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To All

HTML, PDF, and print. This book is freely available as an html eBook, a pdf for reading on a screen, and
a pdf intended for printing. Additionally, a printed and bound copy is available for purchase at low cost.
All versions offer the same content and are synchronized such that cross-references match across versions.
They can each be found at pcc.edu/orcca.

There are some differences between the html eBook, pdf screen version, and pdf-for-print version.

• The html eBook offers interactive elements, easier navigation than print, and its content is accessible
in ways that a pdf cannot be. It has content (particularly in appendices) that is omitted from the pdf
versions for the sake of economy. It requires no more software than a modern web browser with
internet access.

• Two pdf versions can be downloaded and then accessed without the internet. One version is intended
to be read on a screen with a pdf viewer. This version retains full color, has its text centered on the
page, and includes hyperlinking. The other version is intended for printing on two-sided paper and
then binding. Most of its color has been converted with care to gray scale. Text is positioned to the left
or right of each page in a manner to support two-sided binding. Hyperlinks have been disabled.

• Printed and bound copies are available for purchase online. Up-to-date information about purchasing
a copy should be available at pcc.edu/orcca. Contact orcca-group@pcc.edu if you have trouble finding
the latest version online. Any royalties generated from these sales support OER development and
maintenance at PCC and/or scholarships to PCC students.

Copying Content. The source files for this book are available through pcc.edu/orca, and openly licensed
for use. However, it may be more conveneient to copy certain things directly from the html eBook.

The graphs and other images that appear in this manual may be copied in various file formats using the
html eBook version. Below each image are links to .png, .eps, .svg, .pdf, and .tex files for the image.

Mathematical content can be copied from the html eBook. To copy math content into MS Word, right-
click or control-click over the math content, and click to Show Math As MathML Code. Copy the resulting
code, and Paste Special into Word. In the Paste Special menu, paste it as Unformatted Text. To copy
math content into LATEX source, right-click or control-click over the math content, and click to Show Math As
TeX Commands.

Tables can be copied from the html eBook version and pasted into applications like MSWord. However,
mathematical content within tables will not always paste correctly without a little extra effort as described
above.
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Accessibility. The html eBook version is intended to meet or exceed web accessibility standards. If you
encounter an accessibility issue, please report it.

• All graphs and images should have meaningful alt text that communicates what a sighted person
would see, without necessarily giving away anything that is intended to be deduced from the image.

• All math content is rendered using MathJax. MathJax has a contextual menu that can be accessed in
several ways, depending on what operating system and browser you are using. The most common
way is to right-click or control-click on some piece of math content.

• In the MathJax contextual menu, you may set options for triggering a zoom effect on math content,
and also by what factor the zoom will be. Also in the MathJax contextual menu, you can enable the
Explorer, which allows for sophisticated navigation of the math content.

• A screen reader will generally have success verbalizing the math content from MathJax. With cer-
tain screen reader and browser combinations, you may need to set some configuration settings in the
MathJax contextual menu.

Tablets and Smartphones. PreTeXt documents like this book are “mobile-friendly.” When you view the
html version, the display adapts to whatever screen size or window size you are using. A math teacher
will usually recommend that you do not study from the small screen on a phone, but if it’s necessary, the
html eBook gives you that option.

WeBWorK for Online Homework. Most exercises are available in a ready-to-use collection of WeBWorK
problem sets. Visit webwork.pcc.edu/webwork2/orcca-demonstration to see a demonstration WeBWorK
course where guest login is enabled. Anyone interested in using these problem sets may contact the project
leads. The WeBWorK set defintion files and supporting files should be available for download from pcc.edu/
orcca.

Odd Answers. The answers to the odd homework exercises at the end of each section are not printed in
the pdf versions for economy. Instead, a separate pdf with the odd answers is available through pcc.edu/
orcca. Additionally, the odd answers are printed in an appendix in the html eBook.

Interactive and Static Examples. Traditionally, a math textbook has examples throughout each section.
This textbook uses two types of “example”:

Static These are labeled “Example.” Static examples may or may not be subdivided into a “statement”
followed by a walk-through solution. This is basically what traditional examples from math textbooks
do.

Active These are labeled “Checkpoint.” In the html version, active examples have WeBWorK answer
blanks where a reader may try submitting an answer. In the pdf output, active examples are almost
indistinguishable from static examples, but there is a WeBWorK icon indicating that a reader could
interact more actively using the eBook. Generally, a walk-through solution is provided immediately
following the answer blank.
Some readers using the html eBook will skip the opportunity to try an active example and go straight
to its solution. That is OK. Some readers will try an active example once and then move on to just read



ix

the solution. That is also OK. Some readers will tough it out for a period of time and resist reading the
solution until they answer the active example themselves.
For readers of the pdf, the expectation is to read the example and its solution just as they would read
a static example.
A reader is not required to try submitting an answer to an active example before moving on. A reader
is expected to read the solution to an active example, even if they succeed on their own at finding an
answer.

Reading Questions. Each section has a few “reading questions” immediately before the exercises. These
may be treated as regular homework questions, but they are intended to be something more. The intention
is that reading questions could be used in certain classroom models as a tool to encourage students to do
their assigned reading, and as a tool to measure what basic concepts might have been misunderstood by
students following the reading.

At some point it will be possible for students to log in to the html eBook and record answers to reading
questions for an instructor to review. The infrastructure for that feature is not yet in place at the time of
printing this edition, but please check pcc.edu/orcca for updates.

Alternative Video Lessons. Most sections open with an alternative video lesson (that is only visible in the
html eBook). These video play lists are managed through a YouTube account, and it is possible to swap
videos out for better ones at any time, provided that does not disrupt courses at PCC. Please contact us if
you would like to submit a different video into these video collections.
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Pedagogical Decisions

The authors and the greater PCC faculty have taken various stances on certain pedagogical and notational
questions that arise in basic algebra instruction. We attempt to catalog these decisions here, although this
list is certainly incomplete. If you find something in the book that runs contrary to these decisions, please
let us know.

• Basic math is addressed in an appendix. For the course sequence taught at PCC, this content is pre-
requisite and not within the scope of this book. However it is quite common for students in the basic
algebra sequence to have skills deficiencies in these areas, so we include the basic math appendix. It
should be understood that the content there does not attempt to teach basic math from first principles.
It is itended to be more of a review.

• Interleaving is our preferred approach, compared to a proficiency-based approach. To us, this means
that once the book covers a topic, that topic will be appear in subsequent sections and chapters in
indirect ways.

• We round decimal results to four significant digits, or possibly fewer leaving out trailing zeros. We
do this to maintain consistency with the most common level of precision that WeBWorK uses to assess
decimal answers. We generally round, not truncate, and we use the ≈ symbol. For example, π ≈ 3.142

and Portland’s population is ≈ 609500. On rare occasions where it is the better option, we truncate
and use an ellipsis. For example, π = 3.141 . . ..

• We offer alternative video lessons associated with each section, found at the top of most sections in the
html eBook. We hope these videos provide readers with an alternative to whatever is in the reading,
but there may be discrepancies here and there between the video content and reading content.

• We believe in opening a topic with some level of application rather than abstract examples, whenever
that is possible. From applications and practical questions, we move to motivate more abstract defin-
itions and notation. At first this may feel backwards to some instructors, with some easier examples
following more difficult contextual examples.

• Linear inequalities are not strictly separated from linear equations. The section that teaches how to
solve 2x + 3 = 8 is immediately followed by the section teaching how to solve 2x + 3 < 8. Our aim
is to not treat inequalities as an add-on optional topic, but rather to show how intimately related they
are to corresponding equations.

• When issues of “proper formatting” of student work arise, we value that the reader understand why
such things help the reader to communicate outwardly. We believe that mathematics is about more
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than understanding a topic, but also about understanding it well enough to communicate results to
others. For example we promote progression of equations like

1+ 1+ 1 = 2+ 1

= 3

instead of
1+ 1+ 1 = 2+ 1 = 3.

We want students to understand that the former method makes their work easier for a reader to read.
It is not simply a matter of “this is the standard and this is how it’s done.”

• When solving equations (or systems of linear equations), most examples should come with a check,
intended to communicate to students that checking is part of the process. In Chapters 1–4, these checks
will be complete simplifications using order of operations one step at a time. The later sections may
have more summary checks where steps are skipped or carried out together, or we promote entering
expressions into a calculator to check.

• Within a section, any first context-free example of solving some equation (or system) should summa-
rize with some variant of both “the solution is…” and “the solution set is….” Later examples can mix
it up, but always offer at least one of these.

• With applications of linear equations (not including linear systems), we limit applications to situations
where the setup will be in the form x+expression-in-x = C and also to certain rate problems where the
setup will be in the form at+bt = C. There are other classes of application problem (mixing problems,
interest problems, …) which can be handled with a system of two equations, and we reserve these until
linear systems are covered.

• With simplifications of rational expressions in one variable, we always include domain restrictions that
are lost in the simplification. For example, we would write x(x+1)

x+1
= x, for x ̸= −1. With multivariable

rational expressions, we are content to ignore domain restrictions lost during simplification.



Entering WeBWorK Answers

This preface offers some guidance with syntax for WeBWorK answers. WeBWorK answer blanks appear in
the active reading examples (called “checkpoints”) in the html eBook version of the book. If you are using
WeBWorK for online homework, then you will also enter answers into WeBWorK answer blanks there.

Basic Arithmetic. The five basic arithmetic operations are: addition, subtraction, multiplication, and rais-
ing to a power. The symbols for addition and subtraction are+ and−, and both of these are directly avialable
on most keyboards as + and -.

On paper, multiplication is sometimes written using × and sometimes written using · (a centered dot).
Since these symbols are not available on most keyboards, WeBWorK uses * instead, which is often shift-8
on a full keyboard.

On paper, division is sometimes written using ÷, sometimes written using a fraction layout like 4
2

, and
sometimes written just using a slash, /. The slash is available on most full keyboards, near the question
mark. WeBWorK uses / to indicate division.

On paper, raising to a power is written using a two-dimensional layout like 42. Since we don’t have a
way to directly type that with a simple keyboard, calculators and computers use the caret character, ^, as in
4^2. The character is usually shift-6.

Roots andRadicals. On paper, a square root is represented with a radical symbol like√ . Since a keyboard
does not usually have this symbol, WeBWorK and many computer applications use sqrt( ) instead. For
example, to enter

√
17, type sqrt(17).

Higher-index radicals are written on paper like 4
√
12. Again we have no direct way to write this using

most keyboards. In some WeBWorK problems it is possible to type something like root(4, 12) for the fourth
root of twelve. However this is not enabled for all WeBWorK problems.

As an alternative that you may learn about in a later chapter, 4
√
12 is mathematically equal to 121/4, so it

can be typed as 12^(1/4). Take note of the parentheses, which very much matter.

Common Hiccups with Grouping Symbols. Suppose you wanted to enter x+1
2

. You might type x+1/2,
but this is not right. The computer will use the order of operations and do your division first, dividing 1 by
2. So the computer will see x+ 1

2
. To address this, you would need to use grouping symbols like parentheses,

and type something like (x+1)/2.
Suppose you wanted to enter 61/4, and you typed 6^1/4. This is not right. The order of operations places

a higher priority on exponentiation than division, so it calculates 61 first and then divides the result by 4.
That is simply not the same as raising 6 to the 1

4
power. Again the way to address this is to use grouping

symbols, like 6^(1/4).
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Entering Decimal Answers. Often you will find a decimal answer with decimal places that go on and on.
You are allowed to round, but not by too much. WeBWorK generally looks at how many significant digits
you use, and generally expects you to use four or more correct significant digits.

“Significant digits” and “places past the decimal” are not the same thing. To count significant digits, read
the number left to right and look for the first nonzero digit. Then count all the digits to the right including
that first one.

The number 102.3 has four significant digits, but only one place past the decimal. This number could be
a correct answer to a WeBWorK question. The number 0.0003 has one significant digit and four places past
the decimal. This number might cause you trouble if you enter it, because maybe the “real” answer was
0.0003091, and rounding to 0.0003 was too much rounding.

Special Symbols. There are a handful of special symbols that are easy to write on paper, but it’s not clear
how to type them. Here are WeBWorK’s expectations.

Symbol Name How to Type∞ infinity infinity or inf
π pi pi

∪ union U

R the real numbers R

| such that | (shift-\, where \ is above the enter key)
≤ less than or equal to <=

≥ greater than or equal to >=

̸= not equal to !=
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Chapter 5

Exponents and Polynomials

5.1 Adding and Subtracting Polynomials
A polynomial is a particular type of algebraic expression.

• A company’s sales, s (in millions of dollars), can be modeled by 2.2t + 5.8, where t stands for the
number of years since 2010.

• The height of an object from the ground, h (in feet), launched upward from the top of a building can
be modeled by −16t2+32t+300, where t represents the amount of time (in seconds) since the launch.

• The volume of an open-top box with a square base, V (in cubic inches), can be calculated by 30s2− 1
2
s2,

where s stands for the length of the square base, and the box sides have to be cut from a certain square
piece of metal.

All of the expressions above are polynomials. In this section, we will learn some basic vocabulary relating
to polynomials and we’ll then learn how to add and subtract polynomials.

5.1.1 Polynomial Vocabulary
There is a lot of vocabulary associated with polynomials. We start this section with a flood of vocabulary
terms and some examples of how to use them.
Definition 5.1.2 A polynomial is an expression with one or more terms summed together. A term of a
polynomial must either be a plain number or the product of a number and one or more variables raised to
natural number powers. The expression 0 is also considered a polynomial, with zero terms. ♢

Example 5.1.3
• Here are three polynomials: x2 − 5x+ 2, t3 − 1, 7y.
• The expression 3x4y3 + 7xy2 − 12xy is an example of a polynomial in more than one variable.
• The polynomial x2 − 5x+ 3 has three terms: x2, −5x, and 3.
• The polynomial 3x4 + 7xy2 − 12xy also has three terms.

3



4 CHAPTER 5. EXPONENTS AND POLYNOMIALS

• The polynomial t3 − 1 has two terms.

Remark 5.1.4 A polynomial will never have a variable in the denominator of a fraction or under a radical.

Definition 5.1.5 The coefficient (or numerical coefficient) of a term in a polynomial is the numerical factor
in the term. ♢

Example 5.1.6
• The coefficient of the term 4

3
x6 is 4

3
.

• The coefficient of the second term of the polynomial x2 − 5x+ 3 is −5.

• The coefficient of the term y7

4
is 1

4
.

Checkpoint 5.1.7 Identify which of the following are polynomials and which are not.
a. The expression −2x9 − 7

13
x3 − 1 (□ is □ is not) a polynomial.

b. The expression 5x−2 − 5x2 + 3 (□ is □ is not) a polynomial.
c. The expression

√
2x− 3

5
(□ is □ is not) a polynomial.

d. The expression 5x3 − 5−5x− x4 (□ is □ is not) a polynomial.
e. The expression 25

x2 + 23− x (□ is □ is not) a polynomial.

f. The expression 37x6 − x+ 8
4
3 (□ is □ is not) a polynomial.

g. The expression
√
7x− 4x3 (□ is □ is not) a polynomial.

h. The expression 6x
3
2 + 1 (□ is □ is not) a polynomial.

i. The expression 6x − 3x6 (□ is □ is not) a polynomial.

Explanation.
a. The expression −2x9 − 7

13
x3 − 1 is a polynomial.

b. The expression 5x−2 − 5x2 + 3 is not a polynomial because it has a negative exponent on a variable.
c. The expression

√
2x− 3

5
is a polynomial. Note that coefficients can have radicals even though variables

cannot, and the square root here is only applied to the 2.
d. The expression 5x3 − 5−5x − x4 is a polynomial. Note that coefficients can have negative exponents

even though variables cannot.
e. The expression 25

x2 + 23− x is not a polynomial because it has a variable in a denominator.

f. The expression 37x6−x+8
4
3 is a polynomial. Note that coefficients can have fractional exponents even

though variables cannot.
g. The expression

√
7x− 4x3 is not a polynomial because it has a variable inside a radical.

h. The expression 6x
3
2 + 1 is not a polynomial because a variable has a fractional exponent.

i. The expression 6x − 3x6 is not a polynomial because it has a variable in an exponent.



5.1. ADDING AND SUBTRACTING POLYNOMIALS 5

Definition 5.1.8 A term in a polynomial with no variable factor is called a constant term. ♢

Example 5.1.9 The constant term of the polynomial x2 − 5x+ 3 is 3.

Definition 5.1.10 The degree of a term is one way to measure how “large” it is. When a term only has one
variable, its degree is the exponent on that variable. When a term has more than on variable, its degree is
the sum of the exponents on the variables. A constant term has degree 0. ♢

Example 5.1.11
• The degree of 5x2 is 2.
• The degree of −4

7
y5 is 5.

• The degree of −4x2y3 is 5.
• The degree of 17 is 0. Constant terms always have 0 degree.

Definition 5.1.12 The degree of a nonzero polynomial is the greatest degree that appears amongst its terms.
♢

Definition 5.1.13 The leading term of a polynomial is the term with the greatest degree (assuming there is
no tie). The coefficient of a polynomial’s leading term is called the polynomial’s leading coefficient. ♢

Example 5.1.14 The degree of the polynomial 4x2 − 5x + 3 is 2 because the terms have degrees 2, 1, and 0,
respectively, and 2 is the largest. Its leading term is 4x2, and its leading coefficient is 4.

Remark 5.1.15 To help us recognize a polynomial’s degree, the standard convention at this level is to write
a polynomial’s terms in order from highest degree to lowest degree. When a polynomial is written in this
order, it is written in standard form. For example, it is standard practice to write 7− 4x− x2 as −x2 − 4x+ 7

since −x2 is the leading term. By writing the polynomial in standard form, we can look at the first term to
determine both the polynomial’s degree and leading term.

There are special names for polynomials with a small number of terms, and for polynomials with certain
degrees.
monomial A polynomial with one term, such as 3x5, is called a monomial.
binomial A polynomial with two terms, such as 3x5 + 2x, is called a binomial.
trinomial A polynomial with three terms, such as x2 − 5x+ 3, is called a trinomial.
constant polynomial A zeroth-degree polynomial is called a constant polynomial. An example is the poly-

nomial 7, which has degree zero.
linear polynomial A first-degree polynomial is called a linear polynomial. An example is −2x+ 7.
quadratic polynomial A second-degree polynomial is called a quadratic polynomial. An example is 4x2 −

2x+ 7.
cubic polynomial A third-degree polynomial is called a cubic polynomial. An example is x3+4x2−2x+7.
Fourth-degree and fifth-degree polynomials are called quartic and quintic polynomials, respectively. If the
degree of the polynomial, n, is greater than five, we’ll simply call it an nth-degree polynomial. For example,
the polynomial 5x8 − 4x5 + 1 is an 8th-degree polynomial.
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5.1.2 Adding and Subtracting Polynomials
Example 5.1.16 Production Costs. Bayani started a company that makes one product: one-gallon ketchup
jugs for industrial kitchens. The company’s production expenses only come from two things: supplies and
labor. The cost of supplies, S (in thousands of dollars), can be modeled by S = 0.05x2 + 2x + 30, where
x is number of thousands of jugs of ketchup produced. The labor cost for his employees, L (in thousands
of dollars), can be modeled by 0.1x2 + 4x, where x again represents the number of jugs they produce (in
thousands of jugs). Find a model for the company’s total production costs.

Since Bayani’s company only has these two costs, we can find a model for the total production costs, C
(in thousands of dollars), by adding the supply costs and the labor costs:

C =
(
0.05x2 + 2x+ 30

)
+
(
0.1x2 + 4x

)
To finish simplifying our total production cost model, we’ll combine the like terms:

C = 0.05x2 + 0.1x2 + 2x+ 4x+ 30

= 0.15x2 + 6x+ 30

This simplified model can now calculate Bayani’s total production costs C (in thousands of dollars) when
the company produces x thousand jugs of ketchup.
In short, the process of adding two or more polynomials involves recognizing and then combining the like
terms.
Checkpoint 5.1.17 Add the polynomials.(

6x2 + 4x
)
+
(
4x2 − 5x

)
Explanation. We combine like terms as follows(

6x2 + 4x
)
+
(
4x2 − 5x

)
=
(
6x2 + 4x2

)
+ (4x− 5x)

= 10x2 − x

Example 5.1.18 Simplify the expression (1
2
x2 − 2

3
x− 3

2

)
+
(
3
2
x2 + 7

2
x− 1

4

).
Explanation. (

1

2
x2 −

2

3
x−

3

2

)
+

(
3

2
x2 +

7

2
x−

1

4

)
=

(
1

2
x2 +

3

2
x2
)
+

(
−
2

3
x+

7

2
x

)
+

(
−
3

2
+

(
−
1

4

))
=

(
4

2
x2
)
+

(
−
4

6
x+

21

6
x

)
+

(
−
6

4
+

(
−
1

4

))
=
(
2x2
)
+

17

6
x+

(
−
7

4

)
= 2x2 +

17

6
x−

7

4

Example 5.1.19 Profit, Revenue, and Costs. From Example 5.1.16, we know Bayani’s ketchup company’s
production costs, C (in thousands of dollars), for producing x thousand jugs of ketchup is modeled by
C = 0.15x2 + 6x+ 30. The revenue, R (in thousands of dollars), from selling the ketchup can be modeled by
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R = 13x, where x stands for the number of thousands of jugs of ketchup sold. The company’s net profit can
be calculated using the concept:

net profit = revenue − costs
Assuming all products produced will be sold, a polynomial to model the company’s net profit, P (in thou-
sands of dollars) is:

P = R− C

= (13x) −
(
0.15x2 + 6x+ 30

)
= 13x− 0.15x2 − 6x− 30

= −0.15x2 + (13x+ (−6x)) − 30

= −0.15x2 + 7x− 30

The key distinction between the addition and subtraction of polynomials is that when we subtract a poly-
nomial, we must subtract each term in that polynomial.

Notice that our first step in simplifying the expression in Example 5.1.19 was to subtract every term in
the second expression. We can also think of this as distributing a factor of −1 across the second polynomial,
0.15x2 + 6x+ 30, and then adding these terms as follows:

P = R− C

= (13x) −
(
0.15x2 + 6x+ 30

)
= 13x+ (−1)(0.15x2) + (−1)(6x) + (−1)(30)

= 13x− 0.15x2 − 6x− 30

= −0.15x2 + (13x+ (−6x)) − 30

= −0.15x2 + 7x− 30

Example 5.1.20 Subtract (5x3 + 4x2 − 6x
)
−
(
−3x2 + 9x− 2

).
Explanation. We must first subtract every term in (−3x2 + 9x− 2

) from (
5x3 + 4x2 − 6x

). Then we can
combine like terms. (

5x3 + 4x2 − 6x
)
−
(
−3x2 + 9x− 2

)
= 5x3 + 4x2 − 6x+ 3x2 − 9x+ 2

= 5x3 +
(
4x2 + 3x2

)
+ (−6x+ (−9x)) + 2

= 5x3 + 7x2 − 15x+ 2

Checkpoint 5.1.21 Subtract the polynomials.
(3x− 10) − (−5x+ 7)

Explanation. We combine like terms as follows
(3x− 10) − (−5x+ 7) = (3x− (−5x)) + (−10− 7)

= 8x− 17

Let’s look at one last example where the polynomial has multiple variables. Remember that like terms must
have the same variable(s) with the same exponent.
Example 5.1.22 Subtract (3x2y+ 8xy2 − 17y3

)
−
(
2x2y+ 11xy2 + 4y2

).
Explanation. Again, we’ll begin by subtracting each term in (2x2y+ 11xy2 + 4y2

). Once we’ve done this,
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we’ll need to identify and combine like terms.(
3x2y+ 8xy2 − 17y3

)
−
(
2x2y+ 11xy2 + 4y2

)
= 3x2y+ 8xy2 − 17y3 − 2x2y− 11xy2 − 4y2

=
(
3x2y− 2x2y

)
+
(
8xy2 − 11xy2

)
+
(
−17y3 − 4y2

)
= x2y− 3xy2 − 17y3 − 4y2

5.1.3 Evaluating Polynomial Expressions
Evaluating expressions was introduced in Section 1.1, and involves replacing the variable(s) in an expression
with specific numbers and calculating the result. Here, we will look at evaluating polynomial expressions.
Example 5.1.23 Evaluate the expression −12y3 + 4y2 − 9y+ 2 for y = −5.
Explanation. We will replace y with −5 and simplify the result:

−12y3 + 4y2 − 9y+ 2 = −12(−5)3 + 4(−5)2 − 9(−5) + 2

= −12(−125) + 4(25) + 45+ 2

= 1647

Recall that in Subsection 1.1.4 and Example 1.1.15 we discussed how (−5)2 and −52 are not the same ex-
pressions. The first expression, (−5)2, represents the number −5 squared, and is (−5)(−5) = 25. The second
expression, −52, is the opposite of the number that you get after you square 5, and is −52 = −(5 · 5) = −25.
Example 5.1.24 Evaluate the expression C = 0.15x2 + 6x + 30 from Example 5.1.16 for x = 10 and explain
what this means in context.
Explanation. We will replace x with 10:

C = 0.15x2 + 6x+ 30

= 0.15(10)2 + 6(10) + 30

= 0.15(100) + 60+ 30

= 15+ 90

= 105

The context was that x represents so many thousands of jugs of ketchup, and C represents the total cost, in
thousands of dollars, to produce that many jugs. So in context, we can interpret this as it costing $105,000
to produce 10,000 jugs of ketchup.

Checkpoint 5.1.25
a. Evaluate (−y)

2 when y = −2.
b. Evaluate (−y)

3 when y = −2.
Explanation.

a. (−y)
2
=
(
− 1(−2)

)2
= (2)2

= 4
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b. (−y)
3
=
(
− 1(−2)

)3
= (2)3

= 8

5.1.4 Reading Questions
1. What are the names for a polynomial with one term? With two terms? With three terms? Care to take

a guess at the name of a polynomial with four terms?

2. Adding and subtracting polynomials is mostly about combining terms.
3. What should you be careful with when evaluating a polynomial for a negative number?

5.1.5 Exercises

Review and Warmup
1. List the terms in each expression.

a. 6s− 0.9z+ 3.5

b. −y− 6.5z2

c. 1.6y2 + 6.7z− 0.2x− 2.2t2

d. −0.5x+ 6.2z− 2+ 3.4y2

2. List the terms in each expression.
a. 7.6s2 + 7.3s2 + 1.5

b. −2.2z2

c. −4.1x− 2.5t2

d. −3.9t+ 8.1z2 + 6.7z2 + 7.4x

3. List the terms in each expression.
a. −8.9s− 2.6− 0.6x+ 2.8y

b. −2.6t− 6.8x2 + 6.4

c. 5.8z2 + 4.7s2 + 3.4

d. −8.4y2

4. List the terms in each expression.
a. −7.3t2 + 5.6t− 2.5− 4.7z2

b. 5.9y2 + 3.1t2

c. −8.5s2

d. −6.8t2 + 4.7t2 + 6.4+ 3.6s2

Simplify each expression, if possible, by combining like terms.
5. a. −6t− 5t− 5t− 6t

b. 2t− 3t+ 8s+ 4t

c. 9s2 + 2s2 + 7z2

d. −4y2 + 7y2 − 5z

6. a. −4t2 + 4y2

b. −6s+ 3+ 6s2

c. 5s2 − 4t+ 3s+ 6

d. 7z2 + 5y2 − 6x2

7. a. −3
8
t− 1

9
t

b. −2
3
x+ 7s− 2s

c. −7
8
z− 5

7
z+ 7

8
z

d. −6
7
s2 − 1

5
t2

8. a. 1
3
t2 − 2

3
y

b. −2
9
s2 + 8

9
− 1

9
z2 + 2

c. −6
5
z2 − 3

8
s2 − s2

d. 3
5
s2 + 1

2
y− 1

8
s2 + 1

3
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Vocabulary Questions Is the following expression a monomial, binomial, or trinomial?

9. 4y12 − 13y3 is a (□ monomial □ binomial □ trinomial) of degree .

10. −11r7 + 4r2 is a (□ monomial □ binomial □ trinomial) of degree .

11. 40 is a (□ monomial □ binomial □ trinomial) of degree

12. 5 is a (□ monomial □ binomial □ trinomial) of degree

13. −18y11 − 9y7 − 20y6 is a (□ monomial □ binomial □ trinomial) of degree

14. −20r10 − 2r9 − 10r2 is a (□ monomial □ binomial □ trinomial) of degree

15. 8x3 + 17x7 + 6x is a (□ monomial □ binomial □ trinomial) of degree

16. −14x7 − 16x8 + 6x is a (□ monomial □ binomial □ trinomial) of degree

17. 13y11 is a (□ monomial □ binomial □ trinomial) of degree

18. −2y19 is a (□ monomial □ binomial □ trinomial) of degree

Find the degree of the following polynomial.
19. 2x8y6 − 16x2y4 − 6x2 + 13 20. 6x7y9 + 11x3y+ 11x2 + 1

Simplifying Polynomials Add the polynomials.
21. (6x− 2) + (−7x− 5) 22. (8x− 9) + (2x+ 10)

23. (
10x2 + 5x

)
+
(
−10x2 + 4x

) 24. (
−8x2 − 3x

)
+
(
−x2 − 2x

)
25. (

−3x2 − 9x+ 1
)
+
(
4x2 − 7x+ 3

) 26. (
4x2 + 6x− 9

)
+
(
7x2 + 8x+ 2

)
27. (

4y3 − 7y2 − 4
)
+
(
−3y3 − 4y2 − 7

) 28. (
−10r3 − 4r2 + 6

)
+
(
−4r3 + 7r2 + 1

)
29. (

7r6 − 2r4 − 4r2
)
+
(
4r6 − 10r4 − r2

) 30. (
4t6 − 8t4 + 6t2

)
+
(
−5t6 + 3t4 − 9t2

)
Add the polynomials.

31. (
0.8t5 − 0.3t4 − 0.1t2 − 0.4

)
+
(
0.4t5 − 0.9t3 + 0.4

)
32. (

0.2t5 + 0.5t4 − 0.6t2 − 0.1
)
+
(
0.5t5 + 0.2t3 − 0.8

)
33.

(
−2x3 + 3x2 − 5x+

7

6

)
+

(
3x3 − 10x2 + 3x+

5

4

)
34.

(
3x3 + 7x2 + 5x+

7

10

)
+

(
−5x3 − 7x2 + 2x+

1

4

)
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Subtract the polynomials.
35. (−4x+ 1) − (−10x− 3) 36. (−x− 6) − (−x− 8)

37. (
x2 + 7x

)
−
(
7x2 − 3x

) 38. (
3x2 − 5x

)
−
(
x2 − 3x

)
39. (

−5x9 − 3x4
)
−
(
−5x3 − 6

) 40. (
10x10 − 4x8

)
− (6x− 4)

41. (
−10x2 + 6x− 4

)
−
(
−4x2 + 8x+ 2

) 42. (
−2x2 − 10x− 4

)
−
(
−8x2 + 3x− 10

)
43. (

−8x6 − 3x4 − 5x2
)
−
(
7x6 − 3x4 − 5x2

) 44. (
5y6 − 9y4 + 5y2

)
−
(
7y6 + 6y4 + 8y2

)
45. (

−5x3 + 3x2 − 5x− 5
)
−
(
−8x2 − 6x+ 7

) 46. (
6x3 − 7x2 − 5x+ 5

)
−
(
9x2 + 2x− 7

)
Add or subtract the given polynomials as indicated.

47. [
4r16 − 10r15 + r14 −

(
−8r16 + 3r15 − 2r14

)]
−
(
−9r16 − 7r15 − 8r14

)
48. [

t9 + 8t8 −
(
−8t9 − 10t8

)]
−
(
−5t9 − 4t8

)
49. [

7t13 + 5t12 −
(
−9t13 − 10t12

)]
−
[
−10t13 + 2t12 +

(
−10t13 − 7t12

)]
50. [

4t14 − 8t13 + 3t5 −
(
−9t14 + 8t13 − 9t5

)]
−
[
−7t14 − 8t13 + 7t5 +

(
−4t14 − 10t13 − 8t5

)]

Add or subtract the given polynomials as indicated.
51. (

2x7y3 + 8xy
)
+
(
−3x7y3 + 4xy

) 52. (
9x4y3 − 10xy

)
+
(
2x4y3 + 9xy

)
53. (

10x9y7 + 6xy+ 8
)
+
(
9x9y7 + 9xy+ 9

) 54. (
5x8y3 − 10xy− 6

)
+
(
3x8y3 − 6xy+ 3

)
55. (

6x8y9 + 5x5y3 + 9xy
)
+(

−3x8y9 − 7x5y3 + 8xy
) 56. (

−7x7y8 + 8x3y4 + 6xy
)
+(

3x7y8 − 2x3y4 + 7xy
)

57. (
8x6 − 3xy+ 5y9

)
−
(
−2x6 − 9xy+ 2y9

) 58. (
9x5 + 7xy− 8y6

)
−
(
2x5 + 10xy− 5y6

)
59. (

−10x7y6 + 2x2y4 + 2xy
)
−(

−2x7y6 − 10x2y4 + 5xy
) 60. (

2x8y9 − 6x3y4 − 3xy
)
−(

−4x8y9 + 10x3y4 − 8xy
)

61. (
3x4 − 9y2

)
−(

−2x4 + 3x2y2 + 7x4y2 − 2y2
) 62. (

−4x9 + 4y4
)
−(

2x9 − 10x8y4 + 4x9y4 − 10y4
)

63. Subtract −4y18 − 8y7 − 6y5 from the sum of 9y18 − 4y7 + 7y5 and −10y18 + 3y7 − 7y5.
64. Subtract −10r11 − 6r5 − 2r3 from the sum of 5r11 − 9r5 + 4r3 and −10r11 + 7r5 − 7r3.
65. Subtract −7x3y7 − 6xy from −2x3y7 − 9xy

66. Subtract 8x3y8 + 10xy from 10x3y8 + 7xy

Evaluating Polynomials
67. Evaluate the expression t2:

a. For t = 5.
b. For t = −4.

68. Evaluate the expression t2:
a. For t = 2.
b. For t = −8.
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69. Evaluate the expression −x2:
a. For x = 4.
b. For x = −2.

70. Evaluate the expression −x2:
a. For x = 3.
b. For x = −4.

71. Evaluate the expression y3:
a. For y = 2.
b. For y = −2.

72. Evaluate the expression y3:
a. For y = 4.
b. For y = −3.

73. a. Evaluate (−2r)
2 when r = −1.

b. Evaluate (−2r)
3 when r = −1.

74. a. Evaluate (−r)
2 when r = −3.

b. Evaluate (−r)
3 when r = −3.

75. Evaluate the expression 1

3

(
x+ 3

)2
− 7 when

x = −6.
76. Evaluate the expression 1

5

(
x+ 4

)2
− 4 when

x = −9.
77. Evaluate the expression 1

3

(
x+ 4

)2
− 9 when

x = −7.
78. Evaluate the expression 1

4

(
x+ 1

)2
− 6 when

x = −5.
79. Evaluate the expression −16t2 + 64t+ 128

when t = −3.
80. Evaluate the expression −16t2 + 64t+ 128

when t = −5.
81. Evaluate the expression −16t2 + 64t+ 128

when t = −4.
82. Evaluate the expression −16t2 + 64t+ 128

when t = 2.

Applications of Simplifying Polynomials The formula

y =
1

2
a t2 + v0 t+ y0

gives the vertical position of an object, at time t, thrown with an initial velocity v0, from an initial position
y0 in a place where the acceleration of gravity is a. The acceleration of gravity on earth is −9.8

m
s2 . It is

negative, because we consider the upward direction as positive in this situation, and gravity pulls down.
83. What is the height of a baseball thrown with

an initial velocity of v0 = 82
m
s , from an

initial position of y0 = 94 m, and at time
t = 1 s?
One seconds after the baseball was thrown,
it was high in the air.

84. What is the height of a baseball thrown with
an initial velocity of v0 = 87

m
s , from an

initial position of y0 = 76 m, and at time
t = 9 s?
Nine seconds after the baseball was thrown,
it was high in the air.

85. An auto company’s sales volume can be modeled by 6.1x2 + 6.9x+ 4, and its cost can be modeled
by 4.6x2 + 3.7x+ 4, where x represents the number of cars produced, and y stands for money in
thousand dollars. We can calculate the company’s net profit by subtracting cost from sales. Find
the polynomial which models the company’s sales in thousands of dollars.

The company’s profit can be modeled by dollars.
86. An auto company’s sales volume can be modeled by 8.4x2 + 1.2x+ 3.9, and its cost can be modeled

by 4.9x2 − 2.2x+ 3.9, where x represents the number of cars produced, and y stands for money in
thousand dollars. We can calculate the company’s net profit by subtracting cost from sales. Find
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the polynomial which models the company’s sales in thousands of dollars.
The company’s profit can be modeled by dollars.

87. A handyman is building two pig pens sharing the same side. Assume the length of the shared side
is x meters. The cost of building one pen would be 34x2 − 4x+ 22 dollars, and the cost of building
the other pen would be 22x2 + 4x+ 46.5 dollars. What’s the total cost of building those two pens?

A polynomial representing the total cost of building those two pens is
dollars.

88. A handyman is building two pig pens sharing the same side. Assume the length of the shared
side is x meters. The cost of building one pen would be 23.5x2 + 8x+ 20.5 dollars, and the cost of
building the other pen would be 25.5x2 − 8x+ 19 dollars. What’s the total cost of building those
two pens?

A polynomial representing the total cost of building those two pens is
dollars.

89. A farmer is building fence around a triangular area. The cost of building the shortest side is 35x

dollars, where x stands for the length of the side in feet. The cost of building the other two sides
can be modeled by 8x2 + 0.5x+ 40 dollars and 4x3 − 4x+ 35 dollars, respectively. What’s the total
cost of building fence for all three sides?

The cost of building fence for all three sides would be dollars.
90. A farmer is building fence around a triangular area. The cost of building the shortest side is 40x

dollars, where x stands for the length of the side in feet. The cost of building the other two sides
can be modeled by 5x2 + 4.5x+ 30 dollars and 4x3 + 1.5x+ 35 dollars, respectively. What’s the
total cost of building fence for all three sides?

The cost of building fence for all three sides would be dollars.
91. An architect is designing a house on an empty plot. The area of the plot can be modeled by the

polynomial 4x4 + 6x2 − 2.5x, and the area of the house’s base can be modeled by 6x3 − 2.5x+ 15.
The rest of the plot is the yard. What’s the yard’s area?

The area of the yard can be modeled by the polynomial .
92. An architect is designing a house on an empty plot. The area of the plot can be modeled by the

polynomial 5x4 + 16x2 + 6x, and the area of the house’s base can be modeled by 4x3 + 6x+ 15.
The rest of the plot is the yard. What’s the yard’s area?

The area of the yard can be modeled by the polynomial .
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5.2 Introduction to Exponent Rules
In this section, we will look at some rules or properties we use when simplifying expressions that involve
multiplication and exponents.

5.2.1 Exponent Basics
Before we discuss any exponent rules, we need to quickly remind ourselves of some important concepts
and vocabulary.

When working with expressions with exponents, we have the following vocabulary:

baseexponent = power

For example, when we calculate 82 = 64, the base is 8, the exponent is 2, and the expression 82 is called the
2nd power of 8.

The foundational understanding of exponents is that when the exponent is a positive integer, the power
can be rewritten as repeated multiplication of the base. For example, the 4th power of 3 can be written as 4
factors of 3 like so:

34 = 3 · 3 · 3 · 3

5.2.2 Exponent Rules
Product Rule. If we write out 35 · 32 without using exponents, we’d have:

35 · 32 = (3 · 3 · 3 · 3 · 3) · (3 · 3)

If we then count how many 3s are being multiplied together, we find we have 5+ 2 = 7, a total of seven 3s.
So 35 · 32 simplifies like this:

35 · 32 = 35+2

= 37

Example 5.2.2 Simplify x2 · x3.
To simplify x2 · x3, we write this out in its expanded form, as a product of x’s, we have

x2 · x3 = (x · x)(x · x · x)
= x · x · x · x · x
= x5

Note that we obtained the exponent of 5 by adding 2 and 3.
This demonstrates our first exponent rule, the Product Rule: when multiplying two expressions that have
the same base, we can simplify the product by adding the exponents.

xm · xn = xm+n (5.2.1)
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Checkpoint 5.2.3 Use the properties of exponents to simplify the expression.
x16 · x9

Explanation. We add the exponents as follows:

x16 · x9 = x16+9

= x25

Recall that x = x1. It helps to remember this when multiplying certain expressions together.
Example 5.2.4 Multiply x(x3 + 2) by using the distributive property.

According to the distributive property,

x(x3 + 2) = x · x3 + x · 2

How can we simplify that term x · x3? It’s really the same as x1 · x3, so according to the Product Rule, it is
x4. So we have:

x(x3 + 2) = x · x3 + x · 2
= x4 + 2x

Power to a Power Rule. If we write out (35)2 without using exponents, we’d have 35 multiplied by itself:(
35
)2

=
(
35
)
·
(
35
)

= (3 · 3 · 3 · 3 · 3) · (3 · 3 · 3 · 3 · 3)

If we again count how many 3s are being multiplied, we have a total of two groups each with five 3s. So
we’d have 2 · 5 = 10 instances of a 3. So (35)2 simplifies like this:(

35
)2

= 32·5

= 310

Example 5.2.5 Simplify (x2)3.
To simplify (x2)3, we write this out in its expanded form, as a product of x’s, we have(

x2
)3

=
(
x2
)
·
(
x2
)
·
(
x2
)

= (x · x) · (x · x) · (x · x)
= x6

Note that we obtained the exponent of 6 by multiplying 2 and 3.
This demonstrates our second exponent rule, the Power to a Power Rule: when a base is raised to an expo-
nent and that expression is raised to another exponent, we multiply the exponents.

(xm)
n
= xm·n

Checkpoint 5.2.6 Use the properties of exponents to simplify the expression.(
r11
)2
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Explanation. We multiply the exponents as follows:(
r11
)2

= r11·2

= r22

Product to a Power Rule. The third exponent rule deals with having multiplication inside a set of paren-
theses and an exponent outside the parentheses. If we write out (3t)5 without using an exponent, we’d have
3t multiplied by itself five times:

(3t)5 = (3t)(3t)(3t)(3t)(3t)

Keeping in mind that there is multiplication between every 3 and t, and multiplication between all of the
parentheses pairs, we can reorder and regroup the factors:

(3t)
5
= (3 · t) · (3 · t) · (3 · t) · (3 · t) · (3 · t)
= (3 · 3 · 3 · 3 · 3) · (t · t · t · t · t)
= 35t5

We could leave it written this way if 35 feels especially large. But if you are able to evaluate 35 = 243, then
perhaps a better final version of this expression is 243t5.

