .

2000 3.0030 . . .

3000 3.0020 . . .

4000 3.0015 . . .

Figure 12.1.17: Values for Large Positive x

x g(x)

−1000 2.9940 . . .

−2000 2.9970 . . .

−3000 2.9980 . . .

−4000 2.9985 . . .

Figure 12.1.18: Values for Large Negative x

Thus for really large positive x and for really large negative x, we see that the function values get closer and
closer to y = 3. This is referred to as the horizontal asymptote, and will be graphed as a dashed horizontal
line on the graph.

Putting all of this together, we can sketch a graph of this function.

−10 −8 −6 −4 −2 2 4 6 8 10

−12

−8

−4

4

8

12

x

y

Figure 12.1.19: Asymptotes Added for Graphing
g(x) = 3x2

x2−2x−24

−10 −8 −6 −4 −2 2 4 6 8 10

−12

−8

−4

4

8

12

x

y

Figure 12.1.20: Full Graph of g(x) = 3x2

x2−2x−24

Let’s look at another example where a rational function is used to model real life data.
Example 12.1.21The monthly operation cost of Saqui’s shoe company is approximately $300,000.00. The cost
of producing each pair of shoes is $30.00. As a result, the cost of producing x pairs of shoes is 30x+ 300000

dollars, and the average cost of producing each pair of shoes can be modeled by

C̄(x) =
30x+ 300000

x
.

Answer the following questions with technology.
a. What’s the average cost of producing 100 pairs of shoes? Of producing 1000 pairs? Of producing

10,000 pairs? What’s the pattern?
b. To make the average cost of producing each pair of shoes cheaper than $50.00, at least how many pairs

of shoes must Saqui’s company produce?
c. Assume that her company’s shoes are very popular. What happens to the average cost of producing

shoes if more and more people keep buying them?
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Explanation. We will graph the function with technology. After adjusting window settings, we have:

−1,000 1,000

−1,000

1,000

x, pairs of shoes

y, average cost

Figure 12.1.22: Graph of C̄(x) = 30x+300000
x

a. To answer this question, we locate the points where x values are 100, 1000 and 10,000. They are
(100, 3030), (1000, 330) and (10000, 60). They imply:

• If the company produces 100 pairs of shoes, the average cost of producing one pair is $3030.00.
• If the company produces 1,000 pairs of shoes, the average cost of producing one pair is $330.00.
• If the company produces 10,000 pairs of shoes, the average cost of producing one pair is $60.00.

We can see the more shoes her company produces, the lower the average cost.
b. To answer this question, we locate the point where its y-value is 50. With technology, we graph both

y = C̄(x) and y = 50, and locate their intersection.

5,000 10,000 15,000 20,000

−50

50

100

(15000, 50)

x, pairs of shoes

y, average cost

Figure 12.1.23: Intersection of C̄(x) = 30x+300000
x

and y = 50
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The intersection (15000, 50) implies the average cost of producing one pair is $50.00 if her company
produces 15,000 pairs of shoes.

c. To answer this question, we substitute x with some large numbers, and use technology to create a table
of values:

x g(x)

100000 33

1000000 31

10000000 30.03

100000000 30.003

Figure 12.1.24: Values for Large Positive x

We can estimate that the average cost of producing one pair is getting closer and closer to $30.00 as
her company produces more and more pairs of shoes.
Note that the cost of producing each pair is $30.00. This implies, for big companies whose products
are very popular, the cost of operations can be ignored when calculating the average cost of producing
each unit of product.

12.1.2 Reading Questions
1. What makes a function be a “rational” function?
2. Describe what an asymptote is.
3. If there is a rational function with a vertical asymptote at x = 7, what does that mean about the de-

nominator of the rational function?

12.1.3 Exercises

Rational Functions in Context
1. The population of deer in a forest can be modeled by

P(x) =
720x+ 2310

3x+ 7

where x is the number of years in the future. Answer the following questions.

a. How many deer live in this forest this year?
b. How many deer will live in this forest 27 years later? Round your answer to an integer.
c. After how many years, the deer population will be 247? Round your answer to an integer.
d. Use a calculator to answer this question: As time goes on, the population levels off at about

how many deer?
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2. The population of deer in a forest can be modeled by

P(x) =
320x+ 2200

4x+ 5

where x is the number of years in the future. Answer the following questions.

a. How many deer live in this forest this year?
b. How many deer will live in this forest 14 years later? Round your answer to an integer.
c. After how many years, the deer population will be 100? Round your answer to an integer.
d. Use a calculator to answer this question: As time goes on, the population levels off at about

how many deer?
3. In a certain store, cashiers can serve 50 customers per hour on average. If x customers arrive at the

store in a given hour, then the average number of customers C waiting in line can be modeled by
the function

C(x) =
x2

2500− 50x

where x < 50.
Answer the following questions with a graphing calculator. Round your answers to integers.

a. If 38 customers arrived in the store in the past hour, there are approximately
customers waiting in line.

b. If there are 8 customers waiting in line, approximately customers arrived
in the past hour.

4. In a certain store, cashiers can serve 55 customers per hour on average. If x customers arrive at the
store in a given hour, then the average number of customers C waiting in line can be modeled by
the function

C(x) =
x2

3025− 55x

where x < 55.
Answer the following questions with a graphing calculator. Round your answers to integers.

a. If 48 customers arrived in the store in the past hour, there are approximately
customers waiting in line.

b. If there are 2 customers waiting in line, approximately customers arrived
in the past hour.

Identify Rational Functions Select all rational functions. There are several correct answers.
5.

□ t(x) = 5−7x3

6x0.7+2x−3
□ r(x) = 6x2+2x−3

5−7x−6 □ c(x) = 6x2+2x−3
5+|x|

□ b(x) = 6x2+2x−3
5

□ s(x) =
√
6x2+2x−3
5−7x6 □ n(x) = 6x2+2

√
x−3

5−7x6 □ a(x) = 6x2+2x−3
5−7x6 □m(x) = 6x+2

6x+2

□ h(x) = 5
6x2+2x−3
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6.
□ n(x) = 7x2+6

√
x−6

3−7x7 □ t(x) = 3−7x3

7x0.7+6x−6
□m(x) = 7x+6

7x+6
□ r(x) = 7x2+6x−6

3−7x−7

□ c(x) = 7x2+6x−6
3+|x|

□ h(x) = 3
7x2+6x−6

□ b(x) = 7x2+6x−6
3

□ s(x) =
√
7x2+6x−6
3−7x7

□ a(x) = 7x2+6x−6
3−7x7

Domain
7. Find the domain of K

where K(x) =
x

x+ 4
.

8. Find the domain of K
where K(x) =

5x

x− 10
.

9. Find the domain of f
where
f(x) =

3x+ 9

x2 + 4x− 12
.

10. Find the domain of g
where
g(x) = −

4x+ 3

x2 − 3x− 40
.

11. Find the domain of h
where h(x) =

9x+ 6

x2 + 7x
.

12. Find the domain of F
where F(x) =

2x− 7

x2 + 2x
.

13. Find the domain of F
where F(x) =

2− 5x

x2 − 49
.

14. Find the domain of G
where G(x) =

8x− 10

x2 − 100
.

15. Find the domain of the
function c defined by
c(x) =

x+ 6

x4

16. Find the domain of the
function n defined by
n(x) =

x+ 8

x2

17. Find the domain of the
function t defined by
t(x) =

x+ 10

x2 + 49

18. Find the domain of the
function p defined by
p(x) =

x− 8

x2 + 16

19. Find the domain of the
function r defined by
r(x) =

x− 6

x− 6

20. Find the domain of the
function n defined by
n(x) =

x− 4

x− 4

A function is graphed. Find its domain.
21. 22. 23.
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24. 25. 26.

27. 28.

Graphing Technology
29. In a forest, the number of deer can be modeled by the function f(t) = 200t+350

0.8t+7
, where t stands for

the number of years from now. Answer the question with technology.
After 20 years, there would be approximately deer living in the forest.

30. In a forest, the number of deer can be modeled by the function f(t) = 240t+240
0.6t+4

, where t stands for
the number of years from now. Answer the question with technology.

After years, there would be approximately 230 deer living in the forest.
31. In a forest, the number of deer can be modeled by the function f(t) = 60t+630

0.3t+9
, where t stands for

the number of years from now. Answer the question with technology.
As time goes on, the population levels off at approximately deer living in

the forest.
32. The concentration of a drug in a patient’s blood stream, in milligrams per liter, can be modeled by

the function C(t) = 7t
t2+6

, where t is the number of hours since the drug is injected. Answer the
following question with technology.

The drug’s concentration after 1 hours is milligrams per liter.
33. The concentration of a drug in a patient’s blood stream, in milligrams per liter, can be modeled by

the function C(t) = 8t
t2+5

, where t is the number of hours since the drug is injected. Answer the
following question with technology.

hours since injection, the drug’s concentration is 1.72 milligrams per liter.
34. The concentration of a drug in a patient’s blood stream, in milligrams per liter, can be modeled by

the function C(t) = 9t
t2+6

, where t is the number of hours since the drug is injected. Answer the



152 CHAPTER 12. RATIONAL FUNCTIONS AND EQUATIONS

following question with technology.
hours since injection, the drug’s concentration is at the maximum value of
milligrams per liter.

35. The concentration of a drug in a patient’s blood stream, in milligrams per liter, can be modeled by
the function C(t) = 9t

t2+7
, where t is the number of hours since the drug is injected. Answer the

following question with technology.
As time goes on, the drug’s concentration in the patient’s blood stream levels off at approxi-

mately milligrams per liter.
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12.2 Multiplication and Division of Rational Expressions
In the last section, we learned some rational function applications. In this section, we will learn how to
simplify rational expressions, and how to multiply and divide them.

12.2.1 Simplifying Rational Expressions
Consider the two rational functions below. At first glance, which function looks simpler?

f(x) =
8x3 − 12x2 + 8x− 12

2x3 − 3x2 + 10x− 15
g(x) =

4(x2 + 1)

x2 + 5
, for x ̸= 3

2

It can be argued that the function g is simpler, at least with regard to the ease with which we can determine
its domain, quickly evaluate it, and also determine where its function value is zero. All of these things are
considerably more difficult with the function f.

These two functions are actually the same function. Using factoring and the same process of canceling
that’s used with numerical ratios, we will learn how to simplify the function f into the function g. (The full
process for simplifying f(x) = 8x3−12x2+8x−12

2x3−3x2+10x−15
will be shown in Example 12.2.8.)

To see a simple example of the process for simplifying a rational function or expression, let’s look at
simplifying 14

21
and (x+2)(x+7)

(x+3)(x+7) by canceling common factors:

14

21
=

2 · �7
3

· �7
(x+ 2)(x+ 7)

(x+ 3)(x+ 7)
=

(x+ 2)����(x+ 7)

(x+ 3)����(x+ 7)

=
2

3
=

x+ 2

x+ 3
, for x ̸= −7

The statement “for x ̸= −7” was added when the factors of x+7were canceled. This is because (x+2)(x+7)
(x+3)(x+7)

was undefined for x = −7, so the simplified version must also be undefined for x = −7.

Warning 12.2.2 Cancel Factors, not Terms. It may be tempting to want to try to simplify x+2
x+3

into 2
3

by
canceling each x that appears. But these x’s are terms (pieces that are added with other pieces), not factors.
Canceling (an act of division) is only possible with factors (an act of multiplication).

The process of canceling factors is key to simplifying rational expressions. If the expression is not given
in factored form, then this will be our first step. We’ll now look at a few more examples.

Example 12.2.3 Simplify the rational function formula Q(x) = 3x−12
x2+x−20

and state the domain of Q.
Explanation.
To start, we’ll factor the numerator and denomina-
tor. We’ll then cancel any factors common to both
the numerator and denominator.

Q(x) =
3x− 12

x2 + x− 20

Q(x) =
3����(x− 4)

(x+ 5)����(x− 4)

Q(x) =
3

x+ 5
, for x ̸= 4

The domain of this function will incorporate the explicit domain restriction x ̸= 4 that was stated when the
factor of x − 4 was canceled from both the numerator and denominator. We will also exclude −5 from the
domain as this value would make the denominator zero. Thus the domain of Q is {x | x ̸= −5, 4}.
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Warning 12.2.4 When simplifying the function Q in Example 12.2.3, we cannot simply write Q(x) = 3
x+5

.
The reason is that this would result in our simplified version of the function Q having a different domain
than the original Q. More specifically, for our original function Q it held that Q(4) was undefined, and this
still needs to be true for the simplified form of Q.

Example 12.2.5 Simplify the rational function formula R(y) = −y−2y2

2y3−y2−y
and state the domain of R.

Explanation.

R(y) =
−y− 2y2

2y3 − y2 − y

R(y) =
−2y2 − y

y(2y2 − y− 1)

R(y) =
−�y

XXXX(2y+ 1)

�y
XXXX(2y+ 1)(y− 1)

R(y) = −
1

y− 1
, for y ̸= 0, y ̸= −

1

2

The domain of this function will incorporate the ex-
plicit restrictions y ̸= 0, y ̸= −1

2
that were stated

when the factors of y and 2y + 1 were canceled
from both the numerator and denominator. Since
the factor y − 1 is still in the denominator, we also
need the restriction that y ̸= 1. Therefore the do-
main of R is {y | y ̸= −1

2
, 0, 1
}.

Example 12.2.6 Simplify the expression 9y+2y2−5
y2−25

.
Explanation.
To start, we need to recognize that 9y+2y2−5 is not
written in standard form (where terms are written
from highest degree to lowest degree). Before at-
tempting to factor this expression, we’ll re-write it
as 2y2 + 9y− 5.

9y+ 2y2 − 5

y2 − 25
=

2y2 + 9y− 5

y2 − 25

=
(2y− 1)����(y+ 5)

����(y+ 5)(y− 5)

=
2y− 1

y− 5
, for y ̸= −5

Example 12.2.7 Simplify the expression −48z+24z2−3z3

4−z
.

Explanation. To begin simplifying this expression, we will rewrite each polynomial in descending order.
Then we’ll factor out the GCF, including the constant −1 from both the numerator and denominator because
their leading terms are negative.

−48z+ 24z2 − 3z3

4− z
=

−3z3 + 24z2 − 48z

−z+ 4

=
−3z(z2 − 8z+ 16)

−(z− 4)

=
−3z(z− 4)2

−(z− 4)

=
−3z(z− 4)����(z− 4)

−����(z− 4)

=
3z(z− 4)

1
, for z ̸= 4

= 3z(z− 4), for z ̸= 4

Example 12.2.8 Simplify the rational function formula f(x) = 8x3−12x2+8x−12
2x3−3x2+10x−15

and state the domain of f.
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Explanation.
To simplify this rational function, we’ll first note
that both the numerator and denominator have
four terms. To factor them we’ll need to use factor-
ing by grouping. (Note that if this technique didn’t
work, very few other approaches would be possi-
ble.) Once we’ve used factoring by grouping, we’ll
cancel any factors common to both the numerator
and denominator and state the associated restric-
tions.

f(x) =
8x3 − 12x2 + 8x− 12

2x3 − 3x2 + 10x− 15

f(x) =
4(2x3 − 3x2 + 2x− 3)

2x3 − 3x2 + 10x− 15

f(x) =
4(x2(2x− 3) + (2x− 3))

x2(2x− 3) + 5(2x− 3)

f(x) =
4(x2 + 1)����(2x− 3)

(x2 + 5)����(2x− 3)

f(x) =
4(x2 + 1)

x2 + 5
, for x ̸= 3

2

In determining the domain of this function, we’ll need to account for any implicit and explicit restrictions.
When the factor 2x − 3 was canceled, the explicit statement of x ̸= 3

2
was given. The denominator in the

final simplified form of this function has x2 + 5. There is no value of x for which x2 + 5 = 0, so the only
restriction is that x ̸= 3

2
. Therefore the domain is {x | x ̸= 3

2

}.

Example 12.2.9 Simplify the expression 3y−x
x2−xy−6y2 . In this example, there are two variables. It is still possible

that in examples like this, there can be domain restrictions when simplifying rational expressions. However
since we are not studying functions of more than one variable, this textbook ignores domain restrictions with
examples like this one.
Explanation.

3y− x

x2 − xy− 6y2
=

−����(x− 3y)

����(x− 3y)(x+ 2y)

=
−1

x+ 2y

12.2.2 Multiplication of Rational Functions and Expressions
Recall the property for multiplying fractions A.2.16, which states that the product of two fractions is equal
to the product of their numerators divided by the product of their denominators. We will use this same
property for multiplying rational expressions.
When multiplying fractions, one approach is to
multiply the numerator and denominator, and
then simplify the fraction that results by determin-
ing the greatest common factor in both the numer-
ator and denominator, like this:

14

9
· 3

10
=

14 · 3
9 · 10

=
42

90

=
7 · �6
15 · �6

=
7

15

This approach works great when we can easily identify that 6 is the greatest common factor in both 42 and
90. But in more complicated instances, it isn’t always an easy approach. It also won’t work particularly well
when we have (x+ 2) instead of 2 as a factor, as we’ll see shortly.
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Another approach to multiplying and simplifying
fractions involves utilizing the prime factorization
of each the numerator and denominator, like this:

14

9
· 3

10
=

2 · 7
32

· 3

2 · 5

=
�2 · 7 · A3

A3 · 3 · �2 · 5

=
7

15

The method for multiplying and simplifying rational expressions is nearly identical, as shown here:

x2 + 9x+ 14

x2 + 6x+ 9
· x+ 3

x2 + 7x+ 10
=

(x+ 2)(x+ 7)

(x+ 3)2
· x+ 3

(x+ 2)(x+ 5)

=
����(x+ 2)(x+ 7)XXXX(x+ 3)

XXXX(x+ 3)(x+ 3)����(x+ 2)(x+ 5)

=
(x+ 7)

(x+ 3)(x+ 5)
, for x ̸= −2

This process will be used for both multiplying and dividing rational expressions. The main distinctions
in various examples will be in the factoring methods required.

Example 12.2.10 Multiply the rational expressions: x2 − 4x

x2 − 4
· 4− 4x+ x2

20− x− x2
.

Explanation. Note that to factor the second rational expression, we’ll want to re-write the terms in de-
scending order for both the numerator and denominator. In the denominator, we’ll first factor out −1 as the
leading term is −x2.

x2 − 4x

x2 − 4
· 4− 4x+ x2

20− x− x2
=

x2 − 4x

x2 − 4
· x2 − 4x+ 4

−x2 − x+ 20

=
x2 − 4x

x2 − 4
· x2 − 4x+ 4

−(x2 + x− 20)

=
x����(x− 4)

(x+ 2)XXXX(x− 2)
· (x− 2)XXXX(x− 2)

−(x+ 5)����(x− 4)

= −
x(x− 2)

(x+ 2)(x+ 5)
, for x ̸= 2, x ̸= 4

Example 12.2.11 Multiply the rational expressions: p2q4

3r
· 9r

2

pq2
. Note this book ignores domain restrictions

on multivariable expressions.
Explanation. We won’t need to factor anything in this example, and can simply multiply across and then
simplify.

p2q4

3r
· 9r2

pq2
=

p2q2 · 9r2

3r · pq2

=
pq2 · 3r

1

= 3pq2r
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12.2.3 Division of Rational Functions and Expressions
We can divide rational expressions using the property for dividing fractions A.2.18, which simply requires
that we change dividing by an expression to multiplying by its reciprocal. Let’s look at a few examples.

Example 12.2.12 Divide the rational expressions: x+ 2

x+ 5
÷ x+ 2

x− 3
.

Explanation.
x+ 2

x+ 5
÷ x+ 2

x− 3
=

���x+ 2

x+ 5
· x− 3

���x+ 2
, for x ̸= 3

=
x− 3

x+ 5
, for x ̸= −2, x ̸= 3

Remark 12.2.13 In the first step of 12.2.12, the restriction x ̸= 3 was used. We hadn’t canceled anything
yet, so why is there this restriction already? It’s because the original expression x+2

x+5
÷ x+2

x−3
had x − 3 in a

denominator, which means that 3 is not a valid input. In the first step of simplifying, the x− 3 denominator
went to the numerator and we lost the information that 3 was not a valid input, so we stated it explicitly.
Always be sure to compare the restrictions of the original expression with each step throughout the process.

Example 12.2.14 Simplify the rational expression using division:
3x−6
2x+10

x2−4
3x+15

.

Explanation. To begin, we’ll note that the larger fraction bar is denoting division, so we will use multipli-
cation by the reciprocal. After that, we’ll factor each expression and cancel any common factors.

3x−6
2x+10

x2−4
3x+15

=
3x− 6

2x+ 10
÷ x2 − 4

3x+ 15

=
3x− 6

2x+ 10
· 3x+ 15

x2 − 4

=
3����(x− 2)

2XXXX(x+ 5)
· 3XXXX(x+ 5)

(x+ 2)����(x− 2)

=
3 · 3

2(x+ 2)
, for x ̸= −5, x ̸= 2

=
9

2x+ 4
, for x ̸= −5, x ̸= 2

Example 12.2.15 Divide the rational expressions: x2 − 5x− 14

x2 + 7x+ 10
÷ x− 7

x+ 4
.

Explanation.

x2 − 5x− 14

x2 + 7x+ 10
÷ x− 7

x+ 4
=

x2 − 5x− 14

x2 + 7x+ 10
· x+ 4

x− 7
, for x ̸= −4

=
����(x− 7)XXXX(x+ 2)

(x+ 5)XXXX(x+ 2)
· x+ 4

���x− 7
, for x ̸= −4

=
x+ 4

x+ 5
, for x ̸= −4, x ̸= −2, x ̸= 7
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Example 12.2.16 Divide the rational expressions: (p4 − 16)÷ p4 − 2p3

2p
.

Explanation.

(p4 − 16)÷ p4 − 2p3

2p
=

p4 − 16

1
· 2p

p4 − 2p3

=
(p2 + 4)(p+ 2)����(p− 2)

1
· 2p

p3����(p− 2)

=
2(p2 + 4)(p+ 2)

p2
, for p ̸= 2

Note here that we didn’t have to include a restriction in the very first step. That restriction would have been
p ̸= 0, but since 0 still cannot be inputted into any of the subsequent expressions, we don’t need to explicitly
state p ̸= 0 as a restriction because the expressions tell us that implicitly already.

Example 12.2.17 Divide the rational expressions: 3x2

x2 − 9y2
÷ 6x3

x2 − 2xy− 15y2
. Note this book ignores do-

main restrictions on multivariable expressions.
Explanation.

3x2

x2 − 9y2
÷ 6x3

x2 − 2xy− 15y2
=

3x2

x2 − 9y2
· x

2 − 2xy− 15y2

6x3

=
3x2

����(x+ 3y)(x− 3y)
·�

���(x+ 3y)(x− 5y)

6x3

=
1

x− 3y
· x− 5y

2x

=
x− 5y

2x(x− 3y)

Example 12.2.18 Divide the rational expressions: m2n2 − 3mn− 4

2mn
÷ (m2n2 − 16). Note this book ignores

domain restrictions on multivariable expressions.
Explanation.

m2n2 − 3mn− 4

2mn
÷ (m2n2 − 16) =

m2n2 − 3mn− 4

2mn
· 1

m2n2 − 16

= �����(mn− 4)(mn+ 1)

2mn
· 1

(mn+ 4)�����(mn− 4)

=
mn+ 1

2mn
· 1

mn+ 4

=
mn+ 1

2mn(mn+ 4)
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12.2.4 Reading Questions

1. What is the difference between a factor and a term?

2. When canceling pieces of rational function expression to simplify it, what kinds of pieces are the only
acceptable pieces to cancel?

3. When you simplify a rational funciton expression, you may need to make note of a .

12.2.5 Exercises

Review and Warmup

1. Multiply: − 3

13
· 5
9

2. Multiply: − 9

11
· 13
24

3. Multiply: −8

9
·
(
−

7

18

)
4. Multiply: −10

9
·
(
−
19

4

)
5. Divide: 3

5
÷ 5

2
6. Divide: 3

8
÷ 8

3

7. Divide: 3

20
÷
(
−
5

8

)
8. Divide: 4

25
÷
(
−

3

10

)

Factor the given polynomial.
9. t2 − 36 10. x2 − 4 11. x2 + 12x+ 32

12. y2 + 13y+ 40 13. y2 − 3y+ 2 14. r2 − 15r+ 56

15. 3r2 − 15r+ 18 16. 10t2 − 30t+ 20 17. 2t10 + 10t9 + 12t8

18. 6t5 + 18t4 + 12t3 19. 144x2 − 24x+ 1 20. 81x2 − 18x+ 1

Simplifying Rational Expressions with One Variable
21. Simplify the following expressions, and if

applicable, write the restricted domain on
the simplified expression.

a. y+ 4

y+ 4

b. y+ 4

4+ y

c. y− 4

y− 4

d. y− 4

4− y

22. Simplify the following expressions, and if
applicable, write the restricted domain on
the simplified expression.

a. y+ 10

y+ 10

b. y+ 10

10+ y

c. y− 10

y− 10

d. y− 10

10− y
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23. Select all correct simplifications, ignoring
possible domain restrictions.
□ x+6

x+7
= 6

7
□ 7x+6

x+6
= 7

□ 6
x+6

= 1
x

□ x+6
x

= 6

□ 7x+6
7

= x+ 6 □ 6
x+6

= 1
x+1

□ x
7x

= 1
7

□ 6x
x

= 6 □ x+6
x+6

= 1

□ x+6
6

= x □ 7(x−6)
x−6

= 7

24. Select all correct simplifications, ignoring
possible domain restrictions.
□ x+7

7
= x □ 7x

x
= 7 □ x+7

x+4
= 7

4

□ 4x+7
4

= x+ 7 □ x+7
x+7

= 1

□ x+7
x

= 7 □ 4x+7
x+7

= 4

□ 4(x−7)
x−7

= 4 □ 7
x+7

= 1
x

□ x
4x

= 1
4

□ 7
x+7

= 1
x+1

Simplify the following expression, and if applicable, write the restricted domain on the simplified expres-
sion.

25. t− 10

(t− 4)(t− 10)
26. t+ 7

(t− 10)(t+ 7)
27. 3(t− 3)

(t− 8)(t− 3)

28. −8(x− 9)

(x− 6)(x− 9)
29. (x+ 6)(x− 2)

2− x
30. (y− 3)(y− 9)

9− y

31. 9y− 63

y− 7
32. −6r+ 30

r− 5
33. −2r

r2 + 3r

34. 9t

t2 + 8t
35. 3t− t2

t2 − 9t+ 18
36. t− t2

t2 − 6t+ 5

37. x2 + 5x

25− x2
38. x2 − 3x

9− x2
39. −y2 + y

3− 2y− y2

40. −y2 + 5y

5+ 4y− y2
41. 3r2 + 5r+ 2

−r+ 4− 5r2
42. 5r2 + 8r+ 3

−r+ 5− 6r2

43. r2 + 6r+ 8

−4r− r2 − 4
44. t2 − t− 2

−2t− t2 − 1
45. −t2 − 11t− 30

t2 − 25

46. −x2 − 7x− 12

x2 − 9
47. 2x2 − x− 3

−11x− 5− 6x2
48. 5y2 + 11y+ 6

−11y− 5− 6y2

49. 4y3 − y4

y2 − 2y− 8
50. −2r2 − r3

r2 − 4
51. r6 − 3r5 − 18r4

r6 − 11r5 + 30r4

52. r5 + 3r4 − 4r3

r5 + 2r4 − 3r3
53. t3 + 8

t2 − 4
54. t3 − 125

t2 − 25

Simplifying Rational Expressions with More Than One Variable Simplify this expression.

55. 5xy− x2y2

x2y2 + xy− 30
56. 5xr− x2r2

x2r2 − xr− 20
57. 4y+ 16t

y2 + 5yt+ 4t2

58. 2y+ 10t

y2 + 8yt+ 15t2
59. −r2 + rx+ 12x2

r2 − 16x2
60. −r2 − rt+ 12t2

r2 − 9t2

61. 2r2y2 + 5ry+ 3

−11ry− 5− 6r2y2
62. 3t2x2 + 5tx+ 2

−7tx− 2− 5t2x2
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Simplifying Rational Functions Simplify the function formula, and if applicable, write the restricted do-
main.

63. G(t) =
t+ 1

t2 − 6t− 7
Reduced G(t) =

64. h(x) =
x− 5

x2 + x− 30
Reduced h(x) =

65. K(x) =
x3 − 81x

x3 + 11x2 + 18x
Reduced K(x) =

66. G(y) =
y3 − 9y

y3 + 13y2 + 30y
Reduced G(y) =

67. h(y) =
y4 + 4y3 + 4y2

3y4 + 5y3 − 2y2

Reduced h(y) =

68. K(r) =
r4 − 8r3 + 16r2

3r4 − 11r3 − 4r2

Reduced K(r) =

69. G(r) =
3r3 + r2

3r3 − 11r2 − 4r
Reduced G(r) =

70. g(r) =
5r3 + 3r2

5r3 − 22r2 − 15r

Reduced g(r) =

Multiplying and Dividing Rational Expressions with One Variable
71. Select all correct equations:

□ 9 · x
y
= 9x

9y
□ − x

y
= −x

−y

□ 9 · x
y
= x

9y
□ − x

y
= −x

y

□ 9 · x
y
= 9x

y
□ − x

y
= x

−y

72. Select all correct equations:
□ 10 · x

y
= 10x

10y
□ − x

y
= −x

−y

□ − x
y
= −x

y
□ 10 · x

y
= 10x

y

□ 10 · x
y
= x

10y
□ − x

y
= x

−y

73. Simplify the following expressions, and if
applicable, write the restricted domain.
−

x4

x+ 4
· x3

−
x4

x+ 4
· 1

x3

74. Simplify the following expressions, and if
applicable, write the restricted domain.
−

y4

y+ 4
· y2

−
y4

y+ 4
· 1

y2

Simplify this expression, and if applicable, write the restricted domain.

75. y2 − y− 2

y+ 4
· 5y+ 20

y+ 1
76. y2 + 7y+ 12

y− 6
· 5y− 30

y+ 4

77. r2 − 9r

r2 − 9
· r2 − 3r

r2 − 11r+ 18
78. r2 − 9r

r2 − 9
· r2 − 3r

r2 − 7r− 18

79. 12r− 12

−20− 25r− 5r2
· r

2 + 8r+ 16

4r2 − 4r
80. 6t− 24

28− 21t− 7t2
· t

2 − 2t+ 1

2t2 − 8t

81. 6t2 − 11t+ 5

20t3 − 50t2
· 10t

2 − 4t3

36t2 − 25
82. 5x2 + (−1) x− 4

126x2 − 105x
· 15x− 18x2

25x2 − 16

83. x

x− 6
÷ 3x2 84. y

y+ 10
÷ 5y2
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85. 8y÷ 2

y3
86. 12r÷ 3

r2

87. (2r− 6)÷ (4r− 12) 88. (4r− 12)÷ (24r− 72)

89. 25t2 − 36

5t2 + (−9) t+ (−18)
÷ (6− 5t) 90. 4t2 − 49

2t2 + 11t+ 14
÷ (7− 2t)

91. x4

x2 + 6x
÷ 1

x2 + x− 30
92. x3

x2 − 3x
÷ 1

x2 + x− 12

93.
5a+1

a
a+1
a

94.
10a+10

a
a+7
a

95.
u

(u−6)2

5u
u2−36

96.
r

(r−3)2

9r
r2−9

97. x2 + 3x

x2 − 16
÷ x2 − 9

x2 + 2x− 8
98. x2 + 4x

x2 − 1
÷ x2 − 16

x2 − 4x− 5

Multiplying and Dividing Rational Expressions with More Than One Variable Simplify this expression.

99. 8(t+ x)

t− x
· t− x

2(2t+ x)
100. 12(x+ t)

x− t
· x− t

4(2x+ t)

101. 4x3y2

3x4
· 9x

4y2

8y5
102. 5yx

3y
· 3y

2x3

25x5

103. y2 + 9yt+ 20t2

y+ t
· 2y+ 2t

y+ 5t
104. r2 + ry− 12y2

r+ 6y
· 3r+ 18y

r− 3y

105. rx10

4
÷ rx5

8
106. r3t2

6
÷ r3t

12

107. (t4 − 4t3y+ 4t2y2)÷ (t5 − 2t4y) 108. (t3 + 8t2x+ 16tx2)÷ (t5 + 4t4x)

109. 1

x2 − 10xr+ 24r2
÷ x2

x2 − 4xr
110. 1

x2 + 5xy+ 6y2
÷ x5

x2 + 2xy

111. y5

y2x− 6y
÷ 1

y2x2 − 7yx+ 6
112. y3

y2r− 4y
÷ 1

y2r2 + 2yr− 24

113. 36y4t2

y+ 10t
÷ 6y5t

y2 − 100t2
114. 15r3t4

r+ 9t
÷ 3r8t

r2 − 81t2

115.
p
q

5p
4q2

116.
m
n
4m
3n2

117.
mn2

10k
m

6nk

118.
xy2

7z
x

10yz

Challenge
119. Simplify the following: 1

x+1
÷ x+2

x+1
÷ x+3

x+2
÷ x+4

x+3
÷ · · · ÷ x+35

x+34
. For this exercise, you do not have to

write the restricted domain of the simplified expression.
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12.3 Addition and Subtraction of Rational Expressions
In the last section, we learned how to multiply and divide rational expressions. In this section, we will learn
how to add and subtract rational expressions.

12.3.1 Introduction
Example 12.3.2 Julia is taking her family on a boat trip 12 miles down the river and back. The river flows at a
speed of 2 miles per hour and she wants to drive the boat at a constant speed, v miles per hour downstream
and back upstream. Due to the current of the river, the actual speed of travel is v + 2 miles per hour going
downstream, and v − 2 miles per hour going upstream. If Julia plans to spend 8 hours for the whole trip,
how fast should she drive the boat?

We need to review three forms of the formula for movement at a constant rate:

d = vt v =
d

t
t =

d

v

where d stands for distance, v represents speed, and t stands for time. According to the third form, the time
it takes the boat to travel downstream is 12

v+2
, and the time it takes to get back upstream is 12

v−2
.

The function to model the time of the whole trip is

t(v) =
12

v− 2
+

12

v+ 2

where t stands for time in hours, and v is the boat’s
speed in miles per hour. Let’s look at the graph
of this function in Figure 12.3.3. Note that since
the speed v and the time t(v) should be positive in
context, it’s only the first quadrant of Figure 12.3.3
that matters.

−4 −2 2 4 6 8

−4

−2

2

4

6

8
(4, 8)

speed

time

Figure 12.3.3: Graph of t(v) = 12
v−2

+ 12
v+2

and
t = 8

To find the speed that Julia should drive the boat to make the round trip last 8 hours we can use graphing
technology to solve the equation

12

v− 2
+

12

v+ 2
= 8

graphically and we see that v = 4. This tells us that a speed of 4 miles per hour will give a total time of 8
hours to complete the trip. To go downstream it would take 12

v+2
= 12

4+2
= 2 hours; and to go upstream it

would take 12
v−2

= 12
4−2

= 6 hours.
The point of this section is to work with expressions like 12

v−2
+ 12

v+2
, where two rational expressions are
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added (or subtracted). There are times when it is useful to combine them into a single fraction. We will
learn that the expression 12

v−2
+ 12

v+2
is equal to the expression 24v

v2−4
, and we will learn how to make that

simplification.

12.3.2 Addition and Subtraction of Rational Expressions with the Same Denominator
The process of adding and subtracting rational expressions will be very similar to the process of adding and
subtracting purely numerical fractions.

If the two expressions have the same denominator, then we can rely on the property of adding and
subtracting fractions and simplify that result.
Let’s review how to add fractions with the same
denominator:

1

10
+

3

10
=

1+ 3

10

=
4

10

=
2

5

We can add and subtract rational expressions in the
same way:

2

3x
−

5

3x
=

2− 5

3x

=
−3

3x

= −
1

x

List 12.3.4: Steps to Adding/Subtracting Rational Expressions

Identify the LCD Determine the least common denominator of all of the denominators.
Build If necessary, build up each expression so that the denominators are the same.
Add/Subtract Combine the numerators using the properties of adding and subtracting frac-

tions.
Simplify Simplify the resulting rational expression as much as possible. This may require

factoring the numerator.

Example 12.3.5 Add the rational expressions: 2x

x+ y
+

2y

x+ y
.

Explanation. These expressions already have a common denominator:

2x

x+ y
+

2y

x+ y
=

2x+ 2y

x+ y

=
2����(x+ y)

���x+ y

=
2

1

= 2

Note that we didn’t stop at 2x+2y
x+y

. If possible, we must simplify the numerator and denominator. Since this
is a multivariable expression, this textbook ignores domain restrictions while canceling.
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12.3.3 Addition and Subtraction of Rational Expressions with Different Denominators
To add rational expressions with different denom-
inators, we’ll need to build each fraction to the
least common denominator, in the same way we
do with numerical fractions. Let’s briefly review
this process by adding 3

5
and 1

6
:

3

5
+

1

6
=

3

5
· 6
6
+

1

6
· 5
5

=
18

30
+

5

30

=
18+ 5

30

=
23

30

This exact method can be used when adding rational expressions containing variables. The key is that the
expressions must have the same denominator before they can be added or subtracted. If they don’t have
this initially, then we’ll identify the least common denominator and build each expression so that it has that
denominator.

Let’s apply this to adding the two expressions with denominators that are v − 2 and v + 2 from Exam-
ple 12.3.2.

Example 12.3.6 Add the rational expressions and fully simplify the function given by t(v) = 12
v−2

+ 12
v+2

.
Explanation.

t(v) =
12

v− 2
+

12

v+ 2

t(v) =
12

v− 2
· v+ 2

v+ 2
+

12

v+ 2
· v− 2

v− 2

t(v) =
12v+ 24

(v− 2)(v+ 2)
+

12v− 24

(v+ 2)(v− 2)

t(v) =
(12v+ 24) + (12v− 24)

(v+ 2)(v− 2)

t(v) =
24v

(v+ 2)(v− 2)

Example 12.3.7 Add the rational expressions: 2

5x2y
+

3

20xy2

Explanation. The least common denominator of 5x2y and 20xy2 must include two x’s and two y’s, as well
as 20. Thus it is 20x2y2. We will build both denominators to 20x2y2 before doing addition.

2

5x2y
+

3

20xy2
=

2

5x2y
· 4y
4y

+
3

20xy2
· x
x

=
8y

20x2y2
+

3x

20x2y2

=
8y+ 3x

20x2y2

Let’s look at a few more complicated examples.

Example 12.3.8 Subtract the rational expressions: y

y− 2
−

8y− 8

y2 − 4

Explanation. To start, we’ll make sure each denominator is factored. Then we’ll find the least common de-
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nominator and build each expression to that denominator. Then we will be able to combine the numerators
and simplify the expression.

y

y− 2
−

8y− 8

y2 − 4
=

y

y− 2
−

8y− 8

(y+ 2)(y− 2)

=
y

y− 2
· y+ 2

y+ 2
−

8y− 8

(y+ 2)(y− 2)

=
y2 + 2y

(y+ 2)(y− 2)
−

8y− 8

(y+ 2)(y− 2)

=
y2 + 2y−

↓
(8y− 8

↓
)

(y+ 2)(y− 2)

=
y2 + 2y− 8y+ 8

(y+ 2)(y− 2)

=
y2 − 6y+ 8

(y+ 2)(y− 2)

=
����(y− 2)(y− 4)

(y+ 2)����(y− 2)

=
y− 4

y+ 2
, for y ̸= 2

Note that we must factor the numerator in y2−6y+8
(y+2)(y−2) and try to reduce the fraction (which we did).

Warning 12.3.9 In Example 12.3.8, be careful to subtract the entire numerator of 8y−8. When this expression
is in the numerator of 8y−8

(y+2)(y−2) , it’s implicitly grouped and doesn’t need parentheses. But once 8y − 8 is
subtracted from y2 + 2y, we need to add parentheses so the entire expression is subtracted.

In the next example, we’ll look at adding a rational expression to a polynomial. Much like adding a frac-
tion and an integer, we’ll rely on writing that expression as itself over one in order to build its denominator.

Example 12.3.10 Add the expressions: − 2

r− 1
+ r

Explanation.

−
2

r− 1
+ r = −

2

r− 1
+

r

1

= −
2

r− 1
+

r

1
· r− 1

r− 1

=
−2

r− 1
+

r2 − r

r− 1

=
−2+ r2 − r

r− 1

=
r2 − r− 2

r− 1

=
(r− 2)(r+ 1)

r− 1



12.3. ADDITION AND SUBTRACTION OF RATIONAL EXPRESSIONS 167

Note that we factored the numerator to reduce the fraction if possible. Even though it was not possible in
this case, leaving it in factored form makes it easier to see that it is reduced.

Example 12.3.11 Subtract the expressions: 6

x2 − 2x− 8
−

1

x2 + 3x+ 2

Explanation. To start, we’ll need to factor each of the denominators. After that, we’ll identify the LCD
and build each denominator accordingly. Then we can combine the numerators and simplify the resulting
expression.

6

x2 − 2x− 8
−

1

x2 + 3x+ 2
=

6

(x− 4)(x+ 2)
−

1

(x+ 2)(x+ 1)

=
6

(x− 4)(x+ 2)
· x+ 1

x+ 1
−

1

(x+ 2)(x+ 1)
· x− 4

x− 4

=
6x+ 6

(x− 4)(x+ 2)(x+ 1)
−

x− 4

(x+ 2)(x+ 1)(x− 4)

=
6x+ 6− (x− 4)

(x− 4)(x+ 2)(x+ 1)

=
6x+ 6− x+ 4

(x− 4)(x+ 2)(x+ 1)

=
5x+ 10

(x− 4)(x+ 2)(x+ 1)

=
5����(x+ 2)

(x− 4)����(x+ 2)(x+ 1)

=
5

(x− 4)(x+ 1)
, for x ̸= −2

12.3.4 Reading Questions
1. Describe how to add two rational expressions when they have the same denominator.
2. Suppose you are adding two rational expressions where one of them has a quadratic denominator,

and the other has a linear denominator. What is the first thing you should try to do with respect to the
quadratic denominator?

12.3.5 Exercises

Review and Warmup

1. Add: 31

16
+

5

16
2. Add: 13

16
+

23

16
3. Add: 5

6
+

9

10
4. Add: 3

5
+

9

10

5. Subtract:
25

27
−

10

27

6. Subtract:
21

40
−

17

40

7. Subtract: 5

9
−

8

27
8. Subtract: 4

9
−

1

27

Factor the given polynomial.
9. x2 − 4 10. y2 − 81 11. y2 + 14y+ 40
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12. y2 + 5y+ 4 13. r2 − 17r+ 72 14. r2 − 7r+ 12

15. 3t2 − 18t+ 15 16. 7t2 − 28t+ 21

Addition and Subtraction of Rational Expressions with One Variable Add or subtract the rational expres-
sions to a single rational expression and then simplify. If applicable, state the restricted domain.

17. 4x

x+ 4
+

16

x+ 4
18. 6x

x+ 2
+

12

x+ 2

19. 3y

y+ 6
+

18

y+ 6
20. 5y

y+ 4
+

20

y+ 4

21. 3

y2 − 4y− 5
−

y− 2

y2 − 4y− 5
22. 6

r2 − 13r+ 40
−

r− 2

r2 − 13r+ 40

23. 6

r2 − 9r− 10
−

r− 4

r2 − 9r− 10
24. 4

t2 − 3t− 40
−

t− 4

t2 − 3t− 40

25. 6t

5
+

t

20
26. 3x

2
+

x

10

27. 1

x+ 1
+

2

x− 1
28. 5

y+ 5
−

1

y+ 2

29. 5

y− 4
−

4

y− 2
30. 1

y+ 6
+

4

y− 3

31. 1

r− 2
−

4

r2 − 4
32. 1

r+ 1
+

2

r2 − 1

33. 1

t− 1
−

2

t2 − 1
34. 1

t− 2
−

4

t2 − 4

35. 3

x− 4
−

6x

x2 − 16
36. 3

x− 3
−

6x

x2 − 9

37. 3

y− 6
−

6y

y2 − 36
38. 3

y+ 2
−

6y

y2 − 4

39. y

y− 6
−

10y− 24

y2 − 6y
40. r

r+ 6
−

r+ 42

r2 + 6r

41. r

r− 8
−

4r+ 32

r2 − 8r
42. t

t− 7
−

t+ 42

t2 − 7t

43. 2

t2 − 1
+

1

t+ 1
+

3

t− 1
44. −

4

x2 − 4
−

4

x+ 2
+

1

x− 2

45. −
9x

x2 − 7x+ 10
−

3x

x− 2
46. −

12y

y2 − y− 2
+

4y

y− 2

47. 12y

y2 + 8y+ 12
−

3y

y+ 2
48. −

18y

y2 + 4y− 5
−

3y

y+ 5

49. r2 + 8

r2 + 4r
−

r+ 2

r
50. r2 + 8

r2 − 4r
−

r− 2

r

51. 2

t− 5
− 3 52. 4

t+ 1
+ 5

53. 4x

x+ 4
+

x

x− 4
− 5 54. 6x

x+ 2
+

x

x− 2
− 7
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Addition and Subtraction of Rational Expressions withMore Than Variable Add or subtract the rational
expressions to a single rational expression and then simplify.

55. 16y2

4y− 3x
−

9x2

4y− 3x
56. 64y2

8y+ 3t
−

9t2

8y+ 3t

57. y

6x
−

5y

3x
58. r

20x
−

4r

5x

59. 6r

5t4
+

4

3rt
60. −

5t

4y2
+

5

3ty

61. 2

tx− 5
−

4tx

t2x2 − 25
62. 2

xr− 2
−

4xr

x2r2 − 4

63. −
24xy

x2 + 8xy+ 12y2
−

6x

x+ 6y
64. 2xt

x2 + 9xt+ 20t2
−

2x

x+ 4t
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12.4 Complex Fractions
In this section, we will learn how to simplify complex fractions, which have fractions in the numerator and/
or denominator of another fraction.

12.4.1 Simplifying Complex Fractions
Consider the rational expression

6
x−4

6
x−4

+ 3
.

It’s difficult to quickly evaluate this expression, or determine the important information such as its domain.
This type of rational expression, which contains a “fraction within a fraction,” is referred to as a complex
fraction. Our goal is to simplify such a fraction so that it has a single numerator and a single denominator,
neither of which contain any fractions themselves.
A complex fraction may have fractions in its nu-
merator and/or denominator. Here is an example
to show how we use division to simplify a complex
fraction.

1
2

3
=

1

2
÷ 3

=
1

2
÷ 3

1

=
1

2
· 1
3

=
1

6

What if the expression had something more complicated in the denominator, like 1
2

1
3
+ 1

4

? We would no longer
be able to simply multiply by the reciprocal of the denominator, since we don’t immediately know the
reciprocal of that denominator. Instead, we could multiply the “main” numerator and denominator by
something that eliminates all of the “internal” denominators. (We’ll use the LCD to determine this). For
example, with 1

2

3
, we can multiply by 2

2
:

1
2

3
=

1

�2
3

· �2
2

=
1

6

Remark 12.4.2 In the last example, it’s important to identify which fraction bar is the “main” fraction bar,
and which fractions are “internal.” Comparing the two expressions below, both of which are “one over two
over three”, we see that they are not equivalent.

1
2

3
=

1

�2
3

· �2
2

versus 1
2
3

=
1
2

�3
· 3
�3

=
1

6
=

3

2

For the first of these, the “main” fraction bar is above the 3, but for the second of these, the “main” fraction
bar is above the 2

3
.
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To attack multiple fractions in a complex fraction, we need to multiply the numerator and denominator
by the LCD of all the internal fractions, as we will show in the next example.

Example 12.4.3 Simplify the complex fraction
1
2

1
3
+ 1

4

.

Explanation.
The internal denominators are 2, 3, and 4, so the
LCD is 12. We will thus multiply the main numer-
ator and denominator by 12 and simplify the result:

1
2

1
3
+ 1

4

=
1
2

1
3
+ 1

4

· 12
12

=
1
2
· 12(

1
3
+ 1

4

)
· 12

=
1
2
· 12

1
3
· 12+ 1

4
· 12

=
6

4+ 3

=
6

7

Next we will evaluate a function whose formula is a complex fraction and then simplify the result.

Example 12.4.4 Find each function value for f(x) =
x+2
x+3

2
x+3

− 3
x−1

.
a. f(4) b. f(0) c. f(−3) d. f(−11)

Explanation. We will determine each function value by replacing x with the specified number and then
simplify the complex fraction:

a. f(4) =
4+2
4+3

2
4+3

− 3
4−1

=
6
7

2
7
− 3

3

=
6
7

2
7
− 1

· 7
7

=
6

2− 7

= −
6

5

b. f(0) =
0+2
0+3

2
0+3

− 3
0−1

=
2
3

2
3
− 3

−1

=
2
3

2
3
+ 3

· 3
3

=
2

2+ 9

=
2

11

c. When evaluating
f at −3, we can
quickly see that
this results in divi-
sion by zero:

f(−3) =
−3+2
−3+3

2
−3+3

− 3
−3−1

=
2
0

2
0
− 3

−4

Thus f(−3) is unde-
fined.

d. f(−11) =
−11+2
−11+3

2
−11+3

− 3
−11−1

=
−8
−9

2
−8

− 3
−12

=
8
9

−1
4
+ 1

4

=
8
9

0

Therefore f(−11) is
undefined.

We have simplified complex fractions involving numbers and now we will apply the same concept to com-
plex fractions with variables.

Example 12.4.5 Simplify the complex fraction 3
1
y
+ 5

y2

.



172 CHAPTER 12. RATIONAL FUNCTIONS AND EQUATIONS

Explanation.
To start, we look at the internal denominators and
identify the LCD as y2. We’ll multiply the main
numerator and denominator by the LCD, and then
simplify. Since we are multiplying by y2

y2 , it is im-
portant to note that y cannot be 0, since 0

0
is unde-

fined.

3
1
y
+ 5

y2

=
3

1
y
+ 5

y2

· y
2

y2

=
3 · y2

1
y
· y2 + 5

y2 · y2

=
3y2

y+ 5
, for y ̸= 0

Example 12.4.6 Simplify the complex fraction
5x−6
2x+1

3x+2
2x+1

.

Explanation.
The internal denominators are both 2x+1, so this is
the LCD and we will multiply the main numerator
and denominator by this expression. Since we are
multiplying by 2x+1

2x+1
, what x-value would cause

2x+1 to equal 0? Solving 2x+1 = 0 leads to x = −1
2

.
So x cannot be −1

2
, since 0

0
is undefined.

5x−6
2x+1

3x+2
2x+1

=
5x−6
���2x+1

3x+2XXX2x+1

·�
��2x+ 1

XXX2x+ 1

=
5x− 6

3x+ 2
, for x ̸= −

1

2

Example 12.4.7 Completely simplify the function defined by f(x) =
x+2
x+3

2
x+3

− 3
x−1

. Then determine the domain
of this function.
Explanation. The LCD of the internal denominators is (x + 3)(x − 1). We will thus multiply the main
numerator and denominator by the expression (x+ 3)(x− 1) and then simplify the resulting expression.

f(x) =
x+2
x+3

2
x+3

− 3
x−1

=
x+2
x+3

2
x+3

− 3
x−1

· (x+ 3)(x− 1)

(x+ 3)(x− 1)

=
x+2
x+3

· (x+ 3)(x− 1)(
2

x+3
− 3

x−1

)
· (x+ 3)(x− 1)

=
x+2
��x+3����(x+ 3)(x− 1)

2XXx+3
XXXX(x+ 3)(x− 1) − 3

��XXx−1
(x+ 3)����XXXX(x− 1)

=
(x+ 2)(x− 1)

2(x− 1) − 3(x+ 3)
, for x ̸= −3, x ̸= 1

=
(x+ 2)(x− 1)

2x− 2− 3x− 9
, for x ̸= −3, x ̸= 1

=
(x+ 2)(x− 1)

−x− 11
, for x ̸= −3, x ̸= 1

=
(x+ 2)(x− 1)

−(x+ 11)
, for x ̸= −3, x ̸= 1

In the original (unsimplified) function, we could see that x ̸= −3 and x ̸= 1. In the simplified function, we
need x+11 ̸= 0, so we can also see that x ̸= −11. Therefore the domain of the function f is {x | x ̸= −11,−3, 1}.
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Example 12.4.8 Simplify the complex fraction 2
(
−4x+3
x−2

)
+ 3

−4x+3
x−2

+ 4
.

Explanation. The only internal denominator is x− 2, so we will begin by multiplying the main numerator
and denominator by this. Then we’ll simplify the resulting expression.

2
(
−4x+3
x−2

)
+ 3

−4x+3
x−2

+ 4
=

2
(
−4x+3
x−2

)
+ 3

−4x+3
x−2

+ 4
· x− 2

x− 2

=
2
(
−4x+3
��x−2

)
����(x− 2) + 3(x− 2)(

−4x+3XXx−2

)XXXX(x− 2) + 4(x− 2)

=
2(−4x+ 3) + 3(x− 2)

(−4x+ 3) + 4(x− 2)
, for x ̸= 2

=
−8x+ 6+ 3x− 6

−4x+ 3+ 4x− 8
, for x ̸= 2

=
−5x

−5
, for x ̸= 2

= x, for x ̸= 2

Example 12.4.9 Simplify the complex fraction
5
x
+ 4

y

3
x
− 2

y

. Recall that with a multivariable expression, this text-

book ignores domain restrictions.
Explanation.
We multiply the numerator and denominator by
the common denominator of x and y, which is xy:

5
x
+ 4

y

3
x
− 2

y

=

5
x
+ 4

y

3
x
− 2

y

· xy
xy

=

(
5
x
+ 4

y

)
xy(

3
x
− 2

y

)
xy

=

5

�x�
xy+ 4

Ay
xAy

3

�x�
xy− 2

Ay
xAy

=
5y+ 4x

3y− 2x

Example 12.4.10 Simplify the complex fraction
t

t+3
+ 2

t−3

1− t
t2−9

.

Explanation. First, we check all quadratic polynomials to see if they can be factored and factor them:
t

t+3
+ 2

t−3

1− t
t2−9

=
t

t+3
+ 2

t−3

1− t
(t−3)(t+3)

Next, we identify the common denominator of the three fractions, which is (t+ 3)(t− 3). We then multiply
the main numerator and denominator by that expression:

t
t+3

+ 2
t−3

1− t
t2−9

=
t

t+3
+ 2

t−3

1− t
(t−3)(t+3)

· (t+ 3)(t− 3)

(t+ 3)(t− 3)
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=

t

��t+3����(t+ 3)(t− 3) + 2
HHt−3

(t+ 3)XXXX(t− 3)

1(t+ 3)(t− 3) − t

(((((hhhhh(t−3)(t+3)((((((hhhhhh(t+ 3)(t− 3)

=
t(t− 3) + 2(t+ 3)

(t+ 3)(t− 3) − t
for t ̸= −3, t ̸= 3

=
t2 − 3t+ 2t+ 6

t2 − 9− t
for t ̸= −3, t ̸= 3

=
t2 − t+ 6

t2 − t− 9
for t ̸= −3, t ̸= 3

Note that since both the numerator and denominator are prime trinomials, this expression can neither factor
nor simplify any further.

12.4.2 Reading Questions
1. What does it mean for a fraction to be a “complex” fraction?
2. When simplifying a complex fraction, why is it necessary to keep track of domain restrictions?

12.4.3 Exercises
Review and Warmup Calculate the following. Use an improper fraction in your answer.

1. a.
5
2
5
7

b.
y
r
x
t

2. a.
25
3
5
4

b.
y
t
x
r

3. a. 4
9
4

b.
4
9

4

4. a. 5
6
7

b.
5
6

7

5.
1
6
− 2

3
3
2

6.
1
6
− 3

4
3
5

7. 1
4
3
− 3

4

8. 1
2
3
− 3

5

Simplifying Complex Fractions with One Variable Simplify this expression, and if applicable, write the
restricted domain.

9.
9a+7

a
a+10

a

10.
6a−6

a
a−5
a

11.
u

(u−2)2

7u
u2−4

12.
u

(u−9)2

2u
u2−81

13.
6+ 1

p

p+ 6
14.

2+ 1
p

p+ 10

15. 3
2
t
− 4

t+5

16. 4
6
x
+ 3

x−6
17.

2+ 1
y−2

1
y−2

− 1
8

18. 8+ 1
b−6

1
b−6

− 1
6

19.
1

c+4
+ 10

c−4

3− 1
c−4

20.
1

u+1
+ 5

u−1

10− 1
u−1

21.
1

s−7
+ 9

s−7

8− 1
s+7

22.
1

p−4
+ 4

p−4

5− 1
p+4

23.
10
q−1

− 7

1
q−1

+ 1
q−3
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24.
7

n−1
− 2

1
n−1

+ 1
n−9

25.
4x

x2−25
+ 1

2
x+5

− 5
x−5

26.
6x

x2−25
− 5

2
x+5

+ 1
x−5

27.
c

c2−36
− 1

c2−36

1
c+36

28.
c

c2−9
− 1

c2−9

1
c+9

Simplifying Complex Fractions with More Than One Variable Simplify this expression.

29.
s
t
6s
5t2

30.
s
t
5s
4t2

31.
pq2

4r
p

10qr

32.
pq2

9r
p

5qr

33. a.
t
r

y

b. t
r
y

34. a.
x
r

t

b. x
r
t

35.
4
x

20+ 4t
36.

2
x

8+ 2y
37.

2
y
+ 2

x

2
y
− 12

x

38.
2
y
+ 10

t

12
y

+ 2
t
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12.5 Solving Rational Equations

12.5.1 Solving Rational Equations
We open this section looking back on Example 12.3.2. Julia is taking her family on a boat trip 12 miles down
the river and back. The river flows at a speed of 2 miles per hour and she wants to drive the boat at a
constant speed, v miles per hour downstream and back upstream. Due to the current of the river, the actual
speed of travel is v+ 2 miles per hour going downstream, and v− 2 miles per hour going upstream. If Julia
plans to spend 8 hours for the whole trip, how fast should she drive the boat?

The time it takes Julia to drive the boat downstream is 12
v+2

hours, and upstream is 12
v−2

hours. The
function to model the whole trip’s time is

t(v) =
12

v− 2
+

12

v+ 2

where t stands for time in hours. The trip will take 8 hours, so we want t(v) to equal 8, and we have:
12

v− 2
+

12

v+ 2
= 8.

Instead of using the function’s graph, we will solve this equation algebraically. You may wish to review the
technique of eliminating denominators discussed in Subsection 2.3.2. We can use the same technique with
variable expressions in the denominators. To remove the fractions in this equation, we will multiply both
sides of the equation by the least common denominator (v− 2)(v+ 2), and we have:

12

v− 2
+

12

v+ 2
= 8

(v+ 2)(v− 2) ·
(

12

v− 2
+

12

v+ 2

)
= (v+ 2)(v− 2) · 8

(v+ 2)����(v− 2) · 12

���v− 2
+XXXX(v+ 2)(v− 2) · 12

XXXv+ 2
= (v+ 2)(v− 2) · 8

12(v+ 2) + 12(v− 2) = 8(v2 − 4)

12v+ 24+ 12v− 24 = 8v2 − 32

24v = 8v2 − 32

0 = 8v2 − 24v− 32

0 = 8(v2 − 3v− 4)

0 = 8(v− 4)(v+ 1)

v− 4 = 0 or v+ 1 = 0

v = 4 or v = −1

Remark 12.5.2At this point, logically all that we know is that the only possible solutions are−1 and 4. Because
of the step where factors were canceled, it’s possible that these might not actually be solutions to the original
equation. They each might be what is called an extraneous solution. An extraneous solution is a number
that would appear to be a solution based on the solving process, but actually does not make the original
equation true. Because of this, it is important that these proposed solutions be checked. Note that we’re
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not checking to see if we made a calculation error, but are instead checking to see if the proposed solutions
actually solve the original equation.

We check these values.
12

−1− 2
+

12

−1+ 2

?
= 8

12

4− 2
+

12

4+ 2

?
= 8

12

−3
+

12

1

?
= 8

12

2
+

12

6

?
= 8

−4+ 12
✓
= 8 6+ 2

✓
= 8

Algebraically, both values do check out to be solutions. In the context of this scenario, the boat’s speed can’t
be negative, so we only take the solution 4. If Julia drives at 4 miles per hour, the whole trip would take 8

hours. This result matches the solution in Example 12.3.2.
Definition 12.5.3 Rational Equation. A rational equation is an equation involving one or more rational
expressions. Usually, we consider these to be equations that have the variable in the denominator of at least
one term. ♢

Let’s look at another application problem.
Example 12.5.4 It takes Ku 3 hours to paint a room and it takes Jacob 6 hours to paint the same room. If they
work together, how long would it take them to paint the room?
Explanation. Since it takes Ku 3 hours to paint the room, he paints 1

3
of the room each hour. Similarly,

Jacob paints 1
6

of the room each hour. If they work together, they paint 1
3
+ 1

6
of the room each hour.

Assume it takes x hours to paint the room if Ku and Jacob work together. This implies they paint 1
x

of
the room together each hour. Now we can write this equation:

1

3
+

1

6
=

1

x
.

To clear away denominators, we multiply both sides of the equation by the common denominator of 3, 6
and x, which is 6x:

1

3
+

1

6
=

1

x

6x ·
(
1

3
+

1

6

)
= 6�x ·

1

�x

6x · 1
3
+ 6x · 1

6
= 6

2x+ x = 6

3x = 6

x = 2

Does the possible solution x = 2 check as an actual solution?
1

3
+

1

6

?
=

1

2
2

6
+

1

6

?
=

1

2
3

6

✓
=

1

2

It does, so it is a solution. If Ku and Jacob work together, it would take them 2 hours to paint the room.
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We are ready to outline a general process for solving a rational equation.
Process 12.5.5 Solving Rational Equations. To solve a rational equation,

1. Find the least common denominator for all terms in the equation.
2. Multiply every term in the equation by the least common denominator
3. Every denominator should cancel leaving a simpler kind of equation to solve. Use previous method to solve that

equation.
Let’s look at a few more examples of solving rational equations.

Example 12.5.6 Solve for y in 2
y+1

= 3
y

.
Explanation. The common denominator is y(y+1). We will multiply both sides of the equation by y(y+1):

2

y+ 1
=

3

y

y����(y+ 1) · 2

���y+ 1
= Ay(y+ 1) · 3

Ay
2y = 3(y+ 1)

2y = 3y+ 3

−y = 3

y = −3

Does the possible solution y = −3 check as an actual solution?

2

−3+ 1

?
=

3

−3

2

−2

✓
= −1

It checks, so −3 is a solution. We write the solution set as {−3}.

Example 12.5.7 Solve for z in z+ 1
z−4

= z−3
z−4

.
Explanation. The common denominator is z− 4. We will multiply both sides of the equation by z− 4:

z+
1

z− 4
=

z− 3

z− 4

(z− 4) ·
(
z+

1

z− 4

)
=����(z− 4) · z− 3

���z− 4

(z− 4) · z+����(z− 4) · 1

���z− 4
= z− 3

(z− 4) · z+ 1 = z− 3

z2 − 4z+ 1 = z− 3

z2 − 5z+ 4 = 0

(z− 1)(z− 4) = 0

z− 1 = 0 or z− 4 = 0
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z = 1 or z = 4

Do the possible solutions z = 1 and z = 4 check as actual solutions?

1+
1

1− 4

?
=

1− 3

1− 4
4+

1

4− 4

?
=

4− 3

4− 4

1−
1

3

✓
=

−2

−3
4+

1

0

no
=

1

0

The possible solution z = 4 does not actually work, since it leads to division by 0 in the equation. It is an
extraneous solution. However, z = 1 is a valid solution. The only solution to the equation is 1, and thus we
can write the solution set as {1}.

Example 12.5.8 Solve for p in 3
p−2

+ 5
p+2

= 12
p2−4

.
Explanation. To find the common denominator, we need to factor all denominators if possible:

3

p− 2
+

5

p+ 2
=

12

(p+ 2)(p− 2)

Now we can see the common denominator is (p+ 2)(p− 2). We will multiply both sides of the equation by
(p+ 2)(p− 2):

3

p− 2
+

5

p+ 2
=

12

p2 − 4

3

p− 2
+

5

p+ 2
=

12

(p+ 2)(p− 2)

(p+ 2)(p− 2) ·
(

3

p− 2
+

5

p+ 2

)
= (p+ 2)(p− 2) · 12

(p+ 2)(p− 2)

(p+ 2)����(p− 2) · 3

���p− 2
+XXXX(p+ 2)(p− 2) · 5

XXXp+ 2
=XXXX(p+ 2)����(p− 2) · 12

XXXX(p+ 2)����(p− 2)

3(p+ 2) + 5(p− 2) = 12

3p+ 6+ 5p− 10 = 12

8p− 4 = 12

8p = 16

p = 2

Does the possible solution p = 2 check as an actual solution?

3

2− 2
+

5

2+ 2

?
=

12

22 − 4

3

0
+

5

4

no
=

12

0

The possible solution p = 2 does not actually work, since it leads to division by 0 in the equation. So this is
an extraneous solution, and the equation actually has no solution. We could say that its solution set is the
empty set, ∅.
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Example 12.5.9 Solve C(t) = 0.35, where C(t) = 3t
t2+8

gives a drug’s concentration in milligrams per liter t
hours since an injection. (This function was explored in the introduction of Section 12.1.)
Explanation. To solve C(t) = 0.35, we’ll begin by setting up 3t

t2+8
= 0.35. We’ll begin by identifying that

the LCD is t2 + 8, and multiply each side of the equation by this:

3t

t2 + 8
= 0.35

3t

���
t2 + 8

·����(
t2 + 8

)
= 0.35 ·

(
t2 + 8

)
3t = 0.35

(
t2 + 8

)
3t = 0.35t2 + 2.8

This results in a quadratic equation so we will put it in standard form and use the quadratic formula:

0 = 0.35t2 − 3t+ 2.8

t =
−(−3)±

√
(−3)2 − 4(0.35)(2.8)

2(0.35)

t =
3±

√
5.08

0.7

t ≈ 1.066 or t ≈ 7.506

Each of these answers should be checked in the original equation; they both work. In context, this means
that the drug concentration will reach 0.35 milligrams per liter about 1.066 hours after the injection was
given, and again 7.506 hours after the injection was given.

12.5.2 Solving Rational Equations for a Specific Variable
Rational equations can contain many variables and constants and we can solve for any one of them. The
process for solving still involves multiplying each side of the equation by the LCD. Instead of having a
numerical answer though, our final result will contain other variables and constants.
Example 12.5.10 In physics, when two resistances, R1 andR2, are connected in a parallel circuit, the combined
resistance, R, can be calculated by the formula

1

R
=

1

R1

+
1

R2

.

Solve for R in this formula.
Explanation. The common denominator is RR1R2. We will multiply both sides of the equation by RR1R2:

1

R
=

1

R1

+
1

R2

�RR1R2 ·
1

�R
= RR1R2 ·

(
1

R1

+
1

R2

)
R1R2 = R��R1R2 ·

1

��R1

+ RR1ZZR2 ·
1

ZZR2

R1R2 = RR2 + RR1



12.5. SOLVING RATIONAL EQUATIONS 181

R1R2 = R (R2 + R1)

R1R2

R2 + R1

= R

R =
R1R2

R1 + R2

Example 12.5.11 Here is the slope formula

m =
y2 − y1

x2 − x1
.

Solve for x1 in this formula.
Explanation. The common denominator is x2−x1. We will multiply both sides of the equation by x2−x1:

m =
y2 − y1

x2 − x1

(x2 − x1) ·m =�����(x2 − x1) ·
y2 − y1

����x2 − x1

mx2 −mx1 = y2 − y1

−mx1 = y2 − y1 −mx2

−mx1

−m
=

y2 − y1 −mx2

−m

x1 = −
y2 − y1 −mx2

m

Example 12.5.12 Solve the rational equation x = 4y−1
2y−3

for y.
Explanation. Our first step will be to multiply each side by the LCD, which is simply 2y − 3. After that,
we’ll isolate all terms containing y, factor out y, and then finish solving for that variable.

x =
4y− 1

2y− 3

x · (2y− 3) =
4y− 1

���2y− 3
·����(2y− 3)

2xy− 3x = 4y− 1

2xy = 4y− 1+ 3x

2xy− 4y = −1+ 3x

y(2x− 4) = 3x− 1

y(2x− 4)

2x− 4
=

3x− 1

2x− 4

y =
3x− 1

2x− 4

12.5.3 Solving Rational Equations Using Technology
In some instances, it may be difficult to solve rational equations algebraically. We can instead use graphing
technology to obtain approximate solutions. Let’s look at one such example.
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Example 12.5.13 Solve the equation 2
x−3

= x3

8
using graphing technology.

Explanation.
We will define f(x) = 2

x−3
and g(x) = x3

8
, and then

look for the points of intersection.

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

(−1.524,−0.442)

(3.405, 4.936)

x

y

Figure 12.5.14: Graph of f(x) = 2
x−3

and g(x) = x3

8

Since the two functions intersect at approximately (−1.524,−0.442) and (3.405, 4.936), the solutions to 2
x−3

=
x3

8
are approximately −1.524 and 3.405. We can write the solution set as {−1.524 . . . , 3.405 . . .} or in several

other forms. It may be important to do something to communicate that these solutions are approximations.
Here we used “. . .”, but you could also just say in words that the solutions are approximate.

12.5.4 Reading Questions
1. Describe what an “extraneous solution” to a rational equation is.

2. In general, when solving a rational equation, multiplying through by the will leave you
with a simpler equation to solve.

3. When you believe you have the solutions to a rational equation, what is more important than usual
(compared to other kinds of equations) for you to do?

12.5.5 Exercises

Review and Warmup Solve the equation.
1. 8A+ 4 = A+ 60 2. 6C+ 8 = C+ 33 3. 50 = 8− 3(n− 6)

4. −3 = 4− 7(p− 6) 5. 2(x+ 10) − 8(x− 2) = 36 6. 4(y+ 5) − 7(y− 7) = 72

7. (x− 6)
2
= 25 8. (x− 3)

2
= 144 9. x2 + 2x− 3 = 0

10. x2 − 3x− 10 = 0 11. x2 + 15x+ 61 = 17 12. x2 + 9x+ 31 = 17

13. Recall the time that Filip traveled with his kids to kick a soccer ball on Mars? We should examine one
more angle to our soccer kick question. The formula H(t) = −6.07t2 + 27.1t finds the height of the
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soccer ball in feet above the ground at a time t seconds after being kicked.
(a) Using technology, find out what the maximum height of the ball was and when it reached that

height.
(b) Using technology, solve for when H(t) = 20 and interpret the meaning of this in a complete

sentence.
(c) Using technology, solve for when H(t) = 0 and interpret the meaning of this in a complete sen-

tence.
Solving Rational Equations Solve the equation.

14. 20

t
= −5 15. 40

x
= 8 16. x

x+ 3
= 4

17. x

x+ 4
= −3 18. y+ 10

3y− 8
=

9

8
19. y− 4

3y− 2
=

3

4

20. −7r+ 4

r− 4
= −

7r

r− 8
21. 2r+ 9

r+ 8
=

2r

r+ 7
22. 3

t
= 4+

23

t

23. 3

t
= −2+

13

t
24. 5

4x
+

1

3x
= −5 25. 3

5y
+

4

3y
= −5

26. x

5x− 30
−

2

x− 6
= 1 27. y

2y+ 12
+

6

y+ 6
= 2 28. y− 2

y2 + 2
= 0

29. r− 9

r2 + 6
= 0 30. 3

r
= 0 31. −

3

t
= 0

32. t+ 9

t2 + 15t+ 54
= 0 33. t+ 3

t2 − 2t− 15
= 0 34. −

2

x
+

8

x+ 7
= −1

35. −
8

x
−

5

x+ 9
= 1 36. 1

y+ 2
+

2

y2 + 2y
=

1

5
37. 1

y− 5
−

5

y2 − 5y
= −

1

9

38. 1

r+ 9
−

5

r2 + 9r
=

1

2
39. 1

r− 7
−

4

r2 − 7r
=

1

2
40. t− 4

t+ 8
+

2

t+ 3
= −4

41. t+ 9

t− 3
+

4

t− 8
= 3

Solve the equation.