We essentially applied the outer exponent to each factor inside the parentheses. It is important to see
how the exponent 5 applied to both the 3 and the t, not just to the t.
Example 5.2.7 Simplify (xy)5.

To simplify (xy)5, we write this out in its expanded form, as a product of x’s and y’s, we have

(xy)5 = (x · y) · (x · y) · (x · y) · (x · y) · (x · y)
= (x · x · x · x · x) · (y · y · y · y · y)
= x5y5

Note that the exponent on xy can simply be applied to both x and y.
This demonstrates our third exponent rule, the Product to a Power Rule: when a product is raised to an
exponent, we can apply the exponent to each factor in the product.

(x · y)n = xn · yn

Checkpoint 5.2.8 Use the properties of exponents to simplify the expression.
(4x)

4

Explanation. We multiply the exponents and apply the rule (ab)m = am · bm as follows:

(4x)
4
= (4)4x4

= 256x4
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List 5.2.9: Summary of the Rules of Exponents for Multiplication

If a and b are real numbers, and m and n are positive integers, then we have the following
rules:
Product Rule am · an = am+n

Power to a Power Rule (am)n = am·n

Product to a Power Rule (ab)m = am · bm

Many examples will make use of more than one exponent rule. In deciding which exponent rule to work
with first, it’s important to remember that the order of operations still applies.

Example 5.2.10 Simplify the following expressions.
a. (37r5)4 b. (t3)2 · (t4)5

Explanation.
a. Since we cannot simplify anything inside the parentheses, we’ll begin simplifying this expression us-

ing the Product to a Power Rule. We’ll apply the outer exponent of 4 to each factor inside the paren-
theses. Then we’ll use the Power to a Power Rule to finish the simplification process.(

37r5
)4

=
(
37
)4 · (r5)4

= 37·4 · r5·4

= 328r20

Note that 328 is too large to actually compute, even with a calculator, so we leave it written as 328.
b. According to the order of operations, we should first simplify any exponents before carrying out any

multiplication. Therefore, we’ll begin simplifying this by applying the Power to a Power Rule and
then finish using the Product Rule. (

t3
)2 · (t4)5 = t3·2 · t4·5

= t6 · t20

= t6+20

= t26

Remark 5.2.11 We cannot simplify an expression like x2y3 using the Product Rule, as the factors x2 and y3

do not have the same base.

5.2.3 Reading Questions
1. How many exponent rules are discussed in this section? Write an example of each rule in action.
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2. The order of operations say that operations inside parentheses should get the highest priority. But
with (5x)3, you cannot actually do anything with the 5 and the x. Which exponent rule allows you to
sidestep the order of operations and still simplify this expression a little?

5.2.4 Exercises
Review and Warmup

1. Evaluate the following.
a. 22

b. 33

c. (−4)2

d. (−3)3

2. Evaluate the following.
a. 22

b. 53

c. (−2)2

d. (−5)3

3. Evaluate the following.
a. 16

b. (−1)13

c. (−1)14

d. 020

4. Evaluate the following.
a. 17

b. (−1)11

c. (−1)16

d. 019

5. Evaluate the following.
a. (−5)2

b. −22

6. Evaluate the following.
a. (−3)2

b. −42

7. Evaluate the following.
a. (−2)3

b. −43

8. Evaluate the following.
a. (−1)3

b. −43

Exponent Rules Use the properties of exponents to simplify the expression.
9. 9 · 97 10. 2 · 23 11. 39 · 37 12. 46 · 42

13. y9 · y5 14. t11 · t17 15. r13 · r11 · r7 16. y15 · y4 · y15

17. (
189
)3 18. (

205
)6 19. (

t2
)2 20. (

y3
)10

21. (3t)
2 22. (2x)

3 23. (4ry)
3 24. (3xy)

3

25. (
3t10

)2 26. (
5r11

)3 27. (−4r20) · (5r7) 28. (8r3) · (−3r20)

29. (
−9r3

)3 30. (
−6y5

)2 31. (−2y9) · (7y19) ·
(−2y10)

32. (−6r11) ·
(−2r12) · (2r5)

33. a. (−10t3
)2

b. −
(
10t3

)2 34. a. (−8m5
)2

b. −
(
8m5

)2
Use the properties of exponents to simplify the expression.

35.
(
−
y17

7

)
·
(
y11

4

)
36.

(
y20

3

)
·
(
−
y5

3

)
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37. Use the distributive property to write an equivalent expression to −3x(6x− 1) that has no grouping
symbols.

38. Use the distributive property to write an equivalent expression to −6r(3r+ 8) that has no grouping
symbols.

39. Use the distributive property to write an equivalent expression to −9t4(t− 4) that has no grouping
symbols.

40. Use the distributive property to write an equivalent expression to −3b3(b+ 4) that has no grouping
symbols.

41. Use the distributive property to simplify 3+ 5c(2+ 6c) completely.

42. Use the distributive property to simplify 6+ 2y(2+ 10y) completely.

43. Use the distributive property to simplify 8m− 2m
(
7− 9m3

) completely.

44. Use the distributive property to simplify 5n− 7n
(
1− 10n4

) completely.

45. Use the distributive property to simplify 2q2 − 3q2
(
−5− 10q3

) completely.

46. Use the distributive property to simplify 8x2 − 9x2
(
−10− 10x4

) completely.

47. Simplify the following
expressions if possible.

a. r2 + r2

b. (r2)(r2)

c. r2 + r3

d. (r2)(r3)

48. Simplify the following
expressions if possible.

a. t+ t

b. (t)(t)

c. t+ t2

d. (t)(t2)

49. Simplify the following
expressions if possible.

a. b3 + b3

b. (b3)(b3)

c. b3 + b2

d. (b3)(b2)

50. Simplify the following
expressions if possible.

a. c2 + c2

b. (c2)(c2)

c. c2 + c4

d. (c2)(c4)

51. Simplify the following
expressions if possible.

a. −2q2 + q2

b. (−2q2)(q2)

c. −2q2 + 4q3

d. (−2q2)(4q3)

52. Simplify the following
expressions if possible.

a. m4 + 2m4

b. (m4)(2m4)

c. m4 −m3

d. (m4)(−m3)

53. Simplify the following
expressions if possible.

a. −2n4 − 3n4

b. (−2n4)(−3n4)

c. −2n4 − 4n2

d. (−2n4)(−4n2)

54. Simplify the following
expressions if possible.

a. 4q4 + 3q4

b. (4q4)(3q4)

c. 4q4 + 4q3

d. (4q4)(4q3)

55. Simplify the following
expressions if possible.

a. x2 + 4x+ 4x2

b. (x2)(4x)(4x2)
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56. Simplify the following
expressions if possible.

a. −2r4 − r− 2r4

b. (−2r4)(−r)(−2r4)

Simplify the following expression.
57. −3t5

(
−4t5

)2 58. 3b3
(
−2b2

)2
59. 3c4r3

(
2c2r4

)3 60. 5nx2
(
−2n5x

)2
61. (−3m4)(5m3) + (3m4)(−3m3) 62. (n3)(3n4) + (5n)(5n6)

63. (−4q4)
(
2q4

)4
+ (3q2)(−2q6) 64. (3x2)

(
x3
)2

+ (5x2)(−4x3)

65. (2r3)
(
r2
)2

+ (−5r)
2
(4r5) 66. (3t5)

(
2t3
)4

+
(
3t2
)2

(−t13)

67. (−2b)
4
q10 − 3

(
b2q5

)2 68. (
4c3
)2

x10 − 5
(
c3x5

)2
Challenge

69.
a. Let x11 · xa = x28. Let’s say that a is a natural number. How many possibilities are there for

a?
b. Let xb · xc = x90. Let’s say that b and c are natural numbers. How many possibilities are

there for b?
c. Let xd · xe = x1450. Let’s say that d and e are natural numbers. How many possibilities are

there for d?
70. Choose the correct inequality or equal sign to make the relation true.

3400 (□ < □ > □ =) 4300

71. Fill in the blanks with algebraic expressions that make the equation true. You may not use 0 or 1
in any of the blank spaces.

Here is an example: ? + ? = 8x.
One possible answer is: 3x+ 5x = 8x.
There are infinitely many correct answers to this problem. Be creative. After finding a correct

answer, see if you can come up with a different answer that is also correct.

a. + = −13x

b. + = −15x25

c. · · = 5x55
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5.3 Dividing by a Monomial
We learned how to add and subtract polynomials in Section 5.1. Then in Section 5.2, we learned how to
multiply monomials together (but not yet how to multiply general polynomials together). In this section we
learn how to divide a general polynomial by a monomial.

5.3.1 Quotient of Powers Rule
When we multiply the same base raised to powers, we add the exponents, as in 22 · 23 = 25. What happens
when we divide the same base raised to powers?

Example 5.3.2 Simplify x5

x2 by first writing out what each power means.
Explanation. Without knowing a rule for simplifying this quotient of powers, we can write the expressions
without exponents and simplify.

x5

x2
=

x · x · x · x · x
x · x

= �x · �x · x · x · x
�x · �x · 1

=
x · x · x

1

= x3

Notice that the difference of the exponents of the numerator and the denominator (5 and 2, respectively) is
3, which is the exponent of the simplified expression.
When we divide as we’ve just done, we end up canceling factors from the numerator and denominator
one-for-one. These common factors cancel to give us factors of 1. The general rule for this is:
Fact 5.3.3 Quotient of Powers Rule. For any non-zero real number a and integers m and n wherem > n,

am

an
= am−n

This rule says that when you’re dividing two expressions that have the same base, you can simplify the
quotient by subtracting the exponents. In Example 5.3.2, this means that we can directly compute x5

x2 :

x5

x2
= x5−2

= x3

Now we can update the list of exponent rules from Section 5.2.
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List 5.3.4: Summary of the Rules of Exponents (Thus Far)

If a and b are real numbers, and m and n are positive integers, then we have the following
rules:
Product Rule am · an = am+n

Power to a Power Rule (am)n = am·n

Product to a Power Rule (ab)m = am · bm

Quotient of Powers Rule am

an = am−n (when m > n)

5.3.2 Dividing a Polynomial by a Monomial
Recall that dividing by a number c is the same as multiplying by the reciprocal 1

c
. For example, whether

you divide 8 by 2 or multiply 8 by 1
2

, the result is 4 either way. In symbols,

8

2
=

1

2
· 8 (both work out to 4)

If we apply this idea to a polynomial being divided by a monomial, say with a+b
c

, we can see that the
distributive law works for this kind of division as well as with multiplciation:

a+ b

c
=

1

c
· (a+ b)

=
1

c
· a+

1

2
· b

=
a

c
+

b

c

In the end, the c has been “distributed” into the a and the b. Once we recognize that division by a monomial
is distributive, we are left with individual monomial pairs that we can divide.

Example 5.3.5 Simplify 2x3 + 4x2 − 10x

2
.

We recognize that the 2 we’re dividing by can be divided into each and every term of the numerator.
Once we recognize that, we will simply perform those divisions.

2x3 + 4x2 − 10x

2
=

2x3

2
+

4x2

2
+

−10x

2

= x3 + 2x2 − 5x

Example 5.3.6 Simplify 15x4 − 9x3 + 12x2

3x2
.

Explanation. We recognize that each term in the numerator can be divided by 3x2. To actually carry out
that division we’ll need to use the Quotient of Powers Rule. This is going to cause a change in each coefficient
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and exponent.

15x4 − 9x3 + 12x2

3x2
=

15x4

3x2
+

−9x3

3x2
+

12x2

3x2

= 5x2 − 3x+ 4

Remark 5.3.7 Once you become comfortable with this process, you might leave out the step where we wrote
out the distribution. You will do the distribution in your head and this will become a one-step exercise.
Here’s how Example 5.3.6 would be visualized:

15x4 − 9x3 + 12x2

3x2
= x − x + x

And when calculated, we’d get:
15x4 − 9x3 + 12x2

3x2
= 5x2 − 3x+ 4

(With the last term, note that x2

x2 reduces to 1.)

Example 5.3.8 Simplify 20x3y4 + 30x2y3 − 5x2y2

−5xy2
.

Explanation.

20x3y4 + 30x2y3 − 5x2y2

−5xy2
=

20x3y4

−5xy2
+

30x2y3

−5xy2
+

−5x2y2

−5xy2

= −4x2y2 − 6xy+ x

Checkpoint 5.3.9 Simplify the following expression
18r20 + 18r16 − 54r14

−6r2

Explanation. We divide each term by −6r2 as follows.

18r20 + 18r16 − 54r14

−6r2
=

18r20

−6r2
+

18r16

−6r2
+

−54r14

−6r2

= −
18

6
r18 −

18

6
r14 +

54

6
r12

= −3r18 − 3r14 + 9r12

Example 5.3.10 The density of an object, ρ (pronounced “rho”), can be calculated by the formula

ρ =
m

V

where m is the object’s mass, and V is its volume. The mass of a certain cancerous growth can be modeled
by 4t3 − 6t2 + 8t grams, where t is the number of days since the growth began. If its volume is 2t cubic
centimeters, find the growth’s density.
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Explanation. We have:

ρ =
m

V

=
4t3 − 6t2 + 8t

2t

g
cm3

=
4t3

2t
−

6t2

2t
+

8t

2t

g
cm3

= 2t2 − 3t+ 4
g

cm3

The growth’s density can be modeled by 2t2 − 3t+ 4
g

cm3 .

5.3.3 Reading Questions
1. How is dividing a polynomial by a monomial similar to distributing multiplication over a polynomial?

For example, how is the process of simplifying 15x3+5x2+10x
5x

similar to simplifying 5x
(
15x3 + 5x2 + 10x

)?
5.3.4 Exercises

Quotient of Powers Rule Use the properties of exponents to simplify the expression.

1. y3

y
2. t5

t4
3. −25y20

5y13
4. 21t15

7t9

5. 8r5

48r2
6. 10r12

40r2
7. 33y18

11y10
8. −78t13

13t7

9. 15r17

60r5
10. 2r6

4r
11. r5

r4
12. x7

x3

13. 1311

135
14. 1418

1415
15. 1612 · 1410

164 · 148
16. 176 · 1312

174 · 139

17. −85x9y10z18

17x6y3z17
18. 76x18y8z9

19x10y4z7
19. 4x12y9

2x6y3
20. −20x7y18

4x4y7

Dividing Polynomials by Monomials Simplify the following expression

21. −20y17 + 65y8

5
22. −117y7 + 45y4

9

23. 16y14 + 16y9 − 8y7

4y3
24. 40r14 + 96r12 + 80r10

−8r3

25. 65r13 + 50r7

5r
26. 27t20 + 18t9

9t

27. 54t15 − 117t11 − 99t9 − 117t8

−9t4
28. −60x21 + 55x10 + 25x9 + 30x8

−5x4

29. 80x2y2 − 16xy+ 80xy2

−8xy
30. 63x2y2 − 18xy+ 54xy2

−9xy
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31. −28x14y22 + 70x11y17 + 91x12y20

7x5y2
32. −3x25y14 + 3x14y13 − 9x22y9

3x5y2

33. −40r19 − 25r14 + 5r6

5r2
34. −72r9 − 64r6 − 24r4

−8r2

Application Problems
35. A rectangular prism’s volume can be calculated by the formula V = Bh, where V stands for vol-

ume, B stands for base area, and h stands for height. A certain rectangular prism’s volume can be
modeled by 30x5 − 35x3 − 15x2 cubic units. If its height is 5x units, find the prism’s base area.

B = square units
36. A rectangular prism’s volume can be calculated by the formula V = Bh, where V stands for vol-

ume, B stands for base area, and h stands for height. A certain rectangular prism’s volume can be
modeled by 35x6 + 40x4 + 15x cubic units. If its height is 5x units, find the prism’s base area.

B = square units
37. A cylinder’s volume can be calculated by the formula V = Bh, where V stands for volume, B

stands for base area, and h stands for height. A certain cylinder’s volume can be modeled by
18πx6 + 12πx5 − 6πx3 cubic units. If its base area is 2πx2 square units, find the cylinder’s height.

h = units
38. A cylinder’s volume can be calculated by the formula V = Bh, where V stands for volume, B

stands for base area, and h stands for height. A certain cylinder’s volume can be modeled by
12πx5 − 20πx4 + 6πx3 cubic units. If its base area is 2πx2 square units, find the cylinder’s height.

h = units
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5.4 Multiplying Polynomials
Previously in Section 5.2, we learned to multiply two monomials together (such as 4xy · 3x2). And in Sec-
tion 5.1, we learned how to add and subtract polynomials even when there is more than one term (such as
(4x2 − 3x) + (5x2 + x− 2)). In this section, we will learn how to multiply polynomials with more than one
term.
Example 5.4.2 Revenue. Avery owns a local organic jam company that currently sells about 1500 jars a
month at a price of $13 per jar. Avery has found that for each time they would raise the price of a jar by 25

cents, they will sell 50 fewer jars of jam per month.
In general, this company’s revenue can be calculated by multiplying the cost per jar by the total number

of jars of jam sold. If we let x represent the number of times the price was raised by 25 cents, then the price
will be 13+ 0.25x.

Conversely, the number of jars the company will sell will be the 1500 they currently sell each month,
minus 50 times x. This gives us the expression 1500− 50x to represent how many jars the company will sell
after raising the price x times.

Combining these expressions, we can write a formula for the revenue model:

revenue = (price per item)× (number of items sold)
R = (13+ 0.25x) (1500− 50x)

To simplify the expression (13+ 0.25x) (1500− 50x), we’ll need to multiply 13+ 0.25x by 1500− 50x. In
this section, we learn how to do that.

5.4.1 Review of the Distributive Property
Polynomial multiplication relies on the distributive property , and may also rely on the rules of exponents.
When we multiply a monomial with a binomial, we apply this property by distributing the monomial to
each term in the binomial. For example,

−4x(3x2 + 5) = (−4x) ·
(
3x2
)
+ (−4x) · (5)

= −12x3 − 20x

Remark 5.4.3 We can use the distributive property when multiplying on either the left or the right. This
means that a(b+ c) = ab+ ac, but also (b+ c)a = ba+ ca.

Example 5.4.4 A rectangle’s length is 4 meters longer than its width. Assume its width is w meters. Use a
simplified polynomial to model the rectangle’s area in terms of w as the only variable.
Explanation.
Since the rectangle’s length is 4 meters
longer than its width, we can model its
length by w+ 4 meters.

w

w+ 4

The rectangle’s area would be:

A = ℓw

= (w+ 4)w

= w2 + 4w

The rectangle’s area can be modeled by
w2 + 4w square meters.
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In the second line of work above, we should recognize that (w + 4)w is equivalent to w(w + 4). Whether
the w is written before or after the binomial, we are still able to use distribution to simplify the product.

Checkpoint 5.4.5 A rectangle’s length is 3 feet shorter than twice its width. If we use w to represent the
rectangle’s width, use a polynomial to represent the rectangle’s area in expanded form.

area = square feet
Explanation. The rectangle’s width is w feet. Since the rectangle’s length is 3 feet shorter than twice its
width, its length is 2w− 3 feet. A rectangle’s area formula is:

area = (length) · (width)
After substitution, we have:
area = (length) · (width)

= (2w− 3)w

= 2w2 − 3w

The rectangle’s area is 2w2 − 3w square feet.
The distributive property can be understood visually with a generic rectangle.

2x

3x 4

2x · 3x 2x · 4

Figure 5.4.6: A Generic Rectangle Modeling 2x(3x+ 4)

The big rectangle consists of two smaller rectangles. The big rectangle’s area is 2x(3x + 4), and the sum of
those two smaller rectangles is 2x · 3x + 2x · 4. Since the sum of the areas of those two smaller rectangles is
the same as the bigger rectangle’s area, we have:

2x(3x+ 4) = 2x · 3x+ 2x · 4
= 6x2 + 8x

Generic rectangles can be used to visualize multiplying polynomials.

5.4.2 Multiplying Binomials
Multiplying Binomials Using Distribution. Whether we’re multiplying a monomial with a polynomial
or two larger polynomials together, the first step is still based on the distributive property . We’ll start with
multiplying two binomials and then move on to larger polynomials.

We know we can distribute the 3 in (x+ 2)3 to obtain (x+ 2) · 3 = x · 3+ 2 · 3. We can actually distribute
anything across (x+ 2) if it is multiplied. For example:

(x+ 2)🐱 = x ·🐱+ 2 ·🐱

With this in mind, we can multiply (x+ 2)(x+ 3) by distributing the (x+ 3) across (x+ 2):
(x+ 2)(x+ 3) = x(x+ 3) + 2(x+ 3)

To finish multiplying, we’ll continue by distributing again, but this time across (x+ 3):
(x+ 2)(x+ 3) = x(x+ 3) + 2(x+ 3)
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= x · x+ x · 3+ 2 · x+ 2 · 3
= x2 + 3x+ 2x+ 6

= x2 + 5x+ 6

To multiply a binomial by another binomial, we simply had to repeat the step of distribution and simplify
the resulting terms. In fact, multiplying any two polynomials will rely upon these same steps.

Multiplying Binomials Using FOIL. While multiplying two binomials requires two applications of the
distributive property, people often remember this distribution process using the acronym foil. foil refers
to the pairs of terms from each binomial that end up distributed to each other.

If we take another look at the example we just completed, (x+ 2)(x+ 3), we can highlight how the foil
process works. foil is the acronym for “First, Outer, Inner, Last”.

(x+ 2)(x+ 3) = (

F︷︸︸︷
x · x) + (

O︷︸︸︷
3 · x) + (

I︷︸︸︷
2 · x) + (

L︷︸︸︷
2 · 3)

= x2 + 3x+ 2x+ 6

= x2 + 5x+ 6

F: x2 The x2 term was the result of the product of first terms from each binomial.
O: 3x The 3x was the result of the product of the outer terms from each binomial. This was from the x in the

front of the first binomial and the 3 in the back of the second binomial.
I: 2x The 2x was the result of the product of the inner terms from each binomial. This was from the 2 in the

back of the first binomial and the x in the front of the second binomial.
L: 6 The constant term 6 was the result of the product of the last terms of each binomial.

( x+2 ) ( x+3 )

F O

I L

Figure 5.4.7: Using foil Method to multiply (x+ 2)(x+ 3)

Multiplying Binomials Using Generic Rectangles. We can also approach this same example using the
generic rectangle method. To use generic rectangles, we treat x + 2 as the base of a rectangle, and x + 3 as
the height. Their product, (x + 2)(x + 3), represents the rectangle’s area. The next diagram shows how to
set up generic rectangles to multiply (x+ 2)(x+ 3).

x 2

x

3

Figure 5.4.8: Setting up Generic Rectangles to Multiply (x+ 2)(x+ 3)
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The big rectangle consists of four smaller rectangles. We will find each small rectangle’s area in the next
diagram by the formula area = base · height.

x 2

x

3

x2 2x

3x 6

Figure 5.4.9: Using Generic Rectangles to Multiply (x+ 2)(x+ 3)

To finish finding this product, we need to add the areas of the four smaller rectangles:

(x+ 2)(x+ 3) = x2 + 3x+ 2x+ 6

= x2 + 5x+ 6

Notice that the areas of the four smaller rectangles are exactly the same as the four terms we obtained
using distribution, which are also the same four terms that came from the foilmethod. Both the foilmethod
and generic rectangles approach are different ways to represent the distribution that is occurring.

Example 5.4.10 Multiply (2x− 3y)(4x− 5y) using distribution.
Explanation. To use the distributive property to multiply those two binomials, we’ll first distribute the
second binomial across (2x− 3y). Then we’ll distribute again, and simplify the terms that result.

(2x− 3y)(4x− 5y) = 2x(4x− 5y) − 3y(4x− 5y)

= 8x2 − 10xy− 12xy+ 15y2

= 8x2 − 22xy+ 15y2

Example 5.4.11 Multiply (2x− 3y)(4x− 5y) using foil.
Explanation. First, Outer, Inner, Last: Either with arrows on paper or mentally in our heads, we’ll pair up
the four pairs of monomials and multiply those pairs together.

(2x− 3y)(4x− 5y) = (

F︷ ︸︸ ︷
2x · 4x) + (

O︷ ︸︸ ︷
2x · (−5y)) + (

I︷ ︸︸ ︷
−3y · 4x) + (

L︷ ︸︸ ︷
−3y · (−5y)

= 8x2 − 10xy− 12xy+ 15y2

= 8x2 − 22xy+ 15y2

Example 5.4.12 Multiply (2x− 3y)(4x− 5y) using generic rectangles.
Explanation. We begin by drawing four rectangles and marking their bases and heights with terms in the
given binomials:
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2x −3y

4x

−5y

Figure 5.4.13: Setting up Generic Rectangles to Multiply (2x− 3y)(4x− 5y)

Next, we calculate each rectangle’s area by multiplying its base with its height:

2x −3y

4x

−5y

8x2 −12xy

−10xy 15y2

Figure 5.4.14: Using Generic Rectangles to Multiply (2x− 3y)(4x− 5y)

Finally, we add up all rectangles’ area to find the product:

(2x− 3y)(4x− 5y) = 8x2 − 10xy− 12xy+ 15y2

= 8x2 − 22xy+ 15y2

Example 5.4.15 Multiply and simplify the formula for Avery’s organic jam revenue, R (in dollars), from
Example 5.4.2 where R = (13+0.25x)(1500−50x) and x represents the number of times they raised the price
by 25 cents.
Explanation. To multiply this, we’ll use foil:

R = (13+ 0.25x) (1500− 50x)

= (13 · 1500) − (13 · 50x) + (0.25x · 1500) − (0.25x · 50x)
= 19500− 650x+ 375x− 12.5x2

= −12.5x2 − 275x+ 19500

Example 5.4.16 Tyrone is an artist and he sells each of his paintings for $200. Currently, he can sell 100
paintings per year. So his annual revenue from selling paintings is $200 ·100 = $20000. He plans to raise the
price. However, for each $20 price increase per painting, his customers will buy 5 fewer paintings annually.

Assume Tyrone would raise the price of his paintings x times, each time by $20. Use an expanded poly-
nomial to represent his new revenue per year.
Explanation. Currently, each painting costs $200. After raising the price x times, each time by $20, each
painting’s new price would be 200+ 20x dollars.

Currently, Tyrone sells 100 paintings per year. After raising the price x times, each time selling 5 fewer
paintings, he would sell 100− 5x paintings per year.

His annual revenue can be calculated by multiplying each painting’s price by the number of paintings
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he would sell:

annual revenue = (price)(number of sales)
= (200+ 20x)(100− 5x)

= 200(100) + 200(−5x) + 20x(100) + 20x(−5x)

= 20000− 1000x+ 2000x− 100x2

= −100x2 + 1000x+ 20000

After raising the price x times, each time by $20, Tyrone’s annual income from paintings would be −100x2+
1000x+ 20000 dollars.

5.4.3 Multiplying Polynomials Larger Than Binomials
The foundation for multiplying any pair of polynomials is distribution and monomial multiplication. Whether
we are working with binomials, trinomials, or larger polynomials, the process is fundamentally the same.
Example 5.4.17 Multiply (x+ 5)

(
x2 − 4x+ 6

).
We can approach this product using either distribution generic rectangles. We cannot directly use the

foil method, although it can be helpful to draw arrows to the six pairs of products that will occur.

( x+ 5 )
(
x2 − 4x+ 6

)

Figure 5.4.18: Multiply Each Term by Each Term

Using the distributive property, we begin by distributing across (x2 − 4x+ 6
), perform a second step of

distribution, and then combine like terms.

(x+ 5)
(
x2 − 4x+ 6

)
= x
(
x2 − 4x+ 6

)
+ 5
(
x2 − 4x+ 6

)
= x · x2 − x · 4x+ x · 6+ 5 · x2 − 5 · 4x+ 5 · 6
= x3 − 4x2 + 6x+ 5x2 − 20x+ 30

= x3 + x2 − 14x+ 30

With the foundation of monomial multiplication and understanding how distribution applies in this context,
we are able to find the product of any two polynomials.
Checkpoint 5.4.19 Multiply the polynomials.

(a− 3b)(a2 + 7ab+ 9b2)

Explanation. We multiply the polynomials by using the terms from a− 3b successively.

(a− 3b)
(
a2 + 7ab+ 9b2

)
= aa2 + a · 7ab+ a · 9b2 − 3ba2 − 3b · 7ab− 3b · 9b2

= a3 + 4a2b− 12ab2 − 27b3
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5.4.4 Reading Questions

1. Describe three ways you can go about multiplying (x+ 3)(2x+ 5).

2. If you multiplied out (a + b + c)(d + e + f + g), how many terms would there be? (Try to answer
without actually writing them all down.)

5.4.5 Exercises

Review and Warmup Use the properties of exponents to simplify the expression.
1. x10 · x9 2. r13 · r3 3. (10y15) · (−2y15)

4. (6r17) · (3r8) 5. (
−3y12

)2 6. (
−8x2

)3

7. Count the number of
terms in each expression.

a. 5x

b. −8x2 − 3

c.
−y2 − 6x2 + 8x− 7x2

d. y2 − 8y+ 3x2 − 2

8. Count the number of
terms in each expression.

a. 7x2 − 2z

b. −9t+ 8y2 + x+ 7t2

c. x2

d. t+ 7+ 2y

9. List the terms in each
expression.

a. 8.2x+ 6.3s2

b. 7.9y+ 6z− 3.4z2

c. −6.5y− 3.6t+ 3.1

d. 2.8t

10. List the terms in each
expression.

a.
−8.3x2 − 3.6y2 + 5.9s

b. −6.7z2 + 6.2

c.
−4.7t+ 7.1t+ 4.9s− 6.3

d.
−5.5s+ 5.5t2 − 6.2z− 3.3s

11. List the terms in each
expression.

a. −6.7x+ 4.6t+ 3.9z

b.
3.5z2 + 6.5t+ 6.5− 5.5y

c. −4.5z2 + 8.9s2

d. 8.6t− 3s2 − 0.9s2

12. List the terms in each
expression.

a. −5.1s2 − 5.3x+ 1.9y

b. 2.3z+ 2.5y2 + 0.3s

c.
−7.8z+ 6.1x2 + 7.9− 0.9z

d. 4.5t2 − 0.5s2

13. Simplify each expression,
if possible, by combining
like terms.

a. −4s+ 3x2 + 2t+ 6t

b. −7x− 6x

c. 4s2 − 6x2

d. 8s2 − 6y2

14. Simplify each expression,
if possible, by combining
like terms.

a.
−2s2 − 7s2 − 2s2 − 2x2

b. −9z+ 3y2 − 4z− 6z

c. 5y2 − 3− 4t2

d. 9z+ 6z− 5z

15. Simplify each expression,
if possible, by combining
like terms.

a. −4s− s

b. 4
3
x− 8

5
s+ 7t

c. −2
5
t− 1− 7t2 − 5

9
x2

d. −t− 2
3
t− 8

9
x
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16. Simplify each expression,
if possible, by combining
like terms.

a. 1
4
s2 − 5

7
t2

b. −4
3
x2 − 5

7
y2

c. 4z2 + 2− 9
2
x

d. −4y2 + 1
2
t+ 4

3
t2

Multiplying Monomials with Binomials Multiply the polynomials.
17. −5x (x+ 9) 18. −3x (x− 5) 19. −6x (−7x− 10)

20. 7x (−2x+ 10) 21. 4x2 (x− 5) 22. 6x2 (x+ 3)

23. −8t2
(
5t2 − 4t

) 24. 5x2
(
2x2 − 8x

) 25. −2x2
(
9x2 − 3x+ 5

)
26. 8x2

(
6x2 − 8x+ 8

)
27. (−5x12y5)(−10x5 − 9y3) 28. (−6x14y13)(5x10 + 9y11)

Multiply the polynomials.
29. (7a16b20)(9a16b19 − 8a19b18) 30. (−8a17b9)(−4a3b9 + 8a13b18)

31. (9a5)(−7a9 − 8a4b9 + 10b7) 32. (10a8)(2a5 + 8a9b6 − 10b7)

Applications of Multiplying Monomials with Binomials
33. A rectangle’s length is 1 feet shorter than

3 times its width. If we use w to represent
the rectangle’s width, use a polynomial to
represent the rectangle’s area in expanded
form.
area =
square feet

34. A rectangle’s length is 2 feet shorter than
5 times its width. If we use w to represent
the rectangle’s width, use a polynomial to
represent the rectangle’s area in expanded
form.
area =
square feet

35. A triangle’s height is 4 feet longer than
4 times its base. If we use b to represent the
triangle’s base, use a polynomial to
represent the triangle’s area in expanded
form. A triangle’s area can be calculated by
A = 1

2
bh, where b stands for base, and h

stands for height.
area =
square feet

36. A triangle’s height is 4 feet longer than
twice its base. If we use b to represent the
triangle’s base, use a polynomial to
represent the triangle’s area in expanded
form. A triangle’s area can be calculated by
A = 1

2
bh, where b stands for base, and h

stands for height.
area =
square feet
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37. A trapezoid’s top base is 5 feet longer than
its height, and its bottom base is 9 feet
longer than its height. If we use h to
represent the trapezoid’s height, use a
polynomial to represent the trapezoid’s area
in expanded form. A trapezoid’s area can
be calculated by A = 1

2
(a+ b)h, where a

stands for the top base, b stands for the
bottom base, and h stands for height.
area =
square feet

38. A trapezoid’s top base is 6 feet longer than
its height, and its bottom base is 2 feet
longer than its height. If we use h to
represent the trapezoid’s height, use a
polynomial to represent the trapezoid’s area
in expanded form. A trapezoid’s area can
be calculated by A = 1

2
(a+ b)h, where a

stands for the top base, b stands for the
bottom base, and h stands for height.
area =
square feet

Multiplying Binomials Multiply the polynomials.
39. (r+ 2) (r+ 10) 40. (t+ 9) (t+ 5) 41. (6t+ 9) (t+ 4)

42. (3x+ 1) (x+ 7) 43. (x+ 9) (x− 4) 44. (x+ 5) (x− 10)

45. (y− 9) (y− 6) 46. (y− 3) (y− 1) 47. (4r+ 7) (r+ 4)

48. (2r+ 8) (3r+ 6) 49. (5t− 9) (t− 5) 50. (3t− 5) (6t− 5)

51. (2x− 1) (x− 5) 52. (8x− 6) (x− 7) 53. (4x− 2) (x+ 1)

54. (10y− 8) (y+ 5) 55. (5y− 4)
(
3y2 − 6

) 56. (3r− 10)
(
2r2 − 6

)
57. (

10r3 + 5
) (

r2 + 10
) 58. (

7t3 + 10
) (

t2 + 7
) 59. (

3t2 − 7
) (

t2 − 7
)

60. (
6x2 − 3

) (
x2 − 7

) 61. (a+ 3b)(a+ 3b) 62. (a− 4b)(a+ 7b)

63. (a+ 9b)(5a− 4b) 64. (a− 6b)(6a− 10b) 65. (7a+ 9b)(3a− 4b)

66. (8a− 4b)(9a+ 4b) 67. (9ab− 7)(6ab− 4) 68. (10ab+ 2)(3ab+ 4)

69. 5(x+ 2)(x− 5) 70. −3(x+ 9)(x− 4) 71. x(x− 9)(x− 4)

72. 2y(y+ 5)(y− 6) 73. −(2y− 3)(y− 5) 74. −5(4r− 3)(r− 3)

Applications of Multiplying Binomials
75. An artist sells his paintings at $17.00 per

piece. Currently, he can sell 140 paintings
per year. Thus, his annual income from
paintings is 17 ·140 = 2380 dollars. He plans
to raise the price. However, for each $5.00
of price increase per painting, his customers
would buy 10 fewer paintings annually.
Assume the artist would raise the price of
his painting x times, each time by $5.00.
Use an expanded polynomial to represent
his new income per year.
new annual income =

dollars

76. An artist sells his paintings at $18.00 per
piece. Currently, he can sell 110 paintings
per year. Thus, his annual income from
paintings is 18 ·110 = 1980 dollars. He plans
to raise the price. However, for each $3.00
of price increase per painting, his customers
would buy 8 fewer paintings annually.
Assume the artist would raise the price of
his painting x times, each time by $3.00.
Use an expanded polynomial to represent
his new income per year.
new annual income =

dollars
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77. A rectangle’s base can be modeled by x+ 9

meters, and its height can be modeled by
x− 9 meters. Use a polynomial to represent
the rectangle’s area in expanded form.
area =
square meters

78. A rectangle’s base can be modeled by x+ 10

meters, and its height can be modeled by
x− 4 meters. Use a polynomial to represent
the rectangle’s area in expanded form.
area =
square meters

Multiplying Larger Polynomials Multiply the polynomials.
79. (−2x+ 4)

(
x2 − 2x− 2

) 80. (2x+ 2)
(
x2 + 2x+ 3

)
81. (3x− 3)

(
−2x3 − 3x2 − 4x+ 4

) 82. (−3x+ 5)
(
2x3 + 3x2 + 5x+ 3

)
83. (

x2 − 4x+ 3
) (

x2 + 4x+ 3
) 84. (

x2 − 4x− 3
) (

x2 − 4x− 5
)

85. (a− 8b)(a2 − 3ab− 2b2) 86. (a+ 9b)(a2 + 7ab+ 2b2)

87. (a+ b+ 10)(a+ b− 10) 88. (a+ b− 2)(a+ b+ 2)

Challenge
89. Fill in the blanks with algebraic expressions that make the equation true. You may not use 0 or 1 in

any of the blank spaces. An example is ?+? = 8x, where one possible answer is 3x+5x = 8x. There
are infinitely many correct answers to this problem. Be creative. After finding a correct answer, see
if you can come up with a different answer that is also correct.

a. + = −15xy

b. + = −13x30y2

c. · · · · = 2x60y50
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5.5 Special Cases of Multiplying Polynomials
Since we are now able to multiply polynomials together in general, we will look at a few special patterns
with polynomial multiplication where there are some shortcuts worth knowing about.

5.5.1 Squaring a Binomial
Example 5.5.2 To “square a binomial” is to take a binomial and multiply it by itself. In the same way that
42 = 4 · 4, it’s also true that (x + 4)2 = (x + 4)(x + 4). To expand this expression, we’ll simply distribute
(x+ 4) across (x+ 4):

(x+ 4)2 = (x+ 4)(x+ 4)

= x(x+ 4) + 4(x+ 4)

= x2 + 4x+ 4x+ 16

= x2 + 8x+ 16

Similarly, to expand (y− 7)2, we’ll have:

(y− 7)2 = (y− 7)(y− 7)

= y(y− 7) − 7(y− 7)

= y2 − 7y− 7y+ 49

= y2 − 14y+ 49

These two examples might look like any other example of multiplying binomials, but looking closely we
can see that something special happened. Focusing on the original expression and the simplified one, we
can see that a specific pattern occurred in each:

(x+ 4)2 = x2 + 2(4x) + 42

And:

(y− 7)2 = y2 − 2(7y) + 72

Either way, we have:
(first)2 ± 2(first)(second) + (second)2

and the choice of + or − matches the original binomial.
What we’re seeing is a pattern relating two things. The left side is the square of a binomial, and the result
on the right is called a perfect square trinomial, a trinomial that was born from something getting squared.

The general way this pattern is established is by squaring each of the two most general binomials, (a+b)
and (a−b). Once we have done so, we can substitute anything in place of a and b and rely upon the general
pattern to simplify squared binomials.

We can write (a+ b)2 as (a+ b)(a+ b) and then multiply those binomials:

(a+ b)2 = (a+ b)(a+ b)

= a2 + ab+ ba+ b2
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= a2 + 2ab+ b2

Notice the final simplification step was to add ab + ba. Since these are like terms, we can combine them
into 2ab.

Similarly, we can find a general formula for (a− b)2:
(a− b)2 = (a− b)(a− b)

= a2 − ab− ba+ b2

= a2 − 2ab+ b2

Fact 5.5.3 Binomial Squared Formulas. If a and b are real numbers or variable expressions, then we have the
following formulas:

(a+ b)2 = a2 + 2ab+ b2

(a− b)2 = a2 − 2ab+ b2

These formulas will allow us to multiply this type of special product more quickly.
Remark 5.5.4 Notice that when both (a + b)2 and (a − b)2 are expanded, the last term is adding b2 either
way. This is because any number or expression, regardless of its sign, is positive after it is squared.
Some students will prefer to memorize the Binomial Squared
Formulas and apply them by substuting expressions in for a

and b. An alternative visualization is presented in Figure 5.5.5.

a± b( )2

ab

a2 ± 2ab+ b2

square square

multiply

double

Figure 5.5.5: Visualizing the Squaring
of a Binomial

Example 5.5.6 Expand (2x− 3)2 using the Binomial Squared Formulas.
To apply the formula for squaring a binomial, we take a = 2x and b = 3. Expanding this, we have:

(2x− 3)2 = (2x)2 − 2(2x)(3) + (3)2

= 4x2 − 12x + 9

Checkpoint 5.5.7 Expand the following using the Binomial Squared Formula.
a. (5xy+ 1)2 b. 4(3x− 7)2

Explanation.
a. (5xy+ 1)2 = (5xy)2 + 2(5xy)(1) + 12

= 25x2y2 + 10xy+ 1

b. With this expression, we will first note that the factor of 4 is outside the portion of the expression that is
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squared. Using the order of operations, we will first expand (3x−7)2 and then multiply that expression
by 4:

4(3x− 7)2 = 4
(
(3x)2 − 2(3x)(7) + 72

)
= 4

(
9x2 − 42x+ 49

)
= 36x2 − 168x+ 196

Example 5.5.8 Use the visualization in Figure 5.5.5 to expand these binomials squared.
a. (x+ 8)2 b. (2t− 7)2

Explanation.

a. Diagramming the process:

x+ 8( )2

8x

x2 + 16x+ 64

square square

multiply

double

b. Diagramming the process:

2t− 7( )2

−14t

4t2 − 28t+ 49

square square

multiply

double

Example 5.5.9
A circle’s area can be calculated using the formula

A = πr2

where A stands for area, and r stands for radius. If a certain circle’s radius can be
modeled by x− 5 feet, use an expanded polynomial to model the circle’s area.

x− 5

Explanation. The circle’s area would be:

A = πr2

= π(x− 5)2 Now use a method for squaring this binomial . . .
= π

(
x2 − 10x+ 25

)
= πx2 − 10πx+ 25π

The circle’s area can be modeled by πx2 − 10πx+ 25π square feet.

Checkpoint 5.5.10 Expand (y3 − 12
)2 .

Explanation. (
y3 − 12

)2
=
(
y3
)2

− 2
(
y3
)
(12) + 122

= y6 − 24y3 + 144
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Warning 5.5.11 Common Mistakes. Now we know how to expand (a + b)2 and (a − b)2. It is a common
mistake to think that these are equal to a2 + b2 and a2 − b2, respectively, as if you could just “distribute”
the exponent. Now we know that actually you get a2 + 2ab+ b2 and a2 − 2ab+ b2.