42. 2

t+ 1
=

3

t− 1
−

2

t2 − 1
43. −

4

x+ 3
= −

(
2

x− 3
+

6

x2 − 9

)
44. 8

x+ 6
−

9

x+ 9
= −

9

x2 + 15x+ 54
45. 2

y+ 5
−

5

y+ 1
= −

2

y2 + 6y+ 5

46. −
8

y− 6
+

4y

y− 5
= −

8

y2 − 11y+ 30
47. 4

r− 7
+

2r

r− 5
=

8

r2 − 12r+ 35

48. −
6

r− 3
+

8r

r+ 9
= −

4

r2 + 6r− 27
49. 6

t− 7
+

2t

t− 3
= −

8

t2 − 10t+ 21
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Solving Rational Equations for a Specific Variable
50. Solve this equation for a:

p =
m

a

51. Solve this equation for m:
q =

b

m

52. Solve this equation for x:
y =

x

r

53. Solve this equation for C:
r =

C

B

54. Solve this equation for a:
1

2a
=

1

x

55. Solve this equation for c:
1

8c
=

1

q

56. Solve this equation for B:
1

A
=

8

B+ 2

57. Solve this equation for a:
1

C
=

8

a+ 6

Solving Rational Equations Using Technology Use technology to solve the equation.
58.

10

x2 + 3
=

x+ 1

x+ 5
.

59.
x− 9

x5 + 1
= −3x− 7.

60.
1

x
+

1

x2
=

1

x3
.

61.
12x

x− 5
+

3

x+ 1
=

x− 5

x2
.

62.

2x−
1

x+ 4
=

3

x+ 6
.

63.
1

x2 − 1
−

2

x− 4
=

3

x− 2
.

Application Problems
64. Scot and Jay are working together to paint a room. If Scot paints the room alone, it would take him

18 hours to complete the job. If Jay paints the room alone, it would take him 12 hours to complete
the job. Answer the following question:

If they work together, it would take them hours to complete the job. Use a
decimal in your answer if needed.

65. There are three pipes at a tank. To fill the tank, it would take Pipe A 3 hours, Pipe B 12 hours, and
Pipe C 4 hours. Answer the following question:

If all three pipes are turned on, it would take hours to fill the tank.
66. Casandra and Tien are working together to paint a room. Casandra works 1.5 times as fast as

Tien does. If they work together, it took them 9 hours to complete the job. Answer the following
questions:

If Casandra paints the room alone, it would take her hours to complete the job.
If Tien paints the room alone, it would take him hours to complete the job.

67. Two pipes are being used to fill a tank. Pipe A can fill the tank 4.5 times as fast as Pipe B does.
When both pipes are turned on, it takes 18 hours to fill the tank. Answer the following questions:

If only Pipe A is turned on, it would take hours to fill the tank.
If only Pipe B is turned on, it would take hours to fill the tank.

68. Kandace and Jenny worked together to paint a room, and it took them 2 hours to complete the job.
If they work alone, it would take Jenny 3 more hours than Kandace to complete the job. Answer
the following questions:

If Kandace paints the room alone, it would take her hours to complete the job.
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If Jenny paints the room alone, it would take her hours to complete the job.
69. If both Pipe A and Pipe B are turned on, it would take 2 hours to fill a tank. If each pipe is turned

on alone, it takes Pipe B 3 fewer hours than Pipe A to fill the tank. Answer the following questions:
If only Pipe A is turned on, it would take hours to fill the tank.
If only Pipe B is turned on, it would take hours to fill the tank.

70. Town A and Town B are 570 miles apart. A boat traveled from Town A to Town B, and then back
to Town A. Since the river flows from Town B to Town A, the boat’s speed was 25 miles per hour
faster when it traveled from Town B to Town A. The whole trip took 19hours. Answer the following
questions:

The boat traveled from Town A to Town B at the speed of miles per hour.
The boat traveled from Town B back to Town A at the speed of miles per hour.

71. A river flows at 7 miles per hour. A boat traveled with the current from Town A to Town B, which
are 260 miles apart. Then, the boat turned around, and traveled against the current to reach Town
C, which is 160 miles away from Town B. The second leg of the trip (Town B to Town C) took the
same time as the first leg (Town A to Town B). During this whole trip, the boat was driving at a
constant still-water speed. Answer the following question:

During this trip, the boat’s speed on still water was miles.
72. A river flows at 5 miles per hour. A boat traveled with the current from Town A to Town B, which

are 100miles apart. The boat stayed overnight at Town B. The next day, the water’s current stopped,
and boat traveled on still water to reach Town C, which is 190 miles away from Town B. The second
leg of the trip (Town B to Town C) took 9 hours longer than the first leg (Town A to Town B). During
this whole trip, the boat was driving at a constant still-water speed. Find this speed.

Note that you should not consider the unreasonable answer.
During this trip, the boat’s speed on still water was miles per hour.

73. Town A and Town B are 600 miles apart. With a constant still-water speed, a boat traveled from
Town A to Town B, and then back to Town A. During this whole trip, the river flew from Town A
to Town B at 20 miles per hour. The whole trip took 16 hours. Answer the following question:

During this trip, the boat’s speed on still water was miles per hour.
74. Town A and Town B are 350 miles apart. With a constant still-water speed of 24 miles per hour,

a boat traveled from Town A to Town B, and then back to Town A. During this whole trip, the
river flew from Town B to Town A at a constant speed. The whole trip took 30 hours. Answer the
following question:

During this trip, the river’s speed was miles per hour.
75. Suppose that a large pump can empty a swimming pool in 43 hr and that a small pump can empty

the same pool in 53 hr. If both pumps are used at the same time, how long will it take to empty the
pool?

If both pumps are used at the same time, it will take to empty the pool.
76. The winner of a 9 mi race finishes 14.73 min ahead of the second-place runner. On average, the

winner ran 0.6
mi
hr faster than the second place runner. Find the average running speed for each

runner.
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The winner’s average speed was and the second-place runner’s
average speed was .

77. In still water a tugboat can travel 15 mi
hr . It travels 42 mi upstream and then 42 mi downstream in a

total time of 5.96 hr. Find the speed of the current.
The current’s speed is .

78. Without any wind an airplane flies at 300 mi
hr . The plane travels 600 mi into the wind and then

returns with the wind in a total time of 4.04 hr. Find the average speed of the wind.
The wind’s speed is .

79. When there is a 11.8
mi
hr wind, an airplane can fly 770 mi with the wind in the same time that it can

fly 702 mi against the wind. Find the speed of the plane when there is no wind.
The plane’s airspeed is .

80. It takes one employee 2.5 hr longer to mow a football field than it does a more experienced em-
ployee. Together they can mow the grass in 1.9 hr. How long does it take each person to mow the
football field working alone?

The more experienced worker takes to mow the field alone, and
the less experienced worker takes .

81. It takes one painter 13 hr longer to paint a house than it does a more experienced painter. Together
they can paint the house in 30 hr. How long does it take for each painter to paint the house working
alone?

The more experienced painter takes to paint the house alone, and
the less experienced painter takes .
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12.6 Rational Functions and Equations Chapter Review

12.6.1 Introduction to Rational Functions

In Section 12.1 we learned about rational functions and explored them with tables and graphs.

Example 12.6.1 Graphs of Rational Functions. In an apocalypse, a zombie infestation begins with 1 zom-
bie and spreads rapidly. The population of zombies can be modeled by Z(x) = 200000x+100

5x+100
, where x is

the number of days after the apocalypse began. Use technology to graph the function and answer these
questions:

a. How many zombies are there 2 days after the apocalypse began?
b. After how many days will the zombie population be 20,000?
c. As time goes on, the population will level off at about how many zombies?

Explanation. We will graph the function with technology. After adjusting window settings, we have:

10 20 30 40 50 60 70 80 90 100

10000

20000

30000

40000

(2, 3637.27)

(19.999, 20000)

x, days

y, number of zombies

Figure 12.6.2: Graph of y = Z(x) = 200000x+100
5x+100

a. To find the number of zombies after 2 days, we locate the point (2, 3637.27). Since we can only have a
whole number of zombies, we round to 3,637 zombies.

b. To find the number of days it will take for the zombie population reach 20,000, we locate the point
(19.999, 20000) so it will take about 20 days.

c. When we look far to the right on the graph using technology we can see that the population will level
off at about 40,000 zombies.



188 CHAPTER 12. RATIONAL FUNCTIONS AND EQUATIONS

12.6.2 Multiplication and Division of Rational Expressions
In Section 12.2 we covered how to simplify rational expressions. It is very important to list any domain
restrictions from factors that are canceled. We also multiplied and divided rational expressions.

Example 12.6.3 Simplifying Rational Expressions. Simplify the expression 8t+4t2−12t3

1−t
.

Explanation. To begin simplifying this expression, we will rewrite each polynomial in descending order.
Then we’ll factor out the GCF, including the constant −1 from both the numerator and denominator because
their leading terms are negative.

8t+ 4t2 − 12t3

1− t
=

−12t3 + 4t2 + 8t

−t+ 1

=
−4t(3t2 − t− 2)

−(t− 1)

=
−4t(3t+ 2)(t− 1)

−(t− 1)

=
−4t(3t+ 2)����(t− 1)

−����(t− 1)

=
−4t(3t+ 2)

−1
, for t ̸= 1

= 4t(3t+ 2), for t ̸= 1

Example 12.6.4 Multiplication of Rational Functions and Expressions. Multiply the rational expressions:
r3s
4t

· 2t2

r2s3 .
Explanation. Note that we won’t need to factor anything in this problem, and can simply multiply across
and then simplify. With multivariable expressions, this textbook ignores domain restrictions.

r3s

4t
· 2t2

r2s3
=

r3s · 2t2

4t · r2s3

=
2r3st2

4r2s3t

=
rt

2s2

Example 12.6.5 Division ofRational Functions andExpressions. Divide the rational expressions: 2x2+8xy
x2−4x+3

÷
x3+4x2y
x2+4x−5

.
Explanation. To divide rational expressions, we multiply by the reciprocal of the second fraction. Then we
will factor and cancel any common factors. With multivariable expressions, this textbook ignores domain
restrictions.

2x2 + 8xy

x2 − 4x+ 3
÷ x3 + 4x2y

x2 + 4x− 5
=

2x2 + 8xy

x2 − 4x+ 3
· x

2 + 4x− 5

x3 + 4x2y

=
2x����(x+ 4y)

XXXX(x− 1)(x− 3)
·
XXXX(x− 1)(x+ 5)

x2����(x+ 4y)

=
2x

x− 3
· x+ 5

x2
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=
2(x+ 5)

x(x− 3)

12.6.3 Addition and Subtraction of Rational Expressions

In Section 12.3 we covered how to add and subtract rational expressions.

Example 12.6.6 Addition and Subtraction of Rational Expressions with the Same Denominator. Add the
rational expressions: 5x

x+ 5
+

25

x+ 5
.

Explanation. These expressions already have a common denominator:

5x

x+ 5
+

25

x+ 5
=

5x+ 25

x+ 5

=
5����(x+ 5)

���x+ 5

=
5

1
, for x ̸= −5

= 5, for x ̸= −5

Note that we didn’t stop at 5x+25
x+5

. If possible, we must simplify the numerator and denominator.

Example 12.6.7 Addition and Subtraction of Rational Expressions with Different Denominators. Add
and subtract the rational expressions: 6y

y+ 2
+

y

y− 2
− 7

Explanation. The denominators can’t be factored, so we’ll find the least common denominator and build
each expression to that denominator. Then we will be able to combine the numerators and simplify the
expression.

6y

y+ 2
+

y

y− 2
− 7 =

6y

y+ 2
· y− 2

y− 2
+

y

y− 2
· y+ 2

y+ 2
− 7 · (y− 2)(y+ 2)

(y− 2)(y+ 2)

=
6y(y− 2)

(y− 2)(y+ 2)
+

y(y+ 2)

(y− 2)(y+ 2)
−

7(y− 2)(y+ 2)

(y− 2)(y+ 2)

=
6y2 − 12y+ y2 + 2y−

↓
(7(y2 − 4)

↓
)

(y− 2)(y+ 2)

=
6y2 − 12y+ y2 + 2y− 7y2 + 28

(y− 2)(y+ 2)

=
−10y+ 28

(y− 2)(y+ 2)

=
−2(5y− 14)

(y− 2)(y+ 2)
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12.6.4 Complex Fractions
In Section 12.4 we covered how to simplify a rational expression that has fractions in the numerator and/or
denominator.

Example 12.6.8 Simplifying Complex Fractions. Simplify the complex fraction
2t

t2−9
+ 3

6
t+3

+ 1
t−3

.

Explanation. First, we check all quadratic polynomials to see if they can be factored and factor them:
2t

t2−9
+ 3

6
t+3

+ 1
t−3

=

2t
(t−3)(t+3) + 3

6
t+3

+ 1
t−3

Next, we identify the common denominator of the three fractions, which is (t+ 3)(t− 3). We then multiply
the main numerator and denominator by that expression:

2t
(t−3)(t+3) + 3

6
t+3

+ 1
t−3

=

2t
(t−3)(t+3) + 3

6
t+3

+ 1
t−3

· (t− 3)(t+ 3)

(t− 3)(t+ 3)

=

2t

���(t−3)XXX(t+3)����(t− 3)XXXX(t+ 3) + 3(t− 3)(t+ 3)

6
HHt+3

(t− 3)XXXX(t+ 3) + 1

��t−3����(t− 3)(t+ 3)

=
2t+ 3(t− 3)(t+ 3)

6(t− 3) + 1(t+ 3)
for t ̸= −3, t ̸= 3

=
2t+ 3(t2 − 9)

6t− 18+ t+ 3
for t ̸= −3, t ̸= 3

=
2t+ 3t2 − 27

7t− 15
for t ̸= −3, t ̸= 3

=
3t2 + 2t− 27

7t− 15
for t ̸= −3, t ̸= 3

Both the numerator and denominator are prime polynomials so this expression can neither factor nor sim-
plify any further.

12.6.5 Solving Rational Equations
In Section 12.5 we covered how to solve rational equations. We looked at rate problems, solved for a specified
variable and used technology to solve rational equations.
Example 12.6.9 Solving Rational Equations. Two pipes are being used to fill a large tank. Pipe B can fill
the tank twice as fast as Pipe A can. When both pipes are turned on, it takes 12 hours to fill the tank. Write
and solve a rational equation to answer the following questions:

a. If only Pipe A is turned on, how many hours would it take to fill the tank?
b. If only Pipe B is turned on, how many hours would it take to fill the tank?

Explanation. Since both pipes can fill the tank in 12 hours, they fill 1
12

of the tank together each hour. We
will let a represent the number of hours it takes pipe A to fill the tank alone, so pipe A will fill 1

a
of the tank

each hour. Pipe B can fill the tank twice as fast so it fills 2 · 1
a

of the tank each hour or 2
a

. When they are both
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turned on, they fill 1
a
+ 2

a
of the tank each hour.

Now we can write this equation:
1

a
+

2

a
=

1

12

To clear away denominators, we multiply both sides of the equation by the common denominator of 12
and a, which is 12a:

1

a
+

2

a
=

1

12

12a ·
(
1

a
+

2

a

)
= 12a · 1

12

12a · 1
a
+ 12a · 2

a
= 12a · 1

12

12+ 24 = a

36 = a

a = 36

The possible solution a = 36 should be checked

1

36
+

2

36

?
=

1

12
3

36

✓
=

1

12

So it is a solution.
a. If only Pipe A is turned on, it would take 36 hours to fill the tank.
b. Since Pipe B can fill the tank twice as fast, it would take half the time, or 18 hours to fill the tank.

Example 12.6.10 Solving Rational Equations for a Specific Variable. Solve the rational equation y = 2x+5
3x−1

for x.
Explanation. To get the x out of the denominator, our first step will be to multiply each side by the LCD,
which is 3x−1. Then we’ll isolate all terms containing x, factor out x, and then finish solving for that variable.

y =
2x+ 5

3x− 1

y · (3x− 1) =
2x+ 5

���3x− 1
·����(3x− 1)

3xy− y = 2x+ 5

3xy = 2x+ 5+ y

3xy− 2x = y+ 5

x(3y− 2) = y+ 5

x(3y− 2)

3y− 2
=

y+ 5

3y− 2

x =
y+ 5

3y− 2
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Example 12.6.11 Solving Rational Equations Using Technology. Solve the equation 1
x+2

+ 1 = 10x
x2+5

using
graphing technology.
Explanation.
We will define f(x) = 1

x+2
+ 1 and g(x) = 10x

x2+5
,

and then find a window where we can see all of
the points of intersection.
Since the two functions intersect at approximately
(−2.309,−2.235), (0.76, 1.362) and (8.549, 1.095),
the solutions to 1

x+2
+ 1 = 10x

x2+5
are approximately

−2.309, 0.76 and 8.549. The solution set is approx-
imately {−2.309 . . . , 0.76 . . . , 8.549 . . .}.

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

(−2.309,−2.235)

(0.76, 1.362)

(8.549, 1.095) x

y

Figure 12.6.12: Graph of f(x) = 1
x+2

+ 1 and
g(x) = 10x

x2+5

12.6.6 Exercises
Introduction to Rational Functions

1. A function is graphed.

This function has domain
and range
.

2. A function is graphed.

This function has domain
and range
.
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3. The population of deer in a forest can be
modeled by

P(x) =
3220x+ 2940

7x+ 6

where x is the number of years in the future.
Answer the following questions.

a. How many deer live in this forest this
year?

b. How many deer will live in this forest
17 years later? Round your answer to
an integer.

c. After how many years, the deer
population will be 461? Round your
answer to an integer.

d. Use a calculator to answer this
question: As time goes on, the
population levels off at about how
many deer?

4. The population of deer in a forest can be
modeled by

P(x) =
2400x+ 1850

8x+ 5

where x is the number of years in the future.
Answer the following questions.

a. How many deer live in this forest this
year?

b. How many deer will live in this forest
5 years later? Round your answer to
an integer.

c. After how many years, the deer
population will be 302? Round your
answer to an integer.

d. Use a calculator to answer this
question: As time goes on, the
population levels off at about how
many deer?

5. In a certain store, cashiers can serve 55

customers per hour on average. If x
customers arrive at the store in a given
hour, then the average number of customers
C waiting in line can be modeled by the
function

C(x) =
x2

3025− 55x

where x < 55.
Answer the following questions with a
graphing calculator. Round your answers
to integers.

a. If 41 customers arrived in the store in
the past hour, there are approximately

customers waiting
in line.

b. If there are 7 customers waiting in
line, approximately
customers arrived in the past hour.

6. In a certain store, cashiers can serve 60

customers per hour on average. If x
customers arrive at the store in a given
hour, then the average number of customers
C waiting in line can be modeled by the
function

C(x) =
x2

3600− 60x

where x < 60.
Answer the following questions with a
graphing calculator. Round your answers
to integers.

a. If 48 customers arrived in the store in
the past hour, there are approximately

customers waiting
in line.

b. If there are 8 customers waiting in
line, approximately
customers arrived in the past hour.
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7. The concentration of a drug in a patient’s
blood stream, in milligrams per liter, can be
modeled by the function C(t) = 2t

t2+7
,

where t is the number of hours since the
drug is injected. Answer the following
question with technology. Round your
answer to two decimal places if needed.

hours since injection,
the drug’s concentration is at the maximum
value of milligrams per liter.

8. The concentration of a drug in a patient’s
blood stream, in milligrams per liter, can be
modeled by the function C(t) = 3t

t2+5
,

where t is the number of hours since the
drug is injected. Answer the following
question with technology. Round your
answer to two decimal places if needed.

hours since injection,
the drug’s concentration is at the maximum
value of milligrams per liter.

Multiplication and Division of Rational Expressions
9. Simplify this expression.

−y2 − 2yt+ 3t2

y2 − 9t2

10. Simplify this expression.
−y2 + 5yx− 6x2

y2 − 4x2

11. Simplify the function formula, and if
applicable, write the restricted domain.
f(r) =

r4 + 8r3 + 16r2

5r4 + 19r3 − 4r2

Reduced f(r) =

12. Simplify the function formula, and if
applicable, write the restricted domain.
H(r) =

r4 − 6r3 + 9r2

3r4 − 10r3 + 3r2

Reduced H(r) =

13. Simplify this expression, and if applicable,
write the restricted domain.
t2 − 16t

t2 − 16
· t2 − 4t

t2 − 13t− 48

14. Simplify this expression, and if applicable,
write the restricted domain.
t2 − 4t

t2 − 4
· t2 − 2t

t2 + 5t− 36

15. Simplify this expression, and if applicable,
write the restricted domain.

9t2 − 49

3t2 + t+ (−14)
÷ (7− 3t)

16. Simplify this expression, and if applicable,
write the restricted domain.

25x2 − 16

5x2 + (−1) x+ (−4)
÷ (4− 5x)

17. Simplify this expression.
x5

x2y− 5x
÷ 1

x2y2 − 8xy+ 15

18. Simplify this expression.
y3

y2r+ 3y
÷ 1

y2r2 + 7yr+ 12

Addition and Subtraction of Rational Expressions Add or subtract the rational expressions to a single
rational expression and then simplify. If applicable, state the restricted domain.

19. 1

y+ 1
+

2

y2 − 1
20. 1

r+ 2
+

4

r2 − 4

21. −
15r

r2 + 9r+ 18
+

5r

r+ 3
22. −

12t

t2 + t− 2
−

4t

t+ 2

23. t2 − 20

t2 − 4t
−

t+ 5

t
24. t2 + 15

t2 − 3t
−

t− 5

t
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Add or subtract the rational expressions to a single rational expression and then simplify.

25. −
4x

3y4
+

2

5xy
26. −

2x

3t5
−

6

5xt

27. −
20yr

y2 − 8yr+ 12r2
+

5y

y− 6r
28. 10yx

y2 + 7yx+ 6x2
−

2y

y+ x

Complex Fractions
29. Calculate the following. Use an improper

fraction in your answer.

a.
10
9
5
4

b.
r
t
y
x

30. Calculate the following. Use an improper
fraction in your answer.

a.
25
7
5
4

b.
r
t
y
x

31. Simplify this expression, and if applicable,
write the restricted domain.

2
q−1

− 3

1
q−1

+ 1
q−3

32. Simplify this expression, and if applicable,
write the restricted domain.

9
n−1

− 7

1
n−1

+ 1
n−10

33. Simplify this expression, and if applicable,
write the restricted domain.

2t
t2−36

− 5

3
t+6

+ 4
t−6

34. Simplify this expression, and if applicable,
write the restricted domain.

3x
x2−9

− 2

2
x+3

− 3
x−3

35. Simplify this expression.
x
y

6x
5y2

36. Simplify this expression.
a
b
4a
3b2

37. Simplify this expression.
5
y

20− 5x

38. Simplify this expression.
3
r

3− 3x
2

Solving Rational Equations Solve the equation.

39. 3

r+ 3
−

5

r+ 9
=

4

r2 + 12r+ 27
40. 5

r+ 2
−

7

r+ 9
= −

1

r2 + 11r+ 18

41. 1

t+ 4
+

4

t2 + 4t
=

1

4
42. 1

t− 3
−

3

t2 − 3t
=

1

8

43. −
2

x− 2
+

2x

x+ 7
=

6

x2 + 5x− 14
44. 6

x− 8
+

9x

x+ 4
=

3

x2 − 4x− 32

45. y− 6

y− 9
−

7

y+ 3
= 2 46. y− 3

y+ 9
+

5

y+ 7
= 2

47. Solve this equation for B:
1

A
=

9

B+ 8

48. Solve this equation for t:
1

B
=

4

t+ 7
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49. Use technology to solve the equation

2x−
1

x+ 4
=

3

x+ 6
.

50. Use technology to solve the equation

1

x2 − 1
−

2

x− 4
=

3

x− 2
.

51. Two pipes are being used to fill a tank. Pipe A can fill the tank 4.5 times as fast as Pipe B does. When
both pipes are turned on, it takes 18 hours to fill the tank. Answer the following questions:

If only Pipe A is turned on, it would take hours to fill the tank.
If only Pipe B is turned on, it would take hours to fill the tank.

52. Two pipes are being used to fill a tank. Pipe A can fill the tank 5.5 times as fast as Pipe B does. When
both pipes are turned on, it takes 11 hours to fill the tank. Answer the following questions:

If only Pipe A is turned on, it would take hours to fill the tank.
If only Pipe B is turned on, it would take hours to fill the tank.

53. Town A and Town B are 580 miles apart. A boat traveled from Town A to Town B, and then back
to Town A. Since the river flows from Town B to Town A, the boat’s speed was 30 miles per hour
faster when it traveled from Town B to Town A. The whole trip took 29 hours. Answer the following
questions:

The boat traveled from Town A to Town B at the speed of miles per hour.
The boat traveled from Town B back to Town A at the speed of miles per hour.

54. Town A and Town B are 390 miles apart. A boat traveled from Town A to Town B, and then back
to Town A. Since the river flows from Town B to Town A, the boat’s speed was 25 miles per hour
faster when it traveled from Town B to Town A. The whole trip took 13 hours. Answer the following
questions:

The boat traveled from Town A to Town B at the speed of miles per hour.
The boat traveled from Town B back to Town A at the speed of miles per hour.



Chapter 13

Graphs and Equations

13.1 Overview of Graphing
In this section, we will review how to graph lines and general functions which will be useful when we graph
parabolas in the next section.

13.1.1 Graphing Lines by Plotting Points
Sometimes, the easiest way to make a graph of an equation is by making a table and plotting points. (This
was the approach in Section 3.2.) Let’s refresh ourselves on how this works.
Example 13.1.2 A bathtub is holding 12 gallons of water. The drain starts to leak water at a constant rate of
0.6 gallons per second. A linear function with formula W(x) = −0.6x+ 12 can be used to model the amount
of water, in gallons, in the tub x seconds after it started draining. Let’s make a graph of this function. The
most straightforward method to graph any function is to build a table of x- and y-values, and then plot the
points.

x W(x) = −0.6x+ 12 Point Interpretation
0 −0.6(0) + 12

= 12

(0, 12) There were 12 gallons of water in the tub when
the tub started to drain.

1 −0.6(1) + 12

= 11.4

(1, 11.4) There were 11.4 gallons in the tub 1 second after
the tub started to drain.

2 −0.6(2) + 12

= 10.8

(2, 10.8) There were 10.8 gallons in the tub 2 seconds after
the tub started to drain.

3 −0.6(3) + 12

= 10.2

(3, 10.2) There were 10.2 gallons in the tub 3 seconds after
the tub started to drain.

4 −0.6(4) + 12

= 9.6

(4, 9.6) There were 9.6 gallons in the tub 4 seconds after
the tub started to drain.

Figure 13.1.3: A table of values for W(x) = −0.6x+ 12

197
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Could we have made a more helpful table? Maybe.
The y-values are close together and for the most
part they are decimals which can be difficult to plot
accurately. No matter, for now we use these points
and make a plot.
The advantage of plotting points is that it is a uni-
versal method to graph any function. It is easy
to forget about this method after learning faster
ways to graph functions, so to keep this method
in your mathematical tool box in case you come
across something that you don’t know or remem-
ber how to graph.

1 2 3 4 5

3

6

9

12
(0, 12)

(1, 11.4)
(2, 10.8)

(3, 10.2)
(4, 9.6)

x

y

Figure 13.1.4: A graph of W(x) = −0.6x+ 12

Checkpoint 13.1.5 Make a table for the equation.
x y = 11

5
x− 8

Explanation. Since this equation has a fractional coefficient for x with denominator 5, it would be wise to
choose our own x-values that are multiples of 5. Then when we use them to solve for y, the denominator
will be cleared, and we will not need to continue with fraction arithmetic.

This solution will use the x-values −5, 0, 5, 10 and 15. The choice to use these x-values is arbitrary, but
they are small multiples of 5, which will make computation easier.

One at a time, we substitute these x-values into the equation y = 11
5
x− 8, and solve for y:

y =
11

5
(−5) − 8 =⇒ y = −19

y =
11

5
(0) − 8 =⇒ y = −8

y =
11

5
(5) − 8 =⇒ y = 3

y =
11

5
(10) − 8 =⇒ y = 14

y =
11

5
(15) − 8 =⇒ y = 25

So the table may be completed as:
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x y

−5 −19

0 −8

5 3

10 14

15 25

13.1.2 Graphing Lines in Slope-Intercept Form
Recall that the slope-intercept form (3.5.1) of a line equation is y = mx + b where m is the slope and (0, b)
is the vertical intercept.
Example 13.1.6 An efficient method to graph y = −0.6x + 12 is to use the fact that it is in slope-intercept
form. To quickly make a graph, examine the equation and pick out the slope (in this case −0.6) and vertical
intercept (in this case (0, 12)), and then plot slope-triangles from the intercept to locate more points on the
line. One key point here is that it helps to have the slope written as a fraction. In this case,

−0.6 = −
6

10
= −

3

5
.

So start our graph at (0, 12) and go forward 5 units and then down 3 units to reach more points.
Since we know that we will go forward 5 units and
then down 3 units, and that we will start our graph
at (0, 12), we can choose to orient and scale our
axes to see a more complete picture of W than we
achieved by plotting convenient points in Exam-
ple 13.1.2.

5 10 15 20

3

6

9

12
(0, 12)

(5, 9)

(10, 6)

(15, 3)

(20, 0)x

y

Figure 13.1.7: A graph of W(x) = −0.6x+ 12
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Example 13.1.8 Find the slope and vertical intercept of y = h(x), where h(x) = 5
3
x − 4. Then use slope

triangles to find two more points on the line and sketch it.
Explanation.
The slope is 5

3
and the vertical intercept is (0,−4).

Starting at (0,−4), we go forward 3 units and up 5

units to reach more points: (3, 1) and (6, 6).

−4 −2 2 4 6

−12

−10

−8

−6

−4

−2

2

4

6

8

(0,−4, )

(3, 1, )

(6, 6)

x

y

Figure 13.1.9: A graph of h(x) = 5
3
x− 4

13.1.3 Graphing Lines in Point-Slope Form

Recall that the point-slope form (3.6.1) of a line equation is y = m(x − x0) + y0 where m is the slope and
(x0, y0) is a point on the line. The reason that (x0, y0) is a point on the line is because you can substitute in
x0 for x and then y0 is the result for y.

y
↓
y0

= m(

x0↓
x − x0) + y0

Example 13.1.10 The population of Monarch butterflies has been on an overall downward trajectory since
the 1980s, as have populations of many migratory animals. Efforts to restore the population haven’t had
great success yet. There are several distinct populations of Monarchs that probably never meet each other:
the Hawaii population, the Florida Keys population, the Western population, and the Eastern population.
Of these, the Eastern population is by far the largest and we can model this population of Monarch butterflies
with a simple linear function.

M(x) = −(x− 2006) + 15

approximates the total number of acres of Mexican forest that the Eastern population of Monarchs hibernates
in during winter in year x. This formula is only valid from 1995 to 2018, the years that the population has
been well studied.

Let’s make graph of this equation given the information provided, but only between 1995 and 2018.
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Since this formula is linear and given in point-
slope form, we can easily read that the slope of the
line is −1, and the point given by the equation is
(2006, 15). This means that we should scale our
graph appropriately to be able to see these details.
We can interpret the point (2006, 15) to mean that
in the year 2006, the Monarchs overwintered in
15 acres of Mexican forest. The slope means that
for every one year that goes by, the overwintering
population takes up about one less acre of forest.

1995 2000 2005 2010 2015 2020

5

10

15

20

25

30

(2006, 15)

x (year)

y (acres)

Figure 13.1.11: A graph of
M(x) = −(x− 2006) + 15

Example 13.1.12 Find the slope and a point on the graph of y = m(x), where m(x) = −9
5
(x + 1) − 3. Then

use slope triangles to find two more points on the line and sketch it.
Explanation.
The slope of the line is −9

5
, and the point given by

the equation is (−1,−3). So to graph h, start at
(−1,−3), and the go forward 5 units and down 9

units to reach more points: (4,−12) and (9,−21). −4 −2 2 4 6 8

−20

−15

−10

−5
(−1,−3)

(4,−12)

(9,−21)

x

y

Figure 13.1.13: A graph of m(x) = −9
5
(x+ 1) − 3

13.1.4 Graphing Lines Using Intercepts
Recall that the standard form (3.7.1) of a line equation is Ax + By = C where where A, B, and C are three
numbers (each of which might be 0, although at least one of A and B must be nonzero).
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Example 13.1.14 Recall our bathtub draining problem from Example 13.1.2, where W(x) = −0.6x+ 12 mod-
eled the amount of water, in gallons, in the tub x seconds after it started draining. Let’s write the line
equation y = −0.6x+ 12 in standard form.

To find the standard form of the equation, we do as in Subsection 3.7.3. First, we will replace the variable
W(x)with y because standard form relates x and y and does not use function notation. SoW(x) = −0.6x+12

becomes y = −0.6x+ 12. Now to convert to standard form, move both x and y to the left-hand side.

y = −0.6x+ 12

0.6x+ y = 12

The equation is in standard form written as 0.6x+ y = 12.

If a linear function is given in standard form, we can relative easily find the equation’s x- and y-intercepts
by substituting in y = 0 and x = 0, respectively.

Example 13.1.15 Let’s find the intercepts of 0.6x+y = 12, still relating back to Example 13.1.2. Then we may
graph the equation using those intercepts.
To find the x-intercept, set y = 0 and solve for x.

0.6x+ (0) = 12

0.6x = 12

x = 20

So the x-intercept is the point (20, 0). In context,
this means that 20 minutes after the tub started to
drain, 0 gallons of water remained. This is telling
us that the tub is empty!

To find the y-intercept, set x = 0 and solve for y.

0.6(0) + y = 12

y = 12

So, the y-intercept is the point (0, 12). In context,
this means that 0 minutes after the tub started to
drain, 12 gallons of water remained. This is telling
us how much water was initially in the tub.

Now with the x- and y-intercepts known, we may
plot these points and draw the line that runs
through them.

4 8 12 16 20

−3

3

6

9

12
(0, 12)

(20, 0)x

y

Figure 13.1.16: A graph of 3x+ 5y = 60

Checkpoint 13.1.17 Find the y-intercept and x-intercept of the line given by the equation. If a particular
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intercept does not exist, enter none into all the answer blanks for that row.

2x+ 5y = −20

x-value y-value Location (as an ordered pair)
y-intercept
x-intercept

Explanation. A line’s y-intercept is on the y-axis, implying that its x-value must be 0. To find a line’s
y-intercept, we substitute in x = 0. In this problem we have:

2x+ 5y = −20

2(0) + 5y = −20

5y = −20

5y

5
=

−20

5

y = −4

This line’s y-intercept is (0,−4).
Next, a line’s x-intercept is on the x-axis, implying that its y-value must be 0. To find a line’s x-intercept,

we substitute in y = 0. In this problem we have:

2x+ 5y = −20

2x+ 5(0) = −20

2x = −20

2x

2
=

−20

2

x = −10

The line’s x-intercept is (−10, 0).
The entries for the table are:

x-value y-value Location
y-intercept 0 −4 (0,−4)

x-intercept −10 0 (−10, 0)

13.1.5 Graphing Functions by Plotting Points
Any function, linear or not, can be graphed by building a table of x- and y-values and plotting points. Let’s
look at a few more examples.
Example 13.1.18 Imagine a company called Corduroy’s-Я-Us that makes pants. Their profit from their Royal
Blue Corduroys, in thousands of dollars, can be modeled by the function P(x) = −0.5x2+33x−200 where x

is the price of each pair of Royal Blue pants that they sell. Let’s build a table of values and plot the function’s
graph.

In this context, the value of x must be positive. Furthermore, we shouldn’t really consider x-values like
1, 2, etc., because it is not realistic that the price of a pair of new pants would be so low. Instead we try
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multiples of 10: 10, 20, etc.

x P(x) = −0.5x2 + 33x− 200 Point Interpretation
0 −0.5(0)2 + 33(0) − 200

= −200

(0,−200) If each pair costs $0, there is a loss of $200,000.

10 −0.5(10)2 + 33(10) − 200

= 80

(10, 80) If each pair costs $10, the profit is $80,000.

20 −0.5(20)2 + 33(20) − 200

= 260

(20, 260) If each pair costs $20, the profit is $260,000.

30 −0.5(30)2 + 33(30) − 200

= 340

(30, 340) If each pair costs $30, the profit is $340,000.

40 −0.5(40)2 + 33(40) − 200

= 320

(40, 320) If each pair costs $40, the profit is $320,000.

50 −0.5(50)2 + 33(50) − 200

= 200

(50, 200) If each pair costs $50, the profit is $200,000.

60 −0.5(60)2 + 33(60) − 200

= −20

(60,−20) If each pair costs $60, there is a loss of $20,000.

Figure 13.1.19: A table of values for P(x) = −0.5x2 + 33x− 200

With the values in Table 13.1.19, we can sketch the
graph. Note that we have to estimate the how the
graph curves which is a limitation of graphing a
function by plotting points compared with using
algebraic techniques.