5.5.2 The Product of the Sum and Difference of Two Terms
To motivate the next “special case” for multiplying polynomials, we’ll look at a couple of examples.
Example 5.5.12 Multiply the following binomials:

a. (x+ 5)(x− 5) b. (y− 8)(y+ 8)

Explanation. We can approach these as using distribution, foil, or generic rectangles, and obtain the fol-
lowing:

a. (x+ 5)(x− 5) = x2 − 5x+ 5x− 25

= x2 − 25

b. (y+ 8)(y− 8) = y2 − 8y+ 8y− 64

= y2 − 64

Notice that for each of these products, we multiplied the sum of two terms by the difference of the same
two terms. Notice also in these three examples that once these expressions were multiplied, the two middle
terms were opposites and thus canceled to zero.

These pairs, generally written as (a+b) and (a−b), are known as conjugates. If we multiply (a+b)(a−b),
we can see this general pattern more clearly:

(a+ b)(a− b) = a2 − ab+ ab− b2

= a2 − b2

As with the square of a binomial producing a perfect suqare trinomial, this pattern also has two things we
can give a name to. The left side is the product of a sum and its conjugate, and the result on the right is a
difference of squares.
Fact 5.5.13 TheProduct of a Sumand ItsConjugate Formula. Ifa andb are real numbers or variable expressions,
then we have the following formula:

(a+ b)(a− b) = a2 − b2

Example 5.5.14 Multiply the following using Fact 5.5.13.
a. (4x− 7y)(4x+ 7y) b. −2(3x+ 1)(3x− 1)

Explanation. The first step to using this method is to identify the values of a and b.
a. In this instance, a = 4x and b = 7y. Using the formula,

(4x− 7y)(4x+ 7y) = (4x)2 − (7y)2

= 16x2 − 49y2

b. In this instance, we have a constant factor as well as a product in the form (a+b)(a−b). We will first
expand (3x+1)(3x−1) by identifying a = 3x and b = 1 and using the formula. Then we will multiply
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the factor of −2 through this expression. So,

−2(3x+ 1)(3x− 1) = −2
(
(3x)2 − 12

)
= −2

(
9x2 − 1

)
= −18x2 + 2

Checkpoint 5.5.15 Expand (4x+ 2)(4x− 2).
Explanation.

(4x+ 2)(4x− 2) = (4x)2 − 22

= 16x2 − 4

Checkpoint 5.5.16 Expand (x7 + 9
) (

x7 − 9
) .

Explanation. (
x7 + 9

) (
x7 − 9

)
=
(
x7
)2

− 92

= x14 − 81

5.5.3 Binomials Raised to Other Powers
Example 5.5.17 Simplify the expression (x+ 5)3 into an expanded polynomial.

Before we start expanding this expression, it is important to recognize that (x+ 5)3 ̸= x3 + 53, similar to
the message in Warning 5.5.11. To be sure, we can see that if we evaluate at x = 1, we get different results.

(1+ 5)3 = 63 13 + 53 = 1+ 125

= 216 = 126

We will need to rely on distribution to expand this expression. The first step in expanding (x+ 5)3 is to
remember that the exponent of 3 indicates that

(x+ 5)3 =

3 times︷ ︸︸ ︷
(x+ 5)(x+ 5)(x+ 5)

Once we rewrite this in an expanded form, we next multiply the two binomials on the left and then finish
by multiplying that result by the remaining binomial:

(x+ 5)3 =

a binomial squared︷ ︸︸ ︷
(x+ 5)(x+ 5)(x+ 5)

=
(
x2 + 10x+ 25

)
(x+ 5)

= x3 + 5x2 + 10x2 + 50x+ 25x+ 125

= x3 + 15x2 + 75x+ 125
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Checkpoint 5.5.18 Expand (2y− 6)3.
Explanation.

(2y− 6)3 =

a binomial squared︷ ︸︸ ︷
(2y− 6)(2y− 6)(2y− 6)

=
(
4y2 − 24y+ 36

)
(2y− 6)

= 8y3 − 24y2 − 48y2 + 144y+ 72y− 216

= 8y3 − 72y2 + 216y− 216

Generalizing, if we want to expand a binomial raised to a high whole number power, we can start by rewrit-
ing the expression without an exponent. Then it will help some to use the formula for the square of a bino-
mial.
Example 5.5.19 To multiply (x− 3)4, we’d start by rewriting (x− 3)4 in expanded form as:

(x− 3)4 =

4 times︷ ︸︸ ︷
(x− 3)(x− 3)(x− 3)(x− 3)

We will then multiply pairs of polynomials from the left to the right.

(x− 3)4 =

a perfect square︷ ︸︸ ︷
(x− 3)(x− 3)

a perfect square︷ ︸︸ ︷
(x− 3)(x− 3)

=
(
x2 − 6x+ 9

)(
x2 − 6x+ 9

)
= x4 − 6x3 + 9x2 − 6x3 + 36x2 − 54x+ 9x2 − 54x+ 81

= x4 − 12x3 + 54x2 − 108x+ 81

5.5.4 Reading Questions
1. How many special patterns should you be on the lookout for when multiplying and/or squaring bi-

nomials?
2. Do you prefer to memorize the formula for the square of a binomial or to visualize the process?

5.5.5 Exercises

Review and Warmup Use the properties of exponents to simplify the expression.
1. (

3y11
)4 2. (

5x12
)3 3. (2x)

2 4. (4r)
2

5. (
−10y5

)2 6. (
−7x6

)3 7. −3
(
−3t8

)3 8. −4
(
−8t9

)2
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Simplify each expression, if possible, by combining like terms.
9. a. −9s+ 2

b. 7x+ 2

c. 9y2 + 3y

d. −x+ 8s

10. a. −2t+ 7x

b. −y− 2s

c. −9x2 + 5y

d. t− 8y

11. a.
7t2 + 7− 5t2 − 4

b. −t2 − 2t2

c. 3y+ 6y− 2x

d. −4s− 3z+ 7z

12. a. t+ 6t

b.
9z− 6t+ 2+ 7z

c.
6x− 5x− 4z+ 2s2

d. 3z2 + 2

Perfect Square Trinomial Formula Expand the square of a binomial.
13. (x+ 6)

2 14. (y+ 3)
2 15. (9y+ 2)

2 16. (6r+ 3)
2

17. (r− 9)
2 18. (t− 2)

2 19. (6t− 2)
2 20. (3t− 8)

2

21. (
8x2 − 4

)2 22. (
5x2 − 10

)2 23. (
y7 − 11

)2 24. (
y10 + 6

)2
25. (6a− 5b)2 26. (7a+ 2b)2 27. (8ab− 8)2 28. (9ab+ 5)2

29. (x2 + 10y2)2 30. (x2 + 2y2)2

Difference of Squares Formula Multiply the polynomials.
31. (x− 5) (x+ 5) 32. (y+ 12) (y− 12) 33. (5y+ 4) (5y− 4)

34. (3r− 9) (3r+ 9) 35. (10+ 6r) (10− 6r) 36. (6+ 10t) (6− 10t)

37. (
t5 − 8

) (
t5 + 8

) 38. (
t9 + 10

) (
t9 − 10

) 39. (
4x9 − 9

) (
4x9 + 9

)
40. (

2x7 + 3
) (

2x7 − 3
) 41. (

1− 12y5
) (

1+ 12y5
) 42. (

1− 8y3
) (

1+ 8y3
)

43. (6x+ 3y)(6x− 3y) 44. (7x− 8y)(7x+ 8y) 45. (ab− 8)(ab+ 8)

46. (ab− 9)(ab+ 9) 47. 4 (t+ 6) (t− 6) 48. 5 (x− 3) (x+ 3)

49. 2 (2x− 3) (2x+ 3) 50. 6 (5y+ 5) (5y− 5) 51. 3 (y+ 4)
2

52. 5 (r+ 10)
2 53. 7 (7r+ 1)

2 54. 6 (4t+ 5)
2

Multiply the polynomials.
55. (x2 + 9y2)(x2 − 9y2) 56. (x2 + 10y2)(x2 − 10y2)

57. (2x8 + 4y3)(2x8 − 4y3) 58. (3x6 − 10y3)(3x6 + 10y3)

59. (4x4y8 + 7y3)(4x4y8 − 7y3) 60. (5x2y4 + 3y3)(5x2y4 − 3y3)

Binomials Raised to Other Powers Simplify the given expression into an expanded polynomial.
61. (r+ 6)

3 62. (r+ 4)
3 63. (r− 2)

3 64. (t− 6)
3

65. (4t+ 2)
3 66. (2x+ 4)

3 67. (5x− 2)
3 68. (4y− 5)

3
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69. Determine if the following statements are
true or false.

a. (a− b)2 = a2 − b2

(□ True □ False)
b. (a+ b)2 = a2 + b2

(□ True □ False)
c. (a+ b)(a− b) = a2 − b2

(□ True □ False)

70. Determine if the following statements are
true or false.

a. (2(a− b))2 = 4(a− b)2

(□ True □ False)
b. 2(a+ b)2 = 2a2 + 2b2

(□ True □ False)
c. 2(a+ b)(a− b) = 2a2 − 2b2

(□ True □ False)
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5.6 More Exponent Rules

5.6.1 Review of Exponent Rules for Products and Exponents
In Section 5.2, we introduced three basic rules involving products and exponents. Then in Section 5.3, we
introduced one more. We begin this section with a recap of these four exponent rules.

List 5.6.2: Summary of Exponent Rules (Thus Far)

Product Rule When multiplying two expressions that have the same base, simplify the prod-
uct by adding the exponents.

xm · xn = xm+n

Power to a Power Rule When a base is raised to an exponent and that expression is raised to
another exponent, multiply the exponents.

(xm)
n
= xm·n

Product to a Power Rule When a product is raised to an exponent, apply the exponent to each
factor in the product.

(x · y)n = xn · yn

Quotient of Powers Rule When dividing two expressions that have the same base, simplify
the quotient by subtracting the exponents.

xm

xn
= xm−n

For now, we only know this rule when m > n.

Checkpoint 5.6.3
a. Simplify r16 · r5. b. Simplify (x11)10 . c. Simplify (3r)4. d. Simplify 3y7

y3 .

Explanation.
a. We add the exponents because this is a product of powers with the same base:

r16 · r5 = r16+5

= r21

b. We multiply the exponents because this is a power being raised to a power:(
x11
)10

= x11·10

= x110
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c. We apply the power to each factor in the product:

(3r)4 = 34r4

= 81r4

d. We subtract the exponents because this expression is dividing powers with the same base:

3y7

y3
=

3

1

y7

y3

= 3y7−3

= 3y4

5.6.2 Quotient to a Power Rule
One rule we have learned is the product to a power rule, as in (2x)3 = 23x3. When two factors are multiplied
and the product is raised to a power, we may apply the exponent to each of those factors individually. We
can use the rules of fractions to extend this property to a quotient raised to a power.

Example 5.6.4 Let y be a real number, where y ̸= 0. Find another way to write
(

5
y

)4
.

Explanation. Writing the expression without an exponent and then simplifying, we have:(
5

y

)4

=

(
5

y

)(
5

y

)(
5

y

)(
7

y

)
=

5 · 5 · 5 · 5
y · y · y · y

=
54

y4

=
625

y4

Similar to the product to a power rule, we essentially applied the outer exponent to the “factors” inside the
parentheses—to factors of the numerator and factors of the denominator. The general rule is:

Fact 5.6.5 Quotient to a Power Rule. For real numbers a and b (with b ̸= 0) and natural numberm,(a
b

)m
=

am

bm

This rule says that when you raise a fraction to a power, you may separately raise the numerator and
denominator to that power. In Example 5.6.4, this means that we can directly calculate

(
5
y

)4
:(

5

y

)4

=
54

y4

=
625

y4
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Checkpoint 5.6.6

a. Simplify
(p
2

)6
.

b. Simplify
(
56w7

52w4

)9

. If you end up with a large power of a specific number, leave it written that way.

c. Simplify
(
2r5
)7

(22r8)
3

. If you end up with a large power of a specific number, leave it written that way.

Explanation.
a. We can use the quotient to a power rule: (p

2

)6
=

p6

26

=
p6

64

b. If we stick closely to the order of operations, we should first simplify inside the parentheses and then
work with the outer exponent. Going this route, we will first use the quotient rule:(

56w7

52w4

)9

=
(
56−2w7−4

)9
=
(
54w3

)9
=
(
54
)9 · (w3

)9
= 54·9 ·w3·9

= 536 ·w27

c. According to the order of operations, we should simplify inside parentheses first, then apply expo-
nents, then divide. Since we cannot simplify inside the parentheses, we must apply the outer expo-
nents to each factor inside the respective set of parentheses first:(

2r5
)7

(22r8)
3
=

27
(
r5
)7

(22)
3
(r8)

3

=
27r5·7

22·3r8·3

=
27r35

26r24

= 27−6r35−24

= 21r11

= 2r11
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5.6.3 Zero as an Exponent
So far, we have been working with exponents that are natural numbers (1, 2, 3, . . .). By the end of this section,
we will expand our understanding to include exponents that are any integer, as with 50 and 12−2. As a first
step, let’s explore how 0 should behave as an exponent by considering the pattern of decreasing powers of
2 in Figure 5.6.7.

Power Product Result
24 = 2 · 2 · 2 · 2 = 16

23 = 2 · 2 · 2 = 8 (divide by 2)
22 = 2 · 2 = 4 (divide by 2)
21 = 2 = 2 (divide by 2)
20 = ? = ?

Figure 5.6.7: Descending Powers of 2

As we move down from one row to the row below it, we reduce the exponent in the power by 1 and we
remove a factor of 2 from the product. The result in one row is half of the result of the previous row. The
question is, what happens when the exponent gets down to 0 and you remove the last remaining factor of
2? Following that pattern with the final results, moving from 21 to 20 should meant the result of 2 is divided
by 2, leaving 1. So we have:

20 = 1

Fact 5.6.8 The Zero Exponent Rule. For any non-zero real number a,

a0 = 1

We exclude the case where a = 0 from this rule, because our reasoning for this rule with the table had
us dividing by the base, and we cannot divide by 0.

Checkpoint 5.6.9 Simplify the following expressions. Assume all variables represent non-zero real numbers.
a. (173x4y251

)0 b. (−8)0 c. −80 d. 3x0

Explanation. To simplify any of these expressions, it is critical that we remember an exponent only applies
to what it is touching or immediately next to.

a. In the expression (173x4y251
)0 , the exponent 0 applies to everything inside the parentheses.(

173x4y251
)0

= 1

b. In the expression (−8)0 the exponent applies to everything inside the parentheses, −8.

(−8)0 = 1

c. In contrast to the previous example, the exponent only applies to the 8. The exponent has a higher
priority than negation in the order of operations. We should consider that −80 = −

(
80
), and so:

−80 = −
(
80
)

= −1
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d. In the expression 3x0, the exponent 0 only applies to the x:

3x0 = 3 · x0

= 3 · 1
= 3

5.6.4 Negative Exponents
We understand what it means for a variable to have a natural number exponent. For example, x5 means

five times︷ ︸︸ ︷
x · x · x · x · x. Now we will try to give meaning to an exponent that is a negative integer, like in x−5.
To consider what it could possibly mean to have
a negative integer exponent, let’s extend the pat-
tern we examined in Figure 5.6.7. In that table, each
time we move down a row, we reduce the power
by 1 and we divide the value by 2. We can con-
tinue this pattern in the power and value columns,
going all the way down into when the exponent is
negeative.

Power Result
23 8

22 4 (divide by 2)
21 2 (divide by 2)
20 1 (divide by 2)
2−1 1/2 = 1/21 (divide by 2)
2−2 1/4 = 1/22 (divide by 2)
2−3 1/8 = 1/23 (divide by 2)

Figure 5.6.10: Negative Powers of 2
We are seeing a pattern where 2negative number is equal to 1

2positive number . Note that the choice of base 2 was arbi-
trary, and this pattern works for all bases except 0, since we cannot divide by 0 in moving from one row to
the next.
Fact 5.6.11 The Negative Exponent Rule. For any non-zero real number a and any natural number n,

a−n =
1

an

If we take reciprocals of both sides, we have another helpful fact:

1

a−n
= an.

Taken together, these facts tell us that a power in the numerator with a negative exponent belongs in the
denominator (with a positive exponent). And similarly, a power in the denominator with a negative exponent
belongs in the numerator (with a positive exponent). In other words, you can view a negative exponent as
telling you to move something to/from the numerator/denominator of an expression, changing the sign of
the exponent at the same time.

You may be expected to simplify expressions so that they do not have any negative exponents. This can
always be accomplished using the negative exponent rule. Try it with these exercises.

Checkpoint 5.6.12
a. Write 4y−6 without using

negative exponents. b. Write 3x−4

yz−2
without using

negative exponents.

c. Simplify (
−5x−5

) (
−8x4

)
and write it without using
negative exponents.
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Explanation.
a. An exponent only applies to whatever it is “touching”. In the expression 4y−6, only the y is affected

by the exponent.
4y−6 = 4 · 1

y6

=
4

y6

b. Negative exponents tell us to move some variables between the numerator and denominator to make
the exponents positive. The x−4 in the numerator should become x4 in the denominator. The z−2 in
the denominator should become z2 in the numerator.

3x−4

yz−2
=

3z2

yx4

Notice that the factors of 3 and y did not move, as both of those factors had positive exponents.
c. The product of powers rule still applies, and we can add exponents even when one or both are negative:(

−5x−5
) (

−8x4
)
= (−5)(−8)x−5x4

= 40x−1

=
40

x

5.6.5 Summary of Exponent Rules
Now that we have some new exponent rules beyond those from Section 5.2 and Section 5.3, let’s summarize.

List 5.6.13: Summary of the Rules of Exponents for Multiplication and Division

If a and b are real numbers, and m and n are integers, then we have the following rules:
Product Rule am · an = am+n

Power to a Power Rule (am)n = am·n

Product to a Power Rule (ab)m = am · bm

Quotient Rule am

am
= am−n, as long as a ̸= 0

Quotient to a Power Rule
(a
b

)m
=

am

bm
, as long as b ̸= 0

Zero Exponent Rule a0 = 1 for a ̸= 0

Negative Exponent Rule a−m = 1
am

Negative Exponent Reciprocal Rule 1
a−m = am
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Remark 5.6.14 Why we have “a ̸= 0” and “b ̸= 0” for some rules. We have to be careful to make sure
the rules we state don’t suggest that it would ever be OK to divide by zero. Dividing by zero leads us to
expressions that have no meaning. For example, both 9

0
and 0

0
are undefined, meaning no one has defined

what it means to divide a number by 0. Also, we established that a0 = 1 using repeated division by a in
table rows, so that reasoning doesn’t work if a = 0.

Warning 5.6.15 A Common Mistake. It may be tempting to apply the rules of exponents to expressions
containing addition or subtraction. However, none of the Summary of the Rules of Exponents for Mul-
tiplication and Division involve addition or subtraction in the initial expression. Because whole number
exponents mean repeated multiplication, not repeated addition or subtraction, trying to apply exponent
rules in situations that do not use multiplication simply doesn’t work.

Can we say something like am+an = am+n? How would that work out when a = 2, m = 3, and n = 4?

23 + 24
?
= 23+4

8+ 16
?
= 27

24
no
= 128

As we can see, that’s not even close. This attempt at a “sum rule” falls apart. In fact, without knowing
values for a, n, and m, there’s no way to simplify the expression an + am.

Checkpoint 5.6.16 Decide whether each statements is true or false.
a. (7+ 8)

3
= 73 + 83

(□ true □ false)
b. (xy)3 = x3y3

(□ true □ false)
c. 2x3 · 4x2 · 5x6 = (2 · 4 · 5)x3+2+6

(□ true □ false)

d. (x3y5
)4

= x3+4y5+4

(□ true □ false)

e. 2
(
x2y5

)3
= 8x6y15

(□ true □ false)

f. x2 + x3 = x5

(□ true □ false)
g. x3 + x3 = 2x3

(□ true □ false)
h. x3 · x3 = 2x6

(□ true □ false)
i. 32 · 23 = 65

(□ true □ false)
j. 3−2 = −1

9

(□ true □ false)

Explanation.

a. False, (7+ 8)
3 ̸= 73 + 83. Following the order of operations, on the left (7+ 8)

3 would simplify as 153,
which is 3375. However, on the right side, we have

73 + 83 = 343+ 512

= 855

Since 3375 ̸= 855, the equation is false.
b. True. As the cube applies to the product of x and y, (xy)3 = x3y3.
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c. True. The coefficients do get multiplied together and the exponents added when the expressions are
multiplied, so 2x3 · 4x2 · 5x6 = (2 · 4 · 5)x3+2+6.

d. False, (x3y5
)4 ̸= x3+4y5+4. When we have a power to a power, we multiply the exponents rather than

adding them. So (
x3y5

)4
= x3·4y5·4

e. False, 2 (x2y5
)3 ̸= 8x6y15. The exponent of 3 applies to x2 and y5, but does not apply to the 2. So

2
(
x2y5

)3
= 2x2·36y5·3

= 2x6y15

f. False, x2 + x3 ̸= x5. The two terms on the left hand side are not like terms and there is no way to
combine them.

g. True. The terms x3 and x3 are like terms, so x3 + x3 = 2x3.
h. False, x3 · x3 ̸= 2x6. When x3 and x3 are multiplied, their coefficients are each 1. So the coefficient of

their product is still 1, and we have x3 · x3 = x6.
i. False, 32 · 23 ̸= 65. Note that neither the bases nor the exponents are the same. Following the order of

operations, on the left 32 · 23 would simplify as 9 · 8, which is 72. However, on the right side, we have
65 = 7776. Since 72 ̸= 7776, the equation is false.

j. False, 3−2 ̸= −1
9

. The exponent of −2 on the number 3 does not result in a negative number. Instead,
3−2 = 1

32 , which is 1
9

.

As we mentioned before, many situations we’ll come across will require us to use more than one exponent
rule. In these situations, we’ll have to decide which rule to use first. There are often different, correct
approaches we could take. But if we rely on order of operations, we will have a straightforward approach
to simplify the expression correctly. To bring it all together, try these exercises.

Checkpoint 5.6.17

a. Simplify 6x3

2x7
and write it without using negative exponents.

b. Simplify 4
(
1
5
tv−4

)2 and write it without using negative exponents.

c. Simplify
(
30y4 · y5

6y2

)3

and write it without using negative exponents.

d. Simplify (74x−6t2
)−5 (

7x−2t−7
)4 and write it without using negative exponents. Leave larger num-

bers (such as 710) in exponent form.

Explanation.

a. In the expression 6x3

2x7 , the coefficients reduce using the properties of fractions. One way to simplify
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the variable powers is:
6x3

2x7
=

6

2
· x

3

x7

= 3 · x3−7

= 3 · x−4

= 3 · 1

x4

=
3

x4

b. In the expression 4
(
1
5
tv−4

)2 , the exponent 2 applies to each factor inside the parentheses.

4

(
1

5
tv−4

)2

= 4

(
1

5

)2

(t)
2 (

v−4
)2

= 4

(
1

25

)(
t2
) (

v−4·2)
= 4

(
1

25

)(
t2
) (

v−8
)

= 4

(
1

25

)(
t2
)( 1

v8

)
=

4t2

25v8

c. To follow the order of operations in the expression
(

30y4·y5

6y2

)3
, the numerator inside the parentheses

should be dealt with first. After that, we’ll simplify the quotient inside the parentheses. As a final
step, we’ll apply the exponent to that simplified expression:(

30y4 · y5

6y2

)3

=

(
1 · y4+5

6y2

)3

=

(
y9

6y2

)3

=

(
y9−2

6

)3

=

(
y7

6

)3

=

(
y7
)3

63

=
y7·3

216

=
y21

216

d. We’ll again rely on the order of operations, and look to simplify anything inside parentheses first
and then apply exponents. In this example, we will begin by applying the product to a power rule,
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followed by the power to a power rule.(
74x−6t2

)−5 (
7x−2t−7

)4
=
(
74
)−5 (

x−6
)−5 (

t2
)−5 · (7)4

(
x−2

)4 (
t−7
)4

= 7−20x30t−10 · 74x−8t−28

= 7−20+4x30−8t−10−28

= 7−16x22t−38

=
x22

716t38

5.6.6 Reading Questions
1. When you are considering using the exponent rule am ·an = am+n, arem andn allowed to be negative

integers?
2. What are the differences between these three expressions?

x+ 0 0x x0

3. If you rearrange xy−3

a2b8c
so that it is written without negative exponents, how many factors will you

have “moved?”

5.6.7 Exercises

Review and Warmup
1. Evaluate the following.

a. 32

b. 23

c. (−4)2

d. (−2)3

2. Evaluate the following.
a. 32

b. 53

c. (−4)2

d. (−5)3

Use the properties of exponents to simplify the expression.
3. 6 · 67 4. 7 · 74 5. 710 · 78 6. 87 · 82

Simplifying Products andQuotients Involving Exponents Use the properties of exponents to simplify the
expression.

7. r20 · r6 8. t3 · t18 9. (
y4
)7

10. (
t5
)3 11. (

2r6
)4 12. (

4y7
)3

13. (−2y13) · (9y4) 14. (6r15) · (−8r16) 15.
(
−
r18

8

)
·
(
r10

8

)
16.

(
−
r20

4

)
·
(
−
r3

7

)
17. −2

(
−4r2

)3 18. −3
(
−10r3

)2
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19. (−36)
0 20. (−31)

0 21. −270

22. −320 23. 370 + (−37)
0 24. 430 + (−43)

0

25. 48q0 26. 5B0 27. (−649t)
0

28. (−428p)
0

29.
(
x7

5

)3

30.
(
x3

6

)2

31.
(

−7

10x6

)2

32.
(

−7

6x10

)3

33.
(
5x9

6

)2

34.
(
9x10

2

)3

35.
(

x6

2y3z10

)2

36.
(

x3

2y7z6

)2

37.
(
−5x4

8y9

)2

38.
(
−7x5

8y2

)2

Rewrite the expression simplified and using only positive exponents.

39.
(
1

6

)−2

40.
(
1

7

)−3

41. 7−2

4−3
42. 7−3

2−2

43. 10−1 − 8−1 44. 2−1 − 5−1 45. 5x−4 46. 15x−5

47. 9

x−6
48. 20

x−8 49. 14x−9

x
50. 9x−10

x

51. 18x−17

x−35
52. 9x−19

x−23
53. 16x−4

17x−7
54. 6x−7

7x−24

55. y−12

r−8
56. y−20

x−3
57. y−8

t17
58. r−16

y12

59. 1

8r−5
60. 1

40t−13 61. t2

t24
62. x4

x7

63. 9x33

3x38
64. −18y7

9y22
65. −11y4

3y5
66. −7y5

3y36

67. r4

(r6)
2

68. r2

(r3)
8

69. t−4

(t9)
6

70. t−5

(t6)
3

71. x−20 · x5 72. x−14 · x9 73. (5y−7) · (7y2) 74. (2y−19) · (2y9)

75.
(
10

9

)−2

76.
(
3

2

)−2 77. (−8)
−3 78. (−9)

−3

79. 1

(−10)−2
80. 1

(−2)−3
81. −6

(−2)−2
82. 3

(−2)−3

83. 5−3 84. 6−2 85. 7−1 + 2−1 86. 8−1 + 6−1

87. 1

9−2
88. 1

10−2

89. −2−3 90. −3−2

91.
(
5y3
)3

y22
92.

(
5y9
)3

y29
93.

(
5y6
)2

y−13
94.

(
5r12

)3
r−9



5.6. MORE EXPONENT RULES 55

95.
(
r14

r4

)−3

96.
(
t7

t5

)−2

97.
(
20t19

5t2

)−4

98.
(
10x13

5x7

)−3

99. (
−5x−7

)−3 100. (−2y−18
)−2 101. (4y−12

)−3 102. (3y−6
)−2

103. 7r9 · 6r6

5r2
104. 5r6 · 5r10

7r13
105. (t4)3 · t−7 106. (t13)5 · t−16

107. (3x8)2 · x−15 108. (3x4)3 · x−8

109.
(
y9
)2

(y8)
4

110.
(
y6
)3

(y15)
5

111. (y4
)−5 112. (r15)−3 113. (r12y6

)−3 114. (t4x3)−3

115. (t−10r12
)−3 116. (x−15y8

)−3

117.
(
x15

2

)−3

118.
(
y10

4

)−4

119.
(
y11

x7

)−3

120.
(
y11

t7

)−3

121.
(
r3x−5

)−3

(r−3x5)
−2

122.
(
r5x−7

)−3

(r−8x3)
−4

Rewrite the expression simplified and using only positive exponents.
123. 8x−5y3z−3

(
3x8
)−3 124. 10x−4y4z−8

(
3x4
)−4

125.
(

x4y5z4

x−2y−5z−4

)−3

126.
(

x4y8z5

x−5y−7z−8

)−2

Challenge

127. Consider the exponential expression xa · xb

xc
where a > 0, b < 0, and c > 0.

a. Are there values for a, b, and c so that the expression equals x7? If so, fill in the blanks below
with possible values for a, b, and c. If not, fill in the blanks below with the word none.
a = , b = , and c =

b. Are there values for a, b, and c so that the exponential expression equals 1
x6 ? If so, fill in the

blanks below with possible values for a, b, and c. If not, fill in the blanks below with the word
none.
a = , b = , and c =

128. Consider the exponential expression xa · xb

xc
where a < 0, b < 0, and c > 0.

a. Are there values for a, b, and c so that the expression equals x6? If so, fill in the blanks below
with possible values for a, b, and c. If not, fill in the blanks below with the word none.
a = , b = , and c =

b. Are there values for a, b, and c so that the expression equals 1
x7 ? If so, fill in the blanks below

with possible values for a, b, and c. If not, fill in the blanks below with the word none.
a = , b = , and c =
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129. Consider the exponential expression xa · xb

xc
where a > 0, b > 0, and c < 0.

a. Are there values for a, b, and c so that the expression equals x7? If so, fill in the blanks below
with possible values for a, b, and c. If not, fill in the blanks below with the word none.
a = , b = , and c =

b. Are there values for a, b, and c so that the expression equals 1
x7 ? If so, fill in the blanks below

with possible values for a, b, and c. If not, fill in the blanks below with the word none.
a = , b = , and c =
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5.7 Exponents and Polynomials Chapter Review
5.7.1 Adding and Subtracting Polynomials
In Section 5.1 we covered the definitions of a polynomial, a coefficient of a term, the degree of a term,
the degree of a polynomial, theleading term of a polynomial, a constant term, monomials, binomials, and
trinomials, and how to write a polynomial in standard form.

Example 5.7.1 Polynomial Vocabulary. Decide if the following statements are true or false.
a. The expression 3

5
x2 − 1

5
x7 + x

2
− 4 is a polynomial.

b. The expression 4x6 − 3x−2 − x+ 1 is a polynomial.
c. The degree of the polynomial 3

5
x2 − 1

5
x7 + x

2
− 4 is 10.

d. The degree of the term 5x2y4 is 6.
e. The leading coefficient of 3

5
x2 − 1

5
x7 + x

2
− 4 is 3

5
.

f. There are 4 terms in the polynomial 3
5
x2 − 1

5
x7 + x

2
− 4.

g. The polynomial 3
5
x2 − 1

5
x7 + x

2
− 4 is in standard form.

Explanation.
a. True. The expression 3

5
x2 − 1

5
x7 + x

2
− 4 is a polynomial.

b. False. The expression 4x6−3x−2−x+1 is not a polynomial. Variables are only allowed to have whole
number exponents in polynomials and the second term has a −2 exponent.

c. False. The degree of the polynomial 3
5
x2 − 1

5
x7 + x

2
− 4 is not 10. It is 7, which is the highest power of

any variable in the expression.
d. True. The degree of the term 5x2y4 is 6.
e. False. The leading coefficient of 3

5
x2 − 1

5
x7 + x

2
− 4 is not 3

5
.The leading coefficient comes from the

degree 7 term which is −1
5

.

f. True. There are 4 terms in the polynomial 3
5
x2 − 1

5
x7 + x

2
− 4.

g. False. The polynomial 3
5
x2 − 1

5
x7 + x

2
− 4 is not in standard form. The exponents have to be written

from highest to lowest, i.e. −1
5
x7 + 3

5
x2 + x

2
− 4.

Example 5.7.2 Adding andSubtractingPolynomials. Simplify the expression (2
9
x− 4x2 − 5

)
+
(
6x2 − 1

6
x− 3

).
Explanation. First identify like terms and group them either physically or mentally. Then we will look for
common denominators for these like terms and combine appropriately.(

2

9
x− 4x2 − 5

)
+

(
6x2 −

1

6
x− 3

)
=

2

9
x− 4x2 − 5+ 6x2 −

1

6
x− 3
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=
(
−4x2 + 6x2

)
+

(
2

9
x−

1

6
x

)
+ (−3− 5)

= 2x2 +

(
4

18
x−

3

18
x

)
− 8

= 2x2 +
1

18
x− 8

5.7.2 Introduction to Exponent Rules
In Section 5.2 we covered the rules of exponents for multiplication.

Rules of Exponents. Let x, and y represent real numbers, variables, or algebraic expressions, and let m
and n represent positive integers . Then the following properties hold:
Product of Powers xm · xn = xm+n

Power to Power (xm)n = xm·n

Product to Power (xy)n = xn · yn

Example 5.7.3 Simplify the following expressions using the rules of exponents:
a. −2t3 · 4t5 b. 5

(
v4
)2 c. −(3u)2 d. (−3z)2

Explanation.

a. −2t3 · 4t5 = −8t8 b. 5
(
v4
)2

= 5v8 c. −(3u)2 = −9u2 d. (−3z)2 = 9z2

5.7.3 Dividing by a Monomial
In Section 5.3 we covered how you can split a fraction up into multiple terms if there is a sum or difference
in the numerator. Mathematically, this happens using the rule a+b

c
= a

c
+ b

c
. This formula can be used for

any number of terms in the numerator, and for both sums and differences.

Example 5.7.4 Simplify the expression 12x5+2x3−4x2

4x2 .
Explanation.

12x5 + 2x3 − 4x2

4x2
=

12x5

4x2
+

2x3

4x2
−

4x2

4x2

= 3x3 +
x

2
− 1

5.7.4 Multiplying Polynomials
In Section 5.4 we covered how to multiply two polynomials together using distribution, foil, and generic
rectangles.
Example 5.7.5 Multiplying Binomials. Expand the expression (5x − 6)(3 + 2x) using the binomial multi-
plication method of your choice: distribution, foil, or generic rectangles.
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Explanation. We will show work using the foil method.

(5x− 6)(3− 2x) = (5x · 3) + (5x · (−2x)) + (−6 · 3) + (−6 · (−2x))

= 15x− 10x2 − 18+ 12x

= −10x2 + 27x− 18

Example 5.7.6 MultiplyingPolynomials Larger thanBinomials. Expand the expression (3x−2)
(
4x2 − 2x+ 5

)
by multiplying every term in the first factor with every term in the second factor.
Explanation. (3x− 2)

(
4x2 − 2x+ 5

)
= 3x · 4x2 + 3x · (−2x) + 3x · 5+ (−2) · 4x2 + (−2) · (−2x) + (−2) · 5
= 12x3 − 6x2 + 15x− 8x2 + 4x− 10

= 12x3 − 14x2 + 19x− 10

5.7.5 Special Cases of Multiplying Polynomials
In Section 5.5 we covered how to square a binomial and how to find the product of the sum or difference of
two terms.
Example 5.7.7 Squaring a Binomial. Recall that Fact 5.5.3 gives formulas that help square a binomial.

Simplify the expression (2x+ 3)2.
Explanation. Remember that you can use foil to do these problems, but in the interest of understanding
concepts at a higher level for use in later chapters, we will use the relevant formula from Fact 5.5.3. In this
case, since we have a sum of two terms being squared, we will use (a+ b)2 = a2 + 2ab+ b2.

First identify a and b. In this case, a = 2x and b = 3. So, we have:

(a+ b)2 = (a)2 + 2(a)(b) + (b)2

(2x+ 3)2 = (2x)2 + 2(2x)(3) + (3)2

= 4x2 + 12x + 9

Example 5.7.8 The Product of the SumandDifference of TwoTerms. Recall that Fact 5.5.13 gives a formula
to help multiply things that look like (a+ b)(a− b).

Simplify the expression (7x+ 4)(7x− 4).
Explanation. Remember that you can use foil to do these problems, but in the interest of understanding
concepts at a higher level for use in later chapters, we will use the formula from Fact 5.5.13. In this case, that
means we will use (a+ b)(a− b) = a2 − b2.

First identify a and b. In this case, a = 7x and b = 4. So, we have:

(a+ b)(a− b) = (a)2 − (b)2

(7x+ 4)(7x− 4) = (7x)2 − (4)2

= 49x2 − 16

Example 5.7.9 Binomials Raised to Other Powers. To raise binomials to powers higher than 2, we start by
expanding the expression and multiplying all factors together from left to right.

Expand the expression (2x− 5)3.
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Explanation.

(2x− 5)3

= (2x− 5)(2x− 5)(2x− 5)

=
[
(2x)2 − 2(2x)(5) + 52

]
(2x− 5)

=
[
4x2 − 20x+ 25

]
(2x− 5)

=
[
4x2
]
(2x) +

[
4x2
]
(−5) + [−20x](2x) + [−20x](−5) + [25](2x) + [25](−5)

= 8x3 − 20x2 − 40x2 + 100x+ 50x− 125

= 8x3 − 60x2 + 150x− 125

5.7.6 More Exponent Rules
In Section 5.6 we covered the exponent rules and how to use them.

Example 5.7.10 Quotients and Exponents. Let t and q be real numbers, where q ̸= 0 and t ̸= 0. Find
another way to write

(
q9

t·q3

)2
.

Explanation. We first use the Quotient Rule, then the Quotient to a Power Rule, then the Power to a Power
Rule. (

q9

t · q3

)2

=

(
q9−3

t

)2

=

(
q6

t

)2

=
q6·2

t2

=
q12

t2

Example 5.7.11 The Zero Exponent. Recall that the Zero Exponent Rule says that any real number raised
to the 0-power is 1. Using this, and the other exponent rules, find another way to write −90.
Explanation. Remember that in expressions like −90, the exponent only applies to what it is directly next
to! In this case, the 0 only applies to the 9 and not the negative sign. So,

−90 = −1

Example 5.7.12 Negative Exponents. Write 5x−3 without any negative exponents.
Explanation. Recall that the Negative Exponent Rule says that a factor in the numerator with a negative
exponent can be flipped into the denominator. So

5x−3 =
5

x3

Note that the 5 does not move to the denominator because the −3 exponent only applies to the x to which it
is directly attached.
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Example 5.7.13 Summary of Exponent Rules. Use the exponent rules in List 5.6.13 to write the expressions
in a different way. Reduce and simplify when possible. Always find a way to write your final simplification
without any negative exponents.

a. 24p3

20p12 b.
(

2v5

4g−2

)4 c. 12n7
(
m0 · n2

)2
d. k5

k−4

Explanation.

a. 24p3

20p12
=

24

20
· p3

p12

=
6

5
· p3−12

=
6

5
· p−9

=
6

5
· 1

p9

=
6

5p9

b.
(

2v5

4g−2

)4

=

(
v5

2g−2

)4

=

(
v5g2

2

)4

=
v5·4g2·4

24

=
v20g8

16

c. 12n7
(
m0 · n2

)2
= 12n7

(
1 · n2

)2
= 12n7

(
n2
)2

= 12n7n2·2

= 12n7n4

= 12n7+4

= 12n11

d. k5

k−4
= k5 · k4

= k5+4

= k9

5.7.7 Exercises

Adding and Subtracting Polynomials Is the following expression a monomial, binomial, or trinomial?

1. −2r12 + 12r9 is a (□ monomial □ binomial □ trinomial) of degree .

2. −16r7 − 8r4 − 12r3 is a (□ monomial □ binomial □ trinomial) of degree

Find the degree of the following polynomial.
3. 12x6y9 + 11xy4 + 5x2 − 19 4. 17x6y7 − 4xy2 − 19x2 + 10

Add the polynomials.
5. (

−2x2 − 6x− 7
)
+
(
−10x2 − 8x− 4

) 6. (
3x2 − 9x− 7

)
+
(
−5x2 + 2x+ 9

)
7. (

−5x6 − 10x4 + 9x2
)
+
(
5x6 − 9x4 + x2

) 8. (
2y6 − 7y4 − 2y2

)
+
(
6y6 + 3y4 − 6y2

)
Add the polynomials.

9.
(
6x3 − 3x2 + 3x+

5

4

)
+

(
−5x3 + 9x2 − 10x+

1

2

)
10.

(
−7x3 − 6x2 − 3x+

7

8

)
+

(
8x3 + 6x2 − 9x+

3

2

)
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Subtract the polynomials.
11. (

4x2 + 10x
)
−
(
10x2 + 7x

) 12. (
6x2 + 3x

)
−
(
−2x2 + x

)
13. (

−10x2 − 9x+ 9
)
−
(
10x2 − 7x− 3

) 14. (
2x2 + 3x− 9

)
−
(
5x2 + 7x− 1

)
15. (

7x6 − 8x4 + 8x2
)
−
(
2x6 − 4x4 + 2x2

) 16. (
−4x6 − 5x4 − 2x2

)
−
(
−3x6 − 7x4 − 6x2

)
Add or subtract the given polynomials as indicated.

17. (
5x3 − 6xy+ 9y9

)
−
(
2x3 + 4xy+ 2y9

) 18. (
6x9 + 9xy− 3y8

)
−
(
−2x9 + 5xy− 6y8

)
19. A handyman is building two pig pens

sharing the same side. Assume the length
of the shared side is x meters. The cost of
building one pen would be 26x2 + 4x− 49.5

dollars, and the cost of building the other
pen would be 37x2 − 4x+ 9.5 dollars.
What’s the total cost of building those two
pens?
A polynomial representing the total cost of
building those two pens is

dollars.

20. A handyman is building two pig pens
sharing the same side. Assume the length
of the shared side is x meters. The cost of
building one pen would be
45.5x2 − 4.5x+ 49.5 dollars, and the cost of
building the other pen would be
40.5x2 + 4.5x− 18.5 dollars. What’s the
total cost of building those two pens?
A polynomial representing the total cost of
building those two pens is

dollars.

Introduction to Exponent Rules Use the properties of exponents to simplify the expression.
21. 8 · 86 22. 9 · 93 23. t2 · t17 24. y4 · y10

25. t6 · t4 · t17 26. r8 · r16 · r6 27. (
105
)7 28. (

122
)2

29. (
y9
)9 30. (

t10
)6 31. (2y)

4 32. (4r)
2

33. (4r4) · (9r8) 34. (−6t6) · (−8t20) 35. (
−2x5

)3 36. (
−7t7

)2
Use the properties of exponents to simplify the expression.