10 20 30 40 50 60

−180

−150

−120

−90

−60

−30

30

60

90

120

150

180

210

240

270

300

330

(0,−200)

(10, 80)

(20, 260)

(30, 340)
(40, 320)

(50, 200)

(60,−20)

x

y

Figure 13.1.20: P(x) = −0.5x2 + 33x− 200

Checkpoint 13.1.21 Make a table of solutions for the equation y = −0.6x2. Then graph the equation.
x y
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Explanation. This solution will use the x values −2, −1, 0, 1 and 2. The choice to use these x-values is
arbitrary. Since they are small numbers, they might make calculations easier. It’s important to include
negative numbers.

One at a time, we substitute these x-values into the equation y = −0.6x2, and solve for y

y = −0.6(−2)2 =⇒ y = −2.4

y = −0.6(−1)2 =⇒ y = −0.6

y = −0.6 · 02 =⇒ y = 0

y = −0.6 · 12 =⇒ y = −0.6

y = −0.6 · 22 =⇒ y = −2.4

So the table may be completed as:
x y

−2 −2.4

−1 −0.6

0 0

1 −0.6

2 −2.4

Using the values in the table, we can plot the following graph.

Example 13.1.22Human-initiated global warming has been the subject of some debate. However, one aspect
of the debate is undeniable fact: the amount of atmospheric carbon dioxide (CO2: a greenhouse gas 1) is
being regularly and carefully measured 2 and is increasing faster and faster. The measured yearly average
atmospheric carbon dioxide levels in parts per million (ppm) since 1958 can be very closely approximated
by the function C(x) = 244+ 29 · 1.0148x where x represents the number of years since the year 1900. Before
1958, the greenhouse gases weren’t regularly measured. Create a table of values rounded to the nearest
whole number for the carbon dioxide levels since 1958.
Explanation. Since 1958 is 58 years since 1900, we will start our table at x = 58 and go by 10s up through
x = 118, which would stand for the year 2018.
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x C(x) Point Interpretation
58 w(58) ≈ 312 (5, 312) In 1958, the atmosphere was about 312 ppm CO2.
68 w(68) ≈ 323 (68, 323) In 1968, the atmosphere was about 323 ppm CO2.
78 w(78) ≈ 335 (78, 335) In 1978, the atmosphere was about 335 ppm CO2.
88 w(88) ≈ 350 (88, 350) In 1988, the atmosphere was about 350 ppm CO2.
98 w(98) ≈ 366 (98, 366) In 1998, the atmosphere was about 366 ppm CO2.
108 w(108) ≈ 386 (108, 386) In 2008, the atmosphere was about 386 ppm CO2.
118 w(118) ≈ 408 (118, 408) In 2018, the atmosphere was about 408 ppm CO2.

Figure 13.1.23: A table of values for C(x) = 244+ 29 · 1.0148x

20 40 60 80 100 120 140
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80
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160

200
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560

(58, 312)
(88, 350)

(108, 408)

x

y

Figure 13.1.24: A graph of
C(x) = 244+ 29 · 1.0148x
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Figure 13.1.25: A graph of C with the ESRL
overlaid and the function extrapolated beyond
known dates.

13.1.6 Reading Questions

1. What are the four methods we recalled to graph lines in this section?

2. Why might it be better to represent a line in point-slope form than slope intercept form?

3. Explain how an equation for a line given in slope-intercept or point-slope form can be graphed without
creating a table of values.

4. Describe one or more possible issues you might encounter after creating a table of points for a function
and trying to use those points to make a graph.

1epa.gov/ghgemissions/overview-greenhouse-gases
2esrl.noaa.gov/gmd/ccgg/trends/graph.html
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13.1.7 Exercises

Graphing Lines by Plotting Points Create a table of ordered pairs and then make a plot of the equation.
1. y = 2x+ 3 2. y = 3x+ 5

3. y = −2
5
x− 3 4. y = −3

4
x+ 2

Graphing Lines in Slope-Intercept Form
5. Graph the equation y = 2

3
x+ 4. 6. Graph the equation y = 3

2
x− 5.

7. Graph the equation y = −3
5
x− 1. 8. Graph the equation y = −1

5
x+ 1.

Graphing Lines in Point-Slope Form
9. Graph the linear equation y = −8

3
(x− 4) − 5 by identifying the slope and one point on this line.

10. Graph the linear equation y = 5
7
(x+ 3) + 2 by identifying the slope and one point on this line.

11. Graph the linear equation y = 3
4
(x+ 2) + 1 by identifying the slope and one point on this line.

12. Graph the linear equation y = −5
2
(x− 1) − 5 by identifying the slope and one point on this line.

13. Graph the linear equation y = −3(x− 9) + 4 by identifying the slope and one point on this line.
14. Graph the linear equation y = 7(x+ 3) − 10 by identifying the slope and one point on this line.

Graphing Lines Using Intercepts
15. Find the x- and y-intercepts of the line with

equation 5x− 2y = 10. Then find one other
point on the line. Use your results to graph
the line.

16. Find the x- and y-intercepts of the line with
equation 5x− 6y = −90. Then find one
other point on the line. Use your results to
graph the line.

17. Find the x- and y-intercepts of the line with
equation x+ 5y = −15. Then find one other
point on the line. Use your results to graph
the line.

18. Find the x- and y-intercepts of the line with
equation 6x+ y = −18. Then find one other
point on the line. Use your results to graph
the line.

19. Make a graph of the line −5x− y = −3. 20. Make a graph of the line x+ 5y = 5.
21. Make a graph of the line 20x− 4y = 8. 22. Make a graph of the line 3x+ 5y = 10.

Graphing Functions by Plotting Points Create a table of ordered pairs and then make a plot of the equation.
23. y = −3x2 24. y = −x2 − 2x− 3

25. y = 1
2
x3 − x 26. y = 1

4
x3 + x+ 2

27. y =
√
x+ 5 28. y = 3−

√
x+ 2
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13.2 Quadratic Graphs and Vertex Form

In this section, we will explore quadratic functions using graphing technology and learn the vertex and
factored forms of a quadratic function’s formula. We will also see how parabola graphs can be shifted.

13.2.1 Exploring Quadratic Functions with Graphing Technology

Graphing technology is very important and useful for applications and for finding points quickly. Let’s
explore some quadratic functions with graphing technology.

Example 13.2.2 Use technology to graph and make a table of the quadratic function f defined by f(x) =
2x2 + 4x− 3 and find each of the key points or features.

a. Find the vertex.
b. Find the vertical intercept (i.e. y-intercept).
c. Find the horizontal or (i.e. x-intercept(s)).
d. Find f(−2).
e. Solve f(x) = 3 using the graph.
f. Solve f(x) ≤ 3 using the graph.
g. State the domain and range of the function.

Explanation.
The specifics of how to use any one
particular technology tool vary.
Whether you use an app, a phys-
ical calculator, or something else,
a table and graph should look like:

x f(x)

−2 −3

−1 −5

0 −3

1 3

2 13

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y
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Additional features of your technology tool can en-
hance the graph to help answer these questions.
You may be able to make the graph appear like:

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6
y = f(x)

y = 3

(−1,−5)

(1, 3)

(0,−3)

(−3, 3)

(−2.6, 0) (0.6, 0) x

y

a. The vertex is (−1,−5).
b. The vertical intercept is (0,−3).
c. The horizontal intercepts are approximately (−2.6, 0) and (0.6, 0).
d. When x = −2, y = −3, so f(−2) = −3.
e. The solutions to f(x) = 3 are the x-values where y = 3. We graph the horizontal line y = 3 and find

the x-values where the graphs intersect. The solution set is {−3, 1}.
f. The solutions are all of the x-values where the function’s graph is below (or touching) the line y = 3.

The interval is [−3, 1].
g. The domain is (−∞,∞) and the range is [−5,∞).

Now we will look at an application with graphing technology and put the points of interest in context.
Example 13.2.3 A reduced-gravity aircraft1 is a fixed-wing airplane that astronauts use for training. The
airplane flies up and then down in a parabolic path to simulate the feeling of weightlessness. In one training
flight, the pilot will fly 40 to 60 parabolic maneuvers.

For the first parabolic maneuver, the altitude of the plane, in feet, at time t, in seconds since the maneuver
began, is given by H(t) = −16t2 + 400t+ 30500.

a. Determine the starting altitude of the plane for the first maneuver.
b. What is the altitude of the plane 10 seconds into the maneuver?
c. Determine the maximum altitude of the plane and how long it takes to reach that altitude.
d. The zero-gravity effect is experienced when the plane begins the parabolic path until it gets back down

to 30,500 feet. Write an inequality to express this and solve it using the graph. Write the times of the
zero-gravity effect as an interval and determine how long the astronauts experience weightlessness
during each cycle.

e. Use technology to make a table for H with t-values from 0 to 25 seconds. Use an increment of 5 seconds
and then use the table to solve H(t) = 32100.
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f. State the domain and range for this context.

Explanation. We can answer the questions based on the information in the graph.

5 10 15 20 25

28000

29000

30000

31000

32000

33000

34000

y = H(t)

y = 30500

(0, 30500) (25, 30500)

(10, 32900) (12.5, 34000)

t

y

Figure 13.2.4: Graph of H(t) = −16t2 + 400t+ 30500 with y = 30500

a. The starting altitude can be read from the vertical intercept, which is (0, 30500). The feeling of weight-
lessness begins at 30,500 feet.

b. After 10 seconds, the altitude of the plane is 32,900 feet.
c. For the maximum altitude of the plane we look at the vertex, which is approximately (12.5, 33000).

This tells us that after 12.5 seconds the plane will be at its maximum altitude of 33,000 feet.
d. We can write an inequality to describe when the plane is at or above 30,500 feet and solve it graphically.

H(t) ≥ 30500

−16t2 + 400t+ 30500 ≥ 30500.

We graph the line y = 30500 and find the points of intersection with the parabola. The astronauts
experience weightlessness from 0 seconds to 25 seconds into the maneuver, or [0, 25] seconds. They
experience weightlessness for 25 seconds in each cycle.

e. To solve H(t) = 32100 using the table, we look for where the H-values are equal to 32100.
t 0 5 10 15 20 25

H(t) 30500 32100 32900 32900 32100 30500

There are two solutions, 5 seconds and 20 seconds. The solution set is {5, 20}.
f. When we use technology we see the entire function but in this context the plane is only on a parabolic

path from t = 0 to t = 25 seconds. So the domain is [0, 25], and the range is the set of corresponding
y-values which is [30500, 33000] feet.
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Let’s look at the remote-controlled airplane dive from Example 9.3.18. This time we will use technology
to answer the questions.
Example 13.2.5 Maia has a remote-controlled airplane and she is going to do a stunt dive where the plane
dives toward the ground and back up along a parabolic path. The altitude or height of the plane is given by
the function H where H(t) = 0.7t2 − 23t+ 200, for 0 ≤ t ≤ 30. The height is measured in feet and the time,
t, is measured in seconds since the stunt began.

a. Determine the starting height of the plane as the dive begins.
b. Determine the height of the plane after 5 seconds.
c. Will the plane hit the ground, and if so, at what time?
d. If the plane does not hit the ground, what is the closest it gets to the ground, and at what time?
e. At what time(s) will the plane have an altitude of 50 feet?
f. State the domain and the range of the function (in context).

Explanation. We have graphed the function and we will find the key information and put it in context.

5 10 15 20 25 30

80

120

160

200 y = H(t)

y = 50

(0, 200)

(5, 102.5)

(16.43, 11.07)

(30, 140)

(8.97, 50) (23.89, 50)

t

y

Figure 13.2.6: Graph of H(t) = 0.7t2 − 23t+ 200

a. The starting altitude can be read from the vertical intercept, which is (0, 200). When the stunt begins,
the plane has a altitude of 200 feet.

b. When x = 5, the y-value is 102.5. So H(5) = 102.5. This means that after 5 seconds, the plane is 102.5
feet above the ground.

c. From the graph we can see that the parabola does not touch or cross the x-axis, which represents the
ground. This means the plane does not hit the ground and there are no real solutions to the equation
H(t) = 0.

1en.wikipedia.org/wiki/Reduced-gravity_aircraft
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d. The lowest point is the vertex, which is approximately (16.43, 11.07). The minimum altitude of the
plane is about 11 feet, which occurs after about 16.4 seconds.

e. We graph the horizontal line y = 50 and look for the points of intersection. The plane will be 50 feet
above the ground about 9 seconds after the plane begins the stunt, and again at about 24 seconds.

f. The domain for this function is given in the problem statement because only part of the parabola
represents the path of the plane. The domain is [0, 30]. For the range we look at the possible altitudes
of the plane and see that it is [11.07 . . . , 200]. The plane is doing this stunt from 0 to 30 seconds and its
height ranges from about 11 to 200 feet above the ground.

13.2.2 The Vertex Form of a Parabola

We have learned the standard form of a quadratic function’s formula, which is f(x) = ax2 + bx+ c. In this
subsection, we will learn another form called the “vertex form”.

Using graphing technology, consider the graphs of f(x) = x2 − 6x + 7 and g(x) = (x − 3)2 − 2 on the
same axes.
We see only one parabola because these are two
different forms of the same function. Indeed, if we
convert g(x) into standard form:

g(x) = (x− 3)2 − 2

g(x) = x2 − 6x+ 9− 2

g(x) = x2 − 6x+ 7

it is clear that f and g are the same function. −6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(3,−2)

x

y

Figure 13.2.7: Graph of f(x) = x2 − 6x+ 7 and
g(x) = (x− 3)2 − 2

The formula given for g is said to be in “vertex form” because it allows us to read the vertex without doing
any calculations. The vertex of the parabola is (3,−2). We can see those numbers in g(x) = (x−3)2−2. The
x-value is the solution to (x− 3) = 0, and the y-value is the constant added at the end.

Here are the graphs of three more functions with formulas in vertex form. Compare each function with
the vertex of its graph.
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−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(2, 1)
x

y

Figure 13.2.8: r(x) = (x− 2)2 + 1

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(−1, 3)

x

y

Figure 13.2.9:
s(x) = −1

4
(x+ 1)2 + 3

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(−3,−3.5)

x

y

Figure 13.2.10:
t(x) = 4(x+ 3)2 − 3.5

Notice that the x-coordinate of the vertex has the opposite sign as the value in the function formula. On the
other hand, the y-coordinate of the vertex has the same sign as the value in the function formula. Let’s look
at an example to understand why. We will evaluate r(2).

r(2) = (2− 2)2 + 1

= 1

The x-value is the solution to (x − 2) = 0, which is positive 2. When we substitute 2 for x we get the value
y = 1. Note that these coordinates create the vertex at (2, 1). Now we can define the vertex form of a
quadratic function.

Fact 13.2.11 Vertex Form of a Quadratic Function. A quadratic function with the vertex at the point (h, k) is
given by f(x) = a(x− h)2 + k.

Checkpoint 13.2.12 Find the vertex of each quadratic function.
a. r(x) = −2(x+ 4)2 + 10

b. s(x) = 5(x− 1)2 + 2

c. t(x) = (x− 10)2 − 5

d. u(x) = 3(x+ 7)2 − 13

Explanation.
a. The vertex of r(x) = −2(x+ 4)2 + 10 is (−4, 10).
b. The vertex of s(x) = 5(x− 1)2 + 2 is (1, 2).
c. The vertex of t(x) = (x− 10)2 − 5 is (10,−5).
d. The vertex of u(x) = 3(x+ 7)2 − 13 is (−7,−13).

Now let’s do the reverse. When given the vertex and the value of a, we can write the function in vertex
form.
Example 13.2.13 Write a formula for the quadratic function f with the given vertex and value of a.

a. Vertex (−2, 8), a = 1

b. Vertex (4,−9), a = −4

c. Vertex (−3,−1), a = 2

d. Vertex (5, 12), a = −3
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Explanation.

a. The vertex form is f(x) = (x+ 2)2 + 8.
b. The vertex form is f(x) = −4(x− 4)2 − 9.

c. The vertex form is f(x) = 2(x+ 3)2 − 1.
d. The vertex form is f(x) = −3(x− 5)2 + 12.

Once we read the vertex we can also state the do-
main and range. All quadratic functions have a do-
main of (−∞,∞) because we can put in any value
to a quadratic function. The range, however, de-
pends on the y-value of the vertex and whether the
parabola opens upward or downward. When we
have a quadratic function in vertex form we can
read the range from the formula. Let’s look at the
graph of f, where f(x) = 2(x− 3)2 − 5, as an exam-
ple.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(3,−5)

x

y

Figure 13.2.14: The graph of f(x) = 2(x− 3)2 − 5

The domain is (−∞,∞). The graph of f opens upward (which we know because a = 2 is positive) so the
vertex is the minimum point. The y-value of −5 is the minimum. The range is [−5,∞).

Example 13.2.15 Identify the domain and range of g, where g(x) = −3(x+ 1)2 + 6.
Explanation.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6(−1, 6)

x

y

Figure 13.2.16: g(x) = −3(x+ 1)2 + 6

The domain is (−∞,∞). The graph of g opens
downward (which we know because a = −3 is
negative) so the vertex is the maximum point. The
y-value of 6 is the maximum. The range is (−∞, 6].
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Checkpoint 13.2.17 Identify the domain and range of each quadratic function.
a. w(x) = −3(x+ 10)2 − 11

The domain is and the range is .

b. u(x) = 4(x− 7)2 + 20

The domain is and the range is .

c. y(x) = −(x− 1)2

The domain is and the range is .

d. z(x) = 3(x+ 9)2 − 4

The domain is and the range is .

Explanation.
a. The domain of w is (−∞,∞). The parabola opens downward so the range is (−∞,−11].
b. The domain of u is (−∞,∞). The parabola opens upward so the range is [20,∞).
c. The domain of y is (−∞,∞). The parabola opens downward so the range is (−∞, 0].
d. The domain of z is (−∞,∞). The parabola opens upward so the range is [−4,∞).

13.2.3 Horizontal and Vertical Shifts

Let f(x) = x2 and g(x) = (x − 4)2 + 1. The graph of y = f(x) has its vertex at the point (0, 0). Now we will
compare this with the graph of y = g(x) on the same axes.

−2 2 4 6

2

4

6

8

10

12

y = f(x)
y = g(x)

(0, 0)

(4, 1)
x

y

Figure 13.2.18: The graph of f and g

Both graphs open upward and have the same
shape. Notice that the graph of g is the same as
the graph of f but is shifted to the right by 4 units
and up by 1 units because its vertex is (4, 1).

Let’s look at another graph. Let h(x) = −x2 and let j(x) = −(x+ 3)2 + 4.
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−6 −4 −2 2

−8

−6

−4

−2

2

4

y = h(x)

y = j(x)

(0, 0)

(−3, 4)

x

y

Figure 13.2.19: The graph of h and j

Both parabolas open downward and have the same
shape. The graph of j is the same as the graph of h
but it has been shifted to the left by 3 units and up
by 4 units making its vertex (−3, 4).

To summarize, when a quadratic function is written in vertex form, the h-value is the horizontal shift of its
graph from the graph of y = ax2 and the k-value is the vertical shift of its graph from the graph of y = ax2.

Example 13.2.20 Identify the horizontal and vertical shifts compared with y = x2.
a. m(x) = (x+ 7)2 + 3

b. n(x) = (x− 1)2 + 6

c. o(x) = (x− 5)2 − 1

d. p(x) = (x+ 3)2 − 11

Explanation.
a. The graph of y = m(x) has vertex at (−7, 3). Therefore the graph is the same as y = x2 shifted to the

left 7 units and up 3 units.
b. The graph of y = n(x) has vertex at (1, 6). Therefore the graph is the same as y = x2 shifted to the

right 1 unit and up 6 units.
c. The graph of y = o(x) has vertex at (5,−1). Therefore the graph is the same as y = x2 shifted to the

right 5 units and down 1 unit.
d. The graph of y = p(x) has vertex at (−3,−11). Therefore the graph is the same as y = x2 shifted to the

left 3 units and down 11 units.

13.2.4 The Factored Form of a Parabola

There is another form of a quadratic function’s formula, called “factored form”, which we will explore next.
Let’s consider the two functions q(x) = −x2+3x+4 and s(x) = −(x−4)(x+1). Using graphing technology,
we will graph y = q(x) and y = s(x) on the same axes.
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These graphs coincide because the functions are ac-
tually the same. We can tell by multiplying out the
formula for g to get back to the formula for f.

g(x) = −(x− 4)(x+ 1)

g(x) = −(x2 − 3x− 4)

g(x) = −x2 + 3x+ 4

Now we can see that f and g are really the same
function.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(4, 0)(−1, 0) x

y

Figure 13.2.21: Graph of q and s

Factored form is very useful because we can read the x-intercepts directly from the function, which in this
case are (4, 0) and (−1, 0). We find these by looking for the values that make the factors equal to 0, so the
x-values have the opposite signs as are shown in the formula. To demonstrate this, we will find the roots
by solving g(x) = 0.

g(x) = −(x− 4)(x+ 1)

0 = −(x− 4)(x+ 1)

x− 4 = 0 or x+ 1 = 0

x = 4 or x = −1

This shows us that the x-intercepts are (4, 0) and (−1, 0).
The x-values of the x-intercepts are also called zeros or roots. The zeros or roots of the function g are

−1 and 4.
Fact 13.2.22 Factored Form of a Quadratic Function. A quadratic function with horizontal intercepts at (r, 0)
and (s, 0) has the formula f(x) = a(x− r)(x− s).

Checkpoint 13.2.23 Write the horizontal intercepts of each function.
a. t(x) = −(x+ 2)(x− 4)

b. u(x) = 6(x− 7)(x− 5)

c. v(x) = −2(x+ 1)(x+ 4)

d. w(x) = 10(x− 8)(x+ 3)

Explanation.
a. The horizontal intercepts of t are (−2, 0) and (4, 0).
b. The horizontal intercepts of u are (7, 0) and (5, 0).
c. The horizontal intercepts of v are (−1, 0) and (−4, 0).
d. The horizontal intercepts of w are (8, 0) and (−3, 0).
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Let’s summarize the three forms of a quadratic function’s formula:
Standard Form f(x) = ax2 + bx+ c, with y-intercept (0, c).
Vertex Form f(x) = a(x− h)2 + k, with vertex (h, k).
Factored Form f(x) = a(x− r)(x− s), with x-intercepts (r, 0) and (s, 0).

13.2.5 Reading Questions
1. With the vertex form of a quadratic function, the formula shows you a point on the graph (without

having to do any calculation). What is the name of that point?
2. With the standard form of a quadratic function, the formula shows you a point on the graph (without

having to do any calculation). What is the name of that point?
3. What makes the vertex form of a quadratic function nicer for graphing compared to standard form?
4. If a fellow student attempted to graph the equation y = (x − 4)2 + 6 and put the vertex at (-4,6), how

would you explain to them that they have made an error?

13.2.6 Exercises

Review and Warmup
1. Multiply the polynomials.

(t+ 7) (t− 4)
2. Multiply the polynomials.

(t+ 4) (t− 10)
3. Multiply the polynomials.

(10t− 5) (t+ 7)

4. Multiply the polynomials.
(7x− 1) (x+ 5)

5. Factor the given
polynomial.
x2 + 7x+ 12

6. Factor the given
polynomial.
y2 + 18y+ 80

7. Factor the given
polynomial.
8y2 + 24y+ 16

8. Factor the given
polynomial.
2r2 + 12r+ 10

9. For the interval expressed
in the number line, write
it using set-builder
notation and interval
notation.

10. For the interval expressed
in the number line, write
it using set-builder
notation and interval
notation.

11. For the interval expressed
in the number line, write
it using set-builder
notation and interval
notation.

12. For the interval expressed
in the number line, write
it using set-builder
notation and interval
notation.
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Technology and Tables
13. Let f(x) = x2 + x− 1. Use

technology to make a
table of values f.

x f(x)

14. Let g(x) = x2 − 3x− 3.
Use technology to make a
table of values g.

x g(x)

15. Let h(x) = −x2 + 3x− 1.
Use technology to make a
table of values h.

x h(x)

16. Let F(x) = −x2 + 4x− 3.
Use technology to make a
table of values F.

x F(x)

17. Let F(x) = −2x2 + 5x+ 1.
Use technology to make a
table of values F.

x F(x)

18. Let G(x) = 3x2 − 5x− 4.
Use technology to make a
table of values G.

x G(x)

19. Let
H(x) = −2x2 − 4x+ 30.
Use technology to make a
table of values H.

x H(x)

20. Let K(x) = 3x2 − 8x+ 53.
Use technology to make a
table of values K.

x K(x)

Technology and Graphs
21. Use technology to make a graph of f where

f(x) = x2 + 3x− 2.
22. Use technology to make a graph of f where

f(x) = x2 − 2x− 1.
23. Use technology to make a graph of f where

f(x) = −x2 + 3x+ 2.
24. Use technology to make a graph of f where

f(x) = −x2 + x+ 2.
25. Use technology to make a graph of f where

f(x) = 3x2 − 6x− 5.
26. Use technology to make a graph of f where

f(x) = −3x2 − 8x+ 3.
27. Use technology to make a graph of f where

f(x) = −3x2 + 4x+ 49.
28. Use technology to make a graph of f where

f(x) = 2x2 − 2x+ 41.
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Technology and Features of Quadratic Function Graphs Use technology to find features of a quadratic
function and its graph.

29. Let K(x) = x2 − 4x+ 2. Use technology to
find the following.

a. The vertex is .

b. The y-intercept is .
c. The x-intercept(s) is/are

.

d. The domain of K is .

e. The range of K is .

f. Calculate K(1). .

g. Solve K(x) = 2.

h. Solve K(x) ≥ 2.

30. Let f(x) = −x2 − x− 1. Use technology to
find the following.

a. The vertex is .

b. The y-intercept is .
c. The x-intercept(s) is/are

.

d. The domain of f is .

e. The range of f is .

f. Calculate f(1). .

g. Solve f(x) = −3.

h. Solve f(x) ≥ −3.
31. Let g(x) = 1.1x2 − 2.1x+ 4.2. Use

technology to find the following.
a. The vertex is .

b. The y-intercept is .
c. The x-intercept(s) is/are

.

d. The domain of g is .

e. The range of g is .

f. Calculate g(2). .

g. Solve g(x) = 5.

h. Solve g(x) > 5.

32. Let h(x) = 1.1x2 − 2.8x+ 3.7. Use
technology to find the following.

a. The vertex is .

b. The y-intercept is .
c. The x-intercept(s) is/are

.

d. The domain of h is .

e. The range of h is .

f. Calculate h(5). .

g. Solve h(x) = 3.

h. Solve h(x) ≤ 3.
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33. Let F(x) = x2

3
+ 2.3x+ 0.9. Use technology

to find the following.
a. The vertex is .

b. The y-intercept is .
c. The x-intercept(s) is/are

.

d. The domain of F is .

e. The range of F is .

f. Calculate F(−3). .

g. Solve F(x) = −1.

h. Solve F(x) < −1.

34. Let F(x) = x2

4
+ 2.2x+ 3.2. Use technology

to find the following.
a. The vertex is .

b. The y-intercept is .
c. The x-intercept(s) is/are

.

d. The domain of F is .

e. The range of F is .

f. Calculate F(1). .

g. Solve F(x) = 7.

h. Solve F(x) ≤ 7.

Applications
35. An object was launched from the top of a hill with an upward vertical velocity of 150 feet per

second. The height of the object can be modeled by the function h(t) = −16t2 + 150t+ 250, where
t represents the number of seconds after the launch. Assume the object landed on the ground at
sea level. Find the answer using graphing technology.

The object’s height was when it was launched.
36. An object was launched from the top of a hill with an upward vertical velocity of 170 feet per

second. The height of the object can be modeled by the function h(t) = −16t2 + 170t+ 150, where
t represents the number of seconds after the launch. Assume the object landed on the ground at
sea level. Find the answer using graphing technology.

Use a table to list the object’s height within the first second after it was launched, at an increment
of 0.1 second. Fill in the blanks. Round your answers to two decimal places when needed.

Time in Seconds Height in Feet
0.1

0.2

0.3

37. An object was launched from the top of a hill with an upward vertical velocity of 190 feet per
second. The height of the object can be modeled by the function h(t) = −16t2 + 190t+ 300, where
t represents the number of seconds after the launch. Assume the object landed on the ground at
sea level. Use technology to find the answer.

The object was feet in the air 5 seconds after it was launched.
38. An object was launched from the top of a hill with an upward vertical velocity of 200 feet per

second. The height of the object can be modeled by the function h(t) = −16t2 + 200t+ 200, where
t represents the number of seconds after the launch. Assume the object landed on the ground at
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sea level. Find the answer using technology.
seconds after its launch, the object reached its maximum height of

feet.
39. An object was launched from the top of a hill with an upward vertical velocity of 60 feet per sec-

ond. The height of the object can be modeled by the function h(t) = −16t2 + 60t+ 150, where t

represents the number of seconds after the launch. Assume the object landed on the ground at sea
level. Find the answer using technology.

seconds after its launch, the object fell to the ground at sea level.
40. An object was launched from the top of a hill with an upward vertical velocity of 80 feet per sec-

ond. The height of the object can be modeled by the function h(t) = −16t2 + 80t+ 300, where t

represents the number of seconds after the launch. Assume the object landed on the ground at sea
level. Find the answer using technology. Round your answers to two decimal places. If there is
more than one answer, use a comma to separate them.

The object was 359 feet high at the following number of seconds after it was launched: .
41. In a race, a car drove through the starting line at the speed of 7 meters per second. It was acceler-

ating at 2.3 meters per second squared. Its distance from the starting position can be modeled by
the function d(t) = 1.15t2 + 7t. Find the answer using technology.

After seconds, the car was 63.75 meters away from the starting position.
42. In a race, a car drove through the starting line at the speed of 4 meters per second. It was acceler-

ating at 2.7 meters per second squared. Its distance from the starting position can be modeled by
the function d(t) = 1.35t2 + 4t. Find the answer using technology.

After seconds, the car was 242.4 meters away from the starting position.
43. A farmer purchased 520 meters of fencing, and will build a rectangular pen with it. To enclose

the largest possible area, what should the pen’s length and width be? Model the pen’s area with a
function, and then find its maximum value.

Use a comma to separate your answers.
To enclose the largest possible area, the pen’s length and width should be

meters.
44. A farmer purchased 310 meters of fencing, and will build a rectangular pen along a river. This

implies the pen has only 3 fenced sides. To enclose the largest possible area, what should the pen’s
length and width be? Model the pen’s area with a function, and then find its maximum value.

To enclose the largest possible area, the pen’s length and width should be
meters.

Quadratic Functions in Vertex Form
45. Find the vertex of the

graph of
y = 5(x+ 7)

2
+ 4.

46. Find the vertex of the
graph of
y = 8(x− 7)

2
− 8.

47. Find the vertex of the
graph of
y = 10(x+ 1)

2
+ 4.

48. Find the vertex of the
graph of
y = −9(x+ 8)

2
+ 9.

49. Find the vertex of the
graph of
y = −5.9(x− 5.4)

2
− 2.9.

50. Find the vertex of the
graph of
y = −3.7(x+ 1.5)

2
+ 5.5.
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A graph of a function f is given. Use the graph to write a formula for f in vertex form. You will need to
identify the vertex and also one more point on the graph to find the leading coefficient a.

51.

f(x)

52.

f(x)

53.

f(x)

54.

f(x)

55.

f(x)

56.

f(x)

57. Write the vertex form for the quadratic
function f, whose vertex is (9, 4) and has
leading coefficient a = −8.

58. Write the vertex form for the quadratic
function f, whose vertex is (3,−7) and has
leading coefficient a = −6.

59. Write the vertex form for the quadratic
function f, whose vertex is (−4,−2) and has
leading coefficient a = −4.

60. Write the vertex form for the quadratic
function f, whose vertex is (8,−7) and has
leading coefficient a = −1.

61. Let F be defined by F(x) = (x− 2)
2
− 3.

a. What is the domain of F?
b. What is the range of F?

62. Let G be defined by G(x) = (x+ 5)
2
+ 5.

a. What is the domain of G?
b. What is the range of G?

63. Let H be defined by H(x) = 9.1(x+ 6)
2
− 4.

a. What is the domain of H?
b. What is the range of H?

64. Let K be defined by K(x) = 5.5(x− 2)
2
+ 9.

a. What is the domain of K?
b. What is the range of K?
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65. Let K be defined by K(x) = −6(x+ 9)
2
+ 4.

a. What is the domain of K?
b. What is the range of K?

66. Let f be defined by f(x) = 7(x+ 1)
2
− 1.

a. What is the domain of f?
b. What is the range of f?

67. Let g be defined by g(x) = 6
(
x− 3

4

)2
+ 1.

a. What is the domain of g?
b. What is the range of g?

68. Let h be defined by h(x) = −3
(
x+ 7

9

)2
− 4

5
.

a. What is the domain of h?
b. What is the range of h?

69. Let h be defined by h(x) = 8
(
x+ 2

9

)2
+ 2.

a. What is the domain of h?
b. What is the range of h?

70. Let F be defined by
F(x) = −5

(
x− 1

3

)2
+ (−4).

a. What is the domain of F?
b. What is the range of F?

71. Consider the graph of the equation y = (x− 3)
2
− 7. Compared to the graph of y = x2, the vertex

has been shifted units (□ left □ right) and units (□ down □ up) .

72. Consider the graph of the equation y = (x− 8)
2
+ 5. Compared to the graph of y = x2, the vertex

has been shifted units (□ left □ right) and units (□ down □ up) .

73. Consider the graph of the equation y = (x− 71.6)
2
− 14.5. Compared to the graph of y = x2, the

vertex has been shifted units (□ left □ right) and units (□ down □ up) .

74. Consider the graph of the equation y = (x− 93.5)
2
− 83.4. Compared to the graph of y = x2, the

vertex has been shifted units (□ left □ right) and units (□ down □ up) .

75. Consider the graph of the equation y =
(
x− 9

5

)2
+ 3

2
. Compared to the graph of y = x2, the vertex

has been shifted units (□ left □ right) and units (□ down □ up) .

76. Consider the graph of the equation y =
(
x− 2

3

)2
+ 9

8
. Compared to the graph of y = x2, the vertex

has been shifted units (□ left □ right) and units (□ down □ up) .

Three Forms of Quadratic Functions
77. The quadratic expression (x− 2)

2
− 1 is

written in vertex form.
a. Write the expression in standard form.
b. Write the expression in factored form.

78. The quadratic expression (x− 3)
2
− 25 is

written in vertex form.
a. Write the expression in standard form.
b. Write the expression in factored form.

79. The quadratic expression (x− 4)
2
− 81 is

written in vertex form.
a. Write the expression in standard form.
b. Write the expression in factored form.

80. The quadratic expression (x− 1)
2
− 36 is

written in vertex form.
a. Write the expression in standard form.
b. Write the expression in factored form.
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Factored Form and Intercepts
81. The formula for a quadratic function G is

G(x) = (x− 5)(x− 3).
a. The y-intercept is .

b. The x-intercept(s) is/are .

82. The formula for a quadratic function f is
f(x) = (x− 7)(x+ 4).

a. The y-intercept is .

b. The x-intercept(s) is/are .
83. The formula for a quadratic function H is

H(x) = 9(x− 9)(x− 1).
a. The y-intercept is .

b. The x-intercept(s) is/are .

84. The formula for a quadratic function F is
F(x) = −8(x− 2)(x− 9).

a. The y-intercept is .

b. The x-intercept(s) is/are .
85. The formula for a quadratic function h is

h(x) = −6x(x+ 5).
a. The y-intercept is .

b. The x-intercept(s) is/are .

86. The formula for a quadratic function H is
H(x) = −4(x− 8) x.

a. The y-intercept is .

b. The x-intercept(s) is/are .
87. The formula for a quadratic function g is

g(x) = −2(x− 1)(x− 1).
a. The y-intercept is .
b. The x-intercept(s) is/are .

88. The formula for a quadratic function h is
h(x) = −5(x− 2)(x− 2).

a. The y-intercept is .

b. The x-intercept(s) is/are .
89. The formula for a quadratic function g is

g(x) = 3(8x+ 9)(2x− 5).
a. The y-intercept is .

b. The x-intercept(s) is/are .

90. The formula for a quadratic function G is
G(x) = 5(6x+ 1)(8x− 5).

a. The y-intercept is .

b. The x-intercept(s) is/are .
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13.3 Completing the Square
In this section, we will learn how to “complete the square” with a quadratic expression. This topic is useful
for solving quadratic equations and putting quadratic functions in vertex form.

13.3.1 Solving Quadratic Equations by Completing the Square
When we have an equation like (x+ 5)2 = 4, we can solve it quickly using the square root property:

(x+ 5)2 = 4

x+ 5 = −2 or x+ 5 = 2

x = −7 or x = −3

The method of completing the square allows us to solve any quadratic equation using the square root prop-
erty.