37.
(
t12

9

)
·
(
t19

3

)
38.

(
−
x14

3

)
·
(
−
x13

8

)

Dividing by a Monomial Simplify the following expression

39. −63t14 − 108t11

9
40. 55t4 + 35t3

5
41. 3x21 − 3x12 + 18x7

3x3

42. 64x19 − 88x10 + 64x7

−8x3
43. 90x10 + 108x8

9x
44. 42y16 + 35y7

7y

Multiplying Polynomials Multiply the polynomials.
45. −x (x− 3) 46. x (x+ 9) 47. 6r2

(
9r2 + 8r+ 6

)
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48. −3t2
(
7t2 − 4t− 3

) 49. (8t+ 9) (t+ 3) 50. (5x+ 3) (x+ 1)

51. (x+ 1) (x− 4) 52. (x+ 8) (x− 10) 53. (3y− 6) (2y− 5)

54. (2y− 5) (4y− 9) 55. 3(x+ 2)(x+ 3) 56. −3(x+ 2)(x+ 3)

57. x(x− 2)(x+ 2) 58. −x(x+ 2)(x+ 3)

Multiply the polynomials.
59. (a− 2b)(a2 + 10ab+ 6b2) 60. (a+ 3b)(a2 − 5ab− 6b2)

61. A rectangle’s length is 3 feet shorter than
4 times its width. If we use w to represent
the rectangle’s width, use a polynomial to
represent the rectangle’s area in expanded
form.
area =
square feet

62. A rectangle’s length is 4 feet shorter than
twice its width. If we use w to represent the
rectangle’s width, use a polynomial to
represent the rectangle’s area in expanded
form.
area =
square feet

Special Cases of Multiplying Polynomials Expand the square of a binomial.
63. (10y+ 7)

2 64. (6r+ 1)
2 65. (r− 8)

2

66. (t− 2)
2 67. (9a− 6b)2 68. (10a+ 3b)2

Multiply the polynomials.
69. (x+ 9) (x− 9) 70. (x− 1) (x+ 1) 71. (2− 10y) (2+ 10y)

72. (8+ 5y) (8− 5y) 73. (
4r8 + 8

) (
4r8 − 8

) 74. (
2r5 − 7

) (
2r5 + 7

)
Simplify the given expression into an expanded polynomial.

75. (t+ 5)
3 76. (t+ 3)

3

More Exponent Rules Use the properties of exponents to simplify the expression.
77. (

3r12
)2 78. (

5x3
)4 79. (5t6) · (4t8)

80. (8t8) · (−3t20) 81.
(
−
t10

3

)
·
(
t14

4

)
82.

(
−
x12

6

)
·
(
−
x7

3

)
83. (−18)

0 84. (−13)
0 85. −450

86. −500

87.
(
−3

8x8

)2

88.
(
−3

4x2

)2

89. 6x11

36x2
90. 8x19

32x17 91.
(

x3

2y4z7

)2

92.
(

x9

2y8z5

)2
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Rewrite the expression simplified and using only positive exponents.

93.
(
1

8

)−2

94.
(
1

9

)−2 95. 17x−12

96. 11x−3

97. 6

x−5
98. 16

x−6

99. 15x−10

x−13
100. 6x−12

x−3
101. r−5

(r9)
9

102. t−5

(t6)
7

103. t−20 · t7 104. t−14 · t10

105. (8x−8) · (−7x2) 106. (6x−20) · (−3x12) 107. (−5y−13
)−3

108. (−2y−7
)−2 109. (3r14)4 · r−37 110. (4r10)2 · r−8

111. (t11x4)−5 112. (t13x13)−2 113. (t−9r10
)−5

114. (x−6t12
)−2

115.
(
x13

4

)−2

116.
(
y8

4

)−4



Chapter 6

Radical Expressions and Equations

6.1 Square and nth Root Properties
In this section, we learn what expressions like

√
25 and 3

√
27 mean, and some of the properties they have

that allow for simplification.

6.1.1 Square Roots
Consider the non-negative number 25. You can ask
the question “what number multiplies by itself to
make 25?” We use the symbol

√
25 to represent the

answer to this question, whether or not you know
the “answer”.
A geometric visualization of the same idea is to
imagine a square with 25 units of area inside it.
What would a side length have to be? We use

√
25

to represent that side length. ( )( ) = 25

√
25

√
25

√
25 25

Definition 6.1.2 Square Root. Given a non-negative number x, if r · r = x for some positive number r, then
r is called the square root of x, and we can write √

x instead of r. The √ symbol is called the radical or the
root. We call expressions with the √ symbol radical expressions. The number inside the radical is called
the radicand. ♢

For example, if you are confronted with the expression
√
16, you should think about the equation r·r = 16

(or if you prefer, r2 = 16) and ask yourself if you know a positive value for r that solves that equation. Of
course, 4 is a non-negative solution. So we an say

√
16 = 4.

65
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To demonstrate more of the vocabulary, both
√
2 and 3

√
2 are radical expressions. In both expressions,

the number 2 is the radicand.
The word “radical” means something like “on the fringes” when used in
politics, sports, and other places. It actually has that same meaning in
math, when you consider a square with area A as in Figure 6.1.3.

area A
√
A

side length
√
A

Figure 6.1.3: “Radical”
means “off to the side.”

The one-digit multiplication times table has spe-
cial numbers along the diagonal. They are known
as perfect squares. And for working with square
roots, it will be helpful if you can memorize these
first few perfect square numbers. For example, the
times table tells us that 7 · 7 = 49. Just knowing
that fact from memory lets us know that

√
49 = 7.

It’s advisable to memorize the following:√
0 = 0

√
1 = 1

√
4 = 2√

9 = 3
√
16 = 4

√
25 = 5√

36 = 6
√
49 = 7

√
64 = 8√

81 = 9
√
100 = 10

√
121 = 11√

144 = 12
√
225 = 15

√
256 = 16

× 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9

2 2 4 6 8 10 12 14 16 18

3 3 6 9 12 15 18 21 24 27

4 4 8 12 16 20 24 28 32 36

5 5 10 15 20 25 30 35 40 45

6 6 12 18 24 30 36 42 48 54

7 7 14 21 28 35 42 49 56 63

8 8 16 24 32 40 48 56 64 72

9 9 18 27 36 45 54 63 72 81

Figure 6.1.4: Multiplication table with squares

6.1.2 Square Root Decimal Values

Most square roots have decimal places that go on forever. Take
√
5 as an example. The number 5 is between

two perfect squares, 4 and 9. Therefore, as demonstrated in Figure 6.1.5,
√
4 <

√
5 <

√
9. In other words,

2 <
√
5 < 3

So
√
5 has a decimal value somewhere between 2 and 3.
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4

√
4

5

√
5

9

√
9

Figure 6.1.5: 2 <
√
5 < 3

With a calculator, we can see:
√
5 ≈ 2.236

Actually the decimal will not terminate, and that is why we used the ≈ symbol instead of an equals sign.
To get 2.236 we rounded down slightly from the true value of

√
5. With a calculator, we can check that

2.2362 = 4.999696, a little shy of 5.
When the radicand is a perfect square, its square root is a rational number. If the radicand is not a perfect

square, the square root is irrational. (It has a decimal that goes on forever without any pattern that is easy
to see.) We want to be able to estimate square roots without using a calculator.

Example 6.1.6 To estimate
√
10 without a calculator, we can find the nearest perfect squares that are whole

numbers on either side of 10. Recall that the perfect squares are 1, 4, 9, 16, 25, 36, 49, 64, . . . The perfect square
that is just below 10 is 9 and the perfect square just above 10 is 16.

9 10 160 x

This tells us that
√
10 is between

√
9 and

√
16, or between 3 and 4. We can also say that

√
10 is much closer

to 3 than 4 because 10 is closer to 9, so we think 3.1 or 3.2 would be a good estimate.
To check our estimates (3.1 or 3.2) we can square them and see if the result is close to 10. We find 3.12 =

9.61 and 3.22 = 10.24, so our estimates are pretty good.

Checkpoint 6.1.7 Estimate
√
19 without a calculator.

Explanation. The radicand, 19, is between 16 and 25, so
√
19 is between

√
16 and

√
25, or between 4 and

5. We notice that 19 is in the middle between 16 and 25 but closer to 16. We estimate
√
19 to be about 4.4.

We can check our estimate by calculating:

4.42 = 19.36

So 4.42 is close to 19, and 4.4 is close to
√
19.
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6.1.3 Cube Root and Higher Order Roots
The concept behind a square root easily extends to
a cube root. What if we have a number in mind,
like 64, and we would like to know what number
can be multiplied with itself three times to make 64?
A geometric visualization of the same idea is to
imagine a cube with 64 units of area inside it. What
would an edge length have to be? We use 3

√
64 to

represent that edge length.
( )( )( ) = 64

3
√
64

3
√
64

3
√
64

3√ 64

Definition 6.1.8 nth Root. Given a number x, if
n times︷ ︸︸ ︷

r · r · · · · · r = x for some number r, then r is called an nth
root of x. (Or if you prefer, when rn = x.)

• When n is odd, there is always exactly one real number nth root for any x, and we can write n
√
x to

mean that one nth root.
• When n is even and x is positive, there are two real number nth roots, one of which is positive and the

other of which is negative. We can write n
√
x to mean the positive nth root.

• When n is even and x is negative, there aren’t any real number nth roots, and we say that n
√
x is

“undefined” or “does not exist”.
The n

√ symbol is called the nth radical or the nth root. We call expressions with the n
√ symbol radical

expressions. The number inside the radical is called the radicand. The index of a radical is the number n
in n

√ . ♢
As noted earlier, when we have 3

√ , we can say “cube root” instead of “3rd root”. Also, when we have
2
√ , we can say “square root” instead of “2nd root” and we can simply write √

x instead.
For some examples of nth roots:

• 3
√
8 = 2, because

3 instances︷ ︸︸ ︷
2 · 2 · 2 = 8.

• 4
√
81 = 3, because

4 instances︷ ︸︸ ︷
3 · 3 · 3 · 3 = 81.

• 5
√
−32 = −2, because

5 instances︷ ︸︸ ︷
(−2) · (−2) · (−2) · (−2) · (−2) = −32.

As with square roots, in general an nth root’s decimal value is a decimal that goes on forever. For
example, 3

√
20 ≈ 2.714 . . .. For practical applications, we may want to use a calculator to find a decimal

approximation to an nth root. Some calculators will do this for you directly, and some will not.
• Maybe your calculator has a button that looks like x

√
y. Then you should be able to type something

like 3 x
√
y 20 to get 3

√
20 ≈ 2.714 . . ..

• Maybe your calculator has a button that looks like n
√ . Then you should be able to type something

like 3 n
√

20 to get 3
√
20 ≈ 2.714 . . ..
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• Maybe your calculator allows you to type letters, parentheses, and commas, and you can type root(3,20)
to get 3

√
20 ≈ 2.714 . . ..

• Maybe your calculator allows you to type letters, parentheses, and commas, but the syntax for an nth
root is reversed from the last example, and you can type root(20,3) to get 3

√
20 ≈ 2.714 . . ..

• If your calculator has none of the above options, then you should be able to type 20^(1/3) as a way to
get 3

√
20 ≈ 2.714 . . .. This is technically using mathematics we will learn in Section 6.3.

Try using your own calculator to calculate 3
√
20 so that you can become familiar with whatever method it

uses.
Example 6.1.9
A pyramid has a square base, and its height is equal to one side length of
the square at its base. In this situation, the volume V of the pyramid, in
in3, is given by V = 1

3
s3, where s is the pyramid’s base side length in in.

Archimedes droppped the pyramid in a bathtub, and judging by how high
the water level rose, the volume of the pyramid is 243 in3 (a little more than
1 gal). How tall is the pyramid?

s
s

s

The equation tells us that:
243 =

1

3
s3

We can multiply on both sides by 3 and:
729 = s3

This means that s is 3
√
729. A calculator tells us that this is 9. So the pyramid’s height is 9 inches.

6.1.4 Roots of Negative Numbers
Can we find the square root of a negative number, such as √−64? How about its cube root, 3

√
−64?

As noted in Defintion 6.1.8, when the index of an nth root is odd, there will always be a real number nth
root even when the radicand is negative. For example, 3

√
−64 is −4, because (−4)(−4)(−4) = −64.

When the index of an nth root is even, it is a problem to have a negative radicand. For example, to find√
−64, you would need to find a value r so that r·r = −64. But whether r is positive or negative, multiplying

it by itself will give a positive result. It could never be −64. So there is no way to have a real number square
root of a negative number. And the same thing is true for any even index nth root with a negative radicand,
such as 4

√
−64. An even-indexed root of a negative number is not a real number.

If you are confronted with an expression like √
−25 or 4

√
−16 (any square root or Imaginary Numbers. Mathemati-

cians imagined a new type of num-
ber, neither positive nor negative,
that would multiply by itself to make
a negative result. But that is beyond
the scope of this section.

even-indexed root of a negative number), you can state that the expression “is not
real” or that it is “not defined” (as a real number). Don’t get carried away though.
Expressions like 3

√
−27 and 5

√
−1 are defined, because the index is odd.

6.1.5 Radical Rules and Exponent Rules
In an earlier chapter, we learned some algebra rules for exponents. A summary of these rules is in List 5.6.13.
There are a couple of very similar rules for radicals, presented here without motivation. (These rules are
easier to explain once we study Section 6.3.)
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List 6.1.10: Rules of Radicals for Multiplication and Division

If a and b are positive real numbers, and m is a positive integer , then we have the following
rules:
Root of a Product Rule m

√
a · b = m

√
a · m

√
b

Root of a Quotient Rule m
√

a
b
=

m
√
a

m
√
b

as long as b ̸= 0

Knowing these algebra rules helps to make complicated radical expressions look simpler.

Example 6.1.11 Simplify
√
18. Anything we can do to make the radicand a smaller simpler number is helpful.

Note that 18 = 9 · 2, so we can write
√
18 =

√
9 · 2

=
√
9 ·

√
2 according to the Root of a Product Rule

= 3
√
2

This expression 3
√
2 is considered “simpler” than

√
18 because the radicand is so much smaller.

Checkpoint 6.1.12 Simplify
√
72.

Explanation. As with the previous example, it will help if 72 can be written as a product of a perfect square.
In this case, 4 divides 72, and 72 = 4 · 18. So

√
72 =

√
4 · 18

=
√
4 ·

√
18

= 2
√
18

But we aren’t done. Can 18 can be written as a product of a perfect square? Yes, because 18 = 9 · 2. So
√
72 = 2

√
18

= 2
√
9 · 2

= 2
√
9 ·

√
2

= 2 · 3
√
2

= 6
√
2

This is as simple as we can make this expression.

Example 6.1.13 Simplify 3
√
80. Anything we can do to make the radicand a smaller simpler number is helpful.

With lessons learned from the previous examples, maybe there is a way to rewrite 80 as the product of two
numbers in a helpful way. Since we have a cube root, writing 80 as a product of a perfect cube would be
helpful. We can write 80 = 8 · 10, where 8 is a perfect cube.

3
√
80 =

3
√
8 · 10



6.1. SQUARE AND NTH ROOT PROPERTIES 71

=
3
√
8 · 3

√
10 according to the Root of a Product Rule

= 2
3
√
10

This expression 2
3
√
10 is considered “simpler” than 3

√
80 because the radicand is so much smaller.

Checkpoint 6.1.14 Simplify 4
√
48.

Explanation. As with the previous example, it will help if 48 can be written as a product of a 4th power.
In this case, 16 divides 48, and 48 = 16 · 3. So

4
√
48 =

4
√
16 · 3

=
4
√
16

4
√
3

= 2
4
√
3

This is as simple as we can make this expression.

When a radical is applied to a fraction, the Root of a Quotient Rule is useful.

Example 6.1.15 Simplify
√

8
25

. According to the Root of a Quotient Rule,√
8

25
=

√
8√
25

=

√
8

5

=

√
4 · 2
5

=

√
4 ·

√
2

5

=
2
√
2

5

This is as simple as we can make this expression, unless you prefer to write it as 2
5

√
2.

Checkpoint 6.1.16
a.
√

1

36
b. 3

√
8

27
c. 3

√
81

125
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Explanation.

a.
√

1

25
=

√
1√
25

=
1

5

b. 3

√
8

27
=

3
√
8

3
√
27

=
2

3

c. 3

√
81

125
=

3
√
81

3
√
125

=
3
√
81

5

=
3
√
27 · 3
5

=
3
√
27

3
√
3

5

=
3

3
√
3

5

6.1.6 Multiplying Square Root Expressions

We can use the Root of a Product Rule and the Root of a Quotient Rule to multiply and divide square root
expressions. We want to simplify each radical first to keep the radicands as small as possible.

Example 6.1.17 Multiply
√
8 ·

√
54.

Explanation. We will simplify each radical first, and then multiply them together. We do not want to
multiply 8 · 54 because we will end up with a larger number that is harder to factor.

√
8 ·

√
54 =

√
4 · 2 ·

√
9 · 6

=
√
4 ·

√
2 ·

√
9 ·

√
6

= 2
√
2 · 3

√
6

= 6
√
2 ·

√
6

= 6
√
12

= 6
√
4 · 3

= 6
√
4 ·

√
3

= 6 · 2
√
3

= 12
√
3

It is worth noting that this is considered as simple as we canmake it, because the radicand of 3 is so small.

Checkpoint 6.1.18 Multiply 2
√
7 · 3

√
21.

Explanation. First multiply the non-radical factors together and the radical factors together. Then look for
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further simplifications.
2
√
7 · 3

√
21 = 2 · 3 ·

√
7 ·

√
21

= 6 ·
√
7 ·

√
7 · 3

= 6
√
49 · 3

= 6 · 7 ·
√
3

= 42
√
3

Example 6.1.19 Multiply
√

6
5
·
√

3
5

.
Explanation. First multiply the fractions together under the radical. Then look for further simplifications.√

6

5
·
√

3

5
=

√
6

5
· 3
5

=

√
18

25

=

√
18√
25

=

√
9 · 2
5

=
3
√
2

5

6.1.7 Adding and Subtracting Square Root Expressions
We learned the Root of a Product Rule previously and applied this to multiplication of square roots, but we
cannot apply this property to the operations of addition or subtraction. Here are two examples to demon-
strate why not.

√
9+

√
16

?
=

√
9+ 16

√
169−

√
25

?
=

√
169− 25

3+ 4
?
=

√
25 13− 5

?
=

√
144

7
no
= 5 8

no
= 12

We do not get the same result if we combine radical sums and differences in the same way we can combine
radical products and quotiens.

To add and subtract radical expressions, we need to recognize that we can only add and subtract like
terms. In this case, we will call them like radicals. Adding like radicals will work just like adding like terms.
In the same way that x+ 3x = 4x combines two like terms,

√
5+ 3

√
5 = 4

√
5 combines two like radicals.

Example 6.1.20 Simplify
√
2+

√
8.

Explanation. First, simplify each radical. Simplifying is the best way to understand whether or not we
even have two like radicals that could be combined.

√
2+

√
8 =

√
2+

√
4 · 2

=
√
2+ 2

√
2
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= 3
√
2

Checkpoint 6.1.21 Simplify 2
√
3− 3

√
48.

Explanation. First we will simplify the radical term where 48 is the radicand, and we may see that we then
have like radicals.

2
√
3− 3

√
48 = 2

√
3− 3

√
16 · 3

= 2
√
3− 3 · 4

√
3

= 2
√
3− 12

√
3

= −10
√
3

Example 6.1.22 Simplify
√
2+

√
27.

Explanation.
√
2+

√
27 =

√
2+

√
9 · 3

=
√
2+ 3

√
3

We cannot simplify the expression further because
√
2 and

√
3 are not like radicals.

Example 6.1.23 Simplify
√
6−

√
18 ·

√
12.

Explanation. In this example, we should multiply the latter two square roots first (after simplifying them)
and then see if we have like radicals.

√
6−

√
18 ·

√
12 =

√
6−

√
9 · 2 ·

√
4 · 3

=
√
6− 3

√
2 · 2

√
3

=
√
6− 6

√
2 ·

√
3

=
√
6− 6

√
6

= −5
√
6

6.1.8 Distributing with Square Roots
In Section 5.4, we learned how to multiply polynomials like 2(x+ 3) and (x+ 2)(x+ 3). All the methods we
learned there apply when we multiply square root expressions. We will look at a few examples done with
different methods.

Example 6.1.24 Multiply
√
5
(√

3−
√
2
)

.
Explanation. We will use the distributive property to do this problem:

√
5
(√

3−
√
2
)
=

√
5 ·

√
3−

√
5 ·

√
2

=
√
15−

√
10

Example 6.1.25 Multiply
(√

6+
√
12
)(√

3−
√
2
)

.
Explanation. We will use the foil Method to expand the product. This time, there is an opportunity to
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simplify some of the radicals after multiplying.(√
6+

√
12
)(√

3−
√
2
)
=

√
6 ·

√
3−

√
6 ·

√
2+

√
12 ·

√
3−

√
12 ·

√
2

=
√
18−

√
12+

√
36−

√
24

= 3
√
2− 2

√
3+ 6− 2

√
6

Example 6.1.26 Expand
(√

3−
√
2
)2

.
Explanation. We will use the foil method to expand this expression:(√

3−
√
2
)2

=
(√

3−
√
2
)(√

3−
√
2
)

=
(√

3
)2

−
√
3 ·

√
2−

√
2 ·

√
3+

(√
2
)2

= 3−
√
6−

√
6+ 2

= 5− 2
√
6

Example 6.1.27 Multiply
(√

5−
√
7
)(√

5+
√
7
)

.
Explanation. We can once again use the foil method to expand this expression. (But it is worth noting
that this expression is in the special form (a− b)(a+ b) and will simplify to a2 − b2.)(√

5−
√
7
)(√

5+
√
7
)
=
(√

5
)2

+
√
5 ·

√
7−

√
7 ·

√
5−

(√
7
)2

= 5+
√
35−

√
35− 7

= −2

6.1.9 Reading Questions
1. Is there a difference between 3

√
2 and 3

√
2? Explain.

2. Choose one of the radical rules from List 6.1.10. Then find its counterpart in the exponent rules from
List 5.6.13.

3. Describe a way you can visualize
√
81 in a geometric shape. Describe a way you can visualize 3

√
27 in

a geometric shape.

6.1.10 Exercises

Review and Warmup Which of the following are square numbers? There may be more than one correct
answer.

1.
□ 117 □ 54 □ 100 □ 64 □ 49 □ 3

2.
□ 1 □ 125 □ 16 □ 115 □ 121 □ 138
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Evaluate the following.
3. a.

√
144

b.
√
121

c.
√
36

4. a.
√
4

b.
√
64

c.
√
144

5. a.
√

9

25

b.
√

−
36

49

6. a.
√

16

121

b.
√

−
81

100

7. Do not use a calculator.
a.

√
36

b.
√
0.36

c.
√
3600

8. Do not use a calculator.
a.

√
64

b.
√
0.64

c.
√
6400

9. Do not use a calculator.
a.

√
64

b.
√
6400

c.
√
640000

10. Do not use a calculator.
a.

√
100

b.
√
10000

c.
√
1000000

11. Do not use a calculator.
a.

√
121

b.
√
1.21

c.
√
0.0121

12. Do not use a calculator.
a.

√
144

b.
√
1.44

c.
√
0.0144

13. Without using a calculator, estimate the
value of

√
18:

(□ 3.76 □ 3.24 □ 4.76 □ 4.24)

14. Without using a calculator, estimate the
value of

√
24:

(□ 4.10 □ 4.90 □ 5.10 □ 5.90)

Simplify Radical Expressions Evaluate the following.

15.
√

16

49
16.

√
25

36

17. −
√
64

18. −
√
81 19. √

−100 20. √
−121

21.
√
−
121

144
22.

√
−

4

25
23. −

√
9

121

24. −

√
16

81

25. a.
√
100−

√
36

b.
√
100− 36

26. a.
√
100−

√
64

b.
√
100− 64

Simplify the radical expression or state that it is not a real number.

27.
√
125√
5

28.
√
75√
3

29.
√
6√
216

30.
√
4√
144

31.
√
8 32.

√
147 33.

√
980 34.

√
216



6.1. SQUARE AND NTH ROOT PROPERTIES 77

35.
√
231 36.

√
70

Multiplying Square Root Expressions Simplify the expression.
37. 8

√
3 · 3

√
11 38. 8

√
7 · 8

√
2 39. 9

√
7 · 5

√
25

40. 2
√
13 · 2

√
121 41. 2

√
5 · 5

√
40 42. 3

√
15 · 3

√
30

43.
√
2 · 3

√
32 44.

√
4 · 4

√
16 45.

√
2

7
·
√

1

7

46.
√

1

8
·
√

3

8
47.

√
30

19
·
√

6

19
48.

√
18

13
·
√

6

13

Adding and Subtracting Square Root Expressions Simplify the expression.
49. 10

√
15− 11

√
15 50. 12

√
11− 13

√
11

51. 13
√
11− 13

√
11+ 15

√
11 52. 14

√
5− 20

√
5+ 11

√
5

53.
√
80+

√
45 54.

√
45+

√
125

55.
√
343−

√
63 56.

√
275−

√
539

57.
√
28+

√
175+

√
8+

√
18 58.

√
32+

√
8+

√
125+

√
20

59.
√
98−

√
8−

√
12−

√
27 60.

√
75−

√
27−

√
8−

√
50

Distributing with Square Roots Expand and simplify the expression.
61.

√
2
(√

19+
√
17
)

62.
√
7
(√

11+
√
5
)

63.
(
3+

√
11
)(

7+
√
11
)

64.
(
9+

√
11
)(

10+
√
11
)

65.
(
6−

√
7
)(

7− 3
√
7
)

66.
(
3−

√
7
)(

4− 5
√
7
)

67.
(
1+

√
6
)2

68.
(
2+

√
3
)2

69.
(√

2− 3
)2

70.
(√

6− 4
)2

71.
(√

15−
√
5
)2

72.
(√

35+
√
5
)2

73.
(
8− 5

√
7
)2

74.
(
5− 3

√
7
)2

75.
(
10−

√
13
)(

10+
√
13
)

76.
(
7−

√
5
)(

7+
√
5
)

77.
(√

5+
√
6
)(√

5−
√
6
)

78.
(√

6+
√
13
)(√

6−
√
13
)

79.
(
4
√
5+ 5

√
7
)(

4
√
5− 5

√
7
)

80.
(
5
√
6+ 3

√
11
)(

5
√
6− 3

√
11
)

Higher Index Roots
81. Simplify 3

√
125. 82. Simplify 3

√
27. 83. Simplify 4

√
16.

84. Simplify 4
√
81. 85. Simplify 5

√
32. 86. Simplify 3

√
8.
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87. Simplify 5
√
−32. 88. Simplify 4

√
−81. 89. Simplify 4

√
−16.

90. Simplify 4
√
−81. 91. Simplify 3

√
−27. 92. Simplify 6

√
−64.

93. Simplify 3
√
16. 94. Simplify 3

√
162. 95. Simplify 3

√
192.

96. Simplify 3
√
54. 97. Simplify 3

√
80. 98. Simplify 4

√
192.

99. Simplify 3

√
3
64

. 100. Simplify 5

√
11
32

. 101. Simplify 3

√
189
125

.

102. Simplify 3

√
88
27

. 103. Simplify 3

√
54
125

. 104. Simplify 3

√
56
27

.
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6.2 Rationalizing the Denominator
A radical expression typically has several equivalent forms. For example,

√
2
3

and 2√
6

are the same number.
Mathematics has a preference for one of these forms over the other, and this section is about how to convert
a given radical expression to that form.

6.2.1 Rationalizing the Denominator
To simplify radical expressions, we have seen that it helps to make the radicand as small as possible. Another
helpful principle is to not leave any irrational numbers, such as

√
3 or 2

√
5, in the denominator of a fraction.

In other words, we want the denominator to be rational. The process of dealing with such numbers in the
denominator is called rationalizing the denominator.

Let’s see how we can replace 1√
5

with an equivalent expression that has no radical expressions in its
denominator. If we multiply a radical by itself, the result is the radicand, by Definition 6.1.2. As an example:

√
5 ·

√
5 = 5

With 1√
5

, we may multiply both the numerator and denominator by the same non-zero number and have
an equivalent expression. If we multiply the numerator and denominator by

√
5, we have:

1√
5
=

1√
5
·
√
5√
5

=
1 ·

√
5√

5 ·
√
5

=

√
5

5

And voilà, we have an expression with no radical in its denominator. We can use a calculator to verify that
1√
5
≈ 0.4472, and also

√
5
5

≈ 0.4472. They are equal.

Example 6.2.2 Rationalize the denominator of the expressions.
a. 3√

6
b.

√
5√
72

Explanation.

a. To rationalize the denominator of 3√
6

, we multiply both the numerator and denominator by
√
6√
6

.

3√
6
=

3√
6
·
√
6√
6

=
3
√
6

6

=

√
6

2

Note that we reduced a fraction 3
6

whose numerator and denominator were no longer inside the rad-
ical.
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b. To rationalize the denominator of
√
5√
72

, we couldmultiply both the numerator and denominator by
√
72,

and it would be effective; however, we should note that the
√
72 in the denominator can be reduced

first. Doing this will simplify the arithmetic because there will be smaller numbers to work with.
√
5√
72

=

√
5√

36 · 2

=

√
5√

36 ·
√
2

=

√
5

6 ·
√
2

Now all that remains is to multiply the numerator and denominator by
√
2.

=

√
5

6 ·
√
2
·
√
2√
2

=

√
10

6 · 2

=

√
10

12

Checkpoint 6.2.3 Rationalize the denominator in 2√
10

.
Explanation. We will rationalize the denominator by multiplying the numerator and denominator by

√
10:

2√
10

=
2√
10

·
√
10√
10

=
2 ·

√
10√

10 ·
√
10

=
2
√
10

10

=

√
10

5

Again note that the fraction was simplified in the last step.

Example 6.2.4 Rationalize the denominator in
√

2
7

.
Explanation. This example is slightly different. The entire fraction, including its denominator, is within a
radical. Having a denominator within a radical is just as undesirable as having a radical in a denominator.
So we want to do something to change the expression.√

2

7
=

√
2√
7

=

√
2√
7
·
√
7√
7
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=

√
2 ·

√
7√

7 ·
√
7

=

√
14

7

6.2.2 Rationalize the Denominator Using the Difference of Squares Formula
Conside the number 1√

2+1
. Its denominator is irrational, approximately 2.414 . . .. Can we rewrite this as an

equivalent expression where the denominator is rational? Let’s try multiplying the numerator and denom-
inator by

√
2:

1√
2+ 1

=
1(√
2+ 1

) ·
√
2√
2

=

√
2√

2 ·
√
2+ 1 ·

√
2

=

√
2

2+
√
2

We removed one radical from the denominator, but created another. We need to find another method. The
difference of squares formula will help:

(a+ b)(a− b) = a2 − b2

Those two squares in a2 − b2 can be used as a tool to annihilate radicals. Take 1√
2+1

, and multiply both the
numerator and denominator by

√
2− 1:

1√
2+ 1

=
1(√
2+ 1

) ·

(√
2− 1

)
(√

2− 1
)

=

√
2− 1(√

2
)2

− (1)2

=

√
2− 1

2− 1

=

√
2− 1

1

=
√
2− 1

Example 6.2.5 Rationalize the denominator in
√
7−

√
2√

5+
√
3

.
Explanation. To address the radicals in the denominator, we multiply both numerator and denominator
by

√
5−

√
3.

√
7−

√
2√

5+
√
3
=

√
7−

√
2√

5+
√
3
·

(√
5−

√
3
)

(√
5−

√
3
)
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=

√
7 ·

√
5−

√
7 ·

√
3−

√
2 ·

√
5−

√
2 ·−

√
3(√

5
)2

−
(√

3
)2

=

√
35−

√
21−

√
10+

√
6

5− 3

=

√
35−

√
21−

√
10+

√
6

2

Checkpoint 6.2.6 Rationalize the denominator in
√
3

3−2
√
3

.
Explanation. To remove the radical in 3− 2

√
3 with the difference of squares formula, we multiply it with

3+ 2
√
3. √

3

3− 2
√
3
=

√
3

(3− 2
√
3)

· (3+ 2
√
3)

(3+ 2
√
3)

=
3 ·

√
3+ 2

√
3 ·

√
3

(3)2 −
(
2
√
3
)2

=
3
√
3+ 2 · 3

9− 22
(√

3
)2

=
3
√
3+ 6

9− 4(3)

=
3
(√

3+ 2
)

9− 12

=
3
(√

3+ 2
)

−3

=

√
3+ 2

−1

= −
√
3− 2

6.2.3 Reading Questions
1. To rationalize a denominator in an expression like 3√

5
, explain the first step you will take.

2. What is the special pattern from Section 5.5 that helps to rationalize the denominator in an expression
like 3

2+
√
5

?

6.2.4 Exercises

Review and Warmup Rationalize the denominator and simplify the expression.

1. 1√
6

2. 1√
6

3. 7√
7

4. 40√
10
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5. 1√
180

6. 1√
8

7. 2√
252

8. 9√
180

Rationalizing the Denominator Evaluate the following.

9. 3√
4

10. 5√
64

Rationalize the denominator and simplify the expression.

11. 1√
6

12. 1√
7

13. 7√
10

14. 7√
10

15. 5

8
√
2

16. 7

3
√
3

17. 6√
10

18. 20√
14

19. 18√
6

20. 12√
6

21. 1√
175

22. 1√
180

23. 2√
72

24. 6√
32

25.
√

7

9
26.

√
3

16

27.
√

9

2
28.

√
81

2
29.

√
11

2
30.

√
13

15

31.
√

108

7
32.

√
72

5
33. 4√

x
34. 2

√
y

35.
√

5

2
36.

√
6

11
37.

√
11

48
38.

√
11

175

Rationalizing the Denominator Using the Difference of Squares Formula Rationalize the denominator
and simplify the expression.

39. 7√
15+ 7

40. 2√
22+ 5

41. 8√
22+ 9

42. 2√
14+ 9

43.
√
2− 6√
11+ 4

44.
√
5− 8√
13+ 10

45.
√
3− 9√
7+ 8

46.
√
2− 10√
11+ 5
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6.3 Radical Expressions and Rational Exponents
Recall that in Subsection 6.1.3, we learned to evaluate the cube root of a number, say 3

√
8, we can type 8^(1/3)

into a calculator. This suggests that 3
√
8 = 8

1/3. In this section, we will learn why this is true, and how to
simplify expressions with rational exponents.

Many learners will find a review of exponent rules to be helpful before continuing with the current
section. Section 5.2 covers an introduction to exponent rules, and there is more in Section 5.6. The basic
rules are summarized in List 5.6.13. These rules are still true and we can use them throughout this section
whenever they might help.

6.3.1 Radical Expressions and Rational Exponents
Compare the following calculations:

√
9 ·

√
9 = 3 · 3 9

1/2 · 91/2 = 9
1/2+1/2

= 9 = 91

= 9

If we rewrite the above calculations with exponents, we have:(√
9
)2

= 9
(
9

1/2
)2

= 9

Since
√
9 and 9

1/2 are both positive, and squaring either of them generates the same number, we conclude
that: √

9 = 9
1/2

We can verify this result by entering 9^(1/2) into a calculator, and we get 3. In general for any non-negative
real number a, we have: √

a = a
1/2

Similarly, when a is non-negative all of the following are true:
2
√
a = a

1/2 3
√
a = a

1/3 4
√
a = a

1/4 5
√
a = a

1/5 · · ·

For example, when we see 16
1/4, that is equal to 4

√
16, which we know is 2 because

four times︷ ︸︸ ︷
2 · 2 · 2 · 2 = 16. How

can we relate this to the exponential expression 16
1/4? In a sense, we are cutting up 16 into 4 equal parts.

But not parts that you add together, rather parts that you multiply together.
Let’s summarize this information with a new exponent rule.

Fact 6.3.2 Radicals and Rational Exponents Rule. If m is any natural number, and a is any non-negative real
number, then

a
1/m = m

√
a.

Additionally, ifm is an odd natural number, then even when a is negative, we still have a1/m = m
√
a.

Warning 6.3.3 Exponents onNegative Bases. Some computers and calculators follow different conventions
when there is an exponent on a negative base. To see an example of this, visit WolframAlpha and try entering
cuberoot(-8), and then try (-8)^(1/3), and you will get different results. cuberoot(-8) will come out as
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−2, but (-8)^(1/3) will come out as a certain non-real complex number. Most likely, any calculator you are
using does behave as in Fact 6.3.2, but you should confirm this.

With the Radicals and Rational Exponents Rule, we can re-write radical expressions as expressions with
rational exponents.

Example 6.3.4 Write the radical expression 3
√
6 as an expression with a rational exponent. Then use a calcu-

lator to find its decimal approximation.
According to the Radicals and Rational Exponents Rule, 3

√
6 = 6

1/3. A calculator tells us that 6^(1/3)
works out to approximately 1.817.

For many examples that follow, we will not need a calculator. We will, however, need to recognize the roots
in Figure 6.3.5.

Square Roots Cube Roots 4th-Roots 5th-Roots Roots of Powers of 2√
1 = 1

3
√
1 = 1

4
√
1 = 1

5
√
1 = 1√

4 = 2
3
√
8 = 2

4
√
16 = 2

5
√
32 = 2

√
4 = 2√

9 = 3
3
√
27 = 3

4
√
81 = 3

3
√
8 = 2√

16 = 4
3
√
64 = 4

4
√
16 = 2√

25 = 5
3
√
125 = 5

5
√
32 = 2√

36 = 6
6
√
64 = 2√

49 = 7
7
√
128 = 2√

64 = 8
8
√
256 = 2√

81 = 9
9
√
512 = 2√

100 = 10
10
√
1024 = 2√

121 = 11√
144 = 12

Figure 6.3.5: Small Roots of Appropriate Natural Numbers

Example 6.3.6 Write the expressions in radical form using the Radicals and Rational Exponents Rule and
simplify the results.

a. 4
1/2

b. (−9)
1/2

c. −16
1/4

d. 64−
1/3

e. (−27)
1/3

f. 3
1/2 · 31/2

Explanation.

a. 4
1/2 =

√
4

= 2

b. (−9)
1/2 =

√
−9 This value is non-real.

c. Without parentheses around −16, the negative sign in this problem should be left out of the radical.
−16

1/4 = −
4
√
16

= −2

d. Here we will use the Negative Exponent Rule.
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64−
1/3 =

1

641/3

=
1

3
√
64

=
1

4

e. (−27)
1/3 =

3
√
−27

= −3

f. 3
1/2 · 31/2 =

√
3 ·

√
3

=
√
3 · 3

=
√
9

= 3

The Radicals and Rational Exponents Rule applies to variables in expressions just as much as it does to
numbers.
Example 6.3.7 Write the expressions as simplified as they can be using radicals.

a. 2x−
1/2 b. (5x)

1/3 c. (−27x12
)1/3

d.
(

16x
81y8

)1/4

Explanation.
a. Note that in this example the exponent is only applied to the x. Making this type of observation should

be our first step for each of these exercises.

2x−
1/2 =

2

x1/2
by the Negative Exponent Rule

=
2√
x

by the Radicals and Rational Exponents Rule

b. In this exercise, the exponent applies to both the 5 and x.

(5x)
1/3 =

3
√
5x by the Radicals and Rational Exponents Rule

c. We start out as with the previous exercise. As in the previous exercise, we have a choice as to how to
simplify this expression. Here we should note that we do know what the cube root of −27 is, so we
will take the path to splitting up the expression, using the Product to a Power Rule, before applying
the root. (

−27x12
)1/3

=
3
√
−27x12

Here we notice that −27 has a nice cube root, so it is good to break up the radical.

=
3
√
−27

3
√
x12

= −3
3
√
x12

Can this be simplified more? There are two ways to think about that. One way is to focus on the cube
root and see that x4 cubes to make x12, and the other way is to convert the cube root back to a fraction
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exponent and use exponent rules.

= −3
3
√
x4x4x4 = −3

(
x12
)1/3

= −3x4 = −3x12·
1/3

= −3x4

d. We’ll use the exponent rule for a fraction raised to a power.

(
16x

81y8

)1/4

=
(16x)

1/4

(81y8)
1/4

by the Quotient to a Power Rule

=
16

1/4 · x1/4

811/4 · (y8)
1/4

by the Product to a Power Rule

=
16

1/4 · x1/4

811/4 · y2

=
4
√
16 · 4

√
x

4
√
81 · y2

by the Radicals and Rational Exponents Rule

=
2 4
√
x

3y2

Remark 6.3.8 In general, it is easier to do algebra with rational exponents on variables than with radicals
of variables. You should use Radicals and Rational Exponents Rule to convert from rational exponents to
radicals on variables only as a last step in simplifying.

The Radicals and Rational Exponents Rule describes what can be done when there is a fractional expo-
nent and the numerator is a 1. The numerator doesn’t have to be a 1 though and we need guidance for that
situation.
Fact 6.3.9 Full Radicals and Rational Exponents Rule. Ifm and n are natural numbers such that m

n
is a reduced

fraction, and a is any non-negative real number, then

a
m/n =

n
√
am =

(
n
√
a
)m .

Additionally, if n is an odd natural number, then even when a is negative, we still have am/n = n
√
am =

(
n
√
a
)m.

Example 6.3.10 Guitar Frets. On a guitar, there are 12 frets separating a note and the same note one oc-
tave higher. By moving from one fret to another that is five frets away, the frequency of the note changes
by a factor of 25/12. Use the Full Radicals and Rational Exponents Rule to write this number as a radical
expression. And use a calculator to find this number as a decimal.
Explanation. According to the Full Radicals and Rational Exponents Rule,

25/12 =
12
√
25

=
12
√
32

A calculator says 25/12 ≈ 1.334 · · ·. The fact that this is very close to 4
3
≈ 1.333 . . . is important. It is

part of the explanation for why two notes that are five frets apart on the same string would sound good to
human ears when played together as a chord (known as a “fourth,” in music).
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Remark 6.3.11 By the Full Radicals and Rational Exponents Rule, there are two ways to express a
m/n as a

radical expression:

a
m/n =

n
√
am and a

m/n =
(

n
√
a
)m

There are different times to use each formula. In general, use am/n = n
√
am for variables and a

m/n =
(

n
√
a
)m

for numbers.
Example 6.3.12

a. Consider the expression 27
4/3. Use both versions of the Full Radicals and Rational Exponents Rule to

explain why Remark 6.3.11 says that with numbers, am/n =
(

n
√
a
)m is preferred.

b. Consider the expression x
4/3. Use both versions of the Full Radicals and Rational Exponents Rule to

explain why Remark 6.3.11 says that with variables, am/n = n
√
am is preferred.

Explanation.
a. The expression 27

4/3 can be evaluated in the following two ways.