Suppose you have a small quadratic expression in the form x2+bx. It can be visualized as an “L”-shape
as in Figure 13.3.2.

x

x x2

b
2

xb
2
x

b
2

x

b
2
x

Together, x2 + bx

What is missing to
“complete the square”?

Figure 13.3.2

The “missing” square in the upper right corner of Figure 13.3.2 is b
2

on each side, so its area is (b
2

)2. This
means that if we have x2 + bx and add (b

2

)2, we are “completing” the larger square.

Fact 13.3.3 The Term that Completes the Square. For a polynomial x2 + bx, the constant term needed to make a
perfect square trinomial is (b

2

)2.
Process 13.3.4 Completing the Square. For a quadratic equation simplified to the form x2 + bx = c, to solve for
x by completing the square,

1. Use Fact 13.3.3 to find the number to add to both sides of the equation to make the left hand side a perfect square.
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This number is always (b
2

)2.
2. Add that number to both sides of x2 + bx = c to get

x2 + bx+

(
b

2

)2

= c+

(
b

2

)2

3. The left hand side is now a perfect square that factors as x2 + bx+
(
b
2

)2
=
(
x+ b

2

)2, so the equation becomes(
x+

b

2

)2

= c+

(
b

2

)2

4. Solve remaining equation using the Square Root Property.

Example 13.3.5 Solve the quadratic equation x2 + 6x = 16 by completing the square.
Explanation. To solve the quadratic equation x2 + 6x = 16, on the left side we can complete the square by
adding (b

2

)2; note that b = 6 in this case, which makes (b
2

)2
=
(
6
2

)2
= 32 = 9. We add it to both sides to

maintain equality.

x2 + 6x+ 9 = 16+ 9

x2 + 6x+ 9 = 25

(x+ 3)2 = 25

Now that we have completed the square, we can solve the equation using the square root property.

x+ 3 = −5 or x+ 3 = 5

x = −8 or x = 2

The solution set is {−8, 2}.
Now let’s see the process for completing the square when the quadratic equation is given in standard form.
Example 13.3.6 Solve x2 − 14x+ 11 = 0 by completing the square.
Explanation. We see that the polynomial on the left side is not a perfect square trinomial, so we need to
complete the square. We subtract 11 from both sides so we can add the missing term on the left.

x2 − 14x+ 11 = 0

x2 − 14x = −11

Next comes the completing-the-square step. We need to add the correct number to both sides of the equation
to make the left side a perfect square. Remember that Fact 13.3.3 states that we need to use (b

2

)2 for this. In
our case, b = −14, so (b

2

)2
=
(
−14
2

)2
= 49

x2 − 14x+ 49 = −11+ 49

(x− 7)2 = 38

x− 7 = −
√
38 or x− 7 =

√
38
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x = 7−
√
38 or x = 7+

√
38

The solution set is {7−
√
38, 7+

√
38}.

Checkpoint 13.3.7 Complete the square to solve for y in y2 − 20y− 21 = 0.
Explanation. To complete the square, first move the constant term to the right side of the equation. Then
use Fact 13.3.3 to find (b

2

)2 to add to both sides.

y2 − 20y− 21 = 0

y2 − 20y = 21

In our case, b = −20, so (b
2

)2
=
(
−20
2

)2
= 100

y2 − 20y+ 100 = 21+ 100

(y− 10)2 = 121

y− 10 = −11 or y− 10 = 11

y = −1 or y = 21

The solution set is {−1, 21}.
So far, the value of b has been even each time, which makes b

2
a whole number. When b is odd, we end up

adding a fraction to both sides. Here is an example.
Example 13.3.8 Complete the square to solve for z in z2 − 3z− 10 = 0.
Explanation. First move the constant term to the right side of the equation:

z2 − 3z− 10 = 0

z2 − 3z = 10

Next, to complete the square, we need to find the right number to add to both sides. According to Fact 13.3.3,
we need to divide the value of b by 2 and then square the result to find the right number. First, divide by 2:

b

2
=

−3

2
= −

3

2
(13.3.1)

and then we square that result: (
−
3

2

)2

=
9

4
(13.3.2)

Now we can add the 9
4

from Equation (13.3.2) to both sides of the equation to complete the square.

z2 − 3z+
9

4
= 10+

9

4

Now, to factor the seemingly complicated expression on the left, just know that it should always factor using
the number from the first step in the completing the square process, Equation (13.3.1).(

z−
3

2

)2

=
49

4
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z−
3

2
= −

7

2
or z−

3

2
=

7

2

z =
3

2
−

7

2
or z =

3

2
+

7

2

z = −
4

2
or z =

10

2

z = −2 or z = 5

The solution set is {−2, 5}.
In each of the previous examples, the value of a was equal to 1. This is necessary for our missing term
formula to work. When a is not equal to 1 we will divide both sides by a. Let’s look at an example of that.
Example 13.3.9 Solve for r in 2r2 + 2r = 3 by completing the square.
Explanation. Because there is a leading coefficient of 2, we divide both sides by 2.

2r2 + 2r = 3

2r2

2
+

2r

2
=

3

2

r2 + r =
3

2

Next, we complete the square. Since b = 1, first,
b

2
=

1

2
(13.3.3)

and next, squaring that, we have (
1

2

)2

=
1

4
. (13.3.4)

So we add 1
4

from Equation (13.3.4) to both sides of the equation:

r2 + r+
1

4
=

3

2
+

1

4

r2 + r+
1

4
=

6

4
+

1

4

Here, remember that we always factor with the number found in the first step of completing the square,
Equation (13.3.3). (

r+
1

2

)2

=
7

4

r+
1

2
= −

√
7

2
or r+

1

2
=

√
7

2

r = −
1

2
−

√
7

2
or r = −

1

2
+

√
7

2

r =
−1−

√
7

2
or r =

−1+
√
7

2

The solution set is
{

−1−
√
7

2
, −1+

√
7

2

}
.
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13.3.2 Deriving the Quadratic Formula by Completing the Square
In Section 7.2, we learned the Quadratic Formula. You may have wondered where the formula comes from,
and now that we know how to complete the square, we can derive it. We will solve the standard form
equation ax2 + bx+ c = 0 for x.

First, we subtract c from both sides and divide both sides by a.

ax2 + bx+ c = 0

ax2 + bx = − c

ax2

a
+

bx

a
= −

c

a

x2 +
b

a
x = −

c

a

Next, we complete the square by taking half of the middle coefficient and squaring it. First,
b
a

2
=

b

2a
(13.3.5)

and then squaring that we have (
b

2a

)2

=
b2

4a2
(13.3.6)

We add the b2

4a2 from Equation (13.3.6) to both sides of the equation:

x2 +
b

a
x+

b2

4a2
= +

b2

4a2
−

c

a

Remember that the left side always factors with the value we found in Equation (13.3.5). So we have:(
x+

b

2a

)2

=
b2

4a2
−

c

a

To find a common denominator on the right, we multiply by 4a in the numerator and denominator on the
second term. (

x+
b

2a

)2

=
b2

4a2
−

c

a
· 4a
4a(

x+
b

2a

)2

=
b2

4a2
−

4ac

4a2(
x+

b

2a

)2

=
b2 − 4ac

4a2

Now that we have completed the square, we can see that the x-value of the vertex is − b
2a

. That is the
vertex formula. Next, we solve the equation using the square root property to find the Quadratic Formula.

x+
b

2a
= ±

√
b2 − 4ac

4a2
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x+
b

2a
= ±

√
b2 − 4ac

2a

x = −
b

2a
±

√
b2 − 4ac

2a

x =
−b±

√
b2 − 4ac

2a

This shows us that the solutions to the equation ax2 + bx+ c = 0 are −b±
√
b2−4ac
2a

.

13.3.3 Putting Quadratic Functions in Vertex Form

In Section 13.2, we learned about the vertex form of a parabola, which allows us to quickly read the coor-
dinates of the vertex. We can now use the method of completing the square to put a quadratic function in
vertex form. Completing the square with a function is a little different than with an equation so we will
start with an example.

Example 13.3.10 Write a formula in vertex form for the function q defined by q(x) = x2 + 8x

Explanation. The formula is in the form x2 + bx, so we need to add (b
2

)2 to complete the square by
Fact 13.3.3. When we had an equation, we could add the same quantity to both sides. But now we do
not wish to change the left side, since we are trying to end up with a formula that still says q(x) = . . ..
Instead, we add and subtract the term from the right side in order to maintain equality. In this case,(

b

2

)2

=

(
8

2

)2

= 42

= 16

To maintain equality, we both add and subtract 16 on the same side of the equation. It is functionally the
same as adding 0 on the right, but the 16 makes it possible to factor the expression in a particular way:

q(x) = x2 + 8x+ 16− 16

=
(
x2 + 8x+ 16

)
− 16

= (x+ 4)2 − 16
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Now that we have completed the square, our func-
tion is in vertex form. The vertex is (−4,−16). One
way to verify that our work is correct is to graph
the original version of the function and check that
the vertex is where it should be.

−8 −6 −4 −2

−15

−10

−5

5

10

15

y = q(x)

(−4,−16)

x

y

Figure 13.3.11: Graph of y = x2 + 8x

Let’s look at a function that has a constant term and see how to complete the square.
Example 13.3.12 Write a formula in vertex form for the function f defined by f(x) = x2 − 12x+ 3

Explanation. To complete the square, we need to add and subtract (−12
2

)2
= (−6)2 = 36 on the right side.

f(x) = x2 − 12x+ 36− 36+ 3

=
(
x2 − 12x+ 36

)
− 36+ 3

= (x− 6)2 − 33

The vertex is (6,−33).
In the first two examples, a was equal to 1. When a is not equal to one, we have an additional step. Since
we are working with an expression where we intend to preserve the left side as f(x) = . . ., we cannot divide
both sides by a. Instead we factor a out of the first two terms. Let’s look at an example of that.
Example 13.3.13 Write a formula in vertex form for the function g defined by g(x) = 5x2 + 20x+ 25

Explanation. Before we can complete the square, we factor the 5 out of the first two terms.

g(x) = 5
(
x2 + 4x

)
+ 25

Now we complete the square inside the parentheses by adding and subtracting (4
2

)2
= 22 = 4.

g(x) = 5
(
x2 + 4x+ 4− 4

)
+ 25

Notice that the constant that we subtracted is inside the parentheses, but it will not be part of our perfect
square trinomial. In order to bring it outside, we need to multiply it by 5. We are distributing the 5 to that
term so we can combine it with the outside term.

g(x) = 5
((
x2 + 4x+ 4

)
− 4
)
+ 25

= 5
(
x2 + 4x+ 4

)
− 5 · 4+ 25
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= 5 (x+ 2)
2
− 20+ 25

= 5 (x+ 2)
2
+ 5

The vertex is (−2, 5).

Here is an example that includes fractions.

Example 13.3.14 Write a formula in vertex form for the function h defined by h(x) = −3x2 − 4x− 7
4

Explanation. First, we factor the leading coefficient out of the first two terms.

h(x) = −3x2 − 4x−
7

4

= −3

(
x2 +

4

3
x

)
−

7

4

Next, we complete the square for x2 + 4
3
x inside the grouping symbols by adding and subtracting the right

number. To find that number, we divide the value of b by two and square the result. That looks like:

b

2
=

4
3

2
=

4

3
· 1
2
=

2

3
(13.3.7)

and then, (
2

3

)2

=
22

32
=

4

9
(13.3.8)

Adding and subtracting the value from Equation (13.3.8), we have:

h(x) = −3

(
x2 +

4

3
x+

4

9
−

4

9

)
−

7

4

= −3

((
x2 +

4

3
x+

4

9

)
−

4

9

)
−

7

4

= −3

(
x2 +

4

3
x+

4

9

)
−

(
3 ·−4

9

)
−

7

4

Remember that when completing the square, the expression should always factor with the number found
in the first step of the completing-the-square process, Equation (13.3.7).

= −3

(
x+

2

3

)2

+
4

3
−

7

4

= −3

(
x+

2

3

)2

+
16

12
−

21

12

= −3

(
x+

2

3

)2

−
5

12

The vertex is (−2
3
,− 5

12

).
Completing the square can also be used to find a minimum or maximum in an application.
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Example 13.3.15 In Example 5.4.16, we learned that artist Tyrone’s annual income from paintings can be
modeled by I(x) = −100x2+1000x+20000, where x is the number of times he will raise the price per painting
by $20.00. To maximize his income, how should Tyrone set his price per painting? Find the maximum by
completing the square.
Explanation. To find the maximum is essentially the same as finding the vertex, which we can find by
completing the square. To complete the square for I(x) = −100x2 + 1000x+ 20000, we start by factoring out
the −100 from the first two terms:

I(x) = −100x2 + 1000x+ 20000

= −100
(
x2 − 10x

)
+ 20000

Next, we complete the square for x2 − 10x by adding and subtracting (−10
2

)2
= (−5)2 = 25.

I(x) = −100
(
x2 − 10x+ 25− 25

)
+ 20000

= −100
((
x2 − 10x+ 25

)
− 25

)
+ 20000

= −100
(
x2 − 10x+ 25

)
− (100 ·−25) + 20000

= −100(x− 5)2 + 2500+ 20000

= −100(x− 5)2 + 22500

The vertex is the point (5, 22500). This implies Tyrone should raise the price per painting 5 times, which
is 5 · 20 = 100 dollars. He would sell 100 − 5(5) = 75 paintings. This would make the price per painting
200+ 100 = 300 dollars, and his annual income from paintings would become $22,500 by this model.

13.3.4 Graphing Quadratic Functions by Hand
Now that we know how to put a quadratic function in vertex form, let’s review how to graph a parabola by
hand.
Example 13.3.16 Graph the function h defined by h(x) = 2x2 + 4x − 6 by determining its key features
algebraically.
Explanation. To start, we’ll note that this function opens upward because the leading coefficient, 2, is
positive.

Now we may complete the square to find the vertex. We factor the 2 out of the first two terms, and then
add and subtract (2

2

)2
= 12 = 1 on the right side.

h(x) = 2
(
x2 + 2x

)
− 6

= 2
[
x2 + 2x+ 1− 1

]
− 6

= 2
[(
x2 + 2x+ 1

)
− 1
]
− 6

= 2
(
x2 + 2x+ 1

)
− (2 · 1) − 6

= 2 (x+ 1)
2
− 2− 6

= 2 (x+ 1)
2
− 8

The vertex is (−1,−8) so the axis of symmetry is the line x = −1.
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To find the y-intercept, we’ll replace x with 0 or read the value of c from the function in standard form:

h(0) = 2(0)2 + 2(0) − 6

= −6

The y-intercept is (0,−6) and we can find its symmetric point on the graph, which is (−2,−6).
Next, we’ll find the horizontal intercepts. We see this function factors so we write the factored form to

get the horizontal intercepts.

h(x) = 2x2 + 4x− 6

= 2
(
x2 + 2x− 3

)
= 2(x− 1)(x+ 3)

The x-intercepts are (1, 0) and (−3, 0).
Now we plot all of the key points and draw the parabola.

−5 −4 −3 −2 −1 1 2 3

−8

−6

−4

−2

2

4

6

8

(−3, 0)

(−2,−6)

(1, 0)

(0,−6)

(−1,−8)

y = h(x)

x

y

Figure 13.3.17: The graph of y = 2x2 + 4x− 6.

Example 13.3.18 Write a formula in vertex form for the function p defined by p(x) = −x2 − 4x− 1, and find
the graph’s key features algebraically. Then sketch the graph.
Explanation. In this function, the leading coefficient is negative so it will open downward. To complete
the square we first factor −1 out of the first two terms.

p(x) = −x2 − 4x− 1

= −
(
x2 + 4x

)
− 1

Now, we add and subtract the correct number on the right side of the function: (b
2

)2
=
(
4
2

)2
= 22 = 4.

p(x) = −
(
x2 + 4x+ 4− 4

)
− 1

= −
((
x2 + 4x+ 4

)
− 4
)
− 1
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= −
(
x2 + 4x+ 4

)
− (−4) − 1

= −(x+ 2)
2
+ 4− 1

= −(x+ 2)
2
+ 3

The vertex is (−2, 3) so the axis of symmetry is the line x = −2.
We find the y-intercept by looking at the value of c, which is −1. So, the y-intercept is (0,−1) and we

can find its symmetric point on the graph, (−4,−1).
The original expression, −x2 − 4x− 1, does not factor so to find the x-intercepts we need to set p(x) = 0

and complete the square or use the quadratic formula. Since we just went through the process of completing
the square above, we can use that result to save several repetitive steps.

p(x) = 0

−(x+ 2)
2
+ 3 = 0

−(x+ 2)2 = −3

(x+ 2)2 = 3

x+ 2 = −
√
3 or x+ 2 =

√
3

x = −2−
√
3 or x = −2+

√
3

x ≈ −3.73 or x ≈ −0.268

The x-intercepts are approximately (−3.7, 0) and (−0.3, 0). Now we can plot all of the points and draw the
parabola.

−6 −4 −2 2 4

−6

−4

−2

2

4

(−4,−1) (0,−1)

(−2, 3)

(−3.7, 0) (−0.3, 0)

y = p(x)

x

y

Figure 13.3.19: The graph of y = −x2 − 4x− 1.
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13.3.5 Reading Questions
1. For the expression y = x2 + 10x− 9, explain in words what is the next step to complete the square.
2. Why is completing the square called completing the square?
3. How can you check that they completed the square correctly?

13.3.6 Exercises

Review and Warmup
1. Use a square root to solve (t+ 6)

2
= 16. 2. Use a square root to solve (x− 1)

2
= 49.

3. Use a square root to solve (3x− 7)
2
= 49. 4. Use a square root to solve (8y+ 1)

2
= 25.

5. Use a square root to solve (y− 1)
2
= 19. 6. Use a square root to solve (r− 8)

2
= 7.

7. Use a square root to solve r2 + 8r+ 16 = 64. 8. Use a square root to solve r2 − 4r+ 4 = 9.
9. Use a square root to solve 4t2 + 8t+ 4 = 4. 10. Use a square root to solve

49t2 − 126t+ 81 = 49.
11. Use a square root to solve

16x2 − 8x+ 1 = 10.
12. Use a square root to solve

81x2 + 126x+ 49 = 5.

Completing the Square to Solve Equations Solve the equation by completing the square.
13. y2 − 6y = 16 14. y2 − 4y = −3 15. r2 − 5r = −6

16. r2 − 3r = −2 17. r2 + 6r = −2 18. t2 + 10t = 3

19. t2 − 6t+ 5 = 0 20. x2 − 10x+ 9 = 0 21. x2 − 9x+ 14 = 0

22. y2 + 9y+ 8 = 0 23. y2 − 8y− 1 = 0 24. r2 + 8r+ 8 = 0

25. 12r2 − 44r+ 35 = 0 26. 3r2 − 2r− 1 = 0 27. 2t2 + 5t− 4 = 0

28. 2t2 − 2t− 5 = 0

Converting to Vertex Form
29. Consider f(x) = x2 + 8x− 1.

a. Give the formula for f in vertex form.
b. What is the vertex of the parabola

graph of f?

30. Consider g(r) = r2 − 2r− 3.
a. Give the formula for g in vertex form.
b. What is the vertex of the parabola

graph of g?
31. Consider h(y) = y2 + 5y+ 5.

a. Give the formula for h in vertex form.
b. What is the vertex of the parabola

graph of h?

32. Consider h(x) = x2 − 5x+ 2.
a. Give the formula for h in vertex form.
b. What is the vertex of the parabola

graph of h?
33. Consider F(r) = 6r2 − 12r− 2.

a. Give the formula for F in vertex form.
b. What is the vertex of the parabola

graph of F?

34. Consider G(y) = 2y2 − 16y− 2.
a. Give the formula for G in vertex form.
b. What is the vertex of the parabola

graph of G?
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Domain and Range Complete the square to convert the quadratic function from standard form to vertex
form, and use the result to find the function’s domain and range.

35. f(x) = x2 − 10x+ 15 36. f(x) = x2 − 14x+ 52

37. f(x) = −x2 + 18x− 85 38. f(x) = −x2 − 18x− 71

39. f(x) = 2x2 + 28x+ 100 40. f(x) = 4x2 + 40x+ 95

41. f(x) = −5x2 − 20x− 11 42. f(x) = −5x2 + 10x− 8

Sketching Graphs of Quadratic Functions Graph each function by algebraically determining its key fea-
tures. Then state the domain and range of the function.

43. f(x) = x2 − 7x+ 12 44. f(x) = x2 + 5x− 14 45. f(x) = −x2 − x+ 20

46. f(x) = −x2 + 4x+ 21 47. f(x) = x2 − 8x+ 16 48. f(x) = x2 + 6x+ 9

49. f(x) = x2 − 4 50. f(x) = x2 − 9 51. f(x) = x2 + 6x

52. f(x) = x2 − 8x 53. f(x) = −x2 + 5x 54. f(x) = −x2 + 16

55. f(x) = x2 + 4x+ 7 56. f(x) = x2 − 2x+ 6 57. f(x) = x2 + 2x− 5

58. f(x) = x2 − 6x+ 2 59. f(x) = −x2 + 4x− 1 60. f(x) = −x2 − x+ 3

61. f(x) = 2x2 − 4x− 30 62. f(x) = 3x2 + 21x+ 36

Information from Vertex Form
63. Find the minimum value of the function

f(x) = 7x2 − 6x+ 6

64. Find the minimum value of the function

f(x) = 8x2 + 8x− 6

65. Find the maximum value of the function

f(x) = x− 9x2 + 3

66. Find the maximum value of the function

f(x) = −
(
10x2 + 7x+ 10

)
67. Find the range of the function

f(x) = 7x− x2 − 1

68. Find the range of the function

f(x) = 8− 2x2

69. Find the range of the function

f(x) = 3x2 − 8x− 4

70. Find the range of the function

f(x) = 4x2 + 6x+ 4

71. If a ball is throw straight up with a speed of
60

ft
s , its height at time t (in seconds) is

given by

h(t) = −8t2 + 60t+ 2

Find the maximum height the ball reaches.

72. If a ball is throw straight up with a speed of
62

ft
s , its height at time t (in seconds) is

given by

h(t) = −8t2 + 62t+ 2

Find the maximum height the ball reaches.

Challenge
73. Let f(x) = x2 + bx + c. Let b and c be real numbers. Complete the square to find the vertex of

f(x) = x2 + bx+ c. Write f(x) in vertex form and then state the vertex.
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13.4 Absolute Value Equations

Whether it’s a washer, nut, bolt, or gear, when a machine part is made, it must be made to fit with all of
the other parts of the system. Since no manufacturing process is perfect, there are small deviations from the
norm when each piece is made. In fact, manufacturers have a range of acceptable values for each measure-
ment of every screw, bolt, etc.

Let’s say we were examining some new bolts just out of the factory. The manufacturer specifies that each
bolt should be within a tolerance of 0.04 mm to 10 mm in diameter. So the lowest diameter that the bolt could
be to make it through quality assurance is 0.04 mm smaller than 10 mm, which is 9.96 mm. Similarly, the
largest diameter that the bolt could be is 0.04 mm larger than 10 mm, which is 10.04 mm.

To write an equation that describes the minimum and maximum deviation from average, we want the
difference between the actual diameter and the specification to be equal to 0.04 mm. Since absolute values
are used to describe distances, we can summarize our thoughts mathematically as |x− 10| = 0.04, where
x represents the diameter of an acceptably sized bolt, in millimeters. This equation says the same thing as
the lowest diameter that the bolt could be to make it through quality assurance is 9.96 mm and the largest
diameter that the bolt could be is 10.04 mm.

In this section we will examine a variety of problems that relate to this sort of math with absolute values.

13.4.1 Graphs of Absolute Value Functions

Absolute value functions have generally the same shape. They are usually described as “V”-shaped graphs
and the tip of the “V” is called the vertex. A few graphs of various absolute value functions are shown in
Figure 13.4.2. In general, the domain of an absolute value function (where there is a polynomial inside the
absolute value) is (−∞,∞).
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(a) y = |x|
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(b) y = − |x + 2|
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−2

2
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6
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y

(c) y = |x − 4| − 5

Figure 13.4.2

Example 13.4.3 Let h(x) = −2 |x− 3| + 5. Using technology, create table of values with x-values from −3 to
3, using an increment of 1. Then sketch a graph of y = h(x). State the domain and range of h.
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Explanation.
x y

−3 −7

−2 −5

−1 −3

0 −1

1 1

2 3

3 5

Figure 13.4.4: Table for y = h(x).
−6 −4 −2 2 4 6

−6
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−2

2

4

6

x

y

Figure 13.4.5: Graph of y = h(x)

The graph indicates that the domain is (∞,∞) as it goes to the right and left indefinitely. The range is
(−∞, 5].

Example 13.4.6 Let j(x) =
∣∣|x+ 1| − 2

∣∣ − 1. Using technology, create table of values with x-values from −5

to 5, using an increment of 1 and sketch a graph of y = j(x). State the domain and range of j.
Explanation. This is a strange one because it has an absolute value within an absolute value.

x y

−5 1

−4 0

−3 −1

−2 0

−1 1

0 0

1 −1

2 0

3 1

4 2

5 3

Figure 13.4.7: A table of values for y = j(x).

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 13.4.8: y =
∣∣|x+ 1|− 2

∣∣− 1

The graph indicates that the domain is (∞,∞) as it goes to the right and left indefinitely. The range is
[−1,∞).
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13.4.2 Solving Absolute Value Equations with One Absolute Value
We can solve absolute value equations graphically.
Example 13.4.9 Solve the equations graphically using the graphs provided.

a. |x| = 3

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1
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3

4

5

y
=
|x
|

x

y

b. |2x+ 3| = 5

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1

2

3

4

5

y
=
|2
x
+
3
|

x

y

Explanation. To solve the equations graphically, first we need to graph the right sides of the equations
also.

a. |x| = 3

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1

2

3

4

5

y
=
|x
|

y = 3

x

y

Since the graph of y = |x| crosses y = 3 at the
x-values −3 and 3, the solution set to the equa-
tion |x| = 3 must be {−3, 3}.

b. |2x+ 3| = 5

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1

2

3

4

5

y
=
|2
x
+
3
|

y = 5

x

y

Since the graph of y = |2x+ 3| crosses y = 5

at the x-values −4 and 1, the solution set to the
equation |2x+ 3| = 5 must be {−4, 1}.

Remark 13.4.10 Please note that there is a big difference between the expression |3| and the equation |x| = 3.
1. The expression |3| is describing the distance from 0 to the number 3. The distance is just 3. So |3| = 3.
2. The equation |x| = 3 is asking you to find the numbers that are a distance of 3 from 0. These two

numbers are 3 and −3.
Let’s solve some absolute value equations algebraically. To motivate this, we will think about what an
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absolute value equation means in terms of the “distance from zero” definition of absolute value. If
|X| = n,

where n ≥ 0, then this means that we want all of the numbers, X, that are a distance n from 0. Since we can
only go left or right along the number line, this is describing both X = n as well as X = −n.

n−n

n unitsn units

0 X

Figure 13.4.11: A Numberline with Points a Distance n from 0

Let’s summarize this.
Fact 13.4.12 Equations with an Absolute Value Expression. Let n be a non-negative number and X be an
algebraic expression. Then the equation

|X| = n

has the same solutions as
X = n or X = −n.

Example 13.4.13 Solve the absolute value equations using Fact 13.4.12. Write solutions in a solution set.
a. |x| = 6

b. |x| = −4

c. |5x− 7| = 23

d. |14− 3x| = 8

e. |3− 4x| = 0

Explanation.
a. Fact 13.4.12 says that the equation |x| = 6 is the same as

x = 6 or x = −6.

Thus the solution set is {6,−6}.
b. Fact 13.4.12 doesn’t actually apply to the equation |x| = −4 because the value on the right side is

negative. How often is an absolute value of a number negative? Never! Thus, there are no solutions
and the solution set is the empty set, denoted ∅.

c. The equation |5x− 7| = 23 breaks into two pieces, each of which needs to be solved independently.

5x− 7 = 23 or 5x− 7 = −23

5x = 30 or 5x = −16

x = 6 or x = −
16

5

Thus the solution set is {6,−16
5

}.
d. The equation |14− 3x| = 8 breaks into two pieces, each of which needs to be solved independently.

14− 3x = 8 or 14− 3x = −8

−3x = −6 or −3x = −22
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x = 2 or x =
22

3

Thus the solution set is {2, 22
3

}.
e. The equation |3− 4x| = 0 breaks into two pieces, each of which needs to be solved independently.

3− 4x = 0 or 3− 4x = −0

Since these are identical equations, all we have to do is solve one equation.

3− 4x = 0

−4x = −3

x =
3

4

Thus, the equation |3− 4x| = 0 only has one solution, and the solution set is {3
4

}.

13.4.3 Solving Absolute Value Equations with Two Absolute Values
Example 13.4.14 Let’s graphically solve an equation with an absolute value expression on each side: |x| =
|2x+ 6|. Since |x| = 3 had two solutions as we saw in Example 13.4.9, you might be wondering how many
solutions |x| = |2x+ 6| will have. Make a graph to find out what the solutions of the equation are.
Explanation.

−6 −4 −2 2
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1
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3
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5

6

7

y
=
|2x

+
6|

y
=
|x
|

x

y

Figure 13.4.15: y = |x| and y = |2x+ 6|

Figure 13.4.15 shows that there are also two points of intersection between the graphs of y = |x| and
y = |2x+ 6|. The solutions to the equation |x| = |2x+ 6| are the x-values where the graphs cross. So, the
solution set is {−6,−2}.
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Example 13.4.16 Solve the equation |x+ 1| = |2x− 4| graphically.
Explanation.
First break up the equation into the left side and
the right side and graph each separately, as in y =
|x+ 1| and y = |2x− 4|. We can see in the graph
that the graphs intersect twice. The x-values of
those intersections are 1 and 5 so the solution set
to the equation |x+ 1| = |2x− 4| is {1, 5}.

−2 −1 1 2 3 4 5 6

1

2

3

4

5

6

7

y
=
|2x

−
4|

y
=
|x
+
1|

x

y

Figure 13.4.17: y = |x+ 1| and y = |2x− 4|

Fortunately, this kind of equation also has a rule to solve these types of equations algebraically that is similar
to the rule for equations with one absolute value.
Fact 13.4.18 Equations with Two Absolute Value Expressions. Let X and Y be linear algebraic expressions.
Then, the equation

|X| = |Y|

has the same solutions as
X = Y or X = −Y.

Remark 13.4.19 You might wonder why the negative sign “has” to go on the right side of the equation in
X = −Y. It doesn’t; it can go on either side of the equation. The equations X = −Y and −X = Y are
equivalent. Similarly, −X = −Y is equivalent to X = Y. That’s why we only need to solve two of the four
possible equations.

Example 13.4.20 Solve the equations using Fact 13.4.18.
a. |x− 4| = |3x− 2|

b.
∣∣1
2
x+ 1

∣∣ = ∣∣1
3
x+ 2

∣∣ c. |x− 2| = |x+ 1|

d. |x− 1| = |1− x|

Explanation.
a. The equation |x− 4| = |3x− 2| breaks down into two pieces:

x− 4 = 3x− 2 or x− 4 = −(3x− 2)

x− 4 = 3x− 2 or x− 4 = −3x+ 2

−2 = 2x or 4x = 6

−2

2
=

2x

2
or 4x

4
=

6

4
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−1 = x or x =
3

2

So, the solution set is {−1, 3
2

}.

b. The equation
∣∣1
2
x+ 1

∣∣ = ∣∣1
3
x+ 2

∣∣ breaks down into two pieces:

1

2
x+ 1 =

1

3
x+ 2 or 1

2
x+ 1 = −

(
1

3
x+ 2

)
1

2
x+ 1 =

1

3
x+ 2 or 1

2
x+ 1 = −

1

3
x− 2

6 ·
(
1

2
x+ 1

)
= 6 ·

(
1

3
x+ 2

)
or 6 ·

(
1

2
x+ 1

)
= 6 ·

(
−
1

3
x− 2

)
3x+ 6 = 2x+ 12 or 3x+ 6 = −2x− 12

x = 6 or 5x = −18

x = 6 or x = −
18

5

So, the solution set is {6,−18
5

}.
c. The equation |x− 2| = |x+ 1| breaks down into two pieces:

x− 2 = x+ 1 or x− 2 = −(x+ 1)

x− 2 = x+ 1 or x− 2 = −x− 1

x = x+ 3 or 2x = 1

0 = 3 or x =
1

2

Note that one of the two pieces gives us an equation with no solutions. Since 0 ≠ 3, we can safely
ignore this piece. Thus the only solution is 1

2
.

We should visualize this equation graphically because our previous assumption was that two absolute
value graphs would cross twice. The graph shows why there is only one crossing: the left and right
sides of each “V” are parallel.
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d. The equation |x− 1| = |1− x| breaks down into two pieces:

x− 1 = 1− x or x− 1 = −(1− x)

x− 1 = 1− x or x− 1 = −1+ x

2x = 2 or x = 0+ x

x = 1 or 0 = 0

Note that our second equation is an identity so recall from Section 2.4 that the solution set is “all real
numbers.”
So, our two pieces have solutions 1 and “all real numbers.” Since 1 is a real number and we have an
or statement, our overall solution set is (−∞,∞). The graph confirms our answer since the two “V”
graphs are coinciding.
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−1

1

2

3

4

5

6

y
=
|x
−
1|

y
=
|1
−
x|

x

y

Figure 13.4.21: y = |x− 1| and y = |1− x|

13.4.4 Reading Questions
1. How many solutions does an absolute value equation typically have?
2. The graph of an absolute value function is typically shaped like which letter?
3. Solving an absolute value equation like |2x+ 1| = 3 is “easy” because we can turn it into two equations

of what simpler type?

13.4.5 Exercises

Review and Warmup Solve the equation.
1. n

5
− 6 =

n

8
2. q

3
− 2 =

q

9
3. 56 = −8(x+ 3)

4. −60 = −5(r+ 7) 5. 2t+ 7 = 9t+ 6 6. 2b+ 3 = 8b+ 2
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Solving Absolute Value Equations Algebraically
7. a. Write the equation 5 = |7x|− 4 as two

separate equations. Neither of your
equations should use absolute
value.

b. Solve both equations above.

8. a. Write the equation 6 = |4x|− 7 as two
separate equations. Neither of your
equations should use absolute
value.

b. Solve both equations above.

9. a. Write the equation
∣∣∣6− r

5

∣∣∣ = 7 as two
separate equations. Neither of your
equations should use absolute
value.

b. Solve both equations above.

10. a. Write the equation
∣∣∣8− r

3

∣∣∣ = 7 as two
separate equations. Neither of your
equations should use absolute
value.

b. Solve both equations above.
11.

(a) Verify that the value −1 is a solution to
the absolute value equation

∣∣x−3
2

∣∣ = 2.

(b) Verify that the value 2
3

is a solution to
the absolute value inequality
|6x− 5| < 4.

12.
(a) Verify that the value 8 is a solution to

the absolute value equation∣∣1
2
x− 2

∣∣ = 2.
(b)

13. Solve the following equation.
|10x+ 9| = 6

14. Solve the following equation.
|x+ 1| = 10

15. Solve the equation |2x− 2| = 14. 16. Solve the equation |3x+ 3| = 18.

17. Solve: |b| = 7 18. Solve: |t| = 3 19. Solve: |x− 7| = 9

20. Solve: |x− 3| = 13 21. Solve: |2y+ 1| = 17 22. Solve: |2y+ 7| = 11

23. Solve:
∣∣∣∣2a− 3

7

∣∣∣∣ = 1 24. Solve:
∣∣∣∣2a− 1

3

∣∣∣∣ = 3
25. Solve: |b| = −6

26. Solve: |b| = −8 27. Solve: |t+ 2| = 0 28. Solve: |x+ 4| = 0

29. Solve: |2− 3x| = 7 30. Solve: |2− 3y| = 11 31. Solve:
∣∣1
4
y+ 1

∣∣ = 5

32. Solve:
∣∣1
2
a+ 5

∣∣ = 3 33. Solve: |0.9− 0.8a| = 2 34. Solve: |0.6− 0.2b| = 5

35. Solve: |b+ 3|− 6 = 6 36. Solve: |t+ 9|− 2 = 4 37. Solve: |4t− 12|+ 2 = 2

38. Solve: |2x− 10|+ 7 = 7 39. Solve: |y+ 9|+ 7 = 4 40. Solve: |y+ 5|+ 8 = 6

41. Solve: |6a+ 1|+ 3 = 2 42. Solve: |6a+ 9|+ 8 = 4

43. Solve the equation by inspection (meaning in
your head).
|5x+ 15| = 0

44. Solve the equation by inspection (meaning in
your head).
|5x+ 10| = 0



248 CHAPTER 13. GRAPHS AND EQUATIONS

45. The equation |x| = |y| is satisfied if x = y or
x = −y. Use this fact to solve the following
equation.
|3x+ 4| = |4x+ 3|

46. The equation |x| = |y| is satisfied if x = y or
x = −y. Use this fact to solve the following
equation.
|4x− 4| = |−x+ 4|

47. The equation |x| = |y| is satisfied if x = y or
x = −y. Use this fact to solve the following
equation.
|x+ 6| = |x− 5|

48. The equation |x| = |y| is satisfied if x = y or
x = −y. Use this fact to solve the following
equation.
|x+ 6| = |x− 1|

49. Solve the equation: |8x− 5| = |7x+ 8| 50. Solve the equation: |2x− 2| = |9x+ 6|

51. Solve the following equation.
|x+ 4| = |7x− 5|

52. Solve the following equation.
|2x− 3| = |10x+ 10|

Challenge
53. Algebraically, solve for x in the equation:

5 = |x− 5|+ |x− 10|
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13.5 Solving Mixed Equations
In this section, we will learn to differentiate between different types of equations and recall the various
methods used to solve them. Real life doesn’t come with instructions, so it is important to develop the skills
in this section. One day, you might be faced with a geometry problem in your home or a rational equation
in a lab, and it will be your challenge to solve the equation with some strategy.

We have solved a variety of equations throughout this book, and we covered some general equation-
solving strategies in Solving Equations in General. Since then, we have covered even more topics, and it
seems time to refresh ourselves on everything that we have done so far. Here is a reference guide to all of
the sections that cover solving equations. We hope that this section will help pinpoint those that you need
help with.

Section 2.1 Solving linear equations.

Section 2.5 Solving linear equations with more than one variable.

Sections 4.2, 4.3 Algebraically solving systems of linear equations.

Section 6.4 Solving equations with roots in them.

Sections 7.1, 7.2, 10.7, 13.3 Solving quadratic equations.

Section 12.5 Solving rational equations.

13.5.1 Types of Equations
The point of this section isn’t to compartmentalize your knowledge to help learn small pieces, it’s to put all
the pieces that we’ve learned previously together and how to differentiate those pieces from one another.
To do that, we need to recall the different types of equations that we have had before.

Linear Equation This is a type of equation where the variable that we are solving for only appears with
addition, subtraction, multiplication and division by constant numbers. Examples are 7(x−2) = 3

5
x+1

and rt = 4t+3r−1 where r is the variable and t is considered a constant. Use the Steps to Solve Linear
Equations.

System of Linear Equations This is a grouping of two linear equations. An example is{
y = 3x+ 1

y = 2x− 5

One can use either substitution or elimination to solve these systems.

Quadratic Equation This is a type of equation where at least one side of the equation is a quadratic function,
and the other side is either constant, linear, or quadratic with a different leading coefficient. Examples
are 3x2 + 2x − 4 = 0 and 6(y − 2)2 − 1 = 7. There are several methods to solve quadratic equations
including using the square root method, the quadratic formula, factoring, and completing the square.

Radical Equation This is a type of equation where the variable is inside a root of some kind. We usually
solve radical equations by isolating the radical and raising both sides to a power to cancel the radical.
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Rational Equation This is a type of equation where both sides of the equation are rational functions, al-
though it’s possible one side is a very simple rational function like a constant function. Solving these
equations involves clearing the denominators and solving the equation that remains.

Absolute Value Equation This is a type of equation where the variable is inside absolute value bars. Solv-
ing these equations involves using a rule to convert an equation from absolute value into two separate
equations without absolute values.

For all of these equation types, in this section we only concern ourselves with equations in one variable,
i.e. the solution will be a number or expression rather than points. For example, the equation 3 = 2x + 5

has a single solution, −1, whereas the equation y = 2x + 5 has infinitely many solutions, all points, that
make up the line with slope 2 and vertical intercept (0, 5). The only exceptions that we will be covering are
systems of linear equations, which have a point or points as solutions.

Example 13.5.2 Identify the type of equation as linear, a system of linear equations, quadratic, radical, ra-
tional, absolute value, or something else.

a. 3−
√
2x− 3 = x

b. 2x2 + 3x = 7

c. 7− 2(3x− 5) = x+
√
2

d. 1
x−2

+ x
x2−4

= 3
x+2

e. |5x− 9|+ 2 = 7

f. (4x− 1)2 + 9 = 16

g. 3
√
6x− 5 = 2

h. 6x2 − 7x = 20

i.
{
4x+ 2y = 8

3x− y = 11

j. 3x + 2x = 1

Explanation.
a. The equation 3−

√
2x− 3 = x is a radical equation since the variable appears inside the radical.

b. The equation 2x2+3x = 7 is a quadratic equation since the variable is being squared (but doesn’t have
any higher power).

c. The equation 7−2(3x−5) = x+
√
2 is a linear equation since the variable is only to the first power. The

square root in the equation is only on the number 2 and not x, so it doesn’t make it a radical equation.
d. The equation 1

x−2
+ x

x2−4
= 3

x+2
is a rational equation since the variable is present in a denominator.

e. The equation |5x− 9| + 2 = 7 is an absolute value equation since the variable is inside an absolute
value.

f. The equation (4x− 1)2 + 9 = 16 is a quadratic equation since if we were to distribute everything out,
we would have a term with x2.

g. The equation 3
√
6x− 5 = 2 is a radical equation since the variable is inside the radical.

h. The equation 6x2 − 7x = 20 is a quadratic equation since there is a degree-two term.
i. This is a system of linear equations.
j. The equation 3x + 2x = 1 is an equation type that we have not covered and is not listed above.
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13.5.2 Solving Mixed Equations

After you have identified which type of equation confronts you, the next step is to consider the methods for
solving that type of equation.

Example 13.5.3 Solve the equations using appropriate techniques.
a. 3−

√
2x− 3 = x

b. 2x2 + 3x = 7

c. 7− 2(3x− 5) = x+
√
2

d. 1
x−2

+ x
x2−4

= 3
x+2

e. |5x− 9|+ 2 = 7

f. (4x− 1)2 + 9 = 16

g. 3
√
6x− 5 = 2

h. 6x2 − 7x = 20

i.
{
4x+ 2y = 8

3x− y = 11

j. 2x2 − 12x = 7 (using completing the square)

Explanation.
a. Since the equation 3 −

√
2x− 3 = x is a radical equation, we can isolate the radical and then square

both sides to cancel the square root. After that, we will solve whatever remains.

3−
√
2x− 3 = x

−
√
2x− 3 = x− 3

√
2x− 3 = −x+ 3(√

2x− 3
)2

= (−x+ 3)2

2x− 3 = x2 − 6x+ 9

0 = x2 − 8x+ 12

We now have a quadratic equation. We will solve by factoring.

0 = (x− 2)(x− 6)

x− 2 = 0 or x− 6 = 0

x = 2 or x = 6

Every potential solution to a radical equation should be verified to check for any “extraneous solu-
tions”.

3−
√

2(2) − 3
?
= 2 or 3−

√
2(6) − 3

?
= 6

3−
√
1

?
= 2 or 3−

√
9

?
= 6

3− 1
✓
= 2 or 3− 3

no
= 6

So the solution set is {2}.
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b. Since the equation 2x2+3x = 7 is quadratic we should consider the square root method, the quadratic
formula, factoring, and completing the square. In this case, we will start with the quadratic formula.
First, note that we should rearrange the terms in equation into standard form.

2x2 + 3x = 7

2x2 + 3x− 7 = 0

Note that a = 2, b = 3, and c = −7.

x =
−b±

√
b2 − 4ac

2a

x =
−(3)±

√
(3)2 − 4(2)(−7)

2(2)

x =
−3±

√
9+ 56

4

x =
−3±

√
65

4

The solution set is
{

−3+
√
65

4
, −3−

√
65

4

}
.

c. Since the equation 7− 2(3x− 5) = x+
√
2 is a linear equation, we isolate the variable step-by-step.

7− 2(3x− 5) = x+
√
2

7− 6x+ 10 = x+
√
2

17− 6x = x+
√
2

17 = 7x+
√
2

17−
√
2 = 7x

17−
√
2

7
= x

The solution set is
{

17−
√
2

7

}
.

d. Since the equation 1
x−2

+ x
x2−4

= 3
x+2

is a rational equation, we first need to cancel the denominators
after factoring and finding the least common denominator.

1

x− 2
+

x

x2 − 4
=

3

x+ 2

1

x− 2
+

x

(x− 2)(x+ 2)
=

3

x+ 2

At this point, we note that the least common denominator is (x− 2)(x+ 2). We need to multiply every
term by this least common denominator.

1

x− 2
· (x− 2)(x+ 2) +

x

(x− 2)(x+ 2)
· (x− 2)(x+ 2) =

3

x+ 2
· (x− 2)(x+ 2)
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1

���x− 2
· (���x− 2)(x+ 2) +

x

(���x− 2)(XXXx+ 2)
· (���x− 2)(XXXx+ 2) =

3
XXXx+ 2

· (x− 2)(XXXx+ 2)

1(x+ 2) + x = 3(x− 2)

x+ 2+ x = 3x− 6

2x+ 2 = 3x− 6

8 = x

We always check solutions to rational equations to ensure we don’t have any “extraneous solutions”.

1

8− 2
+

8

82 − 4

?
=

3

8+ 2

1

6
+

8

60

?
=

3

10
10

60
+

8

60

?
=

3

10
18

60

✓
=

3

10

So, the solution set is {8}.
e. Since the equation |5x− 9|+2 = 7 is an absolute value equation, we will first isolate the absolute value

and then use Equations with an Absolute Value Expression to solve the remaining equation.

|5x− 9|+ 2 = 7

|5x− 9| = 5

5x− 9 = 5 or 5x− 9 = −5

5x = 14 or 5x = 4

x =
14

5
or x =

4

5

The solution set is {14
5
, 4
5

}.
f. Since the equation (4x− 1)2 + 9 = 16 is a quadratic equation, we again have several options. Since the

variable only appears once in this equation we will use the the square root method to solve.

(4x− 1)2 + 9 = 16

(4x− 1)2 = 7

4x− 1 =
√
7 or 4x− 1 = −

√
7

4x = 1+
√
7 or 4x = 1−

√
7

x =
1+

√
7

4
or x =

1−
√
7

4

The solution set is
{

1+
√
7

4
, 1−

√
7

4

}
.
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g. Since the equation 3
√
6x− 5 = 2 is a radical equation, we will isolate the radical (which is already done)

and then raise both sides to the third power to cancel the cube root.
3
√
6x− 5 = 2(

3
√
6x− 5

)3
= 23

6x− 5 = 8

6x = 13

x =
13

6

The solution set is {13
6

}.
h. Since the equation 6x2 − 7x = 20 is a quadratic equation, we again have several options to consider.

We will try factoring on this one after first converting it to standard form.
6x2 − 7x = 20

6x2 − 7x− 20 = 0

Here, ac = −120 and two numbers that multiply to be −120 but add to be −7 are 8 and −15.

6x2 + 8x− 15x− 20 = 0(
6x2 + 8x

)
+ (−15x− 20) = 0

2x(3x+ 4) − 5(3x+ 4) = 0

(2x− 5)(3x+ 4) = 0

2x− 5 = 0 or 3x+ 4 = 0

x =
5

2
or x = −

4

3

The solution set is {5
2
,−4

3

}.
i. Since {

4x+ 2y = 8

3x− y = 11

is a system of linear equations, we can either use substitution or elimination to solve. Here we will
use elimination. To use elimination, we need to make one variable have equal but opposite sign in the
two equations. We will accomplish this by multiplying the second equation by 2.

3x− y = 11

2 · (3x− y) = 2 · 11
6x− 2y = 22

So our original system becomes: {
4x+ 2y = 8

6x− 2y = 22
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Adding the sides of the equations, we get:

10x = 30

x = 3

Now that we have found x, we can substitute that back into one of the equations to find y. We will
substitute into the first equation.

4(3) + 2y = 8

12+ 2y = 8

2y = −4

y = −2

So, the solution must be the point (3,−2).
j. Since the equation 2x2 − 10x = 7 is quadratic and we are instructed to solve by using completing the

square, we should recall how to complete the square, after we have sufficiently simplified. Let’s start
by dividing all of the terms by 2.

2x2 − 12x = 7

x2 − 6x =
7

2

Next, we need to add (b
2

)2
=
(
6
2

)2
= 9 to both sides of the equation.

x2 − 6x+ 9 =
7

2
+ 9

(x− 3)2 =
7

2
+

18

2

(x− 3)2 =
25

2

x− 3 = ±
√

25

2

x− 3 = ±
√
25√
2

x− 3 = ± 5√
2

x− 3 = ± 5√
2
·
√
2√
2

x− 3 = ±5
√
2

2

x = 3± 5
√
2

2

So, our solution set is
{
3+ 5

√
2

2
, 3− 5

√
2

2

}
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13.5.3 Reading Questions
1. What are all the types of equation that you know how to solve? (Don’t worry about which types you

think you should know how to solve. Just try to list all the kinds of equations that you know you know.)
2. There are two types of equation that have been covered in this book where it is especially important to

verify solutions. What are those two types of equation?
3. What are all the ways that you know of for solving a quadratic equation? (This book has covered five

general methods, but answer with as many mehtods as you know you know).

13.5.4 Exercises

Solving Mixed Equations Solve the equation.
1. √

y+ 72 = y 2. √
r+ 30 = r

3. 5+ 8(C− 9) = −72− (4− 5C) 4. 4+ 10(n− 7) = −72− (9− 5n)

5. x2 + 6x = 27 6. x2 − 2x = 80

7. −8− 5r+ 7 = −r+ 6− 4r 8. −6− 8t+ 3 = −t+ 4− 7t

Solve the equation by completing the square.
9. 2y2 − 6y− 3 = 0 10. 2y2 + 8y− 3 = 0

Solve the equation.
11. x2 + 2x− 7 = 0 12. x2 + 7x+ 1 = 0

13. Solve:
∣∣∣∣2y− 3

7

∣∣∣∣ = 1 14. Solve:
∣∣∣∣2y− 1

3

∣∣∣∣ = 3

Solve the equation.

15. x+ 6

x− 4
+

9

x− 6
= 2 16. x+ 8

x+ 2
+

9

x+ 8
= 2

17. 12− 2(y− 7)2 = 10 18. 49− 5(y− 7)2 = 4

19. 14 =
c

5
+

c

2 20. 3 =
B

3
+

B

6

21. r =
√
r+ 4+ 86 22. t =

√
t+ 2+ 40

23. x2 + 8x− 9 = 0 24. x2 − 3x− 70 = 0

25. Solve the equation: |2x− 4| = |7x+ 8| 26. Solve the equation: |2x− 9| = |3x+ 5|

Solve the equation.
27. x2 + 11x = −28 28. x2 + 8x = −15



13.5. SOLVING MIXED EQUATIONS 257

29. 1

r+ 8
+

8

r2 + 8r
= −

1

4
30. 1

r+ 2
+

2

r2 + 2r
=

1

7

31. x2 = −6x 32. x2 = −9x

33. Solve: |8a+ 5|+ 9 = 6 34. Solve: |8a+ 1|+ 6 = 4

Solve the equation.
35. 59x2 + 11 = 0 36. 29x2 + 17 = 0

37. Solve: |t− 1| = 15 38. Solve: |t− 7| = 9

Solve the equation.
39. 5x2 = −31x− 44 40. 5x2 = −52x− 20

41. t =
√
t+ 7+ 5 42. x =

√
x+ 5+ 7

43. 1

x− 7
+

5

x+ 6
= −

5

x2 − x− 42
44. 1

x− 5
+

4

x+ 3
= −

7

x2 − 2x− 15

Solve the equation by completing the square.
45. y2 − 6y = 27 46. y2 − 14y = −45
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13.6 Compound Inequalities
On the newest version of the SAT (an exam that often qualifies students for colleges) the minimum score
that you can earn is 400 and the maximum score that you can earn is 1600. This means that only numbers
between 400 and 1600, including these endpoints, are possible scores. To plot all of these values on a number
line would look something like:

400 1,600

possibile SAT scores
0 x

Figure 13.6.1: Possible SAT Scores

Going back to the original statement, “the minimum score that you can earn is 400 and the maximum score
that you can earn is 1600,” this really says two things. First, it says that (a SAT score) ≥ 400, and second,
that (a SAT score) ≤ 1600. When we combine two inequalities like this into a single problem, it becomes a
compound inequality.

Our lives are often constrained by the compound inequalities of reality: you need to buy enough mate-
rials to complete your project, but you can only fit so much into your vehicle; you would like to finish your
degree early, but only have so much money and time to put toward your courses; you would like a veg-
etable garden big enough to supply you with veggies all summer long, but your yard or balcony only gets
so much sun. In the rest of the section we hope to illuminate how to think mathematically about problems
like these.

Before continuing, a review on how notation for intervals works may be useful, and you may benefit
from revisiting Section 1.3. Then a refresher on solving linear inequalities may also benefit you, which you
can revisit in Section 2.2 and Section 2.3.

13.6.1 Unions of Intervals
Definition 13.6.3 The union of two sets, A and B, is the set of all elements contained in either A or B (or
both). We write A ∪ B to indicate the union of the two sets.

In other words, the union of two sets is what you get if you toss every number in both sets into a bigger
set. ♢

Example 13.6.4 The union of sets {1, 2, 3, 4} and {3, 4, 5, 6} is the set of all elements from either set. So
{1, 2, 3, 4} ∪ {3, 4, 5, 6} = {1, 2, 3, 4, 5, 6}. Note that we don’t write duplicates.

Example 13.6.5 Visualize the union of the sets (−∞, 4) and [7,∞).
Explanation. First we make a number line with both intervals drawn to understand what both sets mean.

4 70 x

Figure 13.6.6: A number line sketch of (−∞, 4) as well as [7,∞)

The two intervals should be viewed as a single object when stating the union, so here is the picture of the
union. It looks the same, but now it is a graph of a single set.
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4 70 x

Figure 13.6.7: A number line sketch of (−∞, 4) ∪ [7,∞)

Definition 13.6.8 The intersection of two sets, A and B, is the set of all elements that are in A and B. We
write A ∩ B to indicate the intersection of the two sets.

In other words, the intersection of two sets is where the two sets overlap. ♢

Example 13.6.9 The intersection of sets {1, 2, 3, 4} and {3, 4, 5, 6} is the set of all elements that are in common
to both sets. So {1, 2, 3, 4} ∩ {3, 4, 5, 6} = {3, 4}.

Example 13.6.10 Find the intersection of the sets (−∞, 5) and [3,∞).
Explanation. To find the intersection of the sets (−∞, 5) and [3,∞), first we draw a number line with both
intervals drawn to visualize where the sets overlap.

−3 50 x

Figure 13.6.11: A number line sketch of (−∞, 5) and [−3,∞)

Recall that the intersection of two sets is the set of the numbers in common to both sets. In English, we might
say that the lines overlap at every number between −3 and 5. This description is the same as the interval
[−3, 5).

−3 50 x

Figure 13.6.12: A number line sketch of [−3, 5)

In conclusion,
[−3,∞) ∩ (−∞, 5) = [−3, 5).

Remark 13.6.13 Note that every intersection of two intervals can and should be simplified in some way. On
the other hand, there are unions which cannot be algebraically simplified. For example, if the two sets have
nothing in common, as in (−∞, 4) and [7,∞) again, then the union is simply (−∞, 4) ∪ [7,∞) which is our
final simplification.

Example 13.6.14 Simplify the intersections and unions.
a. (−∞, 12) ∪ [−3,∞)

b. (−∞, 12) ∩ [−3,∞)

c. (−∞,−2] ∪ [4,∞)

d. (−∞,−2] ∩ [4,∞)

Explanation.
a. (−∞, 12) ∪ [−3,∞) = R

b. (−∞, 12) ∩ [−3,∞) = [−3, 12)
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c. (−∞,−2] ∪ [4,∞) = (−∞,−2] ∪ [4,∞)

This union cannot be simplified because the two sets have nothing in common.
d. (−∞,−2] ∩ [4,∞) = ∅

Since the two sets have nothing in common, their intersection is empty.

Remark 13.6.15 In this section, we mostly use interval notation to answer questions. Recall that we can also
use set builder notation. For example, the set [3,∞) can also be written as {x | x ≥ 3}.

13.6.2 “Or” Compound Inequalities
Definition 13.6.16A compound inequality is a grouping of two or more inequalities into a larger inequality
statement. These usually come in two flavors: “or” and “and” inequalities. For an example of an “or”
compound inequality, you might get a discount at the movie theater if your age is less than 13 or greater
than 64. For an example of an “and” compound inequality, to purchase a drink at a bar in Oregon, you need
to be over 21 years old and be have money for your drink. You need to fulfill both requirements. ♢

In math, the technical term or means “either or both.” So, mathematically, if we asked if you would like
“chocolate cake or apple pie” for dessert, your choices are either “chocolate cake,” “apple pie,” or “both
chocolate cake and apple pie.” This is slightly different than the English “or” which usually means “one or
the other but not both.”

“Or” shows up in math between equations (as in when solving a quadratic equation, you might end up
with “x = 2 or x = −3”) or between inequalities (which is what we’re about to discuss).
Remark 13.6.17 The definition of “or” is very close to the definition of a union where you combine elements
from either or both sets together. In fact, when you have an “or” between inequalities in a compound
inequality, to find the solution set of the compound inequality, you find the union of the the solutions sets
of each of the pieces.

Example 13.6.18 Solve the compound inequality.

x ≤ 1 or x > 4

Explanation.

Writing the solution set to this compound inequal-
ity doesn’t require any algebra beforehand because
each of the inequalities is already solved for x. The
first thing we should do is understand what each
inequality is saying using a graph.

1 4

x ≤ 1 x > 4

0 x

Figure 13.6.19: A number line sketch of solutions
to x ≤ 1 as well as to x > 4

An “or” statement becomes a union of solution sets, so the solution set to the compound inequality must be:

(−∞, 1] ∪ (4,∞).

Example 13.6.20 Solve the compound inequality.
3− 5x > −7 or 2− x ≤ −3

Explanation. First we need to do some algebra to isolate x in each piece. Note that we are going to do
algebra on both pieces simultaneously. Also note that the mathematical symbol “or” should be written on
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each line.

3− 5x > −7 or 2− x ≤ −3

−5x > −10 or −x ≤ −5

−5x

−5
<

−10

−5
or −x

−1
≥ −5

−1

x < 2 or x ≥ 5

The solution set for the compound inequality x < 2 is (−∞, 2) and the solution set to x ≥ 5 is [5,∞). To
do the “or” portion of the problem, we need to take the union of these two sets. Let’s first make a graph of
the solution sets to visualize the problem.

2 50 x

Figure 13.6.21: A number line sketch of (−∞, 2) as well as [5,∞)

The union combines both solution sets into one, and so

(−∞, 2) ∪ [5,∞)

We have finished the problem, but for the sake of completeness, let’s try to verify that our answer is
reasonable.

• First, let’s choose a number that is not in our proposed solution set. We will arbitrarily choose 3.

3− 5x > −7 or 2− x ≤ −3

3− 5(3)
?
> −7 or 2− (3)

?
≤ −3

−9
no
> −7 or −1

no
≤ −3

This value made both inequalities false which is why 3 isn’t in our solution set.
• Next, let’s choose a number that is in our solution region. We will arbitrarily choose 1.

3− 5x > −7 or 2− x ≤ −3

3− 5(1)
?
> −7 or 2− (1)

?
≤ −3

−12
✓
< −7 or −1

no
≤ −3

This value made one of the inequalities true. Since this is an “or” statement, only one or the other piece
has to be true to make the compound inequality true.

• Last, what will happen if we choose a value that was in the other solution region in Figure 13.6.21, like
the number 6?

3− 5x > −7 or 2− x ≤ −3
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3− 5(6)
?
> −7 or 2− (6)

?
≤ −3

−27
no
> −7 or −4

✓
≤ −3

This solution made the other inequality piece true.
This completes the check. Numbers from within the solution region make the compound inequality true

and numbers outside the solution region make the compound inequality false.

Example 13.6.22 Solve the compound inequality.

3

4
t+ 2 ≤ 5

2
or −

1

2
(t− 3) < −2

Explanation. First we will solve each inequality for t. Recall that we usually try to clear denominators by
multiplying both sides by the least common denominator.

3

4
t+ 2 ≤ 5

2
or −

1

2
(t− 3) < −2

4 ·
(
3

4
t+ 2

)
≤ 4 · 5

2
or 2 ·

(
−
1

2
(t− 3)

)
< 2 · (−2)

3t+ 8 ≤ 10 or −t+ 3 < −4

3t ≤ 2 or −t < −7

3t

3
≤ 2

3
or −t

−1
>

−7

−1

t ≤ 2

3
or t > 7

The solution set to t ≤ 2
3

is (−∞, 2
3

] and the solution set to t > 7 is (7,∞). Figure 13.6.23 shows these
two sets.

2
3

70 t

Figure 13.6.23: A number line sketch of (−∞, 2
3

] and also (7,∞)

Note that the two sets do not overlap so there will be no way to simplify the union. Thus the solution set to
the compound inequality is: (

−∞,
2

3

]
∪ (7,∞)

Example 13.6.24 Solve the compound inequality.

3y− 15 > 6 or 7− 4y ≥ y− 3

Explanation. First we solve each inequality for y.

3y− 15 > 6 or 7− 4y ≥ y− 3
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3y > 21 or −5y ≥ −10

3y

3
>

21

3
or −5y

−5
≤ −10

−5

y > 7 or y ≤ 2

The solution set to y > 7 is (7,∞) and the solution set to y ≤ 2 is (−∞, 2]. Figure 13.6.25 shows these
two sets.

2 70 y

Figure 13.6.25: A number line sketch of (7,∞) as well as (−∞, 2]

So the solution set to the compound inequality is:

(−∞, 2] ∪ (7,∞)

13.6.3 Three-Part Inequalities
There are two different kinds of “and” compound inequalities. One type has an expression that is “between”
two values, like A < B ≤ C, that we will call “three-part inequalities”. The other type has two inequalities
joined by the word “and,” as in A < B and C ≥ D. We will start with the three-part inequalities.

The inequality 1 ≤ 2 < 3 says a lot more than you might think. It actually says four different single
inequalities which are highlighted for you to see.

1≤ 2 < 3 1≤ 2 < 3 1≤ 2 < 3 1≤ 2 < 3

This might seem trivial at first, but if you are presented with an inequality like −1 < 3 ≥ 2, at first it
might look sensible; however, in reality, you need to check that all four linear inequalities make sense. Those
are highlighted here.

−1 < 3≥ 2 −1 < 3≥ 2 −1 < 3≥ 2 −1 < 3≥ 2

One of these inequalities is false: −1 ≱ 2. This implies that the entire original inequality, −1 < 3 ≥ 2, is
nonsense.

Example 13.6.26 Decide whether or not the following inequalities are true or false.
a. True or False: −5 < 7 ≤ 12?
b. True or False: −7 ≤ −10 < 4?
c. True or False: −2 ≤ 0 ≥ 1?
d. True or False: 5 > −3 ≥ −9?

e. True or False: 3 < 3 ≤ 5?
f. True or False: 9 > 1 < 5?
g. True or False: 3 < 8 ≤ −2?
h. True or False: −9 < −4 ≤ −2?

Explanation. We need to go through all four single inequalities for each. If the inequality is false, for
simplicity’s sake, we will only highlight the one single inequality that makes the inequality false.
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a. True: −5 < 7 ≤ 12.

b. False: −7
no
≤ −10 < 4.

c. False: −2≤ 0
no
≥ 1.

d. True: 5 > −3 ≥ −9.

e. False: 3 no
< 3≤ 5.

f. False: 9 > 1
no
< 5.

g. False: 3 < 8
no
≤ −2.

h. True: −9 < −4 ≤ −2.

As a general hint, no (nontrivial) three-part inequality can ever be true if the inequality signs are not pointing
in the same direction. So no matter what numbers a, b, and c are, both a < b ≥ c and a ≥ b < c cannot
be true! Soon you will be writing inequalities like 2 < x ≤ 4 and you need to be sure to check that your
answer is feasible. You will know that if you get 2 > x ≤ 4 or 2 < x ≥ 4 that something went wrong in the
solving process. The only exception is that something like 1 ≤ 1 ≥ 1 is true because 1 = 1 = 1, although
this shouldn’t come up very often!

Example 13.6.27 Write the solution set to the compound inequality.

−7 < x ≤ 5

Explanation. The solutions to the three-part inequality −7 < x ≤ 5 are those numbers that are trapped
between −7 and 5, including 5 but not −7. Keep in mind that there are infinitely many decimal numbers
and irrational numbers that satisfy this inequality like −2.781828 and π. We will write these numbers in
interval notation as (−7, 5] or in set builder notation as {x | −7 < x ≤ 5}.

Example 13.6.28 Solve the compound inequality.

4 ≤ 9x+ 13 < 20

Explanation.
This is a three-part inequality which we can treat
just as a regular inequality with three “sides.” The
goal is to isolate x in the middle and whatever you
do to one “side,” you have to do to the other two
“sides.”
The solutions to the three-part inequality −1 ≤ x <
7
9

are those numbers that are trapped between −1

and 7
9

, including −1 but not 7
9

. The solution set in
interval notation is [−1, 7

9

).

4 ≤ 9x+ 13 < 20

4− 13 ≤ 9x+ 13− 13 < 20− 13

−9 ≤ 9x < 7

−9

9
≤ 9x

9
<

7

9

−1 ≤ x <
7

9

Example 13.6.29 Solve the compound inequality.

−13 < 7−
4

3
x ≤ 15
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Explanation.
This is a three-part inequality which we can treat
just as a regular inequality with three “sides.” The
goal is to isolate x in the middle and whatever you
do to one “side,” you have to do to the other two
“sides.” We will begin by canceling the fraction by
multiplying each part by the least common denom-
inator.
At the end we reverse the entire statement to go
from smallest to largest. The solution set is [−6, 15).

−13 < 7−
4

3
x ≤ 15

−13 · 3 <

(
7−

4

3
x

)
· 3 ≤ 15 · 3

−39 < 21− 4x ≤ 45

−60 < −4x ≤ 24

−60

−4
>

−4x

−4
≥ 24

−4

15 > x ≥ −6

−6 ≤ x < 15

13.6.4 Solving “And” Inequalities
Here we will deal with the other kind of compound inequality: the “and” variety.
Remark 13.6.30 An “and” statement means that you need both inequalities to be true simultaneously. In
English, if you say, “I need Khaleem and Freja to paint the fence,” then the only way you will be happy is if
both people are working simultaneously on the fence. This statement that both things happen at the same
time should be very reminiscent of our discussion of intersections earlier in this section. In fact, every “and”
statement will result in the intersection of the solution sets of the pieces.

Example 13.6.31 Solve the compound inequality.
4− 2t > −2 and 3t+ 1 ≥ −2

Explanation.
4− 2t > −2 and 3t+ 1 ≥ −2

4− 2t− 4 > −2− 4 and 3t+ 1− 1 ≥ −2− 1

−2t > −6 and 3t ≥ −3

−2t

−2
<

−6

−2
and 3t

3
≥ −3

3

t < 3 and t ≥ −1

The solution set to t < 3 is (−∞, 3) and the solution set to t ≥ −1 is [−1,∞). Shown is a graph of these
solution sets.

−1 30 t

Figure 13.6.32: A number line sketch of (−∞, 3) and also [−1,∞)

Recall that an “and” problem finds the intersection of the solution sets. Intersection finds the t-values where
the two lines overlap, so the solution to the compound inequality must be

(−∞, 3) ∩ [−1,∞) = [−1, 3).
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We have finished the problem, but for the sake of completeness, let’s try to “verify” that our answer is
reasonable.

• First, choose a number within our solution region and test that it makes both original inequalities true.
We will arbitrarily choose 1.

4− 2t > −2 and 3t+ 1 ≥ −2

4− 2(1)
?
> −2 and 3(1) + 1

?
≥ −2

2
✓
> −2 and 4

✓
≥ −2

• Next, choose a value outside the solution set and test that it makes at least one of the inequalities false.
We will arbitrarily choose 4.

4− 2t > −2 and 3t+ 1 ≥ −2

4− 2(4)
?
> −2 and 3(4) + 1

?
≥ −2

−4
no
> −2 and 13

✓
≥ −2

Since one of the inequalities is false and this is an “and” question, the compound inequality is false for
this value which is what expected by picking a number outside the solution set.

• Last, we should choose a number that is not a solution that is on the “other side” of the solution set.
We will arbitrarily choose −2.

4− 2t > −2 and 3t+ 1 ≥ −2

4− 2(−2)
?
> −2 and 3(−2) + 1

?
≥ −2

8
✓
> −2 and −5

no
≥ −2

Again, since one of the inequalities is false and this is an “and” question, the compound inequality is
false for −2.

So, numbers outside the proposed solution region make the compound inequality false, and numbers
inside the region make the compound inequality true. We have verified our solution set.

Checkpoint 13.6.33 Solve the compound inequality.

−6 ≥ 3x+ 3 and 3x+ 9 > −6

Explanation.

−6 ≥ 3x+ 3 and 3x+ 9 > −6

−9 ≥ 3x and 3x > −15

−3 ≥ x and x > −5

x≤−3 and x > −5
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The solution set to x ≤ −3 is (−∞,−3] and the solution set to x > −5 is (−5,∞). Shown is a graph of
these solution sets on a number line.

−3−5 0 x

Figure 13.6.34: A number line sketch of (−∞,−3] and (−5,∞)

Recall that “and” statements of inequalities become intersections of the solution sets. Since intersections
refer to where the sets overlap, and these sets overlap between −5 (exclusive) and −3 (inclusive), we would
say

(−∞,−3] ∩ (−5,∞) = (−5,−3].

13.6.5 Applications of Compound inequalities
Example 13.6.35 Raphael’s friend is getting married and he’s decided to give them some dishes from their
registry. Raphael doesn’t want to seem cheap but isn’t a wealthy man either, so he wants to buy “enough”
but not “too many.” He’s decided that he definitely wants to spend at least $150 on his friend, but less than
$250. Each dish is $21.70 and shipping on an order of any size is going to be $19.99. Given his budget, set
up and algebraically solve a compound inequality to find out what his different options are for the number
of dishes that he can buy.
Explanation. First, we should define our variable. Let x represent the number of dishes that Raphael can
afford. Next we should write a compound inequality that describes this situation. In this case, Raphael
wants to spend between $150 and $250 and, since he’s buying x dishes, the price that he will pay is 21.70x+
19.99. All of this translates to a triple inequality

150 < 21.70x+ 19.99 < 250

Now we have to solve this inequality in the usual way.

150 < 21.70x+ 19.99 < 250

150− 19.99 < 21.70x+ 19.99− 19.99 < 250− 19.99

130.01 < 21.70x < 230.01

130.01

21.70
<

21.70x

21.70
<

230.01

21.70

5.991 < x < 10.6 (note: these values are approximate)

The interpretation of this inequality is a little tricky. Remember that x represents the number of dishes
Raphael can afford. Since you cannot buy 5.991 dishes (manufacturers will typically only ship whole num-
ber amounts of tableware) his minimum purchase must be 6 dishes. We have a similar problem with his
maximum purchase: clearly he cannot buy 10.6 dishes. So, should we round up or down? If we rounded
up, that would be 11 dishes and that would cost $21.70 · 11 + $19.99 = $258.69, which is outside his price
range. Therefore, we should actually round down in this case.

In conclusion, Raphael should buy somewhere between 6 and 10 dishes for his friend to stay within his
budget.
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Example 13.6.36 Oak Ridge National Laboratory, a renowned scientific research facility, compiled some
data1 on fuel efficiency of a mid-size hybrid car versus the speed that the car was driven. A model for the
fuel efficiency e(x) (in miles per gallon, mpg) at a speed x (in miles per hour, mph) is e(x) = 88− 0.7x.

a. Evaluate and interpret e(60) in the context of the problem.
b. Note that this model only applies between certain speeds. The maximum fuel efficiency for which this

formula applies is 55 mpg and the minimum fuel efficiency for which it applies is 33 mpg. Set up and
algebraically solve a compound inequality to find the range of speeds for which this model applies.