27
4/3 =

3
√
274 by the first part of the Full Radicals and Rational Exponents Rule

=
3
√
531441

= 81

or
27

4/3 =
(

3
√
27
)4

by the second part of the Full Radicals and Rational Exponents Rule
= 34

= 81

The calculation using a
m/n =

(
n
√
a
)m worked with smaller numbers and can be done without a cal-

culator. This is why we made the general recommendation in Remark 6.3.11.
b. The expression x

4/3 can be evaluated in the following two ways.

x
4/3 =

3
√
x4 by the first part of Full Radicals and Rational Exponents Rule

or
x

4/3 =
(

3
√
x
)4 by the second part of the Full Radicals and Rational Exponents Rule

In this case, the simplification using a
m/n = n

√
am is just shorter looking and easier to write. This is

why we made the general recommendation in Remark 6.3.11.
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Example 6.3.13 Simplify the expressions using Fact 6.3.9.
a. 8

2/3 b. (64x)−
2/3 c. (−27

64

)2/3
Explanation.

a. We will use the second part of the Full Radicals and Rational Exponents Rule, since this expression
only involves a number base (not variable).

8
2/3 =

(
3
√
8
)2

= 22

= 4

b. (64x)−
2/3 =

1

(64x)2/3

=
1

642/3x2/3

=
1(

3
√
64
)2

3
√
x2

=
1

42
3
√
x2

=
1

16
3
√
x2

c. In this problem the negative can be associated with either the numerator or the denominator, but not
both. We choose the numerator.

(
−
27

64

)2/3

=

(
3

√
−
27

64

)2

by the second part of the Full Radicals and Rational Exponents Rule

=

(
3
√
−27

3
√
64

)2

=

(
−3

4

)2

=
(−3)2

(4)2

=
9

16
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6.3.2 More Expressions with Rational Exponents
To recap, here is a “complete” list of exponent and radical rules.

List 6.3.14: Complete List of Exponent Rules

Product Rule an · am = an+m

Power to a Power Rule (an)m = an·m

Product to a Power Rule (ab)n = an · bn

Quotient Rule an

am
= an−m, as long as a ̸= 0

Quotient to a Power Rule
(a
b

)n
=

an

bn
, as long as b ̸= 0

Zero Exponent Rule a0 = 1 for a ̸= 0

Negative Exponent Rule a−n = 1
an

Negative Exponent Reciprocal Rule 1
a−n = an

Negative Exponent on Fraction Rule
(

x
y

)−n

=
(
y
x

)n
Radical and Rational Exponent Rule x

1/n = n
√
x

Radical and Rational Exponent Rule x
m/n =

(
n
√
x
)m, usually for numbers

Radical and Rational Exponent Rule x
m/n = n

√
xm, usually for variables

Example 6.3.15 Convert the following radical expressions into expressions with rational exponents, and
simplify them if possible.

a. 1√
x

b. 1
3
√
25

Explanation.

a.
1√
x
=

1

x1/2
by the Radicals and Rational Exponents Rule

= x−
1/2 by the Negative Exponent Rule

b.
1

3
√
25

=
1

251/3
by the Radicals and Rational Exponents Rule

=
1

(52)
1/3
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=
1

52·1/3
by the Power to a Power Rule

=
1

52/3

= 5−
2/3 by the Negative Exponent Rule

Learners of these simplifications often find it challenging, so we now include a many examples of varying
difficulty.

Example 6.3.16Use exponent properties in List 6.3.14 to simplify the expressions, and write all final versions
using radicals.

a. 2w
7/8

b. 1
2
y−1/2

c. (27b)
2/3

d. (−8p6
)5/3

e.
√
x3 · 4

√
x

f. h
1/3 + h

1/3 + h
1/3

g.
√
z

3
√
z

h. √ 4
√
q

i. 3
(
c
1/2 + d

1/2
)2

j. 3
(
4k

2/3
)−1/2

Explanation.

a.
2w

7/8 = 2
8
√
w7 by the Full Radicals and Rational Exponents Rule

b.
1

2
y−1/2 =

1

2

1

y1/2
by the Negative Exponent Rule

=
1

2

1
√
y

by the Full Radicals and Rational Exponents Rule

=
1

2
√
y

c.
(27b)

2/3
= (27)

2/3 · (b)2/3 by the Product to a Power Rule

=
(

3
√
27
)2

· 3
√
b2 by the Full Radicals and Rational Exponents Rule

= 32 · 3
√
b2

= 9
3
√
b2

d. (
−8p6

)5/3
= (−8)

5/3 ·
(
p6
)5/3 by the Product to a Power Rule

= (−8)
5/3 · p6·5/3 by the Power to a Power Rule

=
(

3
√
−8
)5

· p10 by the Full Radicals and Rational Exponents Rule
= (−2)5 · p10

= −32p10
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e. √
x3 · 4

√
x = x

3/2 · x1/4 by the Full Radicals and Rational Exponents Rule
= x

3/2+1/4 by the Product Rule
= x

6/4+1/4

= x
7/4

=
4
√
x7 by the Full Radicals and Rational Exponents Rule

f.
h

1/3 + h
1/3 + h

1/3 = 3h
1/3

= 3
3
√
h by the Radicals and Rational Exponents Rule

g. √
z

3
√
z
=

z
1/2

z1/3
by the Radicals and Rational Exponents Rule

= z
1/2−1/3 by the Quotient Rule

= z
3/6−2/6

= z
1/6

= 6
√
z by the Radicals and Rational Exponents Rule

h. √
4
√
q =

√
q1/4 by the Radicals and Rational Exponents Rule

=
(
q

1/4
)1/2

by the Radicals and Rational Exponents Rule
= q

1/4·1/2 by the Power to a Power Rule
= q

1/8

= 8
√
q by the Radicals and Rational Exponents Rule

i.
3
(
c
1/2 + d

1/2
)2

= 3
(
c
1/2 + d

1/2
)(

c
1/2 + d

1/2
)

= 3

((
c
1/2
)2

+ 2c
1/2 · d1/2 +

(
d

1/2
)2)

= 3
(
c
1/2·2 + 2c

1/2 · d1/2 + d
1/2·2

)
= 3

(
c+ 2c

1/2 · d1/2 + d
)

= 3
(
c+ 2(cd)

1/2 + d
)

by the Product to a Power Rule

= 3
(
c+ 2

√
cd+ d

)
by the Radicals and Rational Exponents Rule

= 3c+ 6
√
cd+ 3d

j.
3
(
4k

2/3
)−1/2

=
3(

4k2/3
)1/2 by the Negative Exponent Rule
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=
3

41/2
(
k2/3

)1/2 by the Product to a Power Rule

=
3

41/2k2/3·1/2 by the Power to a Power Rule

=
3

41/2k1/3

=
3√

4 · 3
√
k

by the Radicals and Rational Exponents Rule

=
3

2
3
√
k

We will end a with a short application of rational exponents. Kepler’s Laws of Orbital Motion1 describe
how planets orbit stars and how satellites orbit planets. In particular, his third law has a rational exponent,
which we will now explore.
Example 6.3.17 Kepler and the Satellite. Kepler’s third law of motion says that for objects with a roughly
circular orbit that the time (in hours) that it takes to make one full revolution around the planet, T , is pro-
portional to three-halves power of the distance (in kilometers) from the center of the planet to the satellite,
r. For the Earth, it looks like this:

T =
2π√

G ·ME

r
3/2

In this case, both G and ME are constants. G stands for the universal gravitational constant2 where G is
about 8.65 × 10−13 km3

kg · h2 and ME stands for the mass of the Earth3 where ME is about 5.972 × 1024 kg.
Inputting these values into this formula yields a simplified version that looks like this:

T ≈ 2.76× 10−6r
3/2

Most satellites orbit in what is called low Earth orbit4, including the international space station which
orbits at about 340 km above from Earth’s surface. The Earth’s average radius is about 6380 km. Find the
period of the international space station.
Explanation. The formula has already been identified, but the input takes just a little thought. The formula
uses r as the distance from the center of the Earth to the satellite, so to find r we need to combine the radius
of the Earth and the distance to the satellite above the surface of the Earth.

r = 340+ 6380

= 6720

Now we can input this value into the formula and evaluate.

T ≈ 2.76 · 10−6r
3/2

≈ 2.76 · 10−6(6720)
3/2

≈ 2.76 · 10−6
(√

6720
)3

≈ 1.52

The formula tells us that it takes a little more than an hour and a half for the ISS to orbit the Earth! That
works out to 15 or 16 sunrises per day.

1en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion
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6.3.3 Reading Questions
1. Raising a number to a reciprocal power (like 1

2
or 1

5
) is the same as doing what other thing to that

number?
2. When the exponent on an expression is a fraction like 3

5
, which part of the fraction is essentially the

index of a radical?

6.3.4 Exercises

Review and Warmup Use the properties of exponents to simplify the expression.
1. x13 · x17 2. y15 · y11 3. (

t11
)3 4. (

y12
)10

5.
(
7x2

2

)2

6.
(
3x3

8

)2 7. (
−6y4

)3 8. (
−2x6

)2
9. y11

y
10. t13

t9

Rewrite the expression simplified and using only positive exponents.
11. r−9 · r3 12. t−3 · t2 13. (9t−14) · (10t2) 14. (6x−8) · (5x4)

Calculations Without using a calculator, evaluate the expression.
15. a. 9

1
2

b. (−9)
1
2

c. −9
1
2

16. a. 16
1
2

b. (−16)
1
2

c. −16
1
2

17. a. 8
1
3

b. (−8)
1
3

c. −8
1
3

18. a. 27
1
3

b. (−27)
1
3

c. −27
1
3

19. 9−
3
2 20. 125−

1
3

21.
(

1

81

)− 3
4

22.
(
1

9

)− 3
2

23. 2
√
93 24. 2

√
813 25. 5

√
1024 26. 3

√
64

27. a. 3
√
8

b. 3
√
−8

c. −
3
√
8

28. a. 3
√
27

b. 3
√
−27

c. −
3
√
27

29. a. 4
√
16

b. 4
√
−16

c. −
4
√
16

30. a. 4
√
81

b. 4
√
−81

c. −
4
√
81

31. 3

√
−

27

125
32. 3

√
−

27

125
33. 3

√
−

1

64
34. 3

√
−

27

125

Use a calculator to evaluate the expression as a decimal to four significant digits.
35. 3

√
92 36. 5

√
113 37. 3

√
132 38. 5

√
183

2en.wikipedia.org/wiki/Gravitational_constant
3en.wikipedia.org/wiki/Earth_mass
4en.wikipedia.org/wiki/Low_Earth_orbit
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39. On a guitar, there are 12 frets separating a
note and the same note one octave higher.
By moving from one fret to another that is
seven frets away, the frequency of the note
changes by a factor of 27/12. Use a
calculator to find this number as a decimal.
This decimal shows you that 27/12 is very
close to a “nice” fraction with small
numerator and denominator. Notes with
this frequency ratio form a “perfect fifth” in
music. What is that fraction?

40. On a guitar, there are 12 frets separating a
note and the same note one octave higher.
By moving from one fret to another that is
four frets away, the frequency of the note
changes by a factor of 24/12. Use a
calculator to find this number as a decimal.
This decimal shows you that 24/12 is very
close to a “nice” fraction with small
numerator and denominator. Notes with
this frequency ratio form a “major third” in
music. What is that fraction?

Convert Radicals to Fractional Exponents Use rational exponents to write the expression.
41. 9

√
x 42. 6

√
y 43. 3

√
4z+ 6 44.

√
9t+ 10

45. 6
√
r 46. 3

√
m 47. 1

8
√
n3

48. 1
5
√
b4

Convert Fractional Exponents to Radicals Convert the expression to radical notation.
49. c

2
3 50. x

5
6 51. y

5
9

52. r
2
3 53. 15

1
6 t

5
6 54. 4

1
4 r

3
4

55. Convert m 2
3 to a radical

expression.
56. Convert n 5

6 to a radical
expression.

57. Convert b− 3
5 to a radical

expression.
58. Convert c− 2

7 to a radical
expression.

59. Convert 2 1
5 x

4
5 to a radical

expression.
60. Convert 7 1

7y
3
7 to a radical

expression.

Simplifying Expressions with Rational Exponents Simplify the expression, answering with rational ex-
ponents and not radicals.

61. 11
√
z 11

√
z 62. 9

√
t

9
√
t 63. 5

√
32r2

64. 3
√
27m5

65.
3
√
27n

6
√
n5

66.
√
36b

6
√
b5

67.
√
4c3

10
√
c

68.
√
49x

6
√
x5

69. 5
√
y · 10

√
y3

70. √
z · 6

√
z5 71.

√
3
√
t 72. 4

√√
r

73.
√
b

7
√
b 74. √

r 8
√
r
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6.4 Solving Radical Equations
In this section, we will learn how to solve equations involving radicals. The basic strategy to solve radical
equations is to isolate the radical on one side of the equation and then raise to a power on both sides to
cancel the radical.

6.4.1 Solving Radical Equations
Definition 6.4.2 Radical Equation. A radical equation is an equation in which there is a variable inside at
least one radical. ♢

Examples include the equations √x− 2 = 3+ x and 1+ 3
√
2− x = x.

Example 6.4.3 The formula T = 2π
√

L
g

is used to calculate the period of a pendulum and is attributed to
the scientist Christiaan Huygens1. In the formula, T stands for the pendulum’s period (how long one back-
and-forth oscillation takes) in seconds, L stands for the pendulum’s length in meters, and g is approximately
9.8 m

s2 which is the gravitational acceleration constant on Earth.
An engineer is designing a pendulum. Its period must be 10 seconds. How long should the pendulum’s

length be?
We will substitute 10 into the formula for T and also the value of g, and then solve for L:

10 = 2π

√
L

9.8

1

2π
· 10 =

1

2π
· 2π

√
L

9.8

5

π
=

√
L

9.8(
5

π

)2

=

(√
L

9.8

)2

canceling square root by squaring both sides

25

π2
=

L

9.8

9.8 · 25
π2

= 9.8 · L

9.8

24.82 ≈ L

To build a pendulum with a period of 10 seconds, its length should be approximately 24.82 meters.

Remark 6.4.4 Squaring both sides of an equation is “dangerous,” as it could create extraneous solutions,
which will not make the equation true. For example, if we square both sides of 1 = −1, we have:

1 = −1 false
(1)2 = (−1)2 square both sides . . .

1 = 1 true
By squaring both sides of an equation, we can sometimes turn a false equation into a true one. This is why

1en.wikipedia.org/wiki/Christiaan_Huygens#Pendulums
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we must check solutions when we square both sides of an equation.

Example 6.4.5 Solve the equation 1+
√
y− 1 = 4 for y.

Explanation. We will isolate the radical first, and then square both sides.

1+
√

y− 1 = 4√
y− 1 = 3(√

y− 1
)2

= 32

y− 1 = 9

y = 10

Because we squared both sides of an equation, we must check the solution.

1+
√
10− 1

?
= 4

1+
√
9

?
= 4

1+ 3
✓
= 4

So, 10 is the solution to the equation 1+
√
y− 1 = 4.

Example 6.4.6 Solve the equation 5+
√
q = 3 for q.

Explanation. First, isolate the radical and square both sides.

5+
√
q = 3

√
q = −2

(
√
q)

2
= (−2)2

q = 4

Because we squared both sides of an equation, we must check the solution.

5+
√
4

?
= 3

5+ 2
?
= 3

7
no
= 3

Thus, the potential solution −2 is actually extraneous and we have no real solutions to the equation 5+
√
q =

3. The solution set is the empty set, ∅.

Remark 6.4.7 In the previous example, it would be legitimate to observe that there are no solutions at earlier
stages. From the very beginning, how could 5 plus a positive quantity result in 3? Or at the second step,
since square roots are non-negative, how could a square root equal −2?

You do not have to be able to make these observations. If you follow the general steps for solving radical
equations and you remember to check the possible solutions you find, then that will be enough.

Sometimes, we need to square both sides of an equation twice before finding the solutions, like in the
next example.
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Example 6.4.8 Solve the equation √
p− 5 = 5−

√
p for p.

Explanation. We cannot isolate two radicals, so we will simply square both sides, and later try to isolate
the remaining radical.√

p− 5 = 5−
√
p(√

p− 5
)2

= (5−
√
p)

2

p− 5 = 25− 10
√
p+ p after expanding the binomial squared

−5 = 25− 10
√
p

−30 = −10
√
p

3 =
√
p

32 = (
√
p)

2

9 = p

Because we squared both sides of an equation, we must check the solution.
√
9− 5

?
= 5−

√
9

√
4

?
= 5− 3

2
✓
= 2

So 9 is the solution. The solution set is {9}.
Let’s look at an example of solving an equation with a cube root. There is very little difference between
solving an equation with one cube root and solving an equation with one square root. Instead of squaring
both sides, you cube both sides.
Example 6.4.9 Solve for q in 3

√
2− q+ 2 = 5.

Explanation.
3
√
2− q+ 2 = 5

3
√

2− q = 3(
3
√

2− q
)3

= 33

2− q = 27

−q = 25

q = −25

Unlike squaring both sides of an equation, raising both sides of an equation to the 3rd power will not create
extraneous solutions. It’s still good practice to check solution, though. This part is left as exercise.
For summary reference, here is the general procedure for solving a radical equation.
Process 6.4.10 Solving Radical Equations. A basic strategy to solve radical equations is to take the following steps:

1. Isolate a radical on one side of the equation.
2. Raise both sides of the equation to a power to cancel the radical.
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3. If there is still a radical in the equation, repeat the isolation and raising to a power.
4. Once the remaining equation has no radicals, solve it.
5. Check any and all solutions. Be aware that there may be “extraneous solutions”.

6.4.2 Solving a Radical Equation with More Than One Variable
We also need to be able to solve radical equations with other variables, like in the next example. The strategy
is the same: isolate the radical, and then raise both sides to a certain power to cancel the radical.

Example 6.4.11 Solve for L in the formula T = 2π
√

L
g

. (This is the formula for a the period T of a swinging
pendulum whose length is L, on earth where the acceleration from earth’s gravity is g.)
Explanation.

T = 2π

√
L

g

1

2π
· T =

1

2π
· 2π

√
L

g

T

2π
=

√
L

g(
T

2π

)2

=

(√
L

g

)2

T2

4π2
=

L

g

g · T2

4π2
= g · L

g

T2g

4π2
= L

Example 6.4.12 The study of black holes has resulted in some interesting mathematics. One fundamental
concept about black holes is that there is a distance close enough to the black hole that not even light can
escape, called the Schwarzschild radius2 or the event horizon radius. To find the Schwarzschild radius, Rs,
we set the formula for the escape velocity equal to the speed of light, c, and we get c =

√
2GM
Rs

which we
need to solve for Rs. Note that G is a constant, and M is the mass of the black hole.
Explanation. We will start by taking the equation c =

√
2GM
Rs

and applying our standard radical-equation-
solving techniques. Isolate the radical and square both sides:

c =

√
2GM

Rs

c2 =

(√
2GM

Rs

)2
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c2 =
2GM

Rs

Rs · c2 = Rs ·
2GM

Rs

Rsc
2 = 2GM

Rsc
2

c2
=

2GM

c2

Rs =
2GM

c2

So, the Schwarzschild radius can be found using the formula Rs = 2GM
c2 .

6.4.3 Reading Questions
1. What is the basic approach to solving a radical equation?
2. What is it called when doing algebra leads you to find a number that could be a solution to an equation,

but is not actually a solution?

6.4.4 Exercises

Review and Warmup Solve the equation.
1. −9n+ 8 = −n− 8 2. −8p+ 4 = −p− 24 3. 18 = −3(8− 2x)

4. 66 = −2(2− 5y) 5. 15 = 8− 7(t− 8) 6. 144 = 4− 10(a− 8)

7. (x− 1)
2
= 4 8. (x+ 2)

2
= 81 9. x2 + x− 20 = 0

10. x2 + 19x+ 84 = 0 11. x2 + 13x+ 12 = −18 12. x2 − 17x+ 59 = −1

Solving Radical Equations Solve the equation.
13. √

x = 12 14. √
x = 8 15.

√
2y = 8

16.
√
5y = 10 17. 4

√
r = 16 18. 2

√
r = 10

19. −5
√
t = 15 20. −4

√
t = 20 21. −5

√
−5− x+ 2 = −8

22. 3
√
3− x+ 2 = 29 23.

√
x− 12 =

√
x− 2 24.

√
y+ 3 =

√
y+ 1

25.
√
y+ 9 = −1−

√
y 26.

√
r+ 9 = −1−

√
r 27.

√
2r = 8

28.
√
8t = 3 29. 3

√
t− 5 = 7 30. 3

√
x− 2 = 10

31.
√
8x+ 5+ 4 = 10 32.

√
4x+ 9+ 2 = 8 33. 3

√
y− 12 = −5

34. 3
√
y− 8 = 3

2en.wikipedia.org/wiki/Schwarzschild_radius
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Solving Radical Equations with Variables
35. Solve the equation for R. Assume that R is

positive.
Z =

√
L2 + R2

R

36. According to the Pythagorean Theorem, the
length c of the hypothenuse of a rectangular
triangle can be found through the following
equation:

c =
√

a2 + b2

Solve the equation for the length a of one of
the triangle’s legs.
a

37. In an electric circuit, resonance occurs when
the frequency f, inductance L, and
capacitance C fulfill the following equation:

f =
1

2π
√
LC

Solve the equation for the inductance L.
The frequency is measured in Hertz, the
inductance in Henry, and the capacitance in
Farad.
L

38. A pendulum has the length L. The time
period T that it takes to once swing back
and forth can be found with the following
formula:

T = 2π

√
L

32

Solve the equation for the length L.
The length is measured in feet and the time
period in seconds.
L

Radical Equation Applications According to the Pythagorean Theorem, the length c of the hypothenuse
of a rectangular triangle can be found through the following equation.

c =
√
a2 + b2

39. If a rectangular triangle has a hypothenuse
of 5 ft and one leg is 4 ft long, how long is
the third side of the triangle?
The third side of the triangle is

long.

40. If a rectangular triangle has a hypothenuse
of 5 ft and one leg is 4 ft long, how long is
the third side of the triangle?
The third side of the triangle is

long.

In a coordinate system, the distance r of a point (x, y) from the origin (0, 0) is given by the following equation.

r =
√

x2 + y2

41. If a point in a coordinate system is 13 cm
away from the origin and its x coordinate is
12 cm, what is its y coordinate? Assume
that y is positive.
y

42. If a point in a coordinate system is 13 cm
away from the origin and its x coordinate is
12 cm, what is its y coordinate? Assume
that y is positive.
y

A pendulum has the length L ft. The time period T that it takes to once swing back and forth is 6 s. Use the
following formula to find its length.

T = 2π

√
L

32
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43. The pendulum is long. 44. The pendulum is long.

Challenge Solve for x.
45. √

1+
√
7 =

√√√√2+

√
1√
x
− 1

46. √
1+

√
8 =

√√√√2+

√
1√
x
− 1
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6.5 Radical Expressions and Equations Chapter Review
6.5.1 Square and nth Root Properties
In Section 6.1 we defined the square root √x and nth root n

√
x radicals. When x is positive, the expression

n
√
x means a positive number r, where

n times︷ ︸︸ ︷
r · r · · · · · r = x. The square root √x is just the case where n = 2.

When x is negative, n
√
x might not be defined. It depends on whether or not n is an even number. When

x is negative and n is odd, n
√
x is a negative number where

n times︷ ︸︸ ︷
r · r · · · · · r = x.

There are two helpful rules for simplifying radicals.

List 6.5.1: Rules of Radicals for Multiplication and Division

If a and b are positive real numbers, and m is a positive integer , then we have the following
rules:
Root of a Product Rule m

√
a · b = m

√
a · m

√
b

Root of a Quotient Rule m
√

a
b
=

m
√
a

m
√
b

as long as b ̸= 0

Checkpoint 6.5.2
a. Simplify

√
72. b. Simplify 3

√
72. c. Simplify

√
72
25

.

Explanation.

a. √
72 =

√
4 · 18

=
√
4 ·

√
18

= 2
√
18

= 2
√
9 · 2

= 2
√
9 ·

√
2

= 2 · 3
√
2

= 6
√
2

b.
3
√
72 =

3
√
8 · 9

=
3
√
8 · 3

√
9

= 2
3
√
9

c. √
72

25
=

√
72√
25

=
6
√
2

5

6.5.2 Rationalizing the Denominator
In Section 6.2 we covered how to rationalize the denominator when it contains a single square root or a
binomial with a square root term.
Example 6.5.3 Rationalize the denominator of the expressions.

a. 12√
3

b.
√
5√
75
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Explanation.

a.
12√
3
=

12√
3
·
√
3√
3

=
12
√
3

3

= 4
√
3

b. First we will simplify
√
75.

√
5√
75

=

√
5√

25 · 3

=

√
5√

25 ·
√
3

=

√
5

5
√
3

Now we can rationalize the denominator by multiplying the numerator and denominator by
√
3.

=

√
5

5
√
3
·
√
3√
3

=

√
15

5 · 3

=

√
15

15

Example 6.5.4 Rationalize Denominator Using the Difference of Squares Formula. Rationalize the de-
nominator in

√
6−

√
5√

3+
√
2

.
Explanation. To remove radicals in

√
3 +

√
2 with the difference of squares formula, we multiply it with√

3−
√
2.

√
6−

√
5√

3+
√
2
=

√
6−

√
5√

3+
√
2
·

(√
3−

√
2
)

(√
3−

√
2
)

=

√
6 ·

√
3−

√
6 ·

√
2−

√
5 ·

√
3−

√
5 ·−

√
2(√

3
)2

−
(√

2
)2

=

√
18−

√
12−

√
15+

√
10

9− 4

=
3
√
2− 2

√
3−

√
15+

√
10

5
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6.5.3 Radical Expressions and Rational Exponents
In Section 6.3 we learned the rational exponent rule and added it to our list of exponent rules.
Example 6.5.5 Radical Expressions and Rational Exponents. Simplify the expressions using Fact 6.3.2 or
Fact 6.3.9.

a. 100
1/2 b. (−64)−

1/3 c. −81
3/4 d. (− 1

27

)2/3
Explanation.

a. 100
1/2 =

(√
100
)

= 10

b. (−64)−
1/3 =

1

(−64)1/3

=
1(

3
√
(−64)

)
=

1

−4

c. −81
3/4 = −

(
4
√
81
)3

= −33

= −27

d. In this problem the negative can be associated with either the numerator or the denominator, but not
both. We choose the numerator.

(
−

1

27

)2/3

=

(
3

√
−

1

27

)2

=

(
3
√
−1

3
√
27

)2

=

(
−1

3

)2

=
(−1)2

(3)2

=
1

9
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Example 6.5.6 More Expressions with Rational Exponents. Use exponent properties in List 6.3.14 to sim-
plify the expressions, and write all final versions using radicals.

a. 7z
5/9

b. 5
4
x−

2/3

c. (−9q5
)4/5

d.
√
y5 · 4

√
y2

e.
√
t3

3
√
t2

f.
√

3
√
x

g. 5
(
4+ a

1/2
)2

h. −6
(
2p−5/2

)3/5
Explanation.

a. 7z
5/9 = 7

9
√
z5

b. 5

4
x−

2/3 =
5

4
· 1

x2/3

=
5

4
· 1

3
√
x2

=
5

4
3
√
x2

c. (−9q5
)4/5

= (−9)
4/5 ·

(
q5
)4/5

= (−9)
4/5 · q5·4/5

=
(

5
√
−9
)4

· q4

=
(
q

5
√
−9
)4

d.
√
y5 · 4

√
y2 = y

5/2 · y2/4

= y
5/2+2/4

= y
10/4+1/4

= x
11/4

=
4
√
x11

e.
√
t3

3
√
t2

=
t
3/2

t2/3

= t
3/2−2/3

= t
9/6−4/6

= t
5/6

=
6
√
t5

f.
√

3
√
x =

√
x1/3

=
(
x

1/3
)1/2

= x
1/3·1/2

= x
1/6

= 6
√
x

g. 5
(
4+ a

1/2
)2

= 5
(
4+ a

1/2
)(

4+ a
1/2
)

= 5

(
42 + 2 · 4 · a1/2 +

(
a

1/2
)2)

= 5
(
16+ 8a

1/2 + a
1/2·2

)
= 5

(
16+ 8a

1/2 + a
)

= 5
(
16+ 8

√
a+ a

)
= 80+ 40

√
a+ 5a

h. −6
(
2p−5/2

)3/5

= −6 · 23/5 · p−5/2·3/5

= −6 · 23/5 · p−3/2

= −
6 · 23/5

p3/2

= −
6

5
√
23√
p3

= −
6

5
√
8√

p3

6.5.4 Solving Radical Equations
In Section 6.4 we covered solving equations that contain a radical. We learned about extraneous solutions
and the need to check our solutions.



6.5. RADICAL EXPRESSIONS AND EQUATIONS CHAPTER REVIEW 107

Example 6.5.7 Solving Radical Equations. Solve for r in r = 9+
√
r+ 3.

Explanation. We will isolate the radical first, and then square both sides.

r = 9+
√
r+ 3

r− 9 =
√
r+ 3

(r− 9)
2
=
(√

r+ 3
)2

r2 − 18r+ 81 = r+ 3

r2 − 19r+ 78 = 0

(r− 6)(r− 13) = 0

r− 6 = 0 or r− 13 = 0

r = 6 or r = 13

Because we squared both sides of an equation, we must check both solutions.

6
?
= 9+

√
6+ 3 13

?
= 9+

√
13+ 3

6
?
= 9+

√
9 13

?
= 9+

√
16

6
no
= 9+ 3 13

✓
= 9+ 4

It turns out 6 is an extraneous solution and 13 is a valid solution. So the equation has one solution: 13. The
solution set is {13}.

Example 6.5.8 Solving Radical Equations that Require Squaring Twice. Solve the equation √
t+ 9 =

−1−
√
t for t.

Explanation. We cannot isolate two radicals, so we will simply square both sides, and later try to isolate
the remaining radical.

√
t+ 9 = −1−

√
t(√

t+ 9
)2

=
(
−1−

√
t
)2

t+ 9 = 1+ 2
√
t+ t after expanding the binomial squared

9 = 1+ 2
√
t

8 = 2
√
t

4 =
√
t

(4)2 =
(√

t
)2

16 = t

Because we squared both sides of an equation, we must check the solution by substituting 16 into √
t+ 9 =

−1−
√
t, and we have:

√
t+ 9 = −1−

√
t
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√
16+ 9

?
= −1−

√
16

√
25

?
= −1− 4

5
no
= −5

Our solution did not check so there is no solution to this equation. The solution set is the empty set, which
can be denoted { } or ∅.

6.5.5 Exercises

Square Root and nth Root Evaluate the following.

1.
√

1

100
2.

√
4

121

3. −
√
16 4. −

√
25

Simplify the radical expression or state that it is not a real number.

5.
√
48√
3

6.
√
32√
2

7.
√
250 8.

√
99

Simplify the expression.
9. 9

√
13 · 9

√
121 10. 9

√
3 · 7

√
4 11.

√
5

2
·
√

7

2
12.

√
7

3
·
√

1

3

Simplify the expression.
13. 13

√
10− 14

√
10 14. 14

√
5− 15

√
5 15.

√
180+

√
45 16.

√
80+

√
125

17. Simplify 6
√
64. 18. Simplify 3

√
64. 19. Simplify 3

√
−8. 20. Simplify 3

√
−8.

21. Simplify 4
√
−16. 22. Simplify 4

√
−81. 23. Simplify 4

√
144. 24. Simplify 3

√
135.

25. Simplify 3

√
11
8

. 26. Simplify 6

√
9
64

. 27. Simplify 3

√
40
27

. 28. Simplify 3

√
56
125

.

Rationalizing the Denominator Rationalize the denominator and simplify the expression.

29. 2√
252

30. 6√
112

31.
√

2

27
32.

√
5

112

33. 6√
15+ 8

34. 7√
7+ 4

35.
√
5− 13√
13+ 3

36.
√
3− 14√
7+ 10

Radical Expressions and Rational Exponents Without using a calculator, evaluate the expression.
37. 125−

2
3 38. 8−

5
3

39.
(

1

81

)− 3
4

40.
(
1

9

)− 3
2

41. 3
√
1252 42. 4

√
813 43. 5

√
1024 44. 3

√
64
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Use rational exponents to write the expression.
45. 5

√
b 46. √

c 47. 5
√
8x+ 7 48. 4

√
5z+ 1

Convert the expression to radical notation.
49. t

2
3 50. r

4
5 51. m

5
4 52. r

2
3 53. 5

1
5a

4
5 54. 13

1
4b

3
4

Simplify the expression, answering with rational exponents and not radicals.
55. 11

√
c 11

√
c 56. 9

√
x 9
√
x 57. 5

√
32z2

58. 3
√
125t5 59.

√
16r

10
√
r3

60.
√
36m

10
√
m3

61. √
n · 6

√
n5 62. √

a · 10
√
a3

Solving Radical Equations Solve the equation.
63. t =

√
t− 3+ 5 64. t =

√
t− 1+ 3 65.

√
x+ 9 =

√
x+ 1 66.

√
x+ 8 =

√
x+ 2

67. √
y+ 110 = y 68. √

y+ 56 = y 69. r =
√
r+ 4+ 16 70. r =

√
r+ 2+ 88

71.
√
52− t = t+ 4 72.

√
17− t = t+ 3

According to the Pythagorean Theorem, the length c of the hypothenuse of a rectangular triangle can be
found through the following equation.

c =
√

a2 + b2

73. If a rectangular triangle has a hypothenuse
of 41 ft and one leg is 40 ft long, how long is
the third side of the triangle?
The third side of the triangle is

long.

74. If a rectangular triangle has a hypothenuse
of 17 ft and one leg is 15 ft long, how long is
the third side of the triangle?
The third side of the triangle is

long.

75. A pendulum has the length L ft. The time
period T that it takes to once swing back
and forth is 2 s. Use the following formula
to find its length.

T = 2π

√
L

32

The pendulum is long.

76. A pendulum has the length L ft. The time
period T that it takes to once swing back
and forth is 4 s. Use the following formula
to find its length.

T = 2π

√
L

32

The pendulum is long.
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Chapter 7

Solving Quadratic Equations

7.1 Solving Quadratic Equations by Using a Square Root
In this section, we will learn how to solve some specific types of quadratic equations using the square root
property. We will also learn how to use the Pythagorean Theorem to find the length of one side of a right
triangle when the other two lengths are known.

7.1.1 Solving Quadratic Equations Using the Square Root Property
When we learned how to solve linear equations, we used inverse operations to isolate the variable. For
example, we use subtraction to remove an unwanted term that is added to one side of a linear equation. We
can’t quite do the same thing with squaring and using square roots, but we can do something very similar.
Taking the square root is the inverse of squaring if you happen to know the original number was positive. In
general, we have to remember that the original number may have been negative, and that usually leads to
two solutions to a quadratic equation.

For example, if x2 = 9, we can think of undoing the square with a square root, and
√
9 = 3. However,

there are two numbers that we can square to get 9: −3 and 3. So we need to include both solutions. This
brings us to the Square Root Property.
Fact 7.1.2 Square Root Property. If k is positive, and x2 = k then

x = −
√
k or x =

√
k.

It is common to write x = ±
√
k for short, but it is important to remember that this means x could possibly be one of

two things, not that x is two things at the same time. The positive solution,
√
k, is called the principal root of k.

Example 7.1.3 Solve for y in y2 = 49.
Explanation.

y2 = 49

y = ±
√
49

111
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y = ±7

y = −7 or y = 7

To check these solutions, we will substitute −7 and 7 for y in the original equation:

y2 = 49 y2 = 49

(−7)2
?
= 49 (7)2

?
= 49

49
✓
= 49 49

✓
= 49

The solution set is {−7, 7}.

Remark 7.1.4 Every solution to a quadratic equation can be checked, as shown in Example 7.1.3. In general,
the process of checking is omitted from this section.

Checkpoint 7.1.5 Solve for z in 4z2 − 81 = 0.
Explanation. Before we use the square root property we need to isolate the squared quantity.

4z2 − 81 = 0

4z2 = 81

z2 =
81

4

z = ±
√

81

4

z = ±9

2

z = −
9

2
or z =

9

2

The solution set is {−9
2
, 9
2

} .
We can also use the square root property to solve an equation that has a squared expression (as opposed to
just having a squared variable).
Example 7.1.6 Solve for p in 50 = 2(p− 1)2.
Explanation. It’s important here to suppress any urge you may have to expand the squared binomial. We
begin by isolating the squared expression.

50 = 2(p− 1)2

50

2
=

2(p− 1)2

2

25 = (p− 1)2

Now that we have the squared expression isolated, we can use the square root property.

p− 1 = ±
√
25

p− 1 = ±5
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p = ±5+ 1

p = −5+ 1 or p = 5+ 1

p = −4 or p = 6

The solution set is {−4, 6}.
This method of solving quadratic equations is not limited to equations that have rational solutions, or when
the radicands are perfect squares. Here are a few examples where the solutions are irrational numbers.
Checkpoint 7.1.7 Solve for q in (q+ 2)2 − 12 = 0.
Explanation. It’s important here to suppress any urge you may have to expand the squared binomial.

(q+ 2)2 − 12 = 0

(q+ 2)2 = 12

q+ 2 = ±
√
12

q+ 2 = ±
√
4 · 3

q+ 2 = ±2
√
3

q = ±2
√
3− 2

q = −2
√
3− 2 or q = 2

√
3− 2

The solution set is
{
−2

√
3− 2, 2

√
3− 2

}
.

To check the solution, we would replace q with each of −2
√
3 − 2 and 2

√
3 − 2 in the original equation,

as shown here: ((
−2

√
3− 2

)
+ 2
)2

− 12
?
= 0

((
2
√
3− 2

)
+ 2
)2

− 12
?
= 0(

−2
√
3
)2

− 12
?
= 0

(
2
√
3
)2

− 12
?
= 0

(−2)2
(√

3
)2

− 12
?
= 0 (2)2

(√
3
)2

− 12
?
= 0

(4)(3) − 12
?
= 0 (4)(3) − 12

?
= 0

12− 12
✓
= 0 12− 12

✓
= 0

Note that these simplifications relied on exponent rules and the multiplicative property of square roots.
Remember that if a square root is in a denominator then we may be expected to rationalize it as in Section 6.2.
We will rationalize the denominator in the next example.
Example 7.1.8 Solve for n in 2n2 − 3 = 0.
Explanation.

2n2 − 3 = 0

2n2 = 3

n2 =
3

2
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n = ±
√

3

2

n = ±
√

6

4

n = ±
√
6

2

n = −

√
6

2
or n =

√
6

2

The solution set is
{
−

√
6
2
,
√
6
2

}
.

When the radicand is a negative number, there is no real solution. Here is an example of an equation with
no real solution.

Example 7.1.9 Solve for x in x2 + 49 = 0.
Explanation.

x2 + 49 = 0

x2 = −49

Since √
−49 is not a real number, we say the equation has no real solution.

7.1.2 The Pythagorean Theorem

Right triangles have an important property called the Pythagorean Theorem.

Theorem 7.1.10 The PythagoreanTheorem. For any right triangle, the lengths of the three sides have the following
relationship: a2 + b2 = c2. The sides a and b are called legs and the longest side c is called the hypotenuse.

a

bc

Figure 7.1.11: In a right triangle, the length of its three sides satisfy the equation a2 + b2 = c2

Example 7.1.12Keisha is designing a wooden frame in the shape of a right triangle, as shown in Figure 7.1.13.
The legs of the triangle are 3 ft and 4 ft. How long should she make the diagonal side? Use the Pythagorean
Theorem to find the length of the hypotenuse.
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According to Pythagorean Theorem, we have:

c2 = a2 + b2

c2 = 32 + 42

c2 = 9+ 16

c2 = 25

Now we have a quadratic equation that we need to solve. We need to
find the number that has a square of 25. That is what the square root
operation does.

c =
√
25

c = 5

The diagonal side Keisha will cut is 5 ft long.

B a = 3 ft C

b = 4 ft

A

c

Figure 7.1.13

Note that −5 is also a solution of c2 = 25 because (−5)2 = 25 but a length cannot be a negative number. We
will need to include both solutions when they are relevant.

Example 7.1.14 A 16.5ft ladder is leaning against a wall. The distance from the base of the ladder to the wall
is 4.5 feet. How high on the wall does the ladder reach?
The Pythagorean Theorem says:

a2 + b2 = c2

4.52 + b2 = 16.52

20.25+ b2 = 272.25

Now we need to isolate b2 in order to solve for b:

20.25+ b2 − 20.25 = 272.25− 20.25

b2 = 252

We use the square root property. Because this is a geometric situation
we only need to use the principal root:

b =
√
252

Now simplify this radical and then approximate it:

b =
√
36 · 7

b = 6
√
7

b ≈ 15.87

a = 4.5 ft

b
c
=
1
6
.5

ft

Figure 7.1.15: Leaning
Ladder

The ladder reaches about 15.87 feet high on the wall.
Here are some more examples using the Pythagorean Theorem to find sides of triangles. Note that in many
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contexts, only the principal root will be relevant.

Example 7.1.16 Find the missing length in this right triangle.

x

510

Figure 7.1.17: A Right Triangle

Explanation. We will use the Pythagorean Theorem to solve for x:

52 + x2 = 102

25+ x2 = 100

x2 = 75

x =
√
75 (no need to consider −

√
75 in this context)

x =
√
25 · 3

x = 5
√
3

The missing length is x = 5
√
3.

Example 7.1.18 Sergio is designing a 50-inch TV, which implies the diagonal of the TV’s screen will be 50

inches long. He needs the screen’s width to height ratio to be 4 : 3. Find the TV screen’s width and height.

a

b
c =

50
in

Figure 7.1.19: Pythagorean Theorem Problem

Explanation. Let’s let x represent the height of the screen, in inches. Since the screen’s width to height
ratio will be 4 : 3, then the width is 4

3
times as long as the height, or 4

3
x inches. We will draw a diagram.
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a = 4
3
x in

b
=

x
in

c =
50

in

Figure 7.1.20: Pythagorean Theorem Problem

Now we can use the Pythagorean Theorem to write and solve an equation:

a2 + b2 = c2(
4

3
x

)2

+ x2 = 502

16

9
x2 +

9

9
x2 = 2500

25

9
x2 = 2500

9

25
· 25
9
x2 =

9

25
· 2500

x2 = 900

x = 30

Since the screen’s height is 30 inches, its width is 4
3
x = 4

3
(30) = 40 inches.

Example 7.1.21 Luca wanted to make a bench.