Explanation.
a. Let’s evaluate e(60) first.

e(x) = 88− 0.7x

e(60) = 88− 0.7(60)

= 46

So, when the hybrid car travels at a speed of 60 mph, it has a fuel efficiency of 46 mpg.
b. In this case, the minimum efficiency is 33 mpg and the maximum efficiency is 55 mpg. We need to trap

our formula between these two values to solve for the respective speeds.

33 < 88− 0.7x < 55

33− 88 < 88− 0.7x− 88 < 55− 88

−55 < −0.7x < −33

−55

−0.7
>

−0.7x

−0.7
>

−33

−0.7

78.57 > x > 47.14 (note: these values are approximate)

This inequality says that our model is applicable when the car’s speed is between about 47 mph and
about 79 mph.

13.6.6 Reading Questions
1. What is the difference between an “inequality” and a “compound inequality”?
2. What is the difference between a union and an intersection?
3. Explain why −3 < 5 ≥ 2 doesn’t make mathematical sense.
4. If you solve a compound inequality and your final simplification is “x > 7 and x < 12”, how many

solutions are in your solution set? How would you write those solutions?

1tedb.ornl.gov/data/
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13.6.7 Exercises
Review and Warmup

1. For the interval expressed in the number
line, write it using set-builder notation and
interval notation.

2. For the interval expressed in the number
line, write it using set-builder notation and
interval notation.

3. For the interval expressed in the number
line, write it using set-builder notation and
interval notation.

4. For the interval expressed in the number
line, write it using set-builder notation and
interval notation.

5. Solve this inequality.
1 > x+ 7

6. Solve this inequality.
1 > x+ 10

7. Solve this inequality.
−2x ≥ 6

8. Solve this inequality.
−3x ≥ 6

9. Solve this inequality.
5 ≥ −6x+ 5

10. Solve this inequality.
4 ≥ −7x+ 4

11. Solve this inequality.
9t+ 3 < 5t+ 43

12. Solve this inequality.
9t+ 9 < 3t+ 51

Check Solutions Decide whether the given value for the variable is a solution.
13. a. x > 9 and x ≤ 5 x = 8The given

value (□ is □ is not) a solution.
b. x < 4 or x ≥ 6 x = 1The given
value (□ is □ is not) a solution.
c. x ≥ −2 and x ≤ 8 x = −2The
given value (□ is □ is not) a solution.
d. −3 ≤ x ≤ 3 x = 2The given value
(□ is □ is not) a solution.

14. a. x > 1 and x ≤ 2 x = 2The given
value (□ is □ is not) a solution.
b. x < 1 or x ≥ 6 x = 6The given
value (□ is □ is not) a solution.
c. x ≥ −2 and x ≤ 3 x = 4The given
value (□ is □ is not) a solution.
d. −1 ≤ x ≤ 1 x = 1The given value
(□ is □ is not) a solution.

Compound Inequalities and Interval Notation
15. Solve the compound inequality. Write the

solution set in interval notation.
−9 < x ≤ 9

16. Solve the compound inequality. Write the
solution set in interval notation.
−8 < x ≤ 5

17. Solve the compound inequality. Write the
solution set in interval notation.
−7 > x or x ≥ 2

18. Solve the compound inequality. Write the
solution set in interval notation.
−6 > x or x ≥ 8

19. Express the following inequality using
interval notation.
x < −5 or x ≤ 5

20. Express the following inequality using
interval notation.
x < −4 or x ≤ 1
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21. Express the following inequality using
interval notation.
−3 < x and x ≥ 8

22. Express the following inequality using
interval notation.
−2 < x and x ≥ 4

23. Express the following inequality using
interval notation.
−10 ≤ x and x < 1

24. Express the following inequality using
interval notation.
−9 ≤ x and x < 7

Solving a Compound Inequality Algebraically Solve the compound inequality algebraically.
25. −5 < 7− x ≤ 0 26. −7 < 20− x ≤ −2

27. 10 ≤ x+ 13 < 15 28. 12 ≤ x+ 6 < 17

29. 21 ≤ 5

9
(F− 32) ≤ 49

F is in

30. 24 ≤ 5

9
(F− 32) ≤ 42

F is in
31. −16x+ 11 ≤ 1 or − 14x− 13 ≥ −13 32. 16x+ 10 ≤ −17 and 5x− 1 < 3

33. 2x− 14 ≤ 13 and − 16x+ 3 ≤ 20 34. −12x+ 3 ≤ 1 and 5x+ 7 ≥ −5

35. −8x− 5 ≥ −17 and 19x+ 20 ≥ −14 36. −4x+ 20 > −7 and 14x− 13 ≥ −5

37. 10x+ 11 ≤ −18 or − 11x+ 10 ≤ −10 38. 5x− 20 ≥ −4 or − 4x− 15 ≥ 15

39. 8 <
4

3
x < 36 40. 5 <

5

2
x < 50

41. 11 > 1−
2

7
x ≥ −3 42. 12 > −3−

5

4
x ≥ −23

Applications
43. As dry air moves upward, it expands. In so doing, it cools at a rate of about 1◦C for every 100m

rise, up to about 12km.
a. If the ground temperature is 17◦C, write a formula for the temperature at height xkm. T(x) =

b. What range of temperature will a plane be exposed to if it takes off and reaches a maximum
height of 5km? Write answer in interval notation.
The range is .

Challenge
44. Algebraically, solve for x in the equation:

5 = |x− 5|+ |x− 10|
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13.7 Solving Inequalities Graphically

In this text, we have mostly focused on solving inequalities algebraically. While we have had some prac-
tice solving inequalities graphically 11.3.3 with technology, we want to solidify those skills. Solving using
graphing is special because the graphing utility we use can do much of the heavy lifting and all that is left
is to analyze the graph that is shown to us. So let’s let our favorite graphing program make some graphs
for us and then we can interpret the results.

13.7.1 Solving Inequalities Graphically

Example 13.7.1
Business leaders and professionals around the
world concern themselves with money and how to
grow their wealth. While a vast majority of people
who live in the United States own few or no stocks,
the stock market is important to learn about for
anyone interested in earning a retirement. Stock
owners need to know when to buy or sell their
stocks to make a profit and the most essential tool
to do so is the ability to read a graph. Let’s ex-
amine a graph of the actual closing value of Apple
(AAPL) stock from June 3, 2019 to August 6, 2019.

6/10 6/20 6/30 7/10 7/20 7/30

170

180

190

200

210

(6, 185)

x

y

Figure 13.7.2: A Graph of AAPL Stock Data
If a person bought the stock on June 6, when the stock was valued at $185 per share, and they wanted at
least a $20 per share profit, during what days could they have sold that stock?
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If we want a $20 per share profit, then we should
be interested in stock prices of $205 or more. Let’s
draw a line at y = 205, representing the price of
$205, and find any days when the stock was on
or above that line. According to the graph, there
are several dates in question in starting in late July.
Let’s zoom in on those dates to read our solutions
better.

6/10 6/20 6/30 7/10 7/20 7/30

170

180

190

200

210

(6, 185)

y = 205

x

y

Figure 13.7.3: A Graph of AAPL Stock Data with
y = 205

With a zoomed-in and rescaled graph, we can
clearly see the dates that would have resulted in
a $20 per share profit. Those dates were July 15,
16, 18, 22, 23, 24, 25, 26, 29, 30, 31, and August 1.
Keep in mind that the stock market is closed on
weekends and holidays, so we are only counting
the solid dots as our solutions.

7/15 7/20 7/25 7/30

201

202

203

204

205

206

207

208

209

210

211

212

213

214

(6, 185)

y = 205

x

y

Figure 13.7.4: A Zoomed-In Graph of AAPL Stock
Data with y = 205
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Let’s turn to an example involving a linear equation.
Example 13.7.5 Solve the inequality 3x− 2 < 7 graphically.
Explanation.
To solve any inequality (or equation) graphically,
we first take each side of the equation and graph
y = ”left hand side” and y = ”right hand side”. In
this case, that would be y = 3x−2 and y = 7. Now
we can see that the graphs of y = 3x− 2 and y = 7

intersect at the point (3, 7).

−1 1 2 3 4

−8

−6

−4

−2

2

4

6

8

10

12

y
=
3x
−
2

y = 7

(3, 7)

x

y

Figure 13.7.6: A Graph of Both y = 3x− 2 and
y = 7

Since we are trying to solve the inequality 3x− 2 <

7, we need to examine the graph for where (what
x-values) the graph of y = 3x−2 is below the graph
of y = 7. This happens for x-values less than 3. So
we would say that the solution set to 3x − 2 < 7 is
(−∞, 3). It is review to solve the inequality alge-
braically to verify our result.

−1 1 2 3 4

−8

−6

−4

−2

2

4

6

8

10

12

y
=
3x
−
2

y = 7

(3, 7)

x

y

Figure 13.7.7: A Graph of Both y = 3x− 2 and
y = 7

13.7.2 Solving Absolute Value and Quadratic Inequalities Graphically
Recall in Section 13.4 that we learned that graphs of absolute value function are in general shaped like “V”s.
We can now solve some absolute value inequalities graphically.
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Example 13.7.8
Graphically solving the inequality |2x− 1| ≤ 5

means looking for the x-values where the graph of
y = |2x− 1| is below (or touching) the line y = 5.
On the graph the highlighted region of y = |2x− 1|

is the portion that is below the line y = 5, and the
x-values in that region are [−2, 5].

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−1

1

2

3

4

5

6

y
=
|2
x
−
1
|

y = 5

x

y

Figure 13.7.9: y = |2x− 1| and y = 5

Example 13.7.10 Solve the inequality
∣∣2
3
x+ 1

∣∣ < 3 graphically.
Explanation. To solve the inequality

∣∣2
3
x+ 1

∣∣ < 3, we will start by making a graph with both y =
∣∣2
3
x+ 1

∣∣
and y = 3.
The portion of the graph of y =

∣∣2
3
x+ 1

∣∣ that is be-
low y = 3 is highlighted and the x-values of that
highlighted region are trapped between −6 and 3:
−6 < x < 3. That means that the solution set is
(−6, 3). Note that we shouldn’t include the end-
points of the interval because at those values, the
two graphs are equal whereas the original inequal-
ity was only less than and not equal.

−8 −6 −4 −2 2 4 6

1

2

3

4

5

y
= ∣∣ 2

3 x
+
1 ∣∣

y = 3

x

y

Figure 13.7.11: y =
∣∣2
3
x+ 1

∣∣ and y = 3

The last examples had absolute value expressions being less than some value. We now need to investigate
what happens when we have an absolute value expression that is greater than a value.
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Example 13.7.12 To graphically solve the inequality |x− 1| > 3 would mean looking for the x-values where
the graph of y = |x− 1| is above the line y = 3.
On the graph the highlighted region of y = |x− 1|

is the portion that is above the line y = 3 and
the x-values in that region can be represented by
(−∞,−2) ∪ (4,∞).

−6 −4 −2 2 4 6

−1

1

2

3

4

5

6y
=
|x
−
1|

y = 3

x

y

Figure 13.7.13: y = |x− 1| and y = 3

Example 13.7.14 Solve the inequality
∣∣1
3
x+ 2

∣∣ ≥ 6 graphically.
Explanation. To solve the inequality

∣∣1
3
x+ 2

∣∣ ≥ 6, we will start by making a graph with both y =
∣∣1
3
x+ 2

∣∣
and y = 6.
The portion of the graph of y =

∣∣1
3
x+ 2

∣∣ that is
above y = 6 is highlighted and the x-values of
that highlighted region are those below (or equal
to) −24 and those above (or equal to) 12: x ≤
−24 or x ≥ 12. That means that the solution set
is (−∞,−24) ∪ (12,∞).

−32 −24 −16 −8 8 16
−1

1

2

3

4

5

6

7

8

9

y
= ∣∣ 1

3 x
+
2 ∣∣

y = 6

x

y

Figure 13.7.15: y =
∣∣1
3
x+ 2

∣∣ and y = 3
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Solving inequalities with quadratic expressions graphically is very similar to solving absolute value inequal-
ities graphically.

Example 13.7.16 Graphically solve the following quadratic inequalities.
a. 42(x− 2)2 − 60 ≥ 21x− 39 b. 42(x− 2)2 − 60 < 21x− 39

Explanation.
For both parts of this example, we start by graph-
ing the equations y = 42(x − 2)2 − 60 and y =
21x−39 using graphing technology, and determin-
ing the points of intersection.

1 2 3 4

−60

−40

−20

20

40

60

(1,−18)

(3.5, 34.5)

x

y

Figure 13.7.17: Points of intersection for
y = 42(x− 2)2 − 60 and y = 21x− 39

a. To solve 42(x − 2)2 − 60 ≥ 21x − 39, we need to determine where the y-values of the parabola are
higher than (or equal to) those of the line. This region is highlighted in Figure 13.7.18.
We can see that 42(x − 2)2 − 60 ≥ 21x − 39 for
all values of x where x ≤ 1 or x ≥ 3.5. We
can write this solution set in interval notation as
(−∞, 1] ∪ [3.5,∞) or in set-builder notation as
{x | x ≤ 1 or x ≥ 3.5}.

1 2 3 4

−60

−40

−20

20

40

60

(1,−18)

(3.5, 34.5)

x

y

Figure 13.7.18: Where
42(x− 2)2 − 60 ≥ 21x− 39
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b. To now solve 42(x−2)2−60 < 21x−39, we will need to determine where the y-values of the parabola
are less than those of the line. This region is highlighted in Figure 13.7.19.
So the solutions to this inequality include all val-
ues of x for which 1 < x < 3.5. We can write this
solution set in interval notation as (1, 3.5) or in
set-builder notation as {x | 1 < x < 3.5}.

1 2 3 4

−60

−40

−20

20

40

60

(1,−18)

(3.5, 34.5)

x

y

Figure 13.7.19: Where
42(x− 2)2 − 60 < 21x− 39

13.7.3 Solving Compound Inequalities Graphically

Example 13.7.20
Figure 13.7.21 shows a graph of y = f(x). Use the
graph to solve the inequality 2 ≤ f(x) < 6.

−6 −4 −2 2 4 6

−4

−2

2

4

6

8

y = f(x)

x

y

Figure 13.7.21: Graph of y = f(x)
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Explanation.
To solve the inequality 2 ≤ f(x) < 6 means to find
the x-values that give function values between 2

and 6, not including 6. We draw the horizontal
lines y = 2 and y = 6. Then we look for the points
of intersection and find their x-values. We see that
when x is between −4 and 4, not including −4, the
inequality will be true. We have drawn the interval
(−4, 4] along the x-axis, which is the solution set.

−6 −4 −2 2 4 6

−4

−2

2

4

6

8

y = f(x)

y = 2

y = 6

x

y

Figure 13.7.22: Graph of y = f(x) and the solution
set to 2 ≤ f(x) < 6

Example 13.7.23 Figure 13.7.24 shows a graph of y = g(x). Use the graph to solve the inequality −4 <

g(x) ≤ 3.

−3 −2 −1 1 2 3

−6

−4

−2

2

4
y = g(x)

x

y

Figure 13.7.24: Graph of y = g(x)

Explanation. To solve −4 < g(x) ≤ 3, we first draw the horizontal lines y = −4 and y = 3. To solve this
inequality we notice that there are two pieces of the function g that are trapped between the y-values −4

and 3.
The solution set is the compound inequality (−2.1, 0.7) ∪ (2.4, 3.2].
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−3 −2 −1 1 2 3

−6

−4

−2

2

4

y = g(x)

y = −4

y = 3

x

y

Figure 13.7.25: Graph of y = g(x) and solution set to −4 < g(x) ≤ 3

Example 13.7.26 Phuong is taking the standard climbing route on Mount Hood from Timberline Lodge up
the Southside Hogsback to the summit and back down the same way. Her altitude can be very closely
modeled by an absolute value function since the angle of ascent is nearly constant. Let x represent the
number of miles walked from Timberline Lodge, and let f(x) represent the altitude, in miles, after walking
for a distance x. The altitude can be modeled by f (x) = 2.1− 0.3077 · |x− 3.25|. Note that below Timberline
Lodge this model fails to be accurate.

a. Solve the equation f(x) = 1.1 graphically and interpret the results in the context of the problem.
b. Altitude sickness can occur at or above altitudes 1.5 miles. Set up and solve an inequality graphically

to find out how far Phuong can walk the trail and still be under 1.5 miles of elevation.

Explanation.
a. First, we substitute the formula for f(x) and simplify the equation.

f(x) = 1.1

2.1− 0.3077 · |x− 3.25| = 1.1

At this point, we should make a graph of both y = 2.1 − 0.3077 · |x− 3.25| and y = 1.1 and find their
intersections.
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Next, we should note that we are looking for
the x-values of the intersections. These solutions
are 0 and 6.5. According to the model, Phuong
will be at 1.1 miles of elevation after walking
about 0 miles as well as about 6.5 miles along
the trail. This implies that Timberline Lodge is
at 1.1 miles of elevation. In addition, it implies
that the entire hike is 6.5 miles round trip, end-
ing at Timberline Lodge again.

1 2 3 4 5 6 7

0.5

1

1.5

2

2.5

y
=
f(x

)

(0, 1.1) (6.5, 1.1)

x

y

Figure 13.7.27: y = f(x) and y = 1.1

b. The inequality we are looking for will describe when the altitude is below 1.5 miles, but also above 1.1

miles based on the reality of the situation (since the model only works above Timberline lodge at 1.1
miles of altitude). Since f(x) is the altitude, the inequality we need is 1.1 ≤ f(x) < 1.5, which becomes
1.1 ≤ 2.1− 0.3077 · |x− 3.25| < 1.5.
Let’s examine the graph again to solve this in-
equality: We are looking for places on the graph
where the y-value is above 1.1, but also where
the graph is below 1.5. To find this, we will draw
in lines at both of those y-values and find inter-
sections with f.

1 2 3 4 5 6 7

0.5

1

1.5

2

2.5

y
=
f(x

)

y = 1.1

y = 1.5

(1.3, 1.5)

(5.2, 1.5)

(0, 1.1) (6.5, 1.1)

x

y

Figure 13.7.28: y = f(x), the Graph of the Mt
Hood Ascent and Descent

The highlighted portions of the graph have x-values that satisfy the inequalities 0 ≤ x < 1.3 or 5.2 <

x ≤ 6.5.
In conclusion, based both on our math and the reality of the situation, regions of the trail that are below
1.5 miles are those that are from Timberline Lodge (at 0 miles on the trail), to 1.3 miles along the trail
and then also from 5.2 miles along the trail (and by now we are on our way back down) to 6.5 miles
along the trail (back at Timberline Lodge). If we wanted to write this in interval notation, we might
write [0, 1.3)∪ (5.2, 6.5]. There is a big portion along the trail (from 1.3 miles to 5.2 miles) that Phuong
will be above the 1.5 mile altitude and should watch for signs of altitude sickness.
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13.7.4 Reading Questions
1. The graph of the function f is above the graph of the function g between x = 6 and x = 9. How many

solutions does the inequality f(x) > g(x) have?
2. Can the solution set to the inequality h(x) > k(x) be the set of all real numbers? Why or why not?
3. Can the solution set to the inequality h(x) > k(x) be the empty set (i.e., the inequality has no solutions)?

Why or why not?

13.7.5 Exercises

Review andWarmup For the interval expressed in the number line, write it using set-builder notation and
interval notation.

1. 2.

3. 4.

5. For the function L defined by

L(x) = 3000x2 + 10x+ 4,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.

6. For the function M defined by

M(x) = −(300x− 2950)2,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.

7. For the function N defined by

N(x) = (300x− 1.05)2,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.

8. For the function B defined by

B(x) = x2 − 0.05x+ 0.0006,

use technology to determine the following.
Round answers as necessary.

a. Any intercepts.
b. The vertex.
c. The domain.
d. The range.
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Solving Inequalities Graphically

9. Solve the equations and inequalities graphically. Use interval notation when applicable.
a.
∣∣2
3
x+ 2

∣∣ = 4 b.
∣∣2
3
x+ 2

∣∣ > 4 c.
∣∣2
3
x+ 2

∣∣ ≤ 4

10. Solve the equations and inequalities graphically. Use interval notation when applicable.
a.
∣∣11−2x

5

∣∣ = 4 b.
∣∣11−2x

5

∣∣ > 4 c.
∣∣11−2x

5

∣∣ ≤ 4

11. Solve the equations and inequalities graphically. Use interval notation when applicable.
a. x2 − 3 = 1 b. x2 − 3 > 1 c. x2 − 3 ≤ 1

12. Solve the equations and inequalities graphically. Use interval notation when applicable.
a. x2 − x− 3 = x b. x2 − x− 3 > x c. x2 − x− 3 ≤ x

13. The equations y = 1
2
x2 + 2x− 1 and y = 5

are plotted.

a. What are the points of intersection?
b. Solve 1

2
x2 + 2x− 1 = 5.

c. Solve 1
2
x2 + 2x− 1 > 5.

14. The equations y = 1
3
x2 − 3x+ 3 and y = −3

are plotted.

a. What are the points of intersection?
b. Solve 1

3
x2 − 3x+ 3 = −3.

c. Solve 1
3
x2 − 3x+ 3 > −3.

15. The equations y = −x2 + 1.5x+ 5 and
y = −5 are plotted.

a. What are the points of intersection?
b. Solve −x2 + 1.5x+ 5 = −5.
c. Solve −x2 + 1.5x+ 5 > −5.

16. The equations y = −x2 − 3.5x+ 2 and y = 2

are plotted.

a. What are the points of intersection?
b. Solve −x2 − 3.5x+ 2 = 2.
c. Solve −x2 − 3.5x+ 2 > 2.
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17. The equations y = 1
2
x2 − x− 1 and

y = −x+ 1 are plotted.

a. What are the points of intersection?
b. Solve 1

2
x2 − x− 1 = −x+ 1.

c. Solve 1
2
x2 − x− 1 > −x+ 1.

18. The equations y = −1
3
x2 + 2x+ 3 and

y = x− 3 are plotted.

a. What are the points of intersection?
b. Solve −1

3
x2 + 2x+ 3 = x− 3.

c. Solve −1
3
x2 + 2x+ 3 > x− 3.

19. The equations y = 1
4
x3 and y = x are

plotted.

a. What are the points of intersection?
b. Solve 1

4
x3 = x.

c. Solve 1
4
x3 > x.

20. The equations y = x3 + x and y = 1
6
x2 are

plotted.

a. What are the points of intersection?
b. Solve x3 + x = 1

6
x2.

c. Solve x3 + x > 1
6
x2.
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21. The equations y =
√
x+ 4 and y = 4x2+x+3

36

are plotted.

a. What are the points of intersection?

b. Solve √
x+ 4 = 4x2+x+3

36
.

c. Solve √
x+ 4 > 4x2+x+3

36
.

22. The equations y =
√
4− x and y = −2− x

are plotted.

a. What are the points of intersection?
b. Solve √

4− x = −2− x.
c. Solve √

4− x > −2− x.

23. The equations y = 1
2
x2 + 2x and

y = 3
√
9− 2x2 + 23

50
x− 52

25
are plotted.

a. What are the points of intersection?
b. Solve

1
2
x2 + 2x = 3

√
9− 2x2 + 23

50
x− 52

25
.

c. Solve
1
2
x2 + 2x >

3
√
9− 2x2 + 23

50
x− 52

25
.

24. The equations y = x− 2 and
y = |x+ |x− 3|− 4| are plotted.

a. What are the points of intersection?
b. Solve x− 2 = |x+ |x− 3|− 4|.
c. Solve x− 2 > |x+ |x− 3|− 4|.

Solving Equations and Inequalities Graphically Using Technology
25. Let s(x) = 1

5
x2 − 2x+ 10 and

t(x) = −x+ 40. Use graphing technology to
determine the following.

a. What are the points of intersection for
these two functions?

b. Solve s(x) = t(x).
c. Solve s(x) > t(x).
d. Solve s(x) ≤ t(x).

26. Let w(x) = 1
4
x2 − 3x− 8 and m(x) = x+ 12.

Use graphing technology to determine the
following.

a. What are the points of intersection for
these two functions?

b. Solve w(x) = m(x).
c. Solve w(x) > m(x).
d. Solve w(x) ≤ m(x).
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27. Let f(x) = 4x2 + 5x− 1 and g(x) = 5. Use
graphing technology to determine the
following.

a. What are the points of intersection for
these two functions?

b. Solve f(x) = g(x).
c. Solve f(x) < g(x).
d. Solve f(x) ≥ g(x).

28. Let p(x) = 6x2 − 3x+ 4 and k(x) = 7. Use
graphing technology to determine the
following.

a. What are the points of intersection for
these two functions?

b. Solve p(x) = k(x).
c. Solve p(x) < k(x).
d. Solve p(x) ≥ k(x).

29. Let q(x) = −4x2 − 24x+ 10 and
r(x) = 2x+ 22. Use graphing technology to
determine the following.

a. What are the points of intersection for
these two functions?

b. Solve q(x) = r(x).
c. Solve q(x) > r(x).
d. Solve q(x) ≤ r(x).

30. Let h(x) = −10x2 − 5x+ 3 and
j(x) = −3x− 9. Use graphing technology to
determine the following.

a. What are the points of intersection for
these two functions?

b. Solve h(x) = j(x).
c. Solve h(x) > j(x).
d. Solve h(x) ≤ j(x).

31. Use graphing technology to solve the
equation (200+ 5x)(100− 2x) = 15000.
Approximate the solution(s) if necessary.

32. Use graphing technology to solve the
inequality 2x2 + 5x− 3 > −5. State the
solution set using interval notation, and
approximate if necessary.

33. Use graphing technology to solve the
inequality −x2 + 4x− 7 > −12. State the
solution set using interval notation, and
approximate if necessary.

34. Use graphing technology to solve the
inequality 10x2 − 11x+ 7 ≤ 7. State the
solution set using interval notation, and
approximate if necessary.

35. Use graphing technology to solve the
inequality −10x2 − 15x+ 4 ≤ 9. State the
solution set using interval notation, and
approximate if necessary.

36. Use graphing technology to solve the
inequality −x2 − 6x+ 1 > x+ 5. State the
solution set using interval notation, and
approximate if necessary.

37. Use graphing technology to solve the
inequality 3x2 + 5x− 4 > −2x+ 1. State the
solution set using interval notation, and
approximate if necessary.

38. Use graphing technology to solve the
inequality −10x+ 4 ≤ 20x2 − 34x+ 6. State
the solution set using interval notation, and
approximate if necessary.

39. Use graphing technology to solve the
inequality −15x2 − 6 ≤ 10x− 4. State the
solution set using interval notation, and
approximate if necessary.

40. Use graphing technology to solve the
inequality 1

2
x2 + 3

2
x ≥ 1

2
x− 3

2
. State the

solution set using interval notation, and
approximate if necessary.

41. Use graphing technology to solve the
inequality 3

4
x ≥ 1

4
x2 − 3x. State the solution

set using interval notation, and
approximate if necessary.
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13.8 Graphs and Equations Chapter Review

13.8.1 Overview of Graphing

In Section 13.1 we reviewed several ways of making graphs of both lines (by hand) and general functions
(using technology).

Example 13.8.1 Graphing Lines by Plotting Points. Graph the equation y = 5
3
x − 3 by creating a table of

values and plotting those points.
Explanation. To make a good table for this line, we should have x-values that are multiples of 3 to make
sure that the fraction cancels nicely for the outputs.

x y = 5
3
x− 3 Point

−3 5
3
(−3) − 3 = −8 (1,−8)

0 5
3
(0) − 3 = −3 (2,−3)

3 5
3
(3) − 3 = 2 (3, 2)

6 5
3
(6) − 3 = 7 (4, 7)

Figure 13.8.2: A table of values for y = 5
3
x− 3

−3 3 6

−8

−6

−4

−2

2

4

6

8

(−3,−8)

(0,−3)

(3, 2)

(6, 7)

x

y

Figure 13.8.3: A graph of y = 5
3
x− 3

Example 13.8.4 Graphing Lines in Slope-Intercept Form. Find the slope and vertical intercept of j(x) =
−7

2
x+ 5, and then use slope triangles to find the next two points on the line. Draw the line.

Explanation. The slope of j(x) = −7
2
x+ 5 is −7

2
, and the vertical intercept is (0, 5). Starting at (0, 5), we go

down 7 units and right 2 units to reach more points.
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From the graph, we can read that two more points
that j(x) = −7

2
x+ 5 passes through are (2,−2) and

(4, 9).

−2 2 4

−8

−6

−4

−2

2

4

6

8

10

12(−2, 12, )

(0, 5, )

(2,−2)

(4,−9)

x

y

Figure 13.8.5: A graph of j(x) = −7
2
x+ 5

Example 13.8.6 Graphing Lines in Point-Slope Form. From the equation, find the slope and a point on the
graph of k(x) = 3

4
(x− 2) − 5, and then use slope triangles to find the next two points on the line. Draw the

line.
Explanation. The slope of k(x) = 3

4
(x − 2) − 5 is 3

4
and the point on the graph given in the equation is

(2,−5). So to graph k, start at (2,−5), and the go up 3 units and right 4 units (or down 3 left 4) to reach more
points.
From the graph, we can read that two more points
that k(x) = 3

4
(x− 2) − 5 passes through are (6,−2)

and (10, 1).

−4 4 8 12

−8

−6

−4

−2

2

4

(−2,−8)

(2,−5)

(6,−2)

(10, 1)

(14, 4)

x

y

Figure 13.8.7: A graph of k(x) = 3
4
(x− 2) − 5
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Example 13.8.8 Graphing Lines Using Intercepts. Use the intercepts of 4x−2y = 16 to graph the equation.
Explanation.
To find the x-intercept, set y = 0 and solve for x.

4x− 2(0) = 16

4x = 16

x = 4

The x-intercept is the point (4, 0).

To find the y-intercept, set x = 0 and solve for y.

4(0) − 2y = 16

−2y = 16

y = −8

The y-intercept is the point (0,−8).

Next, we just plot these points and draw the line
that runs through them.

−4 4 8

−16

−12

−8

−4

4

8

12

(0,−8)

(4, 0)

x

y

Figure 13.8.9: A graph of 4x− 2y = 16

Example 13.8.10 Graphing Functions by Plotting Points. The wind chill1 is how cold it feels outside due to
the wind. Imagine a chilly 32 °F day with a breeze blowing over the snowy ground. The wind chill, w(v),
at this temperature can be approximated by the formula w(v) = 54.5 − 21 6

√
v where v is the speed of the

wind in miles per hour. This formula only approximates the wind chill for reasonable wind values of about
5 mph to 60 mph. Create a table of values rounded to the nearest tenth for the wind chill at realistic wind
speeds and make a graph of w.
Explanation. Typical wind speeds vary between 5 and 20 mph, with gusty conditions up to 60 mph, de-
pending on location. A good way to enter the sixth root into a calculator is to recall that 6

√
x = x

1
6 .
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v w(v) = 54.5− 21 6
√
v Point Interpretation

5 w(5) ≈ 27.0 (5, 27.0) A 5 mph wind causes a wind chill of 27.0 °F.
10 w(10) ≈ 23.7 (10, 23.7) A 10 mph wind causes a wind chill of 23.7 °F.
20 w(20) ≈ 19.9 (20, 19.9) A 20 mph wind causes a wind chill of 19.9 °F.
30 w(30) ≈ 17.5 (30, 17.5) A 30 mph wind causes a wind chill of 17.5 °F.
40 w(40) ≈ 15.7 (40, 15.7) A 40 mph wind causes a wind chill of 15.7 °F.
50 w(50) ≈ 14.2 (50, 14.2) A 50 mph wind causes a wind chill of 14.2 °F.
60 w(60) ≈ 12.9 (60, 12.9) A 60 mph wind causes a wind chill of 12.9 °F.

Figure 13.8.11: A table of values for w(v) = 54.5− 21 6
√
v

With the values in Table 13.8.11, we can sketch the
graph.

10 20 30 40 50 60

4

8

12

16

20

24

28

32

(5, 27.0)

(10, 23.7)

(20, 19.9)

(30, 17.5)
(40, 15.7)

(50, 14.2)

(60, 12.9)

v

y

Figure 13.8.12: A graph of w(v) = 54.5− 21 6
√
v

13.8.2 Quadratic Graphs and Vertex Form
In Section 13.2 we covered the use of technology in analyzing quadratic functions, the vertex form of a qua-
dratic function and how it affects horizontal and vertical shifts of the graph of a parabola, and the factored
form of a quadratic function.

Example 13.8.13 ExploringQuadratic Functions with Graphing Technology. Use technology to graph and
make a table of the quadratic function g defined by g(x) = −x2 + 5x − 6 and find each of the key points or
features.

a. Find the vertex.
b. Find the vertical intercept.
c. Find the horizontal intercept(s).
d. Find g(−1).

e. Solve g(x) = −6 using the graph.

f. Solve g(x) ≤ −6 using the graph.

g. State the domain and range of the function.

1en.wikipedia.org/wiki/Wind_chill
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Explanation.
The specifics of how to use any one
particular technology tool vary.
Whether you use an app, a phys-
ical calculator, or something else,
a table and graph should look like:

x g(x)

−1 −12

0 −6

1 −2

2 0

2 0

3 0

4 −2

−1 1 2 3 4 5 6

−8

−6

−4

−2

x

y

Additional features of your technology tool can en-
hance the graph to help answer these questions.
You may be able to make the graph appear like:

−1 1 2 3 4 5 6

−8

−6

−4

−2

y = g(x)

y = −6

(2.5, 0.25)

(0,−6) (5,−6)

(3, 0)(2, 0)
x

y

a. The vertex is (2.5, 0.25).
b. The vertical intercept is (0,−6).
c. The horizontal intercepts are (2, 0) and (3, 0).
d. g(−1) = −2.
e. The solutions to g(x) = −6 are the x-values where y = 6. We graph the horizontal line y = −6 and

find the x-values where the graphs intersect. The solution set is {0, 5}.
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f.
The solutions are all x-values where the function
below (or touching) the line y = −6. The solu-
tion set is (−∞, 0] ∪ [5,∞).

−1 1 2 3 4 5 6

−8

−6

−4

−2

y = g(x)

y = −6(0,−6) (5,−6)

x

y

g. The domain is (−∞,∞) and the range is (−∞, 0.25].

Example 13.8.14 The Vertex Form of a Parabola. Recall that the vertex form of a quadratic function tells us
the location of the vertex of a parabola.

a. State the vertex of the quadratic function r(x) =
−8(x+ 1)2 + 7.

b. State the vertex of the quadratic function
u(x) = 5(x− 7)2 − 3.

c. Write the formula for a parabola with vertex
(−5, 3) and a = 2.

d. Write the formula for a parabola with vertex
(1,−17) and a = −4.

Explanation.

a. The vertex of the quadratic function r(x) =
−8(x+ 1)2 + 7 is (−1, 7).

b. The vertex of the quadratic function u(x) =
5(x− 7)2−3 is (7,−3).

c. The formula for a parabola with vertex (−5, 3)
and a = 2 is y = 2(x+ 5)2 + 3.

d. The formula for a parabola with vertex (1,−17)
and a = −4 is y = 4(x− 1)2−17.

Example 13.8.15 Horizontal and Vertical Shifts. Identify the horizontal and vertical shifts compared with
f(x) = x2.

a. s(x) = (x+ 1)2 + 7. b. v(x) = (x− 7)2 − 3.

Explanation.

a. The graph of the quadratic function s(x) =
−8(x + 1)2 + 7 is the same as the graph of
f(x) = x2 shifted to the left 1 unit and up 7

units.

b. The graph of the quadratic function v(x) =
5(x−7)2−3 is the same as the graph of f(x) = x2

shifted to the right 7 units and down 3 units.

Example 13.8.16 The Factored Form of a Parabola. Recall that the factored form of a quadratic function
tells us the horizontal intercepts very quickly.

a. n(x) = 13(x− 1)(x+ 6). b. p(x) = −6(x− 2
3
)(x+ 1

2
).



292 CHAPTER 13. GRAPHS AND EQUATIONS

Explanation.
a. The horizontal intercepts of n are (1, 0) and (−6, 0).
b. The horizontal intercepts of p are (2

3
, 0) and (−1

2
, 0).

13.8.3 Completing the Square
In Section 13.3 we covered how to complete the square to both solve quadratic equations in one variable
and to put quadratic functions into vertex form.
Example 13.8.17 Solving Quadratic Equations by Completing the Square. Solve the equations by com-
pleting the square.

a. k2 − 18k+ 1 = 0 b. 4p2 − 3p = 2

Explanation.
a. To complete the square in the equation k2 − 18k+ 1 = 0, we first we will first move the constant term

to the right side of the equation. Then we will use Fact 13.3.3 to find (b
2

)2 to add to both sides.

k2 − 18k+ 1 = 0

k2 − 18k = −1

In our case, b = −18, so (b
2

)2
=
(
−18
2

)2
= 81

k2 − 18k+ 81 = −1+ 81

(k− 9)2 = 80

k− 9 = −
√
80 or k− 9 =

√
80

k− 9 = −4
√
5 or k− 9 = 4

√
5

k = 9− 4
√
5 or k = 9+ 4

√
5

The solution set is {9+ 4
√
5, 9− 4

√
5}.

b. To complete the square in the equation 4p2 − 3p = 2, we first divide both sides by 4 since the leading
coefficient is 4.

4p2

4
−

3p

4
=

2

4

p2 −
3

4
p =

1

2

p2 −
3

4
p =

1

2

Next, we will complete the square. Since b = −3
4

, first,

b

2
=

−3
4

2
= −

3

8
(13.8.1)
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and next, squaring that, we have (
−
3

8

)2

=
9

64
. (13.8.2)

So we will add 9
64

from Equation (13.8.2) to both sides of the equation:

p2 −
3

4
p+

9

64
=

1

2
+

9

64

p2 −
3

4
p+

9

64
=

32

64
+

9

64

p2 −
3

4
p+

9

64
=

41

64

Here, remember that we always factor with the number found in the first step of completing the square,
Equation (13.8.1). (

p−
3

8

)2

=
41

64

p−
3

8
= −

√
41

8
or p−

3

8
=

√
41

8

p =
3

8
−

√
41

8
or p =

3

8
+

√
41

8

p =
3−

√
41

8
or p =

3+
√
41

8

The solution set is
{

3−
√
41

8
, 3+

√
41

8

}
.

Example 13.8.18 Putting Quadratic Functions in Vertex Form. Write a formula in vertex form for the
function T defined by T(x) = 4x2 + 20x+ 24.
Explanation. Before we can complete the square, we will factor the 4 out of the first two terms. Don’t be
tempted to factor the 4 out of the constant term.

T(x) = 4
(
x2 + 5x

)
+ 24

Now we will complete the square inside the parentheses by adding and subtracting (5
2

)2
= 25

4
.

T(x) = 4

(
x2 + 5x+

25

4
−

25

4

)
+ 24

Notice that the constant that we subtracted is inside the parentheses, but it will not be part of our perfect
square trinomial. In order to bring it outside, we need to multiply it by 4. We are distributing the 4 to that
term so we can combine it with the outside term.

T(x) = 4

((
x2 + 5x+

25

4

)
−

25

4

)
+ 24

= 4

(
x2 + 5x+

25

4

)
− 4 · 25

4
+ 24
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= 4

(
x+

5

2

)2

− 25+ 24

= 4

(
x+

5

2

)2

− 1

Note that The vertex is (−5
2
,−1

).

Example 13.8.19 Graphing Quadratic Functions by Hand. Graph the function H defined by H(x) = −x2 −
8x− 15 by determining its key features algebraically.
Explanation. To start, we’ll note that this function opens downward because the leading coefficient, −1, is
negative.

Now we will complete the square to find the vertex. We will factor the −1 out of the first two terms, and
then add and subtract (8

2

)2
= 42 = 16 on the right side.

H(x) = −
[
x2 + 8x

]
− 15

= −
[
x2 + 8x+ 16− 16

]
− 15

= −
[(
x2 + 8x+ 16

)
− 16

]
− 15

= −
(
x2 + 8x+ 16

)
− (−1 · 16) − 15

= −(x+ 4)
2
+ 16− 15

= −(x+ 4)
2
+ 1

The vertex is (−4, 1) so the axis of symmetry is the line x = −4.
To find the y-intercept, we’ll replace x with 0 or read the value of c from the function in standard form:

H(0) = −(0)2 − 8(0) − 15

= −15

The y-intercept is (0,−15) and we will find its symmetric point on the graph, which is (−8,−15).
Next, we’ll find the horizontal intercepts. We see this function factors so we will write the factored form

to get the horizontal intercepts.

H(x) = −x2 − 8x− 15

= −
(
x2 + 8x+ 15

)
= −(x+ 3)(x+ 5)

The x-intercepts are (−3, 0) and (−5, 0).
Now we will plot all of the key points and draw the parabola.
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−8 −6 −4 −2

−18

−15

−12

−9

−6

−3

3

(−3, 0)

(−8,−15)

(−5, 0)

(0,−15)

(−4, 1)

y = H(x)

x

y

Figure 13.8.20: The graph of y = −x2 − 8x− 15.

13.8.4 Absolute Value Equations
In Section 13.4 we covered how to solve equations when an absolute value is equal to a number and when
an absolute value is equal to an absolute value.
Example 13.8.21 Solving an Equationwith anAbsolute Value. Solve the absolute value equation |9− 4x| =
17 using Fact 13.4.12.
Explanation. The equation |9− 4x| = 17 breaks into two pieces, each of which needs to be solved indepen-
dently.

9− 4x = 17 or 9− 4x = −17

−4x = 8 or −4x = −26

−4x

−4
=

8

−4
or −4x

−4
=

−26

−4

x = −2 or x =
13

2

The solution set is {−2, 13
2

}.

Example 13.8.22 Solving an Equation with Two Absolute Values. Solve the absolute value equation
|7− 3x| = |6x− 5| using Fact 13.4.18.
Explanation. The equation |7− 3x| = |6x− 5| breaks into two pieces, each of which needs to be solved
independently.

7− 3x = 6x− 5 or 7− 3x = −(6x− 5)

7− 3x = 6x− 5 or 7− 3x = −6x+ 5

12− 3x = 6x or 2− 3x = −6x

12 = 9x or 2 = −3x
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12

9
=

9x

9
or 2

−3
=

−3x

−3

4

3
= x or −

2

3
= x

The solution set is {4
3
,−2

3

}.

13.8.5 Solving Mixed Equations
In Section 13.5 we reviewed all of the various solving methods covered so far including solving linear equa-
tions with one variable and for a specified variable; solving systems of linear equations using substitution
and elimination; solving equations with radicals; solving quadratic equations using the square root method,
the quadratic formula, factoring, completing the square; and solving rational equations.
Example 13.8.23 Types of equations. Identify the type of equation as linear, a system of linear equations,
quadratic, radical, rational, absolute value, or something else.

a. 5x2 − 2x = 9

b. πx− 3 = 4(x+ 1)

c. 8x2 = x+ 9

d. 2
x+2

+ 3
2x+4

= 7
x+8

e. |2x− 7|+ 2 = 3

f. √
x+ 2 = x− 4

g. (3− 2x)2 − 9 = 9

h. 3 = 3
√
5− 2x

i. {
5x− y = −6

2x− 3y = 8

j. xx = x−
∣∣x− x2 − 3

∣∣
Explanation.

a. The equation 5x2−2x = 9 is a quadratic equation since the variable is being squared (but doesn’t have
any higher power).

b. The equation πx− 3 = 4(x+ 1) is a linear equation since the variable is only to the first power.
c. The equation 8x2 = x+ 9 is a quadratic equation since there is a degree-two term.
d. The equation 2

x+2
+ 3

2x+4
= 7

x+8
is a rational equation since the variable exists in the denominator.

e. The equation |2x− 7| + 2 = 3 is an absolute value equation since the variable is inside an absolute
value.

f. The equation √
x+ 2 = x− 4 is a radical equation since the variable appears inside the radical.

g. The equation (3 − 2x)2 − 9 = 9 is a quadratic equation since if we were to distribute everything out,
we would have a term with x2.

h. The equation 3 = 3
√
5− 2x is a radical equation since the variable is inside the radical.

i. The system {
5x− y = −6

2x− 3y = 8
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is a system of linear equations.
j. The equation xx = x−

∣∣x− x2 − 3
∣∣ is an equation type that we have not covered and is not listed above.

Example 13.8.24 Solving Mixed Equations. Solve the equations using appropriate techniques.
a. 5x2 − 2x = 9

b. πx− 3 = 4(x+ 1)

c. 8x2 = x+ 9

d. 2
x+2

+ 3
2x+4

= 7
x+8

e. |2x− 7|+ 2 = 3

f. √
x+ 2 = x− 4

g. (3− 2x)2 − 9 = 9

h. 3 = 3
√
5− 2x

i. {
5x− y = −6

2x− 3y = 8

j. x2 + 10x = 12 (using completing the square)

Explanation.
a. Since the equation 5x2−2x = 9 is a quadratic we should consider the square root method, the quadratic

formula, factoring, and completing the square. In this case, we will start with the quadratic formula.
First, note that we should rearrange the terms in equation into standard form.

5x2 − 2x = 9

5x2 − 2x− 9 = 0

Note that a = 5, b = −2, and c = −9.

x =
−b±

√
b2 − 4ac

2a

x =
−(−2)±

√
(−2)2 − 4(5)(−9)

2(5)

x =
2±

√
4+ 180

10

x =
2±

√
184

10

x =
2±

√
4 · 46

10

x =
2± 2

√
46

10

x =
1±

√
46

5

The solution set is
{

1+
√
46

5
, 1−

√
46

5

}
.

b. Since the equation πx− 3 = 4(x+ 1) is a linear equation, we isolate the variable step-by-step.

πx− 3 = 4(x+ 1)

πx− 3 = 4x+ 4
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πx− 4x = 7

x(π− 4) = 7

x =
7

π− 4

The solution set is { 7
π−4

}.

c. Since the equation 8x2 = x+ 9 is a quadratic equation, we again have several options to consider. We
will try factoring on this one first after converting it to standard form.

8x2 = x+ 9

8x2 − x− 9 = 0

Here, ac = −72 and two numbers that multiply to be −72 but add to be −1 are 8 and −9.

8x2 + 8x− 9x− 9 = 0(
8x2 + 8x

)
+ (−9x− 9) = 0

8x(x+ 1) − 9(x+ 1) = 0

(8x− 9)(x+ 1) = 0

8x− 9 = 0 or x+ 1 = 0

x =
9

8
or x = −1

The solution set is {9
8
,−1
}

d. Since the equation 2
x+2

+ 3
2x+4

= 7
x+8

is a rational we first need to cancel the denominators after
factoring and finding the least common denominator.

2

x+ 2
+

3

2x+ 4
=

7

x+ 8

2

x+ 2
+

3

2(x+ 2)
=

7

x+ 8

At this point, we note that the least common denominator is 2(x+2)(x+8). We need to multiply every
term by this least common denominator.

2

x+ 2
· 2(x+ 2)(x+ 8) +

3

2(x+ 2)
· 2(x+ 2)(x+ 8) =

7

x+ 8
· 2(x+ 2)(x+ 8)

2

���x+ 2
· 2(���x+ 2)(x+ 8) +

3

�2(���x+ 2)
· �2(���x+ 2)(x+ 8) =

7
XXXx+ 8

· 2(x+ 2)(XXXx+ 8)

2 · 2(x+ 8) + 3(x+ 8) = 7 · 2(x+ 2)

4(x+ 8) + 3(x+ 8) = 14(x+ 2)

4x+ 32+ 3x+ 24 = 14x+ 28

7x+ 56 = 14x+ 28
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28 = 7x

4 = x

We always check solutions to rational equations to ensure we don’t have any “extraneous solutions”.

2

(4) + 2
+

3

2(4) + 4

?
=

7

(4) + 8

2

6
+

3

12

?
=

7

12
4

12
+

3

12

?
=

7

12
7

12

✓
=

7

12

So, the solution set is {4}.
e. Since the equation |2x− 7|+2 = 3 is an absolute value equation, we will first isolate the absolute value

and then use Equations with an Absolute Value Expression to solve the remaining equation.

|2x− 7|+ 2 = 3

|2x− 7| = 1

2x− 7 = 5 or 2x− 7 = −5

2x = 12 or 2x = 2

x = 6 or x = 1

The solution set is {6, 1}.
f. Since the equation √

x+ 2 = x − 4 is a radical equation, we will have to isolate the radical (which is
already done), then square both sides to cancel the square root. After that, we will solve whatever
remains.

√
x+ 2 = x− 4

√
x+ 2 = x− 4

(
√
x+ 2)2 = (x− 4)2

x+ 2 = (x− 4)(x− 4)

x+ 2 = x2 − 8x+ 16

0 = x2 − 9x+ 14

We now have a quadratic equation. We will solve by factoring.

0 = (x− 2)(x− 7)

x− 2 = 0 or x− 7 = 0

x = 2 or x = 7
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Every potential solution to a radical equation should be verified to check for any “extraneous solu-
tions”.

√
2+ 2

?
= 2− 4 or

√
7+ 2

?
= 7− 4

√
4

?
= −2 or

√
9

?
= 3

2
no
= −2 or 3

✓
= 3

So the solution set is {7}
g. Since the equation (3− 2x)2 − 9 = 9 is a quadratic equation, we again have several options. Since the

variable only appears once in this equation we will use the the square root method to solve.

(3− 2x)2 − 9 = 9

(3− 2x)2 = 18

3− 2x =
√
18 or 3− 2x = −

√
18

3− 2x = 3
√
2 or 3− 2x = −3

√
2

−2x = −3+ 3
√
2 or −2x = −3− 3

√
2

x =
−3+ 3

√
2

−2
or x =

−3− 3
√
2

−2

x =
3− 3

√
2

2
or x =

3+ 3
√
2

2

The solution set is
{

3−3
√
2

2
, 3+3

√
2

2

}
.

h. Since the equation 3 = 3
√
5− 2x is a radical equation, we will isolate the radical (which is already done)

and then raise both sides to the third power to cancel the cube root.

3 =
3
√
5− 2x

(3)3 =
(

3
√
6x− 5

)3
27 = 6x− 5

32 = 6x

x =
32

6

x =
16

3

The solution set is {16
3

}.
i. Since {

5x− y = −6

2x− 3y = 8
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is a system of linear equations, we can either use substitution or elimination to solve. Here we will use
substitution. To use substitution, we need to solve one of the equations for one of the variables. We
will solve the top equation for y.

5x− y = −6

−y = −5x− 6

y = 5x+ 6

Now, we substitute 5x+ 6 where ever we see y in the other equation.

2x− 3y = 8

2x− 3(5x+ 6) = 8

2x− 15x− 18 = 8

−13x− 18 = 8

−13x = 26

x = −2

Now that we have found x, we can substitute that back into one of the equations to find y. We will
substitute into the first equation.

5(−2) − y = −6

−10− y = −6

−y = 4

y = −4

So, the solution must be the point (−2,−4).
j. Since the equation x2 + 10x = 12 is quadratic and we are instructed to solve by using completing the

square, we should recall that Fact 13.3.3 tells us how to complete the square, after we have sufficiently
simplified. Since our equation is already in a simplified state, we need to add (b

2

)2
=
(
10
2

)2
= 25 to

both sides of the equation.

x2 + 10x = 12

x2 + 10x+ 25 = 12+ 25

(x+ 5)2 = 37

x+ 5 = ±
√
37

x = −5±
√
37

So, our solution set is
{
−5+

√
37,−5−

√
37
}

13.8.6 Compound Inequalities
In Section 13.6 we defined the union of intervals, what compound inequalities are, and how to solve both
“or” inequalities and triple inequalities.
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Example 13.8.25 Unions of Intervals. Draw a representation of the union of the sets (−∞,−1] and (2,∞).
Explanation. First we make a number line with both intervals drawn to understand what both sets mean.

−1 20 x

Figure 13.8.26: A number line sketch of (−∞,−1] as well as (2,∞)

The two intervals should be viewed as a single object when stating the union, so here is the picture of the
union. It looks the same, but now it is a graph of a single set.

−1 20 x

Figure 13.8.27: A number line sketch of (−∞,−1] ∪ (2,∞)

Example 13.8.28 “Or” Compound Inequalities. Solve the compound inequality.

5z+ 12 ≤ 7 or 3− 9z < −2

Explanation. First we will solve each inequality for z.

5z+ 12 ≤ 7 or 3− 9z < −2

5z ≤ −5 or −9z < −5

z ≤ −1 or z >
5

9

The solution set to the compound inequality is:

(−∞,−1] ∪
(
5

9
,∞)

Example 13.8.29 Three-Part Inequalities. Solve the three-part inequality −4 ≤ 20− 6x < 32.
Explanation. This is a three-part inequality. The goal is to isolate x in the middle and whatever you do to
one “side,” you have to do to the other two “sides.”

−4 ≤ 20− 6x < 32

−4− 20 ≤ 20− 6x− 20 < 32− 20

−24 ≤ −6x < 12

−24

−6
≥ −6x

−6
>

12

−6

4 ≥ x > −2

The solutions to the three-part inequality 4 ≥ x > −2 are those numbers that are trapped between −2 and
4, including 4 but not −2. The solution set in interval notation is (−2, 4].
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Example 13.8.30 Solving “And” Inequalities. Solve the compound inequality.

5− 3t < 3 and 4t+ 1 ≤ 6

Explanation. This is an “and” inequality. We will solve each part of the inequality and then combine the
two solutions sets with an intersection.

5− 3t < 3 and 4t+ 1 ≤ 6

−3t < −2 and 4t ≤ 5

−3t

−3
>

−2

−3
and 4t

4
≤ 5

4

t >
2

3
and t ≤ 5

4

The solution set to t > 2
3

is (2
3
,∞) and the solution set to t ≤ 5

4
is (−∞, 5

4

]. Shown is a graph of these
solution sets.

1 2 32
3

5
4

0 t

Figure 13.8.31: A number line sketch of (2
3
,∞) and also (−∞, 5

4

]
Recall that an “and” problem finds the intersection of the solution sets. Intersection finds the t-values where
the two lines overlap, so the solution to the compound inequality must be(

2

3
,∞) ∩

(
−∞,

5

4

]
=

(
2

3
,
5

4

]
.

Example 13.8.32 Application of Compound Inequalities. Mishel wanted to buy some mulch for their
spring garden. Each cubic yard of mulch cost $27 and delivery for any size load was $40. If they wanted
to spend between $200 and $300, set up and solve a compound inequality to solve for the number of cubic
yards, x, that they could buy.
Explanation. Since the mulch costs $27 per cubic yard and delivery is $40, the formula for the cost of x
yards of mulch is 27x + 40. Since Mishel wants to spend between $200 and $300, we just trap their cost
between these two values.

200 < 27x+ 40 < 300

200− 40 < 27x+ 40− 40 < 300− 40

160 < 27x < 260

160

27
<

27x

27
<

260

27

5.93 < x < 9.63

Note: these values are approximate

Most companies will only sell whole number cubic yards of mulch, so we have to round appropriately. Since
Mishel wants to spend more than $200, we have to round our lower value from 5.93 up to 6 cubic yards.
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If we round the 9.63 up to 10, then the total cost will be 27 · 10+ 40 = 310 (which represents $310), which
is more than Mishel wanted to spend. So we actually have to round down to 9cubic yards to stay below the
$300 maximum.

In conclusion, Mishel could buy 6, 7, 8, or 9 cubic yards of mulch to stay between $200 and $300.

13.8.7 Solving Inequalities Graphically

Example 13.8.33 Solving Absolute Value Inequalities Graphically. Solve the inequality |4− 2x| < 10

graphically.
Explanation. To solve the inequality |4− 2x| < 10, we will start by making a graph with both y = |4− 2x|

and y = 10.

−4 −2 2 4 6 8

2

4

6

8

10

12

y
=
|4
−
2x|

y = 10

x

y

Figure 13.8.34: y = |4− 2x| and y = 3

The portion of the graph of y = |4− 2x| that is be-
low y = 10 is highlighted and the x-values of that
highlighted region are trapped between −3 and 7:
−3 < x < 7. That means that the solution set is
(−3, 7). Note that we shouldn’t include the end-
points of the interval because at those values, the
two graphs are equal whereas the original inequal-
ity was only less than and not equal.

Example 13.8.35 Solving Compound Inequalities Graphically. Figure 13.8.36 shows a graph of y = G(x).
Use the graph do the following.

a. Solve G(x) < −2. b. Solve G(x) ≥ 1. c. Solve −1 ≤ G(x) < 1.
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−6 −4 −2 2 4 6

−4

−2

2

4

y
=
G
(x
)

x

y

Figure 13.8.36: Graph of y = G(x)

Explanation.
a. To solve G(x) < −2, we first draw a dotted line (since it’s a less-than, not a less-than-or-equal) at

y = −2. Then we examine the graph to find out where the graph of y = G(x) is underneath the line
y = −2. Our graph is below the line y = −2 for x-values less than −5. So the solution set is (−∞,−5).

−6 −4 −2 2 4 6

−4

−2

2

4

y
=
G
(x
)

y = −2

x

y

Figure 13.8.37: Graph of y = G(x) and solution set to G(x) < −2

b. To solve G(x) ≥ 1, we first draw a solid line (since it’s a greater-than-or-equal) at y = 1. Then we
examine the graph to find out what parts of the graph of y = G(x) are above the line y = 1. Our graph



306 CHAPTER 13. GRAPHS AND EQUATIONS

is above (or on) the line y = 1 for x-values between −2 and 0 as well as x-values bigger than 4. So the
solution set is [−2, 0] ∪ [4,∞).

−6 −4 −2 2 4 6

−4

−2

2

4

y
=
G
(x
)

y = 1

x

y

Figure 13.8.38: Graph of y = G(x) and solution set to G(x) ≥ 1

c. To solve −1 < G(x) ≤ 1, we first draw a solid line at y = 1 and dotted line at y = −1. Then we examine
the graph to find out what parts of the graph of y = G(x) are trapped between the two lines we just
drew. Our graph is between those values for x-values between −4 and −2 as well as x-values between
0 and 2 as well as as well as x-values between 2 and 4. We use the solid and hollow dots on the graph
to decide whether or not to include those values. So the solution set is (−4,−2] ∪ [0, 2) ∪ (2, 4].

−6 −4 −2 2 4 6

−4

−2

2

4

y
=
G
(x
)

y = 1

y = −1

x

y

Figure 13.8.39: Graph of y = G(x) and solution set to −1 < G(x) ≤ 1



13.8. GRAPHS AND EQUATIONS CHAPTER REVIEW 307

13.8.8 Exercises

Overview of Graphing
1. Create a table of ordered pairs and then make a plot of the equation y = −2

5
x− 3.

2. Create a table of ordered pairs and then make a plot of the equation y = −3
4
x+ 2.

3. Graph the equation y = 2
3
x+ 4.

4. Graph the equation y = 3
2
x− 5.

5. Graph the linear equation y = −8
3
(x− 4) − 5 by identifying the slope and one point on this line.

6. Graph the linear equation y = 5
7
(x+ 3) + 2 by identifying the slope and one point on this line.

7. Make a graph of the line 20x− 4y = 8.
8. Make a graph of the line 3x+ 5y = 10.
9. Create a table of ordered pairs and then make a plot of the equation y = −3x2.
10. Create a table of ordered pairs and then make a plot of the equation y = −x2 − 2x− 3.

Quadratic Graphs and Vertex Form
11. Let F(x) = 2x2 − 2x+ 3. Use technology to

find the following.
a. The vertex is

.
b. The y-intercept is

.
c. The x-intercept(s) is/are

.
d. The domain of F is

.
e. The range of F is

.
f. Calculate F(1).

.
g. Solve F(x) = 6.

h. Solve F(x) ≥ 6.

12. Let G(x) = −2x2 + 4x− 1. Use technology
to find the following.

a. The vertex is
.

b. The y-intercept is
.

c. The x-intercept(s) is/are
.

d. The domain of G is
.

e. The range of G is
.

f. Calculate G(1).
.

g. Solve G(x) = −6.

h. Solve G(x) < −6.
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13. An object was launched from the top of a
hill with an upward vertical velocity of 170
feet per second. The height of the object can
be modeled by the function
h(t) = −16t2 + 170t+ 300, where t

represents the number of seconds after the
launch. Assume the object landed on the
ground at sea level. Find the answer using
technology.

seconds after its launch,
the object reached its maximum height of

feet.

14. An object was launched from the top of a
hill with an upward vertical velocity of 180
feet per second. The height of the object can
be modeled by the function
h(t) = −16t2 + 180t+ 200, where t

represents the number of seconds after the
launch. Assume the object landed on the
ground at sea level. Find the answer using
technology.

seconds after its launch,
the object fell to the ground at sea level.

15. Consider the graph of the equation
y = (x− 9)

2
− 7.

Compared to the graph of y = x2, the vertex
has been shifted units (□ left
□ right) and units (□ down
□ up) .

16. Consider the graph of the equation
y = (x+ 8)

2
+ 5.

Compared to the graph of y = x2, the vertex
has been shifted units (□ left
□ right) and units (□ down
□ up) .

17. The quadratic expression (x− 1)
2 is written

in vertex form.
a. Write the expression in standard form.
b. Write the expression in factored form.

18. The quadratic expression (x− 2)
2
− 9 is

written in vertex form.
a. Write the expression in standard form.
b. Write the expression in factored form.

19. The formula for a quadratic function K is
K(x) = (x+ 1)(x− 4).

a. The y-intercept is
.

b. The x-intercept(s) is/are
.

20. The formula for a quadratic function h is
h(x) = (x− 1)(x+ 2).

a. The y-intercept is
.

b. The x-intercept(s) is/are
.

Completing the Square
21. Solve r2 − r− 2 = 0 by completing the

square.
22. Solve t2 + 5t− 6 = 0 by completing the

square.
23. Solve 3t2 − 14t+ 15 = 0 by completing the

square.
24. Solve 12t2 + 20t+ 7 = 0 by completing the

square.
25. Complete the square to convert the

quadratic function from standard form to
vertex form, and use the result to find the
function’s domain and range.
f(x) = −3x2 − 54x− 240

26. Complete the square to convert the
quadratic function from standard form to
vertex form, and use the result to find the
function’s domain and range.
f(x) = −5x2 − 60x− 184
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27. Graph f(x) = x2 − 7x+ 12 by algebraically
determining its key features. Then state the
domain and range of the function.

28. Graph f(x) = −x2 + 4x+ 21 by algebraically
determining its key features. Then state the
domain and range of the function.

29. Graph f(x) = x2 − 8x+ 16 by algebraically
determining its key features. Then state the
domain and range of the function.

30. Graph f(x) = x2 + 6x+ 9 by algebraically
determining its key features. Then state the
domain and range of the function.

Absolute Value Equations
31. Solve the following equation.

|4x+ 9| = 3

32. Solve the following equation.
|5x+ 2| = 7

33. Solve:
∣∣∣∣2t− 3

3

∣∣∣∣ = 1 34. Solve:
∣∣∣∣2x− 7

7

∣∣∣∣ = 3

35. Solve:
∣∣1
4
x+ 7

∣∣ = 5 36. Solve:
∣∣1
2
y+ 5

∣∣ = 3

37. Solve: |5y− 20|+ 2 = 2 38. Solve: |4a− 4|+ 7 = 7

39. Solve the equation: |2x− 3| = |7x+ 6| 40. Solve the equation: |4x− 8| = |3x+ 4|

41. Solve the following equation.
|3x− 1| = |8x− 10|

42. Solve the following equation.
|3x− 8| = |10x+ 5|

Solving Mixed Equations
43. Solve the equation.

47x2 + 41 = 0

44. Solve the equation.
23x2 + 47 = 0

45. Solve: |y− 1| = 9 46. Solve: |y− 5| = 13

47. Solve the equation.
2x2 = −25x− 50

48. Solve the equation.
2x2 = −11x− 5

49. Solve the equation.
y =

√
y+ 10+ 2

50. Solve the equation.
y =

√
y+ 8− 2

51. Solve the equation.
8

r+ 1
−

7

r− 6
=

5

r2 − 5r− 6

52. Solve the equation.
5

r− 2
−

7

r+ 9
=

9

r2 + 7r− 18

53. Solve the equation by completing the
square.
t2 + 6t = −8

54. Solve the equation by completing the
square.
t2 − 16t = −63

Compound Inequalities Solve the compound inequality algebraically.
55. −12x− 15 < −6 or − 8x− 10 > 18 56. −10x+ 7 < 15 and 15x+ 3 ≥ 2

57. 17x− 17 < 4 and − 6x+ 7 < 18 58. 3x+ 1 < −8 and 15x+ 11 ≤ −6

59. 2x+ 10 ≥ −19 and − 11x+ 9 < 20 60. 20x− 5 ≥ −20 or − 9x− 7 ≥ 17

61. x+ 11 < −1 or − 6x− 19 ≤ 3 62. 16x+ 5 > 20 or − 5x+ 1 ≥ 11

63. 18 ≤ x+ 17 < 23 64. 20 ≤ x+ 10 < 25

65. 3 ≤ 5

9
(F− 32) ≤ 33

F is in

66. 6 ≤ 5

9
(F− 32) ≤ 46

F is in



310 CHAPTER 13. GRAPHS AND EQUATIONS

Solving Inequalities Graphically

67. Solve the equations and inequalities graphically. Use interval notation when applicable.
a.
∣∣2
3
x+ 2

∣∣ = 4 b.
∣∣2
3
x+ 2

∣∣ > 4 c.
∣∣2
3
x+ 2

∣∣ ≤ 4

68. Solve the equations and inequalities graphically. Use interval notation when applicable.
a.
∣∣11−2x

5

∣∣ = 4 b.
∣∣11−2x

5

∣∣ > 4 c.
∣∣11−2x

5

∣∣ ≤ 4

69. The equations y = 1
2
x2 + 2x− 1 and y = 5

are plotted.

a. What are the points of intersection?
b. Solve 1

2
x2 + 2x− 1 = 5.

c. Solve 1
2
x2 + 2x− 1 > 5.

70. The equations y = 1
3
x2 − 3x+ 3 and y = −3

are plotted.

a. What are the points of intersection?
b. Solve 1

3
x2 − 3x+ 3 = −3.

c. Solve 1
3
x2 − 3x+ 3 > −3.

71. The equations y = 1
2
x2 − x− 1 and

y = −x+ 1 are plotted.

a. What are the points of intersection?
b. Solve 1

2
x2 − x− 1 = −x+ 1.

c. Solve 1
2
x2 − x− 1 > −x+ 1.

72. The equations y = −1
3
x2 + 2x+ 3 and

y = x− 3 are plotted.

a. What are the points of intersection?
b. Solve −1

3
x2 + 2x+ 3 = x− 3.

c. Solve −1
3
x2 + 2x+ 3 > x− 3.
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73. The equations y = x− 2 and
y = |x+ |x− 3|− 4| are plotted.

a. What are the points of intersection?
b. Solve x− 2 = |x+ |x− 3|− 4|.
c. Solve x− 2 > |x+ |x− 3|− 4|.

74. Use graphing technology to solve the
inequality 3

4
x ≥ 1

4
x2 − 3x. State the solution

set using interval notation, and
approximate if necessary.

A graph of f is given. Use the graph alone to solve the compound inequalities.
75.

a. f(x) > 1

b. f(x) ≤ 1

76.

a. f(x) > 2

b. f(x) ≤ 2
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Appendix B

Unit Conversions

Units of Length
in the US/Imperial System

Units of Length
in the Metric System

System to System
Length Conversions

1 foot (ft)
= 12 inches (in)

1 meter (m)
= 1000 millimeters (mm)

1 inch (in)
= 2.54 centimeters (cm)

1 yard (yd)
= 3 feet (ft)

1 meter (m)
= 100 centimeters (cm)

1 meter (m)
≈ 3.281 feet (ft)

1 yard (yd)
= 36 inches (in)

1 meter (m)
= 10 decimeters (dm)

1 meter (m)
≈ 1.094 yard (yd)

1 mile (mi)
= 5280 feet (ft)

1 dekameter (dam)
= 10 meters (m)

1 mile (mi)
≈ 1.609 kilometer (km)

1 hectometer (hm)
= 100 meters (m)
1 kilometer (km)
= 1000 meters (m)

Table B.0.1: Length Unit Conversion Factors

1
2

3
4

5
6

7
8

9
10

11

B1
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Units of Area
in the US/Imperial System

Units of Area
in the Metric System

System to System
Area Conversions

1 acre
= 43560 square feet (ft2)

1 hectare (ha)
= 10000 square meters (m2)

1 hectare (ha)
≈ 2.471 acres

640 acres
= 1 square mile (mi2)

100 hectares (ha)
= 1 square kilometer (km2)

Table B.0.2: Area Unit Conversion Factors

Units of Volume
in the US/Imperial System

Units of Volume
in the Metric System

System to System
Volume Conversions

1 tablespoon (tbsp)
= 3 teaspoon (tsp)

1 cubic centimeter (cc)
= 1 cubic centimeter (cm3)

1 cubic inch (in3)
≈ 16.39 milliliters (mL)

1 fluid ounce (fl oz)
= 2 tablespoons (tbsp)

1 milliliter (mL)
= 1 cubic centimeter (cm3)

1 fluid ounce (fl oz)
≈ 29.57 milliliters (mL)

1 cup (c)
= 8 fluid ounces (fl oz)

1 liter (L)
= 1000 milliliters (mL)

1 liter (L)
≈ 1.057 quarts (qt)

1 pint (pt)
= 2 cups (c)

1 liter (L)
= 1000 cubic centimeters (cm3)

1 gallon (gal)
≈ 3.785 liters (L)

1 quart (qt)
= 2 pints (pt)
1 gallon (gal)
= 4 quarts (qt)
1 gallon (gal)
= 231 cubic inches (in3)

Table B.0.3: Volume Unit Conversion Factors

Units of Mass/Weight
in the US/Imperial System

Units of Mass/Weight
in the Metric System

System to System
Mass/Weight Conversions

1 pound (lb)
= 16 ounces (oz)

1 gram (g)
= 1000 milligrams (mg)

1 ounce (oz)
≈ 28.35 grams (g)

1 ton (T)
= 2000 pounds (lb)

1 gram (g)
= 1000 kilograms (kg)

1 kilogram (kg)
≈ 2.205 pounds (lb)

1 metric ton (t)
= 1000 kilograms (kg)

Table B.0.4: Weight/Mass Unit Conversion Factors
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Precise Units
of Time

Imprecise Units
of Time

Units of Time
in the Metric System

1 week (wk)
= 7 days (d)

1 year (yr)
≈ 12 months (mo)

1 second (s)
= 1000 milliseconds (ms)

1 day (d)
= 24 hours (h)

1 year (yr)
≈ 52 weeks (wk)

1 second (s)
= 106 microseconds (µs)

1 hour (h)
= 60 minutes (min)

1 year (yr)
≈ 365 days (d)

1 second (s)
= 109 nanoseconds (ns)

1 minute (min)
= 60 seconds (s)

1 month (mo)
≈ 30 days (d)

Table B.0.5: Time Unit Conversion Factors

1
2
3

4
567

8
9
10

11 12

1 byte (B)
= 8 bits (b)

1 kilobit (kb)
= 1024 bits (b)

1 kilobyte (kB)
= 1024 bytes (B)

1 megabit (Mb)
= 1024 kilobits (kb)

1 megabyte (MB)
= 1024 kilobytes (kB)
1 gigabyte (GB)
= 1024 megabytes (MB)
1 terabyte (TB)
= 1024 gigabytes (GB)

Table B.0.6: Computer Storage/Memory Conversion Factors

01001111
01010010
01000011
01000011
01000001
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absolute value
solving equations with one absolute value,

242
solving equations with two absolute values,

244

completing the square, 226
complex fraction, 170
compound inequality, 260

or, 260

domain, 84

empty set, 242
equation

quadratic, 38
rational, 177

extraneous solution, 176

factored form of a quadratic function, 217
factoring

by grouping, 11
by the AC method, 21
decision tree, 33
difference of squares, 27
in stages, 18
perfect square trinomials, 28
trinomials with higher powers, 17
with factor pairs, 14

function
domain, 84
informal definition, 63
range, 87
technical definition, 115

G.C.F., 4
greatest common factor, 4
horizontal asymptote, 145
intersection, 259
or, 260
polynomial

prime, 8
prime polynomial, 8
properties

zero product property, 39
quadratic, 17

equation, 38
equation in standard form, 38

quadratic function
factored form, 217
forms, 218
vertex form, 213

range, 87
rational equation, 177
rational function, 143
roots of a function, 217
solving

absolute value equations
with one absolute value, 242
with two absolute values, 244

compound inequalities
three-part, 263
with or|hyperpage, 260

inequalities
graphically, 271



II INDEX

quadratic equations
by completing the square, 226
by factoring, 40
factoring, 40

rational equations, 176, 178
standard form of a quadratic equation, 38
union, 85, 258

vertex, 239
vertex form of a quadratic function, 213
vertical asymptote, 145
vertical line test, 119

zero product property, 39
zeros of a function, 217