Figure 7.1.22: Sketch of a Bench with Highlighted Back



118 CHAPTER 7. SOLVING QUADRATIC EQUATIONS

He wanted the top of the bench back to be a perfect
portion of a circle, in the shape of an arc, as in Fig-
ure 7.1.23. (Note that this won’t be a half-circle, just
a small portion of a circular edge.) He started with
a rectangular board 6 inches wide and 48 inches
long, and a piece of string, like a compass, to draw
a circular arc on the board. How long should the
string be so that it can be swung round to draw the
arc?

circle center 48 in

6 in

Figure 7.1.23: Bench Back Board
Explanation. Let’s first define x to be the radius of the circle in question, in inches. The circle should go
through the bottom corners of the board and just barely touch the top of the board. That means that the line
from the middle of the bottom of the board to the center of the circle will be 6 inches shorter than the radius.

x

x− 6

24

6

Figure 7.1.24: Bench Back Board Diagram

Now we can set up the Pythagorean Theorem based on the scenario. The equation a2+b2 = c2 turns into…
(x− 6)2 + 242 = x2

x2 − 12x+ 36+ 576 = x2
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−12x+ 612 = 0

Note that at this point the equation is no longer quadratic! Solve the linear equation by isolating x

−12x = −612

x = 51

So, the circle radius required is 51 inches. Luca found a friend to stand on the string end and drew a circular
segment on the board to great effect.

7.1.3 Reading Questions
1. Typically, how many solutions can there be with a quadratic equation?
2. When you see a ± sign, as in x = ±2, is that saying that x is both −2 and 2?
3. Have you memorized the Pythagorean Theorem? State the formula.

7.1.4 Exercises

Solving Quadratic Equations with the Square Root Property Solve the equation.
1. x2 = 25 2. x2 = 36 3. x2 = 1

64

4. x2 = 1
81

5. x2 = 12 6. x2 = 20

7. x2 = 67 8. x2 = 5 9. 3x2 = 27

10. 4x2 = 100 11. x2 = 64
9

12. x2 = 25
64

13. 4x2 = 121 14. 36x2 = 49 15. 7x2 − 59 = 0

16. 59x2 − 67 = 0 17. 2− 7x2 = −3 18. 4− 7x2 = 2

19. 53x2 + 17 = 0 20. 61x2 + 23 = 0 21. (x+ 1)
2
= 9

22. (x+ 3)
2
= 100 23. (2x+ 8)

2
= 49 24. (8x+ 10)

2
= 9

25. 9− 5(t+ 1)2 = 4 26. 10− 3(x+ 1)2 = −2 27. (x− 10)2 = 11

28. (x+ 4)2 = 17 29. (y+ 2)2 = 45 30. (r− 4)2 = 98

31. −4 = 8− (r− 4)2 32. −1 = 62− (t+ 5)2
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Pythagorean Theorem Applications
33.

Find the value of x.

34.

Find the value of x.

35.

Find the value of x.
36.

Find the value of x.

37.

Find the value of x,
accurate to at least two
decimal places.

38.

Find the value of x,
accurate to at least two
decimal places.

39.

Find the exact value of x.

40.

Find the exact value of x.

41.

Find the exact value of x.

42.

Find the exact value of x.

43. Kandace is designing a rectangular garden. The garden’s diagonal must be 37.7 feet, and the ratio
between the garden’s base and height must be 12 : 5. Find the length of the garden’s base and
height.

The garden’s base is feet and its height is .
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44. Brandon is designing a rectangular garden. The garden’s diagonal must be 30.6 feet, and the ratio
between the garden’s base and height must be 15 : 8. Find the length of the garden’s base and
height.

The garden’s base is feet and its height is .
45. Peter is designing a rectangular garden. The garden’s base must be 8.4 feet, and the ratio between

the garden’s hypotenuse and height must be 13 : 5. Find the length of the garden’s hypotenuse
and height.

The garden’s hypotenuse is feet and its height is .
46. Gustav is designing a rectangular garden. The garden’s base must be 54 feet, and the ratio between

the garden’s hypotenuse and height must be 17 : 8. Find the length of the garden’s hypotenuse
and height.

The garden’s hypotenuse is feet and its height is .

Challenge
47. Imagine that you are in Math Land, where roads are perfectly straight, and Mathlanders can walk

along a perfectly straight line between any two points. One day, you bike 4 miles west, 3 miles
north, and 6 miles east. Then, your bike gets a flat tire and you have to walk home. How far do
you have to walk?You have to walk miles home.



122 CHAPTER 7. SOLVING QUADRATIC EQUATIONS

7.2 The Quadratic Formula
We have learned how to solve certain quadratic equations using the square root property. In this section,
we will learn another method, the quadratic formula.

7.2.1 Solving Quadratic Equations with the Quadratic Formula
The standard form for a quadratic equation is

ax2 + bx+ c = 0

where a is some nonzero number.
When b = 0 and the equation’s form is ax2 + c = 0, then we can simply use the square root property to

solve it. For example, x2 − 4 = 0 leads to x2 = 4, which leads to x = ±2, a solution set of {−2, 2}.
But can we solve equations where b ̸= 0? A general method for solving a quadratic equation is to use

what is known as the quadratic formula.
Fact 7.2.2 The Quadratic Formula. For any quadratic equation ax2 + bx + c = 0 where a ̸= 0, the solutions are
given by

x =
−b±

√
b2 − 4ac

2a

As we have seen from solving quadratic equations, there can be at most two solutions. Both of the solu-
tions are included in the quadratic formula with the ± symbol. We could write the two solutions separately:

x =
−b−

√
b2 − 4ac

2a
or x =

−b+
√
b2 − 4ac

2a

This method for solving quadratic equations will work to solve every quadratic equation. It is most
helpful when b ̸= 0.
Example 7.2.3 Linh is in a physics class that launches a tennis ball from a rooftop that is 90.2 feet above the
ground. They fire it directly upward at a speed of 14.4 feet per second and measure the time it takes for
the ball to hit the ground below. We can model the height of the tennis ball, h, in feet, with the quadratic
equation h = −16x2 + 14.4x + 90.2, where x represents the time in seconds after the launch. According to
the model, when should the ball hit the ground? Round the time to one decimal place.

The ground has a height of 0 feet. Substituting 0 for h in the equation, we have this quadratic equation:

0 = −16x2 + 14.4x+ 90.2

We cannot solve this equation with the square root property, so we will use the quadratic formula. First we
will identify that a = −16, b = 14.4 and c = 90.2, and substitute them into the formula:

x =
−b±

√
b2 − 4ac

2a

x =
−(14.4)±

√
(14.4)2 − 4(−16)(90.2)

2(−16)

x =
−14.4±

√
207.36− (−5772.8)

−32
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x =
−14.4±

√
207.36+ 5772.8

−32

x =
−14.4±

√
5980.16

−32

These are the exact solutions but because we have a context we want to approximate the solutions with
decimals.

x ≈ −1.966 or x ≈ 2.866

We don’t use the negative solution because a negative time does not make sense in this context. The ball
will hit the ground approximately 2.9 seconds after it is launched.
The quadratic formula can be used to solve any quadratic equation, but it requires that you don’t make any
slip-up with remembering the formula, that you correctly identify a, b, and c, and that you don’t make any
arithmetic mistakes when you calculate and simplify. We recommend that you always check whether you
can use the square root property before using the quadratic formula. Here is another example.

Example 7.2.4 Solve for x in 2x2 − 9x+ 5 = 0.
Explanation. First, we check and see that we cannot use the square root property (because b ̸= 0) so we
will use the quadratic formula. Next we identify that a = 2, b = −9 and c = 5. We substitute them into the
quadratic formula:

x =
−b±

√
b2 − 4ac

2a

x =
−(−9)±

√
(−9)2 − 4(2)(5)

2(2)

x =
9±

√
81− 40

4

x =
9±

√
41

4

This is fully simplified because we cannot simplify
√
41 or reduce the fraction. The solution set is

{
9−

√
22

4
, 9+

√
22

4

}
.

We do not have a context here so we leave the solutions in their exact form.
When a quadratic equation is not in standard form we must convert it before we can identify the values of
a, b and c. We will show that in the next example.

Example 7.2.5 Solve for x in x2 = −10x− 3.
Explanation. First, we convert the equation into standard form by adding 10x and 3 to each side of the
equation:

x2 + 10x+ 3 = 0

Next, we check that we cannot use the square root property so we will use the quadratic formula. We identify
that a = 1, b = 10 and c = 3. We substitute them into the quadratic formula:

x =
−b±

√
b2 − 4ac

2a
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x =
−10±

√
(10)2 − 4(1)(3)

2(1)

x =
−10±

√
100− 12

2

x =
−10±

√
88

2

We notice that the radical can be simplified:

x =
−10± 2

√
22

2

x =
−10

2
± 2

√
22

2

x = −5±
√
22

The solution set is {−5−
√
22,−5+

√
22}.

Remark 7.2.6 The irrational solutions to quadratic equations can be checked, although doing so can some-
times involve a lot of simplification and is not shown throughout this section. As an example, to check the
solution of −5 +

√
22 from Example 7.2.5, we would replace x with −5 +

√
22 and check that the two sides

of the equation are equal. This check is shown here:

x2 = −10x− 3

(−5+
√
22)2

?
= −10(−5+

√
22) − 3

(−5)2 + 2(−5)(
√
22) + (

√
22)2

?
= −10(−5+

√
22) − 3

25− 10
√
22+ 22

?
= 50− 10

√
22− 3

47− 10
√
22

✓
= 47− 10

√
22

When the radicand from the quadratic formula, b2− 4ac, which is called the discriminant, is a negative
number, the quadratic equation has no real solution. Example 7.2.7 shows what happens in this case.

Example 7.2.7 Solve for y in y2 − 4y+ 8 = 0.
Explanation. Identify that a = 1, b = −4 and c = 8. We will substitute them into the quadratic formula:

y =
−b±

√
b2 − 4ac

2a

=
−(−4)±

√
(−4)2 − 4(1)(8)

2(1)

=
4±

√
16− 32

2

=
4±

√
−16

2

The square root of a negative number is not a real number, so we will simply state that this equation has no
real solutions.
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Sometimes a radical equation gives rise to a quadratic equation, and the quadratic formula is useful.

Example 7.2.8 Solve for z in √
z+ 2 = z.

Explanation. We will isolate the radical first, and then square both sides.
√
z+ 2 = z
√
z = z− 2(√

z
)2

= (z− 2)2

z = z2 − 4z+ 4

0 = z2 − 5z+ 4

z =
5±

√
(−5)2 − 4(1)(4)

2

=
5±

√
25− 16

2

=
5±

√
9

2

=
5± 3

2

z =
5− 3

2
or z =

5+ 3

2

z = 1 or z = 4

Because we squared both sides of an equation, we must check both solutions.
√
1+ 2

?
= 1

√
4+ 2

?
= 4

1+ 2
no
= 1 2+ 2

✓
= 4

It turned out that 1 is an extraneous solution, but 4 is a valid solution. So the equation has one solution: 4.
The solution set is {4}.

Example 7.2.9 Solve the equation √
2n− 6 = 1+

√
n− 2 for n.

Explanation. We cannot isolate two radicals, so we will simply square both sides, and later try to isolate
the remaining radical.

√
2n− 6 = 1+

√
n− 2(√

2n− 6
)2

=
(
1+

√
n− 2

)2
2n− 6 = 12 + 2

√
n− 2+

(√
n− 2

)2
2n− 6 = 1+ 2

√
n− 2+ n− 2

2n− 6 = 2
√
n− 2+ n− 1

n− 5 = 2
√
n− 2
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Note here that we can leave the factor of 2 next to the radical. We will square the 2 also.

(n− 5)2 =
(
2
√
n− 2

)2
n2 − 10n+ 25 = 4(n− 2)

n2 − 10n+ 25 = 4n− 8

n2 − 14n+ 33 = 0

n =
14±

√
142 − 4(1)(33)

2

=
14±

√
196− 132

2

=
14±

√
64

2

=
14± 8

2

n =
14− 8

2
or n =

14+ 8

2

n = 3 or n = 11

So our two potential solutions are 3 and 11. We should now verify that they truly are solutions.√
2(3) − 6

?
= 1+

√
3− 2

√
2(11) − 6

?
= 1+

√
11− 2

√
6− 6

?
= 1+

√
1

√
22− 6

?
= 1+

√
9

√
0

?
= 1+ 1

√
16

?
= 1+ 3

0
no
= 2 4

✓
= 4

So, 11 is the only solution. The solution set is {11}.

7.2.2 Reading Questions
1. What is the formula for the discriminant? (The part of the quadratic formula inside the radical.)
2. Are there any kinds of quadratic equations where the quadratic formula is not the best tool to use?
3. Given a quadratic euqation, will the quadratic formula always show you two real solutions?

7.2.3 Exercises

Review and Warmup

1. Evaluate −5A+ 5B+ 7

6A− 9B
for A = 2 and

B = −4.
2. Evaluate −6C− 5c+ 9

−6C− 3c
for C = −10 and

c = −9.
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3. Evaluate the expression 1

3

(
x+ 4

)2
− 2 when

x = −7.
4. Evaluate the expression 1

3

(
x+ 4

)2
− 7 when

x = −7.
5. Evaluate the expression −16t2 + 64t+ 128

when t = 3.
6. Evaluate the expression −16t2 + 64t+ 128

when t = −5.
7. Evaluate the expression x2:

a. For x = 7.
b. For x = −2.

8. Evaluate the expression y2:
a. For y = 4.
b. For y = −6.

9. Evaluate each algebraic expression for the
given value(s):√
x

y
−

y

x
, for x = 25 and y = 10:

10. Evaluate each algebraic expression for the
given value(s):
y

4x
−

√
x

3y
, for x = 25 and y = −4:

Solve Quadratic Equations Using the Quadratic Formula Solve the equation.
11. x2 + 7x+ 1 = 0 12. x2 + 8x+ 11 = 0 13. 20x2 + 56x+ 15 = 0

14. 10x2 + 39x+ 35 = 0 15. x2 = x+ 1 16. x2 = 5x− 5

17. x2 + 3x− 9 = 0 18. x2 − 9x+ 9 = 0 19. 2x2 + 3x− 1 = 0

20. 3x2 − x− 1 = 0 21. 4x2 − 10x− 5 = 0 22. 7x2 − 2x− 1 = 0

23. 5x2 − 9x+ 6 = 0 24. 3x2 + 3x+ 3 = 0

Solve Quadratic Equations Using an Appropriate Method Solve the equation.
25. 3x2 − 27 = 0 26. 4x2 − 16 = 0 27. 25x2 − 81 = 0

28. 36x2 − 25 = 0 29. 4− 7r2 = 1 30. 0− 3r2 = −7

31. x2 + 5x = 24 32. x2 + 4x = 60 33. (x− 9)
2
= 64

34. (x− 7)
2
= 16 35. x2 = −9x− 16 36. x2 = −3x+ 2

37. 3x2 = x+ 1 38. 2x2 = −(5x+ 1) 39. 22− 4(r+ 5)2 = 6

40. 23− 2(t− 8)2 = 5

Radical Equations That Give Rise to Quadratic Equations Solve the equation.
41.

√
t+ 72 = t 42.

√
2x+ 15 = x

43. √
x+ 2 = x 44. √

y+ 56 = y

45. y =
√
y+ 9+ 3 46. r =

√
r+ 1+ 5

47. √
r+ 90 = r 48. √

r+ 42 = r

49. t =
√
t+ 3+ 9 50. t =

√
t+ 1+ 89

51.
√
51− x = x+ 5 52.

√
148− x = x+ 8

Quadratic Formula Applications
53. Two numbers’ sum is −1, and their product

is −42. Find these two numbers.
These two numbers are .

54. Two numbers’ sum is −13, and their
product is 42. Find these two numbers.
These two numbers are .
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55. Two numbers’ sum is 7.7, and their product
is −25.5. Find these two numbers.
These two numbers are .
(Use a comma to separate your numbers.)

56. Two numbers’ sum is 4.7, and their product
is 3.96. Find these two numbers.
These two numbers are .
(Use a comma to separate your numbers.)

57. A rectangle’s base is 6 cm longer than its
height. The rectangle’s area is 112 cm2. Find
this rectangle’s dimensions.
The rectangle’s height is .
The rectangle’s base is .

58. A rectangle’s base is 9 cm longer than its
height. The rectangle’s area is 162 cm2. Find
this rectangle’s dimensions.
The rectangle’s height is .
The rectangle’s base is .

59. A rectangle’s base is 3 in shorter than four
times its height. The rectangle’s area is
85 in2. Find this rectangle’s dimensions.
The rectangle’s height is .
The rectangle’s base is .

60. A rectangle’s base is 1 in shorter than twice
its height. The rectangle’s area is 15 in2.
Find this rectangle’s dimensions.
The rectangle’s height is .
The rectangle’s base is .

61. You will build a rectangular sheep pen next
to a river. There is no need to build a fence
along the river, so you only need to build
three sides.
You have a total of 510 feet of fence to use,
and the area of the pen must be 31900

square feet. Find the dimensions of the pen.
There should be two solutions:When the
width is feet, the length is

feet.
When the width is feet, the
length is feet.

62. You will build a rectangular sheep pen next
to a river. There is no need to build a fence
along the river, so you only need to build
three sides.
You have a total of 470 feet of fence to use,
and the area of the pen must be 27500

square feet. Find the dimensions of the pen.
There should be two solutions:When the
width is feet, the length is

feet.
When the width is feet, the
length is feet.
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63. There is a rectangular lot in the garden,
with 8 ft in length and 4 ft in width. You
plan to expand the lot by an equal length
around its four sides, and make the area of
the expanded rectangle 140 ft2. How long
should you expand the original lot in four
directions?

You should expand the original lot by
in four directions.

64. There is a rectangular lot in the garden,
with 9 ft in length and 7 ft in width. You
plan to expand the lot by an equal length
around its four sides, and make the area of
the expanded rectangle 195 ft2. How long
should you expand the original lot in four
directions?

You should expand the original lot by
in four directions.

65. One car started at Town A, and traveled
due north at 60 miles per hour. 2 hours
later, another car started at the same spot
and traveled due east at 55 miles per hour.
Assume both cars don’t stop, after how
many hours since the second car starts
would the distance between them be 338

miles? Round your answer to two decimal
places if needed.

Approximately hours
since the second car starts, the distance
between those two cars would be 338 miles.

66. One car started at Town A, and traveled
due north at 65 miles per hour. 3 hours
later, another car started at the same spot
and traveled due east at 40 miles per hour.
Assume both cars don’t stop, after how
many hours since the second car starts
would the distance between them be 358

miles? Round your answer to two decimal
places if needed.

Approximately hours
since the second car starts, the distance
between those two cars would be 358 miles.
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67. An object is launched upward at the height
of 370 meters. Its height can be modeled by

h = −4.9t2 + 90t+ 370,

where h stands for the object’s height in
meters, and t stands for time passed in
seconds since its launch. The object’s height
will be 380 meters twice before it hits the
ground. Find how many seconds since the
launch would the object’s height be 380

meters. Round your answers to two
decimal places if needed.
The object’s height would be 380 meters the
first time at seconds,
and then the second time at

seconds.

68. An object is launched upward at the height
of 400 meters. Its height can be modeled by

h = −4.9t2 + 70t+ 400,

where h stands for the object’s height in
meters, and t stands for time passed in
seconds since its launch. The object’s height
will be 430 meters twice before it hits the
ground. Find how many seconds since the
launch would the object’s height be 430

meters. Round your answers to two
decimal places if needed.
The object’s height would be 430 meters the
first time at seconds,
and then the second time at

seconds.
69. Currently, an artist can sell 280 paintings

every year at the price of $60.00 per
painting. Each time he raises the price per
painting by $5.00, he sells 5 fewer paintings
every year.
Assume he will raise the price per painting
x times, then he will sell 280− 5x paintings
every year at the price of 60+ 5x dollars.
His yearly income can be modeled by the
equation:

i = (60+ 5x)(280− 5x)

where i stands for his yearly income in
dollars. If the artist wants to earn $22,500.00
per year from selling paintings, what new
price should he set?
To earn $22,500.00 per year, the artist could
sell his paintings at two different prices.
The lower price is per
painting, and the higher price is

per painting.

70. Currently, an artist can sell 210 paintings
every year at the price of $130.00 per
painting. Each time he raises the price per
painting by $10.00, he sells 5 fewer
paintings every year.
Assume he will raise the price per painting
x times, then he will sell 210− 5x paintings
every year at the price of 130+ 10x dollars.
His yearly income can be modeled by the
equation:

i = (130+ 10x)(210− 5x)

where i stands for his yearly income in
dollars. If the artist wants to earn $33,300.00
per year from selling paintings, what new
price should he set?
To earn $33,300.00 per year, the artist could
sell his paintings at two different prices.
The lower price is per
painting, and the higher price is

per painting.

71. Solve for x in the equation mx2 + nx+ p = 0.
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7.3 Complex Solutions to Quadratic Equations

7.3.1 Imaginary Numbers
Let’s take a closer look at a square root with a negative radicand. Remember that

√
16 = 4 because 4 ·4 = 16.

So what about √−16? There is no real number that we can square to get −16, because when you square a
real number, the result is either positive or 0. You might think about 4 and −4, but:

4 · 4 = 16 and (−4)(−4) = 16

so neither of those could be √
−16. To handle this situation, mathematicians separate a factor of √−1 and

represent it with the letter i.

Definition 7.3.2 Imaginary Numbers. The imaginary unit, i, is defined by i =
√
−1. The imaginary unit1

satisfies the equation i2 = −1. A real number times i, such as 4i, is called an imaginary number. ♢

Now we can simplify square roots with negative radicands like √
−16.

√
−16 =

√
−1 · 16

=
√
−1 ·

√
16

= i · 4
= 4i

Imaginary numbers are used in electrical engineering, physics, computer science, and advanced mathe-
matics. Let’s look some more examples.

Example 7.3.3 Simplify √
−2.

Explanation.
√
−2 =

√
−1 · 2

=
√
−1 ·

√
2

= i
√
2

We write the i in front of the radical because it can be easy to mix up
√
2i and

√
2i, if you don’t draw the

radical very carefully.

Example 7.3.4 Simplify √
−72.

Explanation.
√
−72 =

√
−1 · 36 · 2

=
√
−1 ·

√
36 ·

√
2

= 6i
√
2

1en.wikipedia.org/wiki/Imaginary_number
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7.3.2 Solving Quadratic Equations with Imaginary Solutions
Back in Example 7.1.9, we examined an equation that had no real solution. Let’s revisit that example now
that we are aware of imaginary numbers.

Example 7.3.5 Solve for x in x2 + 49 = 0, where x might not be a real number.
Explanation. There is no x term so we will use the square root method.

x2 + 49 = 0

x2 = −49

x = ±
√
−49

x = ±
√
−1 · 49

x = ±
√
−1 ·

√
49

x = ±i · 7

x = −7i or x = 7i

The solution set is {−7i, 7i}.

Example 7.3.6 Solve for p in p2 + 75 = 0, where p might not be a real number.
Explanation. There is no p term so we will use the square root method.

p2 + 75 = 0

p2 = −75

p = ±
√
−75

p = ±
√
−1 · 25 · 3

p = ±
√
−1 ·

√
25 ·

√
3

p = ±i · 5
√
3

p = −5i
√
3 or p = 5i

√
3

The solution set is
{
−5i

√
3, 5i

√
3
}

.

7.3.3 Solving Quadratic Equations with Complex Solutions
Sometimes we need to work with a sum of a real number and an imaginary number, like 3+ 2i or −4− 8i.
These combinations are called “complex numbers”.
Definition 7.3.7 Complex Number. A complex number is a number that can be expressed in the form
a+ bi, where a and b are real numbers and i is the imaginary unit. In this expression, a is the real part and
b (not bi) is the imaginary part of the complex number2. ♢

2en.wikipedia.org/wiki/Complex_number
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Example 7.3.8 In an advanced math course, you might study the relationship between a lynx polulation
(or any generic predator) and a hare population (or any generic prey) as time passes. For example, if the
predator population is high, they will eat many prey. But then the prey population will become low, so the
predators will go hungry and have fewer offspring. With time, the predator population will decline, and
that will lead to a rebound in the prey population. Then prey will be plentiful, and the preadator population
will rebound, and the whole situaiton starts over. This cycle may take years or even decades to play out.

Strange as it may seem, to understand this phenomenon mathematically, you will need to solve equations
similar to:

(1− t)(3− t) + 10 = 0

Let’s practice solving this equation.

(1− t)(3− t) + 10 = 0

3− t− 3t+ t2 + 10 = 0

t2 − 4t+ 13 = 0

We can try the quadratic formula.

t =
4±

√
(−4)2 − 4(1)(13)

2(1)

=
4±

√
16− 52

2

=
4±

√
−36

2

=
4±

√
−1 ·

√
36

2

=
4± i · 6

2

= 2± 3i

These two solutions, 2− 3i and 2+ 3i have implications for how fast the predator and prey populations rise
and fall over time, but an explanation is beyond the scope of basic algebra.

Here are some more examples of equations that have complex number solutions.

Example 7.3.9 Solve for m in (m− 1)2 + 18 = 0, where m might not be a real number.
Explanation. This equation has a squared expression so we will use the square root method.

(m− 1)2 + 18 = 0

(m− 1)2 = −18

m− 1 = ±
√
−18

m− 1 = ±
√
−1 · 9 · 2

m− 1 = ±
√
−1 ·

√
9 ·

√
2

m− 1 = ±i · 3
√
2

m = 1± i · 3
√
2
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m = 1− 3i
√
2 or m = 1+ 3i

√
2

The solution set is
{
1− 3i

√
2, 1+ 3i

√
2
}

.

Example 7.3.10 Solve for y in y2 − 4y+ 13 = 0, where y might not be a real number.
Explanation. Note that there is a y term, so the square root method is not available. We will use the
quadratic formula. We identify that a = 1, b = −4 and c = 13 and substitute them into the quadratic
formula.

y =
−b±

√
b2 − 4ac

2a

=
−(−4)±

√
(−4)2 − 4(1)(13)

2(1)

=
4±

√
16− 52

2

=
4±

√
−36

2

=
4±

√
−1 ·

√
36

2

=
4± 6i

2

= 2± 3i

The solution set is {2− 3i, 2+ 3i}.

Note that in Example 7.3.10, the expressions 2+ 3i and 2− 3i are fully simplified. In the same way that the
terms 2 and 3x cannot be combined, the terms 2 and 3i can not be combined.

Remark 7.3.11 Each complex solution can be checked, just as every real solution can be checked. For exam-
ple, to check the solution of 2 + 3i from Example 7.3.10, we would replace y with 2 + 3i and check that the
two sides of the equation are equal. In doing so, we will need to use the fact that i2 = −1. This check is
shown here:

y2 − 4y+ 13 = 0

(2+ 3i)2 − 4(2+ 3i) + 13
?
= 0

(22 + 2(3i) + 2(3i) + (3i)2) − 4 · 2− 4 · (3i) + 13
?
= 0

4+ 6i+ 6i+ 9i2 − 8− 12i+ 13
?
= 0

4+ 9(−1) − 8+ 13
?
= 0

4− 9− 8+ 13
?
= 0

0
✓
= 0
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7.3.4 Reading Questions
1. What is (i2)2?

2. A number like 4i is called a number. A number like 3+ 4i is called a number.

7.3.5 Exercises

Simplifying Square Roots withNegative Radicands Simplify the radical and write it as a complex number
using i.

1.
√
−30 2.

√
−30 3.

√
−24

4.
√
−56 5.

√
−270 6.

√
−240

Quadratic Equations with Imaginary and Complex Solutions Solve the quadratic equation. Solutions
could be complex numbers.

7. x2 = −100 8. x2 = −49 9. 5y2 − 6 = −86

10. 3y2 − 6 = −306 11. −2r2 − 9 = 3 12. −5r2 − 7 = 8

13. −3r2 − 10 = 140 14. −3t2 − 4 = 131 15. −8(t− 10)2 − 8 = 64

16. −6(x+ 5)2 − 8 = 478 17. x2 + 2x+ 5 = 0 18. y2 + 4y+ 5 = 0

19. y2 + 4y+ 11 = 0 20. r2 − 8r+ 19 = 0
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7.4 Solving Equations in General
In your algebra studies, you have learned how to solve linear equations, quadratic equations, and radical
equations. In this section, we examine some similarities among the processes for solving these equations.
Understanding these similarities can improve your general equation solving ability, even into the future
with new equations that are not of these three types.

7.4.1 Equations Where the Variable Appears Once
Here are some examples of equations that all have something in common: the variable only appears once.

2
↓
x+ 1 = 7 (

↓
x+ 4)2 = 36

√
2
↓
x− 3 = 3

For equations like this, there is a strategy for solving them that will keep you from overcomplicating things.
In each case, according to the order of operations, the variable is having some things “done” to it in a specific
order.
With 2x+ 1 = 7,

1. x is multiplied by 2

2. then that result is added to 1

3. and this result is a number, 7

With (x+ 4)2 = 36,
1. x is added to 4

2. then that result is squared
3. and this result is a number,

36

With √
2x− 3 = 3,

1. x is multiplied by 2

2. then that result has 3 sub-
tracted from it

3. then that result has a square
root applied

4. and this result is a number, 3
Because there is just one instance of the variable, and then things happen to that value in a specific order
according to the order of operations, then there is a good strategy to solve these equations. We can just undo
each step in the opposite order.

Example 7.4.2 Solve the equation 2x+ 1 = 7.
Explanation. The actions that happen to x are multiply by 2, and then add 1. So we will do the opposite
actions in the opposite order to each side of the equation. We will subtract 1 and then divide by 2.

2x+ 1 = 7 now subtract 1 from each side
2x+ 1− 1 = 7− 1

2x = 6 now divide by 2 on each side
2x

2
=

6

2

x = 3

You should check this solution by substituting it into the original equation.

Example 7.4.3 Solve the equation (x+ 4)2 = 36.
Explanation. The actions that happen to x are add 4, and then square. So we will do the opposite actions in
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the opposite order to each side of the equation. We will apply the Square Root Property and then subtract 4.

(x+ 4)2 = 36 now apply the Square Root Property
x+ 4 = ±

√
36

x+ 4 = ±6 now subtract 4 on each side
x+ 4− 4 = ±6− 4

x = ±6− 4

x = −6− 4 or x = 6− 4

x = −10 or x = 2

You should check these solutions by substituting them into the original equation.

Example 7.4.4 Solve the equation √
2x− 3 = 3.

Explanation. The actions that happen to x are multiply by 2, and then subtract 3, and then apply the square
root. So we will do the opposite actions in the opposite order to each side of the equation. We will square
both sides, add 3 and then divide by 2.

√
2x− 3 = 3 now square both sides
2x− 3 = 9 now add 3 to each side

2x− 3+ 3 = 9+ 3

2x = 12 now divide by 2 on each side
2x

2
=

12

2

x = 6

You should check this solution by substituting it into the original equation.

7.4.2 Equations With More Than One Instance of the Variable

Now consider equations like

5
↓
x+ 1 = 3

↓
x+ 2

↓
x2 + 6

↓
x = −8

√↓
x− 3 =

√↓
x− 1

In these examples, the variable appears more than once. We can’t exactly dive in to the strategy of undoing
each step in the opposite order. For each of these equations, remind yourself that you can apply any opera-
tion you want, as long as you apply it to both sides of the equation. In many cases, you will find that there
is some basic algebra move you can take that will turn the equation into something more “standard” that
you know how to work with.
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With 5x+1 = 3x+2, we have a lin-
ear equation. If we can simply re-
organize the terms to combine like
terms, a solution will be apparent.

With x2 + 6x = −8, adding 8 to
both sides would give us a qua-
dratic equation in standard form.
And then the quadratic formula
can be used.

With √
x− 3 =

√
x − 1, the com-

plication is those two radicals. We
can take any action we like as long
as we apply it to both sides, and
squaring both sides would remove
at least one radical. Maybe after
that we will have a simpler equa-
tion.

Example 7.4.5 Solve the equation 5x+ 1 = 3x+ 2.
Explanation. We’ll use basic algebra to rearrange the terms.

5x+ 1 = 3x+ 2 now subtract 1 from each side
5x = 3x+ 1 now subtract 3x from each side
2x = 1 now divide by 2 on each side

x =
1

2

You should check this solution by substituting it into the original equation.

Example 7.4.6 Solve the equation x2 + 6x = −8.
Explanation. Adding 8 to each side will give us a quadratic equation in standard form, and then we may
apply The Quadratic Formula.

x2 + 6x = −8 now add 8 to each side
x2 + 6x+ 8 = 0 now apply The Quadratic Formula

x =
−6±

√
62 − 4(1)(8)

2(1)

=
−6±

√
36− 32

2

=
−6±

√
4

2

=
−6± 2

2

x =
−6− 2

2
or x =

−6+ 2

2

x =
−8

2
or x =

−4

2

x = −4 or x = −2

You should check these solutions by substituting them into the original equation.

Example 7.4.7 Solve the equation √
x− 3 =

√
x− 1.
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Explanation. Hoping to obtain a simpler equation, we will square each side. This will eliminate at least
one radical, which may help.

√
x− 3 =

√
x− 1 now square both sides(√

x− 3
)2

=
(√

x− 1
)2

x− 3 =
(√

x
)2

− 2
√
x+ 1

x− 3 = x− 2
√
x+ 1 now note that there are some like terms

−3 = −2
√
x+ 1 now we have an equation with only one instance of the variable

−4 = −2
√
x

2 =
√
x

22 = x

x = 4

You should check this solution by substituting it into the original equation. It is especially important to do
this when the equation was a radical equation. At one point, we squared both sides, and this can introduce
extraneous solutions (see Remark 6.4.4).

7.4.3 Solving For a Variable in Terms of Other Variables
In the examples so far in this section, there has been one variable (but possibly more than one instance of
that variable). This leaves out important situations in science applications where you have a formula with
multiple variables, and you need to isolate one of them. Fortunately these situations are not more difficult
than what we have explored so far, as long as you can keep track of which variable you are trying to solve
for.
Example 7.4.8 In physics, there is a formula for converting a Celsius temperature to Fahrenheit:

F =
9

5
C+ 32

Solve this equation for C in terms of F.
Explanation. The variable we are after is C, and that variable only appears once. So we will apply the
strategy of undoing the things that are happening to C. First C is multiplied by 9

5
, and then it is added to

32. So we will undo these actions in the opposite order: subtract 32 and then multiply by 5
9

(or divide by 9
5

if
you prefer).

F =
9

5

↓
C+ 32

F− 32 =
9

5

↓
C+ 32− 32

F− 32 =
9

5

↓
C

5

9
· (F− 32) =

5

9
· 9
5

↓
C

5

9
(F− 32) =

↓
C
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C =
5

9
(F− 32)

We are satisfied, because we have isolated C in terms of F.

Example 7.4.9 In physics, when an object of mass m is moving with a speed v, its “kinetic energy” E is given
by:

E =
1

2
mv2

Solve this equation for v in terms of the other variables.
Explanation. The variable we are after is v, and that variable only appears once. So we will apply the
strategy of undoing the things that are happening to v. First v is squared, then it is multiplied by m and by
1
2

. So we will undo these actions in the opposite order: multiply by 2, divide by m, and apply the square root.

E =
1

2
m

↓
v2

2 · E = 2 · 1
2
m

↓
v2

2E = m
↓
v2

2E

m
=

m
↓
v2

m

2E

m
=

↓
v2

±
√

2E

m
=

↓
v

v =

√
2E

m

At the very end, we chose the positive square root, since a speed v cannot be negative. We are satisfied,
because we have isolated v in terms of E and m.

7.4.4 Reading Questions
1. When there is only one instance of a variable in an equation, describe a strategy for solving the equation.
2. You can do whatever algebra you like to the sides of an equation, as long as you do what?

7.4.5 Exercises

Solve the equation.
1. x+ 3 = −8 2. 9x+ 5 = 4 3. 7x− 2 = −4x

4. 9x+ 6 = −9x 5. −9x− 6 = 5x− 9 6. −7x+ 4 = −3x+ 5

7. −8x2 = −200 8. 3x2 = 108 9. 6(x− 8)
2
= 294
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10. −3(x+ 19)
2
= −192 11. 2x2 − 162 = 0 12. −4x2 + 484 = 0

13. 49x2 = 144 14. x2 = 4 15. 3x2 = 2

16. 13x2 = 5 17. 6(x+ 5)
2
= 5 18. 5(x− 3)

2
= 2

19. 2x2 + 6x− 9 = 0 20. −x2 + 3x+ 3 = 0 21. 6x2 + 8x+ 7 = 9

22. 8x2 + 6x+ 3 = 4 23. x2 + 4x+ 1 = 7x+ 8 24. 2x2 + x+ 7 = 3x+ 8

25. x2 + 9x+ 6 =
6x2 + 8x+ 5

26. 4x2 + 9x+ 7 =
5x2 + 2x+ 4

27. √
−9x− 2 = 8

28. √
2x+ 4 = 6 29. 3

√
4x− 3 = −5 30. 3

√
6x− 9 = 3

31. 4
√
8x+ 3 = −9 32. 4

√
−9x− 4 = −1 33. √

x− 7 =
√
x+ 9+ 7

34. √
x− 4 =

√
x+ 2− 4 35. √

9x+ 8 =
√
6x− 8+ 4 36. √

7x− 4 =
√
8x+ 6− 3

Solve an Equation for a Variable
37. Solve the equation

A = bh for b.
38. Solve the equation

A = bh for h.
39. Solve the equation

P = 2(ℓ+w) for l.
40. Solve the equation

P = 2(ℓ+w) for w.
41. Solve the equation

A = 1
2
bh for b.

42. Solve the equation
A = 1

2
bh for h.

43. Solve the equation
y = mx+ b for m.

44. Solve the equation
y = mx+ b for x.

45. Solve the equation
y = mx+ b for b.

46. Solve the equation
y = m(x− h) + k for k.

47. Solve the equation
y = m(x− h) + k for h.

48. Solve the equation
y = m(x− h) + k for x.

49. Solve the equation
c = 2πr for r.

50. Solve the equation c = πd

for d.
51. Solve the equation A = s2

for s. Assume s > 0.
52. Solve the equation

A = πr2 for r. Assume
r > 0.

53. Solve the equation
V = πr2h for r. Assume
r > 0.

54. Solve the equation
V = 1

3
s2h for s. Assume

s > 0.
55. Solve the equation

V = πr2h for h.
56. Solve the equation

V = 1
3
s2h for h.

57. Solve the equation V = s3

for s.
58. Solve the equation

V = 4
3
πr3 for r.

59. Solve the equation
S = 6s2 for s. Assume
s > 0.

60. Solve the equation
S = 4πr2 for r. Assume
r > 0.

61. Solve the equation v = d
t

for d.
62. Solve the equation v = d

t

for t.
63. Solve the equation

p = 1
2
gt2 + vt+ d for t.

64. Solve the equation
y = ax2 + bx+ c for x.

65. Solve the equation
F = ma for m.

66. Solve the equation
F = ma for a.

67. Solve the equation a = v2

r

for v. Assume v > 0.
68. Solve the equation

K = 1
2
mv2 for v. Assume

v > 0.

69. Solve the equation
T = 2π

√
ℓ
g

for l.

70. Solve the equation
T = 2π

√
ℓ
g

for g.
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7.5 Solving Quadratic Equations Chapter Review

7.5.1 Solving Quadratic Equations by Using a Square Root

In Section 7.1 we covered how to solve quadratic equations using the square root property and how to use
the Pythagorean Theorem.

Example 7.5.1 SolvingQuadratic EquationsUsing the SquareRoot Property. Solve forw in 3(2−w)2−24 =
0.
Explanation. It’s important here to suppress any urge you may have to expand the squared binomial. We
begin by isolating the squared expression.

3(2−w)2 − 24 = 0

3(2−w)2 = 24

(2−w)2 = 8

Now that we have the squared expression isolated, we can use the square root property.

2−w = −
√
8 or 2−w =

√
8

2−w = −
√
4 · 2 or 2−w =

√
4 · 2

2−w = −
√
4 ·

√
2 or 2−w =

√
4 ·

√
2

2−w = −2
√
2 or 2−w = 2

√
2

−w = −2
√
2− 2 or −w = 2

√
2− 2

w = 2
√
2+ 2 or w = −2

√
2+ 2

The solution set is
{
2
√
2+ 2,−2

√
2+ 2

}
.

Example 7.5.2 The Pythagorean Theorem. Faven was doing some wood working in her garage. She needed
to cut a triangular piece of wood for her project that had a hypotenuse of 16 inches, and the sides of the
triangle should be equal in length. How long should she make her sides?
Explanation. Let’s start by representing the length of the triangle, measured in inches, by the letter x. That
would also make the other side x inches long.
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16
in

x

x

Figure 7.5.3: Piece of wood with labels for Faven

Faven should now set up the Pythagorean theorem regarding the picture. That would be

x2 + x2 = 162

Solving this equation, we have:

x2 + x2 = 162

2x2 = 256

x2 = 128
√
x2 =

√
128

x =
√
64 · 2

x =
√
64 ·

√
2

x = 8
√
2

x ≈ 11.3

Faven should make the sides of her triangle about 11.3 inches long to force the hypotenuse to be 16 inches
long.

7.5.2 The Quadratic Formula
In Section 7.2 we covered how to use the quadratic formula to solve any quadratic equation.
Example 7.5.4 Solving Quadratic Equations with the Quadratic Formula. Solve the equations using the
quadratic formula.

a. x2 + 4x = 6 b. 5x2 − 2x+ 1 = 0

Explanation.
a. First we should change the equation into standard form.

x2 + 4x = 6
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x2 + 4x− 6 = 0

Next, we check and see that we cannot factor the left side or use the square root property so we must
use the quadratic formula. We identify that a = 1, b = 4, and c = −6. We will substitute them into the
quadratic formula:

x =
−b±

√
b2 − 4ac

2a

x =
−4±

√
(4)2 − 4(1)(−6)

2(1)

=
−4±

√
16+ 24

2

=
−4±

√
40

2

=
−4±

√
4 · 10

2

=
−4±

√
4 ·

√
10

2

=
−4± 2

√
10

2

= −
4

2
± 2

√
10

2

= −2±
√
10

So the solution set is
{
−2+

√
10,−2−

√
10
}

.

b. Since the equation 5x2−2x+1 = 0 is already in standard form, we check and see that we cannot factor
the left side or use the square root property so we must use the quadratic formula. We identify that
a = 5, b = −2, and c = 1. We will substitute them into the quadratic formula:

x =
−b±

√
b2 − 4ac

2a

x =
−(−2)±

√
(−2)2 − 4(5)(1)

2(5)

=
2±

√
4− 20

10

=
2±

√
−16

10

Since the solutions have square roots of negative numbers, we must conclude that there are no real
solutions.
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7.5.3 Complex Solutions to Quadratic Equations
In Section 7.3 we covered what both imaginary numbers and complex numbers are, as well as how to solve
quadratic equations where the solutions are imaginary numbers or complex numbers.

Example 7.5.5 Imaginary Numbers. Simplify the expression √
−12 using the imaginary number, i.

Explanation. Start by splitting the −1 from the 12 and by looking for the largest perfect-square factor of
−12, which happens to be 4.

√
−12 =

√
4 ·−1 · 3

=
√
4 ·

√
−1 ·

√
3

= 2i
√
3

Example 7.5.6 SolvingQuadratic Equationswith Imaginary Solutions. Solve for m in 2m2+16 = 0, where
p is an imaginary number.
Explanation. There is no m term so we will use the square root method.

2m2 + 16 = 0

2m2 = −16

m2 = −8

m = −
√
−8 or m =

√
−8

m = −
√
4 ·

√
−1 ·

√
2 or m =

√
4 ·

√
−1 ·

√
2

m = −2i
√
2 or m = 2i

√
2

The solution set is
{
−2i

√
2, 2i

√
2
}

.

Example 7.5.7 SolvingQuadratic EquationswithComplex Solutions. Solve the equation 3(v−2)2+54 = 0,
where v is a complex number.
Explanation.

3(v− 2)2 + 54 = 0

3(v− 2)2 = −54

(v− 2)2 = −18

v− 2 = −
√
−18 or v− 2 =

√
−18

v− 2 = −
√
9 ·−1 · 2 or v− 2 =

√
9 ·−1 · 2

v− 2 = −
√
9 ·

√
−1 ·

√
2 or v− 2 =

√
9 ·

√
−1 ·

√
2

v− 2 = −3i
√
2 or v− 2 = 3i

√
2

v = 2− 3i
√
2 or v = 2+ 3i

√
2

So, the solution set is
{
2+ 3i

√
2, 2− 3i

√
2
}

.
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7.5.4 Solving Equations in General
In Section 2.1 we learned how to solve linear equations. In Section 6.4 we learned how to solve radical
equations. In Section 7.1 and Section, we learned how to solve quadratic equations.

Then in Section 7.4 we looked at a few strategies to solve equations in general, often relying on those
earlier specific techniques.
Example 7.5.8 Equationswhere theVariableAppearsOnce. Solve the equations using an effective method.

a. (x− 4)2 − 2 = 0 b. √
3x+ 2− 2 = 5 c. 3(5x− 6) − 7 = 2

Explanation.
a. Since the variable x only appears once, we can apply steps one at a time to undo all of the operations

that are done to x and eventually isolate it.
(x− 4)2 − 2 = 0

(x− 4)2 = 2

x− 4 = ±
√
2

x = 4±
√
2

So the solution set is
{
4+

√
2, 4−

√
2
}

b. Since the variable x only appears once, we can apply steps one at a time to undo all of the operations
that are done to x and eventually isolate it.

√
3x+ 2− 2 = 5
√
3x+ 2 = 7(√

3x+ 2
)2

= 72

3x+ 2 = 49

3x = 47

x =
47

3

At this point 47
3

is only a potential solution. We may have introduced an extraneous solution at the
point where we squared both sides. So we should check it.√

3 · 47
3

+ 2− 2
?
= 5

√
47+ 2

?
= 7

√
49

✓
= 7

So, the solution set is {47
3

}.
c. Since the variable x only appears once, we can apply steps one at a time to undo all of the operations

that are done to x and eventually isolate it.
3(5x− 6) − 7 = 2
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3(5x− 6) = 9

5x− 6 = 3

5x = 9

x =
9

5

The solution set is {9
5

}.

Example 7.5.9 Equations With More Than One Instance of the Variable. Recognize that these equations
have more than one instance of the variable, so it is not immediately possible to isolate the variable by
undoing the operations that are done to it. Instead, call upon a special technique to solve the equation.

a. (x− 4)2 + 2x = 0 b. 16x− 2(3x− 1) = 7 c. √
x+ 2 = x− 4

Explanation.
a. To solve the equation (x − 4)2 + 2x = 0, note that it is a quadratic equation, and we can write it in

standard form.
(x− 4)2 + 2x = 0

x2 − 8x+ 16+ 2x = 0

x2 − 6x+ 16 = 0

Now we may use the quadratic formula 7.2.2.

x =
−b±

√
b2 − 4ac

2a

x =
−(−6)±

√
(−6)2 − 4(1)(16)

2(1)

=
6±

√
36− 48

2

=
6±

√
−12

2

At this point, we notice that the solutions are complex. Continue to simplify until they are completely
reduced.

x =
6±

√
4 ·−1 · 3
2

=
6±

√
4 ·

√
−1 ·

√
3

2

=
6± 2i

√
3

2

=
6

2
± 2i

√
3

2

= 3± i
√
3

So the solution set is
{
3− i

√
3, 3+ i

√
3
}

.
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b. To solve the equation 16x− 2(3x− 1) = 3 we first we first note that it is linear. Since it is linear, we just
need to follow the steps outlined in Process 2.1.4.

16x− 2(3x− 1) = 7

16x− 6x+ 3 = 7

10x+ 3 = 7

10x = 4

x =
4

10

x =
2

5

So, the solution set is {2
5

}.
c. Since the equation √

x+ 2 = x− 4 is a radical equation, we should isolate the radical (which it already
is) and square both sides of the equation.

√
x+ 2 = x− 4(√

x+ 2
)2

= (x− 4)
2

x+ 2 = x2 − 8x+ 16

0 = x2 − 9x+ 14

Since the equation is now quadratic, we may use the quadratic formula 7.2.2 to solve it.

x =
−b±

√
b2 − 4ac

2a

x =
−(−9)±

√
(−9)2 − 4(1)(14)

2(1)

=
9±

√
81− 56

2

=
9±

√
25

2

=
9± 5

2

x =
9− 5

2
or x =

9+ 5

2

x =
4

2
or x =

14

2

x = 2 or x = 7

Since this is a radical equation, we should verify our solutions and look out for “extraneous solutions”.
√
2+ 2

?
= 2− 4 or

√
7+ 2

?
= 7− 4

√
4

no
= −2 or

√
9

✓
= 3

So the solution set is {7}.
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Example 7.5.10 Solving For a Variable in Terms of Other Variables. Often in science classes, you are given
a formula that needs to be rearranged to be useful to a situation. Below are a few equations from physics
that describe the natural world.

a. Solve the equation v2 = v20 + 2ax for x. (This equation describes the motion of objects that are acceler-
ating.)

b. Solve the equation cℓ = ℓ0
√
c2 − v2 for v. (This equation describes the size of things moving at very

fast speeds.)

c. Solve the equation y = αt2

2
+ vt for t. (This is another equation that describes the motion of objects

that are accelerating.)

Explanation.
a. Since x only appears once in the euqation, we only need to undo the operations that are done to it.

v2 = v20 + 2ax

v2 − v20 = 2ax

v2 − v20
2a

= x

So we find x =
v2−v2

0

2a
.

b. Since v only appears once in the euqation, we only need to undo the operations that are done to it.
According to the order of operations, on the right side of the equation,

(a) v is squared.
(b) The result is negated.
(c) The result is added to c2.
(d) The result has a square root applied.
(e) The result is multiplied by ℓ0.

So we do all of the opposite things in the opposite order.

cℓ = ℓ0
√

c2 − v2

c · ℓ
ℓ0

=
√

c2 − v2(
c · ℓ
ℓ0

)2

=
(√

c2 − v2
)2

(
c · ℓ
ℓ0

)2

= c2 − v2(
c · ℓ
ℓ0

)2

− c2 = −v2

−

(
c · ℓ
ℓ0

)2

+ c2 = v2
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±

√
−

(
c · ℓ
ℓ0

)2

+ c2 = v

±

√
c2 −

(
c · ℓ
ℓ0

)2

= v

So, we find v = ±
√

c2 −
(

c·ℓ
ℓ0

)2
.

c. This is a quadratic equtaion when we view t as the variable. First, we should rearrange the equation
to standard form.

y =
αt2

2
+ vt

0 =
α

2
t2 + vt− y

It is helpful with many equations to “clear denominators”. In this case, that means multiplying each
side of the equation by 2.

0 = αt2 + 2vt− 2y

Now, we may apply the quadratic formula 7.2.2.

t =
−b±

√
b2 − 4ac

2a

t =
−2v±

√
(2v)2 − 4α(−2y)

2α

t =
−2v±

√
4v2 + 8αy

2α

t =
−2v±

√
4 (v2 + 2αy)

2α

t =
−2v± 2

√
v2 + 2αy

2α

t =
−v±

√
v2 + 2αy

α

So we find t =
−v±

√
v2+2αy

α
.

7.5.5 Exercises

Solving Quadratic Equations by Using a Square Root Solve the equation.
1. x2 = 27 2. x2 = 63 3. 64x2 = 9 4. 4x2 = 81

5. (x+ 6)
2
= 36 6. (x+ 9)

2
= 4 7. −4− 5(x− 9)2 =

−9

8. 18− 3(x− 9)2 = 6
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9.

Find the value of x.

10.

Find the value of x.

11. Devon is designing a rectangular garden.
The garden’s diagonal must be 64.6 feet,
and the ratio between the garden’s base and
height must be 15 : 8. Find the length of the
garden’s base and height.
The garden’s base is
feet and its height is .

12. Tammy is designing a rectangular garden.
The garden’s diagonal must be 13.5 feet,
and the ratio between the garden’s base and
height must be 4 : 3. Find the length of the
garden’s base and height.
The garden’s base is
feet and its height is .

The Quadratic Formula Solve the equation.
13. 28x2 + 29x+ 6 = 0 14. 24x2 + 29x− 4 = 0 15. x2 = −7x− 11

16. x2 = 7x− 11 17. 4x2 + 4x+ 6 = 0 18. 2x2 + 7x+ 7 = 0

19. x2 − 26x = 0 20. x2 − 6x = 0 21. x2 − 7x = 18

22. x2 − x = 20 23. x2 = 9x− 19 24. x2 = −5x− 5

25. An object is launched upward at the height
of 200 meters. Its height can be modeled by

h = −4.9t2 + 70t+ 200,

where h stands for the object’s height in
meters, and t stands for time passed in
seconds since its launch. The object’s height
will be 240 meters twice before it hits the
ground. Find how many seconds since the
launch would the object’s height be 240

meters. Round your answers to two
decimal places if needed.
The object’s height would be 240 meters the
first time at seconds,
and then the second time at

seconds.

26. An object is launched upward at the height
of 220 meters. Its height can be modeled by

h = −4.9t2 + 50t+ 220,

where h stands for the object’s height in
meters, and t stands for time passed in
seconds since its launch. The object’s height
will be 230 meters twice before it hits the
ground. Find how many seconds since the
launch would the object’s height be 230

meters. Round your answers to two
decimal places if needed.
The object’s height would be 230 meters the
first time at seconds,
and then the second time at

seconds.
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Complex Solutions to Quadratic Equations Simplify the radical and write it as a complex number using i.
27.

√
−40 28.

√
−56

Solve the quadratic equation. Solutions could be complex numbers.
29. −2y2 − 5 = 1 30. 3r2 + 8 = 2

31. −5(r+ 4)2 + 5 = 85 32. 3(t− 6)2 + 5 = −295

Solving Equations in General Solve the equation.
33.

√
t+ 72 = t 34. √

x+ 30 = x 35. 5+ 10(y− 5) = −6− (7− 2y)

36. 3+ 8(t− 3) = 1− (2− 3t) 37. x2 + 5x = 24 38. x2 + 8x = 9

39. −8− 8A+ 2 = −A+ 12− 7A 40. −6− 10C+ 6 = −C+ 13− 9C41. x2 + 8x+ 3 = 0

42. x2 − 6x− 9 = 0 43. −7− 2(x+ 2)2 = −9 44. 30− 6(x+ 2)2 = 6

45. 14 =
t

5
+

t

2
46. 3 =

a

3
+

a

6
47. y =

√
y+ 4+ 86

48. r =
√
r+ 2+ 40 49. 3x2 + 41 = 0 50. 43x2 + 47 = 0

51. 5x2 = −42x− 49 52. 2x2 = −21x− 10 53. x =
√
x− 1+ 7

54. x =
√
x+ 7− 1



Chapter 8

Quantities in the Physical World

8.1 Scientific Notation
Very large and very small numbers can be awkward to write and calculate with. These kinds of numbers
can show in the sciences. For example in biology, a human hair might be as thick as 0.000181 meters. And
the closest that Mars gets to the sun is 206620000 meters. Keeping track of the decimal places and extra
zeros raises the potential for mistakes to be made. In this section, we discuss a format used for very large
and very small numbers called scientific notation that helps alleviate the issues with these numbers.

8.1.1 The Basics of Scientific Notation
An October 3, 2016 CBS News headline1 read:

Federal Debt in FY 2016 Jumped $1,422,827,047,452.46—that’s $12,036 Per Household.
The article also later states:

By the close of business on Sept. 30, 2016, the last day of fiscal 2016, it had climbed to $19,573,444,713,936.79.
When presented in this format, trying to comprehend the value of these numbers can be overwhelming.
More commonly, such numbers would be presented in a descriptive manner:

• The federal debt climbed by 1.42 trillion dollars in 2016.
• The federal debt was 19.6 trillion dollars at the close of business on Sept. 30, 2016.
In science, government, business, and many other disciplines, it’s not uncommon to deal with very large

numbers like these. When numbers get this large, it can be hard to discern when a number has eleven digits
and when it has twelve.

We have descriptive language for all numbers based on the place value of the different digits: ones, tens,
thousands, ten thousands, etc. We tend to rely upon this language more when we start dealing with larger
numbers. Here’s a chart for some of the most common numbers we see and use in the world around us:

1http://www.cnsnews.com/news/article/terence-p-jeffrey/federal-debt-fy-2016-jumped-142282704745246
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Number US English Name Power of 10
1 one 100

10 ten 101

100 hundred 102

1,000 one thousand 103

10,000 ten thousand 104

100,000 one hundred thousand 105

1,000,000 one million 106

1,000,000,000 one billion 109

Figure 8.1.2: Whole Number Powers of 10

Each number above has a corresponding power of ten and this power of ten will be important as we start to
work with the content in this section. This descriptive language also covers even larger numbers: trillion,
quadrillion, quintillion, sextillion, septillion, and so on. There’s also corresponding language to describe
very small numbers, such as thousandth, millionth, billionth, trillionth, etc.

Through centuries of scientific progress, humanity became increasingly aware of very large numbers
and very small measurements. As one example, the star that is nearest to our sun is Proxima Centauri2.
Proxima Centauri is about 25,000,000,000,000 miles from our sun. Again, many will find the descriptive
language easier to read: Proxima Centauri is about 25 trillion miles from our sun.

To make computations involving such numbers more manageable, a standardized notation called “scien-
tific notation” was established. The foundation of scientific notation is the fact that multiplying or dividing
by a power of 10 will move the decimal point of a number so many places to the right or left, respectively.
So first, let’s take a moment to review that level of basic arithmetic.
Checkpoint 8.1.3 Perform the following operations:

a. Multiply 5.7 by 10. b. Multiply 3.1 by 10000.

Explanation.
a. 5.7× 10 = 57

10 = 101 and multiplying by 101 moved the decimal point one place to the right.
b. 3.1× 10000 = 31000

10000 = 104 and multiplying by 104 moved the decimal point four places to the right.
Multiplying a number by 10n where n is a positive integer had the effect of moving the decimal point n
places to the right.

Every number can be written as a product of a number between 1 and 10 and a power of 10. For example,
650 = 6.5× 100. Since 100 = 102, we can also write

650 = 6.5× 102

and this is our first example of writing a number in scientific notation.
Definition 8.1.4 A positive number is written in scientific notation when it has the form a × 10n where n

is an integer and 1 ≤ a < 10. In other words, a has precisely one non-zero digit to the left of the decimal
place. The exponent n used here is called the number’s order of magnitude. The number a is sometimes

2imagine.gsfc.nasa.gov/features/cosmic/nearest_star_info.html
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called the significand or the mantissa.
Some conventions do not require a to be between 1 and 10, excluding both values, but that is the con-

vention used in this book.
Some calculators and computer readouts cannot display exponents in superscript. In some cases, these

devices will display scientific notation in the form 6.5E2 instead of 6.5× 102. ♢

8.1.2 Scientific Notation for Large Numbers
To write a number larger than 10 in scientific notation, like 89412, first write the number with the decimal
point right after its first digit, like 8.9412. Now count how many places there are between where the decimal
point originally was and where it is now.

8.

4︷︸︸︷
9412

Use that count as the power of 10. In this example, we have

89412 = 8.9412× 104

Scientific notation communicates the “essence” of the number (8.9412) and then its size, or order of magni-
tude (104).
Example 8.1.5 To get a sense of how scientific notation works, let’s consider familiar lengths of time con-
verted to seconds.

Length of Time Length in Seconds Scientific Notation
one second 1 second 1× 100 second
one minute 60 seconds 6× 101 seconds
one hour 3600 seconds 3.6× 103 seconds
one month 2,628,000 seconds 2.628× 106 seconds
ten years 315,400,000 seconds 3.154× 108 seconds
79 years (about a lifetime) 2,491,000,000 seconds 2.491× 109 seconds

Note that roughly 2.6 million seconds is one month, while roughly 2.5 billion seconds is an entire lifetime.

Checkpoint 8.1.6 Write each of the following in scientific notation.
a. The federal debt at the close of business on Sept. 30, 2016: about 19,600,000,000,000 dollars.
b. The world’s population in 2016: about 7,418,000,000 people.

Explanation.
a. To convert the federal debt to scientific notation, we will count the number of digits after the first non-

zero digit (which happens to be a 1 here). Since there are 13 places after the first non-zero digit, we
write:

1

13 places︷ ︸︸ ︷
9,600,000,000,000 dollars = 1.96× 1013 dollars

b. Since there are nine places after the first non-zero digit of 7, the world’s population in 2016 was about

7,

9 places︷ ︸︸ ︷
418,000,000 people = 7.418× 109 people
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Checkpoint 8.1.7 Convert each of the following from scientific notation to decimal notation (without any
exponents).

a. The earth’s diameter is about 1.27× 107 meters.
b. As of 2019, there are 3.14× 1013 known digits of π.

Explanation.
a. To convert this number to decimal notation we will move the decimal point after the digit 1 seven

places to the right, including zeros where necessary. The earth’s diameter is:

1.27× 107 meters = 1

7 places︷ ︸︸ ︷
2,700,000 meters.

b. As of 2019 there are

3.14× 1013 = 3

13 places︷ ︸︸ ︷
1,400,000,000,000

known digits of π.

8.1.3 Scientific Notation for Small Numbers
Scientific notation can also be useful when working with numbers smaller than 1. As we saw in Figure 8.1.2,
we can represent thousands, millions, billions, trillions, etc., with positive integer exponents on 10. We can
similarly represent numbers smaller than 1 (which are written as tenths, hundredths, thousandths, mil-
lionths, billionths, trillionths, etc.), with negative integer exponents on 10. This relationship is outlined in
Figure 8.1.8.

Number English Name Power of 10
1 one 100

0.1 one tenth 1
10

= 10−1

0.01 one hundredth 1
100

= 10−2

0.001 one thousandth 1
1,000

= 10−3

0.0001 one ten thousandth 1
10,000

= 10−4

0.00001 one hundred thousandth 1
100,000

= 10−5

0.000001 one millionth 1
1,000,000

= 10−6

0.000000001 one billionth 1
1,000,000,000

= 10−9

Figure 8.1.8: Negative Integer Powers of 10

To see how this works with a digit other than 1, let’s look at 0.005. When we state 0.005 as a number, we
say “5 thousandths.” Thus 0.005 = 5 × 1

1000
. The fraction 1

1000
can be written as 1

103 , which we know is
equivalent to 10−3. Using negative exponents, we can then rewrite 0.005 as 5 × 10−3. This is the scientific
notation for 0.005.

In practice, we won’t generally do that much computation. To write a small number in scientific notation
we start as we did before and place the decimal point behind the first non-zero digit. We then count the
number of decimal places between where the decimal had originally been and where it now is. Keep in mind
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that negative powers of ten are used to help represent very small numbers (smaller than 1) and positive
powers of ten are used to represent very large numbers (larger than 1). So to convert 0.005 to scientific
notation, we have:

0

3︷︸︸︷
.005 = 5× 10−3

Example 8.1.9 In quantum mechanics, there is an important value called Planck’s Constant3. Written as a
decimal, the value of Planck’s constant (rounded to six significant digits) is

0.000 000 000 000 000 000 000 000 000 000 000 662 607.

In scientific notation, this number will be 6.62607 × 10?. To determine the exponent, we need to count
the number of places from where the decimal originally is to where we will move it (following the first “6”):

0

34 places︷ ︸︸ ︷
.000 000 000 000 000 000 000 000 000 000 000 6 62 607

So in scientific notation, Planck’s Constant is 6.62607× 10−34. It will be much easier to use 6.62607× 10−34

in a calculation, and an added benefit is that scientific notation quickly communicates both the value and
the order of magnitude of Planck’s Constant.

Checkpoint 8.1.10 Write each of the following in scientific notation.
a. The weight of a single grain of long grain rice is about 0.029 grams.
b. The gate pitch of a microprocessor is 0.000 000 014 meters

Explanation.
a. To convert this weight to scientific notation, we must first move the decimal behind the first non-zero

digit to obtain 2.9, which requires that we move the decimal point 2 places. Thus we have:

0

2︷︸︸︷
.02 9 grams = 2.9× 10−2 grams

b. The gate pitch of a microprocessor is:

0

8 places︷ ︸︸ ︷
.000 000 01 4 meters = 1.4× 10−8 meters

Checkpoint 8.1.11 Convert each of the following from scientific notation to decimal notation (without any
exponents).

a. A download speed of 7.53× 10−3 Gigabyte per second.
b. The weight of a poppy seed is about 3× 10−7 kilograms

Explanation.
a. To convert a download speed of 7.53 × 10−3 Gigabyte per second to decimal notation, we will move
3en.wikipedia.org/wiki/Planck_constant
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the decimal point 3 places to the left and include the appropriate number of zeros:

7.53× 10−3 Gigabyte per second = 0

3︷︸︸︷
.007 53 Gigabyte per second

b. The weight of a poppy seed is about:

3× 10−7 kilograms = 0

7 places︷ ︸︸ ︷
.0000003 kilograms

Checkpoint 8.1.12 Decide if the numbers are written in scientific notation or not. Use Definition 8.1.4.
a. The number 7× 101.9 (□ is □ is not) in scientific notation.
b. The number 2.6× 10−31 (□ is □ is not) in scientific notation.
c. The number 10× 74 (□ is □ is not) in scientific notation.
d. The number 0.93× 103 (□ is □ is not) in scientific notation.
e. The number 4.2× 100 (□ is □ is not) in scientific notation.
f. The number 12.5× 10−6 (□ is □ is not) in scientific notation.

Explanation.
a. The number 7× 101.9 is not in scientific notation. The exponent on the 10 is required to be an integer

and 1.9 is not.
b. The number 2.6× 10−31 is in scientific notation.
c. The number 10× 74 is not in scientific notation. The base must be 10, not 7.
d. The number 0.93×103 is not in scientific notation. The coefficient of the 10 must be between 1 (inclusive)

and 10.
e. The number 4.2× 100 is in scientific notation.
f. The number 12.5 × 10−6 is not in scientific notation. The coefficient of the 10 must be between 1 (in-

clusive) and 10.

8.1.4 Multiplying and Dividing Using Scientific Notation
One main reason for having scientific notation is to make calculations involving immensely large or small
numbers easier to perform. By having the order of magnitude separated out in scientific notation, we can
separate any calculation into two components.
Example 8.1.13On Sept. 30th, 2016, the US federal debt was about $19,600,000,000,000 and the US population
was about 323,000,000. What was the average debt per person that day?

a. Calculate the answer using the numbers provided, which are not in scientific notation.
b. First, confirm that the given values in scientific notation are 1.96× 1013 and 3.23× 108. Then calculate

the answer using scientific notation.
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Explanation. We’ve been asked to answer the same question, but to perform the calculation using two
different approaches. In both cases, we’ll need to divide the debt by the population.

a. We may need to use a calculator to handle such large numbers and we have to be careful that we type
the correct number of 0s.

19600000000000

323000000
≈ 60681.11

b. To perform this calculation using scientific notation, our work would begin by setting up the quotient
as 1.96×1013

3.23×108 . Dividing this quotient follows the same process we did with variable expressions of the
same format, such as 1.96w13

3.23w8 . In both situations, we’ll divide the coefficients and then use exponent
rules to simplify the powers.

1.96× 1013

3.23× 108
=

1.96

3.23
× 1013

108

≈ 0.6068111× 105

≈ 60681.11

The federal debt per capita in the US on September 30th, 2016 was about $60,681.11 per person. Both calcu-
lations give us the same answer, but the calculation relying upon scientific notation has less room for error
and allows us to perform the calculation as two smaller steps.
Whenever we multiply or divide numbers that are written in scientific notation, we must separate the calcu-
lation for the coefficients from the calculation for the powers of ten, just as we simplified earlier expressions
using variables and the exponent rules.
Example 8.1.14

a. Multiply (2× 105
) (

3× 104
). b. Divide 8× 1017

4× 102
.

Explanation. We will simplify the significand/mantissa parts as one step and then simplify the powers of
10 as a separate step.

a. (2× 105
) (

3× 104
)
= (2× 3)×

(
105 × 104

)
= 6× 109

b. 8× 1017

4× 102
=

8

4
× 1017

102

= 2× 1015

Often when we multiply or divide numbers in scientific notation, the resulting value will not be in scien-
tific notation. Suppose we were multiplying (9.3× 1017

) (
8.2× 10−6

) and need to state our answer using
scientific notation. We would start as we have previously:(

9.3× 1017
) (

8.2× 10−6
)
= (9.3× 8.2)×

(
1017 × 10−6

)
= 76.26× 1011

While this is a correct value, it is not written using scientific notation. One way to convert this answer into
scientific notation is to turn just the coefficient into scientific notation and momentarily ignore the power of
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ten:

= 76.26× 1011

= 7.626× 101 × 1011

Now that the coefficient fits into the proper format, we can combine the powers of ten and have our answer
written using scientific notation.

= 7.626× 101 × 1011

= 7.626× 1012

Example 8.1.15 Multiply or divide as indicated. Write your answer using scientific notation.
a. (8× 1021

) (
2× 10−7

)
b. 2× 10−6

8× 10−19

Explanation. Again, we’ll separate out the work for the significand/mantissa from the work for the powers
of ten. If the resulting coefficient is not between 1 and 10, we’ll need to adjust that coefficient to put it into
scientific notation.

a. (8× 1021
) (

2× 10−7
)
= (8× 2)×

(
1021 × 10−7

)
= 16× 1014

= 1.6× 101 × 1014

= 1.6× 1015

We need to remember to apply the product rule for exponents to the powers of ten.

b. 2× 10−6

8× 10−19
=

2

8
× 10−6

10−19

= 0.25× 1013

= 2.5× 10−1 × 1013

= 2.5× 1012

There are times where we will have to raise numbers written in scientific notation to a power. For example,
suppose we have to find the area of a square whose radius is 3 × 107 feet. To perform this calculation, we
first remember the formula for the area of a square, A = s2 and then substitute 3×107 for s: A =

(
3× 107

)2.
To perform this calculation, we’ll need to remember to use the product to a power rule and the power to a
power rule:

A =
(
3× 107

)2
= (3)

2 ×
(
107
)2

= 9× 1014
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8.1.5 Reading Questions
1. Which number is very large and which number is very small?

9.99× 10−47 1.01× 1023

2. Since some computer/calculator screens can’t display an exponent, how might a computer/calculator
display the number 2.318× 1013?

3. Why do we bother having scientific notation for numbers?

8.1.6 Exercises

Converting To and From Scientific Notation Write the following number in scientific notation.
1. 100000 2. 20000 3. 300 4. 400000

5. 0.005 6. 0.0006 7. 0.07 8. 0.008

Write the following number in decimal notation without using exponents.
9. 9× 102 10. 1.1× 105 11. 2.02× 103

12. 3.02× 102 13. 4.01× 100 14. 5.01× 100

15. 6× 10−4 16. 7× 10−2 17. 8× 10−4

18. 8.99× 10−2

Arithmetic with Scientific Notation Multiply the following numbers, writing your answer in scientific
notation.

19. (9× 102)(7× 102) 20. (2× 104)(4× 105) 21. (3× 102)(9× 104)

22. (4× 103)(6× 103) 23. (5× 105)(3× 105) 24. (6× 103)(9× 104)

Divide the following numbers, writing your answer in scientific notation.

25. 4.2× 105

7× 103
26. 2.4× 103

8× 102
27. 7.2× 105

9× 102

28. 5.4× 106

9× 104
29. 6× 103

2× 10−4
30. 2.4× 105

3× 10−2

31. 2× 102

4× 10−3
32. 1× 104

5× 10−2
33. 4.8× 10−5

6× 102

34. 3.5× 10−3

7× 105
35. 1.6× 10−2

8× 104
36. 6.3× 10−4

9× 103

Simplify the following expression, writing your answer in scientific notation.
37. (5× 105)4 38. (2× 102)2 39. (2× 108)3

40. (3× 105)2 41. (3× 1010)3 42. (4× 107)4
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8.2 Unit Conversion
Unit conversion is a systematic method for converting from one kind of unit ofUnit ConversionReferences. This

textbook provides unit conversions
in Appendix B for your convenience.
But you may also find unit conver-
sion facts in many other places, in-
cluding the internet.

measurement to another. It is used extensively in chemistry and other health- or
science-related fields. It is a valuable skill to learn, and necessary for success in many
applications.

8.2.1 Unit Ratios
Example 8.2.1
When building a staircase, a step typically has a rise of 7 inches (7 in).
An inch is a unit of length in the imperial unit system, used in the
United States, Canada, the United Kingdom, and a few other places.
Many parts of the world do not use this unit of measurement, and the
people there do not have a sense of how long 7 inches is. Instead, much
of the world would measure a length like this using centimeters (cm).
How many centimeters is 7 inches? 7 in

? cm

To convert from one unit of measurement to another (like inches to centimeters), we use what are called unit
ratios. A unit ratio is a ratio (or fraction) where the numerator and denominator are quantities with units
that equal each other. They equal each other as measurements, but they are measured with different units.
For example, Appendix B tells us that 1 inch is equal to 2.54 centimeters. Knowing that, we can build the
unit ratios 1 in

2.54 cm and 2.54 cm
1 in . Each of these unit ratios are equivalent to 1, because their numerator equals

their denominator.
With a unit ratio, we can work out a conversion by taking what we would like to convert (7 in) and

multiplying by a unit ratio in such a way that the “old” units cancel and the “new” units remain.

7 in =
7 in
1

We are about to do fraction-like multiplication.

=
7 in
1

· 2.54 cm
1 in 1 in equals 2.54 cm.

=
7��in
1

· 2.54 cm
1��in Units may now cancel.

=
7

1
· 2.54 cm

1

= 7 · 2.54 cm
= 17.78 cm

So 7 inches is equal to 17.78 centimeters. In practice, anyone talking about the rise of a stair might simply
round to 18 cm.

Note there was another unit ratio, 1 in
2.54 cm , but using that would not have been helpful, since it would not

have arranged units such that the inches canceled.

Remark 8.2.2 When you are comfortable, you might do the steps from Example 8.2.1 on one line, like:

7 in =
7��in
1

· 2.54 cm
1��in =

7

1
· 2.54

1
cm = 17.78 cm
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The examples in this section will continue to show the steps completely drawn out, to give a better sense of
what you would write first, second, and so on.

Example 8.2.3 A canned beverage typically contains 12 fluid ounces (12 fl oz). A fluid ounce is a unit of
volume used in the United States. (The United Kingdom also has a fluid ounce, but it is a slightly different
amount.) In the rest of the world, people do not have a sense of how much 12 fluid ounces is. Most of the
world would measure a canned beverage’s volume using milliliters (mL). How many milliliters is 12 fluid
ounces?

Appendix B tells us that 1 fl oz is (almost) equal to 29.57 mL. Knowing that, we can build the unit ratios
1 fl oz

29.57 mL and 29.57 mL
1 fl oz . Each of these unit ratios are (almost) equivalent to 1, because their numerator (almost)

equals their denominator.
Using the appropriate unit ratio to enable cancellation of fluid ounces:

12 fl oz =
12 fl oz

1
We are about to do fraction-like multiplication.

≈ 12 fl oz
1

· 29.57mL
1 fl oz 1 fl oz approximately equals 29.57mL.

=
12���fl oz

1
· 29.57mL

1���fl oz Units may now cancel.

=
12

1
· 29.57mL

1

= 12 · 29.57mL
≈ 354.8mL

So 12 fluid ounces is approximately equal to 354.8 milliliters. In practice, you might round to 355 mL.
Notice that each conversion fact from Appendix B gives two possible unit ratios. Deciding which one to use
will depend on where units need to be placed in order to cancel the appropriate units. In unit conversion,
we multiply ratios together and cancel common units the same way we can cancel common factors when
multiplying fractions.

Example 8.2.4 It’s 1760 feet (1760 ft) to walk from Jonah’s house to where he works. How many miles is
that?
Explanation. Since we are converting feet to miles, we use the conversion fact that there are 5280 feet in 1

mile. In this conversion, we need to use a unit ratio that will allow the feet units to cancel. So we need to use
1 mi

5280 ft . This is different from previous examples in that the 1 is in the numerator this time. But the process
is not all that different.

1760 ft = 1760 ft
1

We are about to do fraction-like multiplication.

=
1760 ft

1
· 1mi
5280 ft 1mi equals 5280 ft.

=
1760�ft

1
· 1mi
5280�ft

Units may now cancel.

=
1760

1
· 1mi
5280

=
1760

5280
mi



164 CHAPTER 8. QUANTITIES IN THE PHYSICAL WORLD

=
1

3
mi ≈ 0.3333mi

So Jonah walks 1
3

of a mile, or about 0.3333 mi, to get from his house to where he works.

Checkpoint 8.2.5 Convert 60 inches to feet.
Explanation. We start by writing what it is that we are converting as a ratio, by placing it over a 1. This is
similar to writing a whole number as a fraction when we want to multiply it by a fraction. Next we multiply
that ratio by a unit ratio, one that will have inches in the denominator so that inches will cancel. Multiply
what’s left just as we multiply fractions (multiply the numerators together and multiply the denominators
together), including the units, and simplify by dividing.

60 in =
60 in
1

We are about to do fraction-like multiplication.

=
60 in
1

· 1 ft
12 in 1 ft equals 12 in.

=
60��in
1

· 1 ft
12��in Units may now cancel.

=
60

1
· 1 ft
12

=
60

12
ft

= 5 ft

We find that 60 inches is equivalent to 5 feet.

Example 8.2.6 Why Do We Convert Units? Converting from one unit to another can be necessary when
you are given information where the units don’t quite match. Cassidy was driving at a speed of 32 mph for
seven minutes. How far did they travel in that time span?

Normally, to find a distance traveled, you would multiply speed by how much time passed. For example
if Cassidy had been driving 50 mph for two hours, we would find 50 ·2 = 100, and conclude they had driven
100 miles.

But in this example, Cassidy’s speed is 32 miles per hour, but the time elapsed is seven minutes. The time
units do not match. It will help to convert the 7 min into hours. So let’s do that.

7min =
7min
1

We are about to do fraction-like multiplication.

=
7min
1

· 1h
60min 1h equals 60min.

=
7��min
1

· 1h
60��min Units may now cancel.

=
7

1
· 1h
60

=
7

60
h

≈ 0.1167h
Now we can multiply Cassidy’s speed (32 mph) by their elapsed time ( 7

60
h). We find 32 · 7

60
≈ 3.733, so

Cassidy has traveled about 3.733 miles.
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Actually we can do this multiplication with units and the units will cancel appropriately:

32
mi
h · 7

60
h =

32mi
1h · 7h

60

=
32mi
1 �h

· 7 �h
60

=
32 · 7
60

mi
≈ 3.733mi

Checkpoint 8.2.7 The density of oil is 6.9 pounds per gallon. You have a 2.5-liter bottle of oil. How much
does this much oil weigh? (To find weight, multiply density with volume when the units match.)
Explanation. The density is in pounds per gallon, but the volume is in liters. So first let’s convert the 2.5 L
to gallons.

2.5L =
2.5L
1

We are about to do fraction-like multiplication.

≈ 2.5L
1

· 1gal
3.785L 1gal approximately equals 3.785L.

=
2.5�L
1

· 1gal
3.785�L

Units may now cancel.

=
2.5

1
· 1gal
3.785

=
2.5

3.785
gal

≈ 0.6605 gal
Now we can multiply the density (6.9 lb/gal) by the volume (≈ 0.6605 gal). We find 6.9 · 0.6605 ≈ 4.557,

so the oil weighs about 4.557 pounds.
With units:

6.9
lb

gal · 0.6605 gal = 6.9 lb
1gal · 0.6605 gal

1

=
6.9 lb
1��gal · 0.6605�

�gal
1

= 6.9 · 0.6605 lb
≈ 4.557 lb

8.2.2 Using Multiple Unit Ratios
In previous examples, we used only one unit ratio to make a conversion. However, sometimes there is a
need to use more than one unit ratio in a conversion. This may happen when your reference guide for
conversions does not directly tell you how to convert from one unit to another. In those situations, we’ll
have to consider the conversion facts that are available and then make a plan.

Example 8.2.8 Convert 350 yards to miles.
Explanation. In Appendix B, there is not a conversion that relates yards to miles. But notice that we can
convert yards to feet (using the fact that one yard is three feet) and then we can convert feet to miles (using
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the fact that one mile is 5280 feet). So we will use two unit ratios. The unit ratio 3 ft
1 yd can be used to cancel

the yards in 350 yd. Then the unit ratio 1 mi
5280 ft can be used to cancel the feet that are left over from the first

conversion.

350yd =
350 yd

1
We are about to do fraction-like multiplication.

=
350 yd

1
· 3 ft
1yd · 1mi

5280 ft Both unit ratios are needed.

=
350��yd

1
· 3Sft
1��yd · 1mi

5280Sft
Units may now cancel.

=
350

1
· 3
1
· 1mi
5280

=
350 · 3
5280

mi
≈ 0.1989mi

So 350 yards is about 0.1989 miles.

Checkpoint 8.2.9 Convert 4.5 months into hours.
Explanation. Notice that we can convert months to days (using the fact that one month is approximately
30 days) and then we can convert days to hours (using the fact that one day is 24 hours).

4.5mo =
4.5mo

1
We are about to do fraction-like multiplication.

≈ 4.5mo
1

· 30d
1mo · 24h

1d Two unit ratios are needed.

=
4.5��mo

1
· 30�d
1��mo · 24h

1�d
Units may now cancel.

=
4.5

1
· 30
1

· 24h
1

= 4.5 · 30 · 24h
= 3240h

So 4.5 months is about 3240 hours.

8.2.3 Converting Squared or Cubed Units
When calculating the area or volume of a geometric figure, units of measurement are multiplied together,
resulting in squared units (when calculating area) or cubed units (when calculating volume). Thus, there
may be circumstances where you may need to convert either squared or cubed units. For example, suppose
you are carpeting a room in your home and you know the square footage of the room, but the carpet is sold
in square yards. In that case, you would need to convert the square feet of the room into square yards.

Example 8.2.10 Jin’s bedroom is 153 square feet (153 ft2). How many square yards is that?
We start the process the same as in the previous examples. That is, we write what we are converting in
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ratio form with a denominator of 1.

153 ft2 =
153 ft2

1
We are about to do fraction-like multiplication.

Now, we do want feet to be replaced with yards, so the unit ratio 1 yd
3 ft will be useful. But using it once is not

enough:

153 ft2 =
153 ft2

1

=
153 ft2

1
· 1yd
3 ft 1 yd equals 3 feet.

The ft2 in the first numerator do not fully cancel with the ft in the second denominator. We need to use this
unit ratio twice.

153 ft2 =
153 ft2

1

=
153 ft2

1
· 1yd
3 ft · 1yd

3 ft 1 yd equals 3 feet.

Now there is ft2 in the overall numerator, and ft · ft in the overall denominator. They will fully cancel.
Here is the complete process from the beginning.

153 ft2 =
153 ft2

1

=
153 ft2

1
· 1yd
3 ft · 1yd

3 ft

=
153��ft2

1
· 1yd
3�ft

· 1yd
3�ft

Units may now cancel.

=
153

1
· 1yd

3
· 1yd

3

=
153

9
yd · yd

= 17yd2

So Jin’s bedroom has 17 square yards of area.
Alternatively, we can set up conversions with squared or cubed units this way:

153 ft2 =
153 ft2

1

=
153 ft2

1
·
(
1yd
3 ft

)2

The ft in the denominator will be squared.

=
153 ft2

1
· 1yd2

9 ft2
Using Fact 5.6.5.

=
153��ft2

1
· 1yd2

9��ft2
Units may now cancel.
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=
153

1
· 1yd2

9

=
153

9
yd2

= 17yd2

When using this setup where the unit ratio is raised to a power, you must be careful to remember that
everything inside the parentheses is raised to that power: the units and the numbers alike.

Checkpoint 8.2.11 Convert 85 cubic inches into cubic centimeters.
Explanation.

85 in3 =
85 in3

1

=
85 in3

1
·
(
2.54 cm
1 in

)3

The inches in the denominator will be cubed.

=
85 in3

1
· 2.54

3 cm3

1 in3
Using the quotient to a power rule.

=
85��in3

1
· 2.54

3 cm3

1��in3
Units may now cancel.

=
85

1
· 2.54

3 cm3

1

= 85 · 2.543 cm3

≈ 1393 cm3

So 85 cubic inches is about 1393 cubic centimeters.

8.2.4 Converting Rates
A rate unit has a numerator and a denominator. For example, speed is a rate, and speed can be measured
in mi

h . The numerator unit is a mile and the denominator unit is an hour.
Suppose we wanted to convert a speed rate, such as 65 mi

h , into m
s . Or a concentration rate, such as 180 mg

L ,
into g

dL . We can use the same process that we’ve used before to do these conversions. That is, we start by
writing what we want to convert as a ratio, which will have units in both the numerator and denominator,
and then we multiply by unit ratios until both units have been converted into the units we want. It helps to
focus on converting one unit at a time and to make sure that the units in our unit ratios are placed so that
the proper units will cancel.

Example 8.2.12 Convert 65 mi
h into m

min .
Explanation. We start by writing what we are converting, which is 65 mi

h , as a ratio. Then, our job is to
convert the miles to meters and the hours to minutes, one at a time. It doesn’t matter which unit ratio we
use first, as long as the units line up to cancel appropriately.

65
mi
h =

65mi
1h Write the rate as a ratio.
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≈ 65mi
1h · 1.609 km

1mi · 1000m
1km · 1h

60min Use unit ratios to make cancellations.

=
65��mi
1 �h

· 1.609
HHkm

1��mi · 1000m
1HHkm · 1 �h

60min Units may now cancel.

=
65

1
· 1.609

1
· 1000m

1
· 1

60min
=

65 · 1.609 · 1000
60

m
min

≈ 1743
m

min
Notice that the last unit ratio is used to convert the hours to minutes and the hour must be placed in the
numerator to cancel the hour in the original rate that was in the denominator. Also, note that this will
automatically cause minutes to end up in the denominator, which is where this unit should end up so that
we end up with meters per minute for our final unit.
An important thing to keep in mind, as demonstrated in the previous example, as well as the next example,
is that we avoid multiplying or dividing any numbers until the end, after the final units that we want have
been obtained. Stopping partway through to multiply or divide some numbers could lead to confusion and
mistakes.
Checkpoint 8.2.13 Convert 180 mg/L into g/dL, given that there are 10 deciliters in a liter.
Explanation. We start by writing what we are converting, which is 180 mg/L, as a ratio. Then, we need to
convert the milligrams into grams and the liters into deciliters, converting one unit at a time. We will start
by converting the milligrams into grams. Then, we will convert the liters to deciliters.

180
mg
L =

180mg
1L Write the rate as a ratio.

=
180mg
1L · 1g

1000mg · 1L
10dL Use unit ratios to make cancellations.

=
180��mg
1�L

· 1g
1000��mg · 1�L

10dL Units may now cancel.

=
180

1
· 1g
1000

· 1

10dL
=

180

1000 · 10
g

dL
≈ 0.018

g
dL

So for example if salt is mixed into water with a concentration of 180 mg/L, the concentration can also
be described as 0.018 g/dL.

8.2.5 Reading Questions

1. Unit conversion is a lot like multiplying .
2. If you are using a unit ratio to convert inches to feet, how do you decide whether to use 1 ft

12 in or to use
12 in
1 ft ?
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3. If you use a power of a unit ratio to make a unit conversion, what do you need to remember?

8.2.6 Exercises

Review and Warmup

1. Multiply: 5

9
· 5
8

2. Multiply: 4

9
· 4
7

3. Multiply: 14

11
· 13
6

4. Multiply: 15

7
· 4

15
5. Multiply: 10 · 1

7
6. Multiply: 3 · 2

5

Unit Conversions
7. Convert 7.8 min to seconds. 8. Convert 2.6 mi2 to acres.
9. Convert 633 mi2 to acres. 10. Convert 1.11 mi to feet.
11. Convert 49.7 mg to grams. 12. Convert 865 mg to grams.
13. Convert 3.42 m2 to hectares. 14. Convert 7.9 mL to cubic centimeters.
15. Convert 16 mL to gallons. 16. Convert 5.4 B to kilobits.
17. Convert 91 T to ounces. 18. Convert 418 ns to milliseconds.
19. Convert 7.95 mm to hectometers. 20. Convert 26.3 km to hectometers.
21. Convert 649 ft2 to square miles. 22. Convert 1.17 kg to milligrams.
23. Convert 45 m3 to cubic yards. 24. Convert 25 hm2 to square meters.
25. Convert 8.5 yd3 to cubic feet. 26. Convert 65 dm2 to square meters.
27. Convert 3.85 in3 to cubic centimeters. 28. Convert 13.5 mm2 to square meters.
29. Convert 785 km3 to cubic meters. 30. Convert 5.35 mi2 to square feet.
31. Convert 40.5 yd

ms to meters per second. 32. Convert 29 m
s to decimeters per millisecond.

33. Convert 64 acre
wk to square miles per day. 34. Convert 1.4 mi2

ms to acres per second.
35. Convert 84 mL

d to liters per hour. 36. Convert 8.78 cc
wk to liters per day.

37. Convert 34.5 T
wk to pounds per day. 38. Convert 77.3 g

wk to kilograms per day.
39. Convert 1.99 kb

h to bits per day. 40. Convert 57.7 kb
h to megabits per minute.

41. Convert 94 oz
in3 to pounds per gallon. 42. Convert 4.2 oz

cc to pounds per milliliter.

Applications
43. Renee’s bedroom has

124 ft2 of floor. She would
like to carpet the floor, but
carpeting is sold by the
square yard. How many
square yards of carpeting
will she need to get?

44. Charlotte’s bedroom has
137 ft2 of floor. She would
like to carpet the floor, but
carpeting is sold by the
square yard. How many
square yards of carpeting
will she need to get?

45. Kenji is traveling in
Europe and renting a car.
He is used to thinking of
gasoline amounts in
gallons, but in Europe it is
sold in liters. After filling
the gas tank, he notices it
took 39 L of gas. How
many gallons is that?
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46. Alisa is traveling in
Europe and renting a car.
She is used to thinking of
gasoline amounts in
gallons, but in Europe it is
sold in liters. After filling
the gas tank, she notices it
took 42 L of gas. How
many gallons is that?

47. Kara found a family
recipe from the old
country that uses 330 mL
of soup stock. The recipe
serves four, but Kara
wants to scale it up to
serve fourteen. And none
of Kara’s measuring
devices use the metric
system. How many cups
of soup stock should she
use?

48. Scot found a family recipe
from the old country that
uses 360 mL of soup
stock. The recipe serves
four, but Scot wants to
scale it up to serve ten.
And none of Scot’s
measuring devices use the
metric system. How
many cups of soup stock
should he use?

49. Dawn was driving at a
steady speed of 67 mph
for 10 minutes. How far
did she travel in that
time?

50. Tien was driving at a
steady speed of 25 mph
for 23 minutes. How far
did he travel in that time?

51. The algae in a pond is
growing at a rate of
0.18

kg
d . How much algae

is in the poind after 16
weeks?

52. The algae in a pond is
growing at a rate of
0.22

kg
d . How much algae

is in the poind after 9
weeks?

53. Brandon is downloading
content at an average rate
of 48 Mbps (megabits per
second). After 189
minutes, how much has
he downloaded? It is
appropriate to express an
amount of data like this in
bytes, kilobytes,
megabytes, gigabytes, or
terabytes.

54. Sarah is downloading
content at an average rate
of 58 Mbps (megabits per
second). After 124
minutes, how much has
she downloaded? It is
appropriate to express an
amount of data like this in
bytes, kilobytes,
megabytes, gigabytes, or
terabytes.

This section is adapted from Dimensional Analysis1, Converting Between Two Systems of
Measurements2, and Converting Rates3 by Wendy Lightheart, OpenStax CNX, which is
licensed under CC BY 4.04

1https://cnx.org/contents/hAiMlVjM@8.4:caPlSDX_@6/Dimensional-Analysis
2https://cnx.org/contents/hAiMlVjM@8.4:8DuPvYyV@7/Converting-Between-the-Two-Systems-of-Measurement
3https://cnx.org/contents/hAiMlVjM@8.5:jRv6NP4J@7/Converting-Rates
4http://creativecommons.org/licenses/by/4.0
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8.3 Geometry Formulas
In this section we will evaluate some formulas related to the geometry of two- and three-dimensional shapes.

8.3.1 Evaluating Perimeter and Area Formulas
Rectangles. The rectangle in Figure 8.3.2 has a length (as measured by the edges on the top and bottom)
and a width (as measured by the edges on the left and right).

length = 3 cmw
id

th
=

2
cm

Figure 8.3.2: A Rectangle

Perimeter is the distance around the edge(s) of a two-dimensional shape. To calculate perimeter, start
from a point on the shape (usually a corner), travel around the shape, and add up the total distance traveled.
For the rectangle in Figure 8.3.2, if we travel around it, the total distance would be:

rectangle perimeter = 3 cm + 2 cm + 3 cm + 2 cm
= 10 cm.

Another way to compute a rectangle’s perimeter would be to start at one corner, add up the edge length
half-way around, and then double that. So we could have calculated the perimeter this way:

rectangle perimeter = 2(3 cm + 2 cm)

= 2(5 cm)

= 10 cm.

There is nothing special about this rectangle having length 3 cm and width 2 cm. With a generic rectangle,
it has some length we can represent with the variable ℓ and some width we can represent with the variable
w. We can use P to represent its perimeter, and then the perimeter of the rectangle will be given by:

P = 2(ℓ+w).

Area is the number of 1 × 1 squares that fit inside a two-dimensional shape (possibly after morphing
them into non-square shapes). If the edges of the squares are, say, 1 cm long, then the area is measured in
“square cm,” written cm2. In Figure 8.3.2, the rectangle has six 1 cm × 1 cm squares, so its area is 6 square
centimeters.

Note that we can find that area by multiplying the length and the width:

rectangle area = (3 cm) · (2 cm)
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= 6 cm2

Again, there is nothing special about this rectangle having length 3 cm and width 2 cm. With a generic
rectangle, it has some length we can represent with the variable ℓ and some width we can represent with the
variable w. We can represent its area with the variable A, and then the area of the rectangle will be given
by:

A = ℓ ·w.
Checkpoint 8.3.3 Find the perimeter and area of the rectangle.

Its perimeter is and its area is .
Explanation. Using the perimeter and area formulas for a rectangle, we have:

P = 2(ℓ+w) A = ℓ ·w
= 2(14+ 5) = 14 · 5
= 2(19) = 70

= 38

Since length and width were measured in meters, we find that the perimeter is 38 meters and the area is
70 square meters.

Example 8.3.4
Imagine a rectangle with width 7.5 in and height
11.43 cm as in Figure 8.3.5.

a. Find the perimeter (in inches) of the rectan-
gle.

b. Find the area (in square centimeters) of the
rectangle.

length = 7.5 in

w
id

th
=

1
1
.4
3

cm

Figure 8.3.5: A Rectangle
Explanation.

a. To find the perimeter (in inches) of the rectangle, we should first convert all lengths into inches. By
Appendix B, we know that 1 in = 2.54 cm. So, we have

11.43 cm =
11.43 cm

1
· 1 in
2.54 cm
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=
11.43

2.54
in

= 4.5 in

So, the total perimeter is 2 · 4.5 in + 2 · 7.5 in = 24 in.
b. To find the area (in square centimeters) of the rectangle, we should first convert all lengths into cen-

timeters. So, we have

7.5 in =
7.5 in
1

· 2.54 cm
1 in

=
7.5

2.54
cm

= 19.05 cm

So, the total area is 19.05 cm · 11.43 cm = 85.725 cm2.

Triangles. The perimeter of a general triangle has no special formula—all that is needed is to add the
lengths of its three sides. The area of a triangle is a bit more interesting. In Figure 8.3.6, there are three
triangles. From left to right, there is an acute triangle, a right triangle, and an obtuse triangle. Each triangle
is drawn so that there is a “bottom” horizontal edge. This edge is referred to as the “base” of the triangle.
With each triangle, a “height” that is perpendicular to the base is also illustrated.

base=3 cm

height=2 cm

base=3 cm

height=2 cm

base=3 cm

height=2 cm

Figure 8.3.6: Triangles

Figure 8.3.7: Triangles
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Each of these triangles has the same base width, 3 cm, and the same height, 2 cm. Note that they each have
the same area as well. Figure 8.3.7 illustrates how they each have an area of 3 cm2.

As with the triangles in Figure 8.3.7, you can always rearrange little pieces of a triangle so that the result-
ing shape is a rectangle with the same base width, but with a height that’s one-half of the triangle’s height.
With a generic rectangle, it has some base width we can represent with the variable b and some height we
can represent with the variable h. We can represent its area with the variable A, and then the area of the
triangle will be given by A = b ·

(
1
2
h
), or more conventionally:

A =
1

2
bh.

Checkpoint 8.3.8 Find the perimeter and area of the triangle.

Its perimeter is and its area is .
Explanation. For perimeter, we just add the three side lengths:

P = 13+ 27+ 17

= 57

For area, we use the triangle area formula:

A =
1

2
bh

=
1

2
(17)(10)

= 5(17)

= 85

Since length and width were measured in meters, we find that the perimeter is 57 meters and the area is
85 square meters.

Circles. To find formulas for the perimeter and area of a circle, it helps to first know that there is a special
number called π (spelled “pi” and pronounced like “pie”) that appears in many places in mathematics. The
decimal value of π is about 3.14159265 . . ., and it helps to memorize some of these digits. It also helps to
understand that π is a little larger than 3. There are many definitions for π that can explain where it comes
from and how you can find all its decimal places, but here we are just going to accept that it is a special
number, and it is roughly 3.14159265 . . ..

The perimeter of a circle is the distance around its edge. For circles, the perimeter has a special name:
the circumference. Imagine wrapping a string around the circle and cutting it so that it makes one complete
loop. If we straighten out that piece of string, we have a length that is just as long as the circle’s circumfer-
ence.
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diameter

circumference = π · diameter

Figure 8.3.9: Circle Diameter and Circumference

As we can see in Figure 8.3.9, the circumference of a circle is a little more than three times as long as its
diameter. (The diameter of a circle is the length of a straight line running from a point on the edge through
the center to the opposite edge.) In fact, the circumference is actually exactly π times the length of the
diameter. With a generic circle, it has some diameter we can represent with the variable d. We can represent
its circumference with the variable c, and then the circumference of the circle will be given by:

c = πd.

Alternatively, we often prefer to work with a circle’s radius instead of its diameter. The radius is the
distance from any point on the circle’s edge to its center. (Note that the radius is half the diameter.) From
this perspective, we can see in Figure 8.3.10 that the circumference is a little more than 6 times the radius.

radius

circumference = π · 2 radius

Figure 8.3.10: Circle Diameter and Circumference

This gives us another formula for a circle’s circumerence that uses the variable r for its radius: c = π · 2r. Or
more conventionally,

c = 2πr.

There is also a formula for the area of a circle based on its radius. Figure 8.3.11 shows how three squares
can be cut up and rearranged to fit inside a circle. This shows how the area of a circle of radius r is just a
little larger than 3r2. Since π is just a little larger than 3, could it be that the area of a circle is given by πr2?
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r

3r

area 3r · r, or 3r2 area still 3r2

circle area slightly more than 3r2

Figure 8.3.11: Circle area is slightly larger than 3r2.

One way to establish this formula is to imagine slicing up the circle into many pie slices as in Figure 8.3.12.
Then you can rearrange the slices into a strange shape that is almost a rectangle with height equal to the
radius of the original circle, and width equal to half the circumference of the original circle.

circ
umference 2πr

half of circumference, πr

other half of circumference, πr

radius r radius r

Figure 8.3.12: Reasoning the circle area formula.

Since the area of the circle is equal to the area of the almost-rectangular shape in Figure 8.3.12, we have the
circle area formula:

A = πr2.
Checkpoint 8.3.13 A circle’s diameter is 6 m.

a. This circle’s circumference, in terms of π, is .

b. This circle’s circumference, rounded to the hundredth place, is .
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c. This circle’s area, in terms of π, is .

d. This circle’s area, rounded to the hundredth place, is .

Explanation. We use r to represent radius and d to represent diameter. In this problem, it’s given that the
diameter is 6 m. A circle’s radius is half as long as its diameter, so the radius is 3 m.

Throughout these computations, all quantities have units attached, but we only show them in the final
step.

a. c = πd

= π · 6
= 6π m

b. c = πd

≈ 3.1415926 · 6
≈ 18.85 m

c. A = πr2

= π · 32

= π · 9
= 9π m2

d. A = πr2

≈ 3.1415926 · 32

≈ 3.1415926 · 9
≈ 28.27 m2

8.3.2 Volume
The volume of a three-dimensional object is the number of 1× 1× 1 cubes that fit inside the object (possibly
after morphing them into non-cube shapes). If the edges of the cubes are, say, 1 cm long, then the volume is
measured in “cubic centimeters ,” written cm3.

Rectangular Prisms. The 3D shape in Figure 8.3.14 is called a rectangular prism.

5 in

3 in

4
in

Figure 8.3.14: Volume of a Rectangular Prism

The rectangular prism in Figure 8.3.14 is composed of 1 in × 1 in × 1 in unit cubes, with each cube’s volume
being 1 cubic inch (or in3). The shape’s volume is the number of such unit cubes. The bottom face has
5 · 4 = 20 unit squares. Since there are 3 layers of cubes, the shape has a total of 3 · 20 = 60 unit cubes. In
other words, the shape’s volume is 60 in3 because it has sixty 1 in × 1 in × 1 in cubes inside it.
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We found the number of unit squares in the bottom face by multiplying 5 · 4 = 20. Then to find the
volume, we multiplied by 3 because there are three layers of cubes. So one formula for a prism’s volume is

V = wdh

where V stands for volume, w for width, d for depth, and h for height.
Checkpoint 8.3.15 A masonry brick is in the shape of a rectangular prism and is 8 inches wide, 3.5 inches
deep, and 2.25 inches high. What is its volume?
Explanation. Using the formula for the volume of a rectangular prism:

V = wdh

= 8(3.5)(2.25)

= 63

So the brick’s volume is 63 cubic inches.
Example 8.3.16
Imagine a rectangular prism with width
40 in, depth 4 ft, and height 2 yd as in
Figure 8.3.17.

1. Find the volume (in cubic feet) of
the prism.

2. Find the surface area (in square
inches) of the prism.

40 in

4 ft

2yd

Figure 8.3.17: A Prism
Explanation.

1. To find the volume (in cubic feet) of the prism, we should first convert all lengths into feet. By Appen-
dix B, we know that 1 ft = 12 in and that 1yd = 3 ft. So, we have

40 in =
40 in
1

· 1 ft
12 in

=
40

12
ft

=
10

3
ft

and

2yd =
2yd
1

· 3 ft
1yd

= 2 · 3 ft
= 6 ft

So, the total volume is 4 ft · 10
3

ft · 6 ft = 80 ft3.
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2. To find the surface area (in square inches) of the prism, we should first convert all lengths into inches.
So, we have

4 ft = 4 ft
1

· 12 in
1 ft

= 4 · 12 in
= 48 in

and

2yd =
2yd
1

· 36 in
1yd

= 2 · 36 in
= 72 in

To find the surface area, we should add up the six areas of the faces of the prism, each of which is a
rectangle. Note that each face has a corresponding symmetrical face on the other side of the prism.

Surface Area =

top and bottom︷ ︸︸ ︷
2(40 in · 36 in)+

left and right︷ ︸︸ ︷
2(48 in · 36 in)+

front and back︷ ︸︸ ︷
2(40 in · 48 in)

= 10176 in2

Cylinders. A cylinder is not a prism, but it has some similarities. Instead of a square base, the base is a
circle. Its volume can also be calculated in a similar way to how prism volume is calculated. Let’s look at
an example.

Example 8.3.18 Find the volume of a cylinder with a radius of 3 meters and a height of 2 meters.

3m

2m

Figure 8.3.19: A Cylinder

Explanation. The base of the cylinder is a circle. We know the area of a circle is given by the formula
A = πr2, so the base area is 9πm2, or about 28.27 m2. That means about 28.27 unit squares can fit into the
base. One of them is drawn in Figure 8.3.20 along with two unit cubes above it.
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Figure 8.3.20: Finding Cylinder Volume

For each unit square in the base circle, there are two unit cubes of volume. So the volume is the base area
times the height: 9πm2 · 2m, which equals 18πm3. Approximating π with a decimal value, this is about
56.55 m3.

Example 8.3.18 demonstrates that the volume of a cylinder can be calculated with the formula

V = πr2h

where r is the radius and h is the height.
Checkpoint 8.3.21 A soda can is basically in the shape of a cylinder with radius 1.3 inches and height 4.8
inches. What is its volume?

Its exact volume in terms of π is: .
As a decimal approximation rounded to four significant digits, its volume is: .

Explanation. Using the formula for the volume of a cylinder:

V = πr2h

= π(1.3)2(4.8)

= 8.112π

≈ 25.48

So the can’s volume is 8.112π cubic inches, which is about 25.48 cubic inches.
Note that the volume formulas for a rectangular prism and a cylinder have something in common: both

formulas first find the area of the base (which is a rectangle for a prism and a circle for a cylinder) and then
multiply by the height. So there is another formula

V = Bh

that works for both shapes. Here,B stands for the base area (which iswd for a prism andπr2 for a cylinder.)
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8.3.3 Summary
Here is a list of all the formulas we’ve learned in this section.

List 8.3.22: Geometry Formulas

Perimeter of a Rectangle P = 2(ℓ+w)

Area of a Rectangle A = ℓw

Area of a Triangle A = 1
2
bh

Circumference of a Circle c = 2πr

Area of a Circle A = πr2

Volume of a Rectangular Prism V = wdh

Volume of a Cylinder V = πr2h

Volume of a Rectangular Prism or Cylinder V = Bh

8.3.4 Exercises

Perimeter and Area
1. Find the perimeter and area of the rectangle.

Its perimeter is and its area is
.

2. Find the perimeter and area of the rectangle.

Its perimeter is and its area is
.

3. Find the perimeter of the
rectangle below.

4. Find the perimeter of the
rectangle below.

5. Find the area of the
rectangle below.
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6. Find the area of the
rectangle below.

7. Find the perimeter and
area of a rectangular table
top with a length of 5.8 ft
and a width of 29 in.
Its perimeter is
and its area is .

8. Find the perimeter and
area of a rectangular table
top with a length of 6 ft
and a width of 25 in.
Its perimeter is
and its area is .

9. Find the perimeter and
area of the square.

a. The perimeter is
.

b. The area is .

10. Find the perimeter and
area of the square.

a. The perimeter is
.

b. The area is .

11. Find the perimeter and
area of the triangle.

Its perimeter is
and its area is .

12. Find the perimeter and
area of the triangle.

Its perimeter is
and its area is .

13. Find the perimeter and
area of the right triangle.

Its perimeter is
and its area is .

14. Find the perimeter and
area of the right triangle.

Its perimeter is
and its area is .

15. Find the perimeter and
area of the triangle.

Its perimeter is
and its area is .

16. Find the perimeter and
area of the triangle.

Its perimeter is
and its area is .

17. The area of the triangle
below is square
feet.
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18. The area of the triangle
below is square
feet.

19. Find the area of a
triangular flag with a base
of 2.3 m and a height of
70 cm.
Its area is .

20. Find the area of a
triangular flag with a base
of 2.6 m and a height of
140 cm.
Its area is .

21. Find the perimeter and
area of this polygon.

Its perimeter is
and its area is .

22. Find the perimeter and
area of this polygon.

Its perimeter is
and its area is .

23. Find the perimeter and
area of this shape.

Its perimeter is
and its area is .

24. Find the perimeter and
area of this shape.

Its perimeter is
and its area is .

25. Find the perimeter and
area of this polygon.

Its perimeter is
and its area is .

26. Find the perimeter and
area of this polygon.

Its perimeter is
and its area is .

A trapezoid’s area can be calculated by the formula A = 1
2
(b1 + b2)h, where A stands for area, b1 for the

first base’s length, b2 for the second base’s length, and h for height.
27. Find the area of the

trapezoid below.
28. Find the area of the

trapezoid below.
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The formula A = 1
2
r n s gives the area of a regular polygon with side length s, number of sides n and,

apothem r. (The apothem is the distance from the center of the polygon to one of its sides.)
29. What is the area of a regular pentagon with

s = 30 in and r = 54 in?
30. What is the area of a regular 94-gon with

s = 42 in and r = 43 in?

31. A circle’s radius is 6 m.
a. The circumference, in terms of π, is

.
b. This circle’s circumference, rounded

to the hundredths place, is .
c. This circle’s area, in terms of π, is

.
d. This circle’s area, rounded to the

hundredths place, is .

32. A circle’s radius is 7 m.
a. The circumference, in terms of π, is

.
b. This circle’s circumference, rounded

to the hundredths place, is .
c. This circle’s area, in terms of π, is

.
d. This circle’s area, rounded to the

hundredths place, is .
33. A circle’s diameter is 16 m.

a. This circle’s circumference, in terms of
π, is .

b. This circle’s circumference, rounded
to the hundredths place, is .

c. This circle’s area, in terms of π, is
.

d. This circle’s area, rounded to the
hundredths place, is .

34. A circle’s diameter is 18 m.
a. This circle’s circumference, in terms of

π, is .
b. This circle’s circumference, rounded

to the hundredths place, is .
c. This circle’s area, in terms of π, is

.
d. This circle’s area, rounded to the

hundredths place, is .

Find the perimeter and area of this shape, which is a semicircle on top of a rectangle.
35.

Its perimeter is
and its area is .

36.

Its perimeter is
and its area is .
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Volume
37. Find the volume of this

rectangular prism.
38. Find the volume of this

rectangular prism.
39. Find the volume of this

rectangular prism.

40. Find the volume of this
rectangular prism.

41. A cube’s side length is
7 cm. Its volume is

.

42. A cube’s side length is
8 cm. Its volume is

.

43. Find the volume of this
cylinder.

a. This cylinder’s
volume, in terms of
π, is .

b. This cylinder’s
volume, rounded to
the hundredths
place, is .

44. Find the volume of this
cylinder.

a. This cylinder’s
volume, in terms of
π, is .

b. This cylinder’s
volume, rounded to
the hundredths
place, is .

45. Find the volume of this
cylinder.

a. This cylinder’s
volume, in terms of
π, is .

b. This cylinder’s
volume, rounded to
the hundredths
place, is .
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46. Find the volume of this
cylinder.

a. This cylinder’s
volume, in terms of
π, is .

b. This cylinder’s
volume, rounded to
the hundredths
place, is .

47. A cylinder’s base’s
diameter is 12 ft, and its
height is 4 ft.

a. This cylinder’s
volume, in terms of
π, is .

b. This cylinder’s
volume, rounded to
the hundredths
place, is .

48. A cylinder’s base’s
diameter is 6 ft, and its
height is 5 ft.

a. This cylinder’s
volume, in terms of
π, is .

b. This cylinder’s
volume, rounded to
the hundredths
place, is .

The formula V = 1
3
· s2 · h gives the volume of a right square pyramid.

49. What is the volume of a right square
pyramid with s = 51 in and h = 82 in?

50. What is the volume of a right square
pyramid with s = 63 in and h = 48 in?

51. Fill out the table with various formulas as they were given in this section.
Rectangle Perimeter
Rectangle Area
Triangle Area
Circle Circumference
Circle Area
Rectangular Prism Volume
Cylinder Volume
Volume of either Rectangular Prism or Cylinder
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8.4 Geometry Applications
8.4.1 Solving Equations for Geometry Problems
With geometry problems in algebra, it is really helpful to draw a picture to understand the scenario better.
After drawing the shape and labeling the given information, we will choose the formula to use from the list
in Subsection 8.3.3.
Example 8.4.1 An Olympic-size swimming pool is rectangular and 50 m in length. We don’t know its width,
but we do know that it required 150 m of painter’s tape to outline the edge of the pool during recent reno-
vations. Use this information to set up an equation and find the width of the pool.
Explanation.
The pool’s shape is a rectangle, so it helps to sketch a rectan-
gle representing the pool as in Figure 8.4.2. Since we know its
length is 50 m, it is a good idea to label that in the sketch. The
width is our unknown quantity, so we can use w as a variable
to represent the pool’s width in meters and label that too.

50

w

Figure 8.4.2: An Olympic-size pool
Since it required 150 m of painter’s tape to outline the pool, we know the perimeter of the pool is 150 m.
This suggests using the perimeter formula for a rectangle: P = 2(ℓ + w). (This formula was discussed in
Subsection 8.3.1).

With this formula, we can substitute 150 in for P and 50 in for ℓ:

150 = 2(50+w).

Now we can solve the equation for the width of the pool.
First, we will distribute on the right side, and then
isolate w.

150 = 100+ 2w

150− 100 = 100− 100+ 2w

50 = 2w

50

2
=

2w

2

25 = w.

Checking the solution w = 25 meters:

150 = 2(50+w)

150
?
= 2(50+ 25)

150
?
= 2(75)

150
✓
= 150.

We found that the width of the pool is 25 meters.

Checkpoint 8.4.3 One sail on a sail boat is approximately shaped like a triangle. If the base length is 10 feet
and the total sail area is 125 square feet, we can wonder how tall is the sail. Set up an equation to model the
sail’s height.
Explanation. Since the sail’s shape is (approximately) a triangle, it helps to sketch a triangle representing
the sail. Since we know its base width is 10 feet, it is a good idea to label that in the sketch. The heigth is
our unknown quantity, so we can use h as a variable to represent the sail’s height in feet and label that too.
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Since the total area is known to be 125 square feet, this suggests using the area formula for a triangle: A =
1
2
bh.

With this formula, we can substitute 125 in for A and 100 in for b:

125 =
1

2
(10)h

and this equation models the height of the pool.
Let’s look at another example. In this one we need to use an algebraic expression for one of the sides of a
rectangle.
Example 8.4.4 Azul is designing a rectangular garden and they have 40 meters of wood planking for the
border. Their garden’s length is 4 meters less than three times the width, and the perimeter must be 40

meters. Find the garden’s length and width.
Explanation. Let Azul’s garden width be w meters. We can then represent the length as 3w − 4 meters
since we are told that it is 4 meters less than three times the width. It’s given that the perimeter is 40 meters.
Substituting those values into the formula, we have:

P = 2(ℓ+w)

40 = 2(3w− 4+w)

40 = 2(4w− 4) Like terms were combined.

The next step to solve this equation is to remove
the parentheses by distribution.

40 = 2(4w− 4)

40 = 8w− 8

40+ 8 = 8w− 8+ 8

48 = 8w

48

8
=

8w

8

6 = w.

Checking the solution w = 6:

40 = 2(4w− 4)

40
?
= 2(4(6) − 4)

40
✓
= 2(20).

To determine the length, recall that this was represented by 3w− 4, which is:

3w− 4 = 3(6) − 4

= 14.

Thus, the width of Azul’s garden is 6 meters and the length is 14 meters.
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Checkpoint 8.4.5 A rectangle’s perimeter is 56 m. Its width is 10 m. Use an equation to solve for the rectan-
gle’s length.

Its length is .
Explanation. When we deal with a geometric figure, it’s always a good idea to sketch it to help us think.
Let the length be x meters.

The perimeter is given as 56 m. Adding up the rectangle’s 4 sides gives the perimeter. The equation is:

x+ x+ 10+ 10 = 56

2x+ 20 = 56

2x+ 20− 20 = 56− 20
2x = 36

2x

2
=

36

2

x = 18

So the rectangle’s length is 18 m. Don’t forget the unit m.

For triangle problems, we may need to use the Pythagorean Theorem that we learned in Subsection 7.1.2. If
we know the lengths of two sides of a right triangle then we can find the length of the third side.

Example 8.4.6 Tan owns a road sign manufacturing company and he is producing triangular yield signs
for the State of Oregon. The signs are equilateral triangles measuring 36 inches on each side as shown in
Figure 8.4.7. Find the area of one sign in square feet to help Tan estimate the amount of material he needs
to produce the signs.
Explanation. We will start by converting 36 inches to 3 feet, because the area needs to be in square feet.
The area of a triangle is found using A = 1

2
bh, where A is the area, b is the width of the base, and h is the

height. In this case the base is at the top of the triangle.
We know the width of the triangle is 3 feet, but we don’t know the height. By drawing in the height we

form two right triangles so we can use the Pythagorean Theorem to find the height. Half of the width is 1.5
feet, so we will substitute for b and c in the pythagorean theorem.
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According to Pythagorean Theorem, we have:

c2 = a2 + b2

32 = a2 + 1.52

9 = a2 + 2.25

9− 2.25 = a2 + 2.25− 2.25

6.75 = a2

√
6.75 = a

2.598 ≈ a

The height of the triangle is approximately 2.598 feet.

a

3

1.5

Figure 8.4.7
Now we can calculate the area of one sign.

A =
1

2
bh

≈ 1

2
(3)(2.598)

= 3.897

The area of one sign is approximately 3.897 ft2.

Now we will look at an example that involves a circle. It can be difficult to measure the radius of a circle or
cylinder. But if we can measure the circumference, then we can find the radius.

Example 8.4.8 Batula wants to order a custom replacement column for the front of her house and she needs
to know the radius. She takes a string and wraps it around the old column. She measures the string and
finds the circumference is 3 feet, 2.5 inches. What is the radius of the column?
Explanation. The formula for the circumference of a circle isC = 2πr, whereC stands for the circumference
and r stands for the radius.

We will let the radius of Batula’s column be r inches. It’s given that the circumference is 3 feet, 2.5 inches,
so let’s convert 3 feet into inches.

3 ft = 3 ft
1

· 12 in
1 ft

=
3�ft
1

· 12 in
1�ft

= 3 · 12 in
= 36 in

Since 3 feet is 36 inches, we can add the 2.5 inches for a total of 38.5 inches. Substituting the circumference
into the formula, we have:

C = 2πr

38.5 = 2πr
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The next step is to divide both sides by 2π.

38.5 = 2πr

38.5

2π
=

2πr

2π

6.127 ≈ r.

Checking the solution r ≈ 6.13 inches:

38.5 = 2πr

38.5
?
≈ 2π(6.127)

38.5
✓
≈ 38.5.

Therefore, Batula should order a column with a radius of 6.127 inches. A specific measurement like that may
not be possible, but Batula could round to something like 6 1

8
inches, which is very close. If the manufacturer

wanted the diameter instead, we would multiply that by 2 to get 12.25 or 6 1
4

inches.
Here is an example using volume.
Example 8.4.9 Mark is designing a cylindrical container for his ice cream business. He wants each container
to be 15 centimeters tall and hold 1 gallon of ice cream. What dimension should Mark use for the radius of
the container?
Explanation. The formula for the volume of a cylinder is V = πr2h, where V stands for the volume, r
stands for the radius and h is the height.

Since the volume is in gallons and the dimensions are in centimeters, we need to convert 1 gallon to cubic
centimeters.

1gal = 1gal
1

· 231 in3

1gal · 2.54
3 cm3

1 in3

=
1��gal
1

· 231�
�in3

1��gal · 2.54
3 cm3

1��in3

= 1 · 231 · 2.543 cm3

= 3785.41 cm3

Now we can substitute the volume and height into the formula:

V = πr2h

3785.41 = πr2(15)

The next step is to divide both sides by 15π.

3785.41 = 15πr2

3785.41

15π
=

15πr2

15π
3785.41

15π
= r2√

3785.41

15π
= r

8.963 ≈ r.

Checking the solution r ≈ 8.963 centimeters:

3785.41 = πr2h

3785.41
?
≈ π(8.9632)(15)

3785.41
✓
≈ 3783.18.

Note that our check is approximate because we rounded our answer. Mark will want to make the radius
of his container at least 8.963 centimeters. He should make it a little larger to have space at the top of the
container.
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8.4.2 Proportionality in Similar Triangles
Another appliction of geometry involves similar triangles. Two triangles are considered similar if they have
the same angles and their side lengths are proportional, as shown in Figure 8.4.10:

1
cm

√
3 cm

2 cm
60◦ 3

cm

3
√
3 cm

6 cm
60◦

Figure 8.4.10: Similar Triangles

In the first triangle in Figure 8.4.10, the ratio of the left side length to the hypotenuse length is 1 cm
2 cm ; in the

second triangle, the ratio of the left side length to the hypotenuse length is 3 cm
6 cm . Since both reduce to 1

2
, we

can write the following proportion:
1 cm
2 cm =

3 cm
6 cm

If we extend this concept, we can use it to solve for an unknown side length. Consider the two similar
triangles in the next example.
Example 8.4.11

3
cm

4 cm
53.13◦

x
cm

6 cm
53.13◦

Figure 8.4.12: Similar Triangles

Since the two triangles are similar, we know that their side length should be proportional. To determine the
unknown length, we can set up a proportion and solve for x:

bigger triangle’s left side length in cm
bigger triangle’s bottom side length in cm =

smaller triangle’s left side length in cm
smaller triangle’s bottom side length in cm

x cm
6 cm =

3 cm
4 cm
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x

6
=

3

4

6 · x
6
= 6 · 3

4

x =
18

4

x =
9

2
= 4.5

The unknown side length is then 4.5 cm.

Remark 8.4.13 Looking at the triangles in Figure 8.4.10, you may notice that there are many different pro-
portions you could set up, such as:

2 cm
1 cm =

6 cm
3 cm

2 cm
6 cm =

1 cm
3 cm

6 cm
2 cm =

3 cm
1 cm

3
√
3 cm√
3 cm =

3 cm
1 cm

This is often the case when we set up ratios and proportions.
If we take a second look at Figure 8.4.12, there are also several other proportions we could have used to

find the value of x.
bigger triangle’s left side length
smaller triangle’s left side length =

bigger triangle’s bottom side length
smaller triangle’s bottom side length

smaller triangle’s bottom side length
bigger triangle’s bottom side length =

smaller triangle’s left side length
bigger triangle’s left side length

bigger triangle’s bottom side length
smaller triangle’s bottom side length =

bigger triangle’s left side length
smaller triangle’s left side length

Written as algebraic proportions, these three equations would, respectively, be

x cm
3 cm =

6 cm
4 cm ,

4 cm
6 cm =

3 cm
x cm ,

6 cm
4 cm =

x cm
3 cm

While these are only a few of the possibilities, if we clear the denominators from any properly designed
proportion, every one is equivalent to x = 4.5.
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8.4.3 Exercises

1. A circle’s circumference is 4π mm.
a. This circle’s diameter is

.
b. This circle’s radius is

.

2. A circle’s circumference is 6π mm.
a. This circle’s diameter is

.
b. This circle’s radius is

.
3. A circle’s circumference is 36 cm. Find the

following values. Round your answer to at
least 2 decimal places.

a. This circle’s diameter is
.

b. This circle’s radius is
.

4. A circle’s circumference is 38 cm. Find the
following values. Round your answer to at
least 2 decimal places.

a. This circle’s diameter is
.

b. This circle’s radius is
.

5. A circle’s circumference is 12π mm.
a. This circle’s diameter is

.
b. This circle’s radius is

.

6. A circle’s circumference is 14π mm.
a. This circle’s diameter is

.
b. This circle’s radius is

.
7. A circle’s circumference is 45 cm. Find the

following values. Round your answer to at
least 2 decimal places.

a. This circle’s diameter is
.

b. This circle’s radius is
.

8. A circle’s circumference is 47 cm. Find the
following values. Round your answer to at
least 2 decimal places.

a. This circle’s diameter is
.

b. This circle’s radius is
.

9. A cylinder’s base’s radius is 4 m, and its
volume is 160π m3.
This cylinder’s height is .

10. A cylinder’s base’s radius is 10 m, and its
volume is 200π m3.
This cylinder’s height is .

11. A rectangle’s area is 336 mm2. Its height is
16 mm.
Its base is .

12. A rectangle’s area is 276 mm2. Its height is
12 mm.
Its base is .

13. A rectangular prism’s volume is 13224 ft3.
The prism’s base is a rectangle. The
rectangle’s length is 24 ft and the rectangle’s
width is 19 ft.
This prism’s height is .

14. A rectangular prism’s volume is 5600 ft3.
The prism’s base is a rectangle. The
rectangle’s length is 25 ft and the rectangle’s
width is 16 ft.
This prism’s height is .
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15. A triangle’s area is 175.5 m2. Its base is
27 m.
Its height is .

16. A triangle’s area is 275.5 m2. Its base is
29 m.
Its height is .

17. The following two triangles are similar to
each other. Find the length of the missing
side.

The missing side’s length is

18. The following two triangles are similar to
each other. Find the length of the missing
side.

The missing side’s length is
19. The following two triangles are similar to

each other. Find the length of the missing
side.

The missing side’s length is

20. The following two triangles are similar to
each other. Find the length of the missing
side.

The missing side’s length is
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8.5 Quantities in the Physical World Chapter Review
8.5.1 Scientific Notation
In Section 8.1 we covered the definition of scientific notation, how to convert to and from scientific notation,
and how to do some calculations in scientific notation.
Example 8.5.1 Scientific Notation for Large Numbers.

a. The distance to the star Betelgeuse is about 3,780,000,000,000,000 miles. Write this number in scientific
notation.

b. The gross domestic product (GDP) of California in the year 2017 was about $2.746 × 1013. Write this
number in standard notation.

Explanation.
a. 3,780,000,000,000,000 = 3.78× 1015.
b. $2.746× 1013 = $2,746,000,000,000.

Example 8.5.2 Scientific Notation for Small Numbers.
a. Human DNA forms a double helix with diameter 2 × 10−9 meters. Write this number in standard

notation.
b. A single grain of Forget-me-not (Myosotis) pollen is about 0.00024 inches in diameter. Write this num-

ber in scientific notation.

Explanation.

a. 2× 10−9 = 0.000000002. b. 0.00024 = 2.4× 10−4.
Example 8.5.3 Multiplying and Dividing Using Scientific Notation. The fastest spacecraft so far have
traveled about 5× 106 miles per day.

a. If that spacecraft traveled at that same speed for 2×104 days (which is about 55 years), how far would
it have gone? Write your answer in scientific notation.

b. The nearest star to Earth, besides the Sun, is Proxima Centauri, about 2.5×1013 miles from Earth. How
many days would you have to fly in that spacecraft at top speed to reach Proxima Centauri

Explanation.
a. Remember that you can find the distance traveled by multiplying the rate of travel times the time

traveled: d = r · t. So this problem turns into

d = r · t
d =

(
5× 106

)
·
(
2× 104

)
Multiply coefficient with coefficient and power of 10 with power of 10.

= (5 · 2)
(
106 × 104

)
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= 10× 1010

Remember that this still isn’t in scientific notation. So we convert like this:

= 1.0× 101 × 1010

= 1.0× 1011

So, after traveling for 2 × 104 days (55 years), we will have traveled about 1.0 × 1011 miles. That’s
one-hundred million miles. I hope someone remembered the snacks.

b. Since we are looking for time, let’s solve the equation d = r · t for t by dividing by r on both sides:
t = d

r
. So we have:

t =
d

r

t =
2.5× 1013

5× 106

Now we can divide coefficient by coefficient and power of 10 with power of 10.

t =
2.5

5
× 1013

106

t = 0.5× 107

t = 5× 10−1 × 107

t = 5× 106

This means that to get to Proxima Centauri, even in our fastest spacecraft, would take 5 × 106 years.
Converting to standard form, this is 5,000,000 years. I think we’re going to need a faster ship.

8.5.2 Unit Conversion
Unit conversion is a particular process that uses unit ratios to convert units. You may refer to Appendix B
to find unit conversion facts needed to do these conversions.
Example 8.5.4 Using Multiple Unit Ratios. How many grams are in 5 pounds?

5 lb =
5 lb
1

Rewrite as a ratio.

=
5 lb
1

· 1kg
2.205 lb · 1000 g

1kg Two unit ratios are needed.

=
5��lb
1

· 1@@kg
2.205��lb

· 1000 g
1@@kg Units may now cancel.

=
5

1
· 1

2.205
· 1000 g

1
Only units of g remain.

=
5 · 1000
2.205

g Multiply what’s left and then divide.
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≈ 2268g

So 5 pounds is about 2268 grams.

Example 8.5.5 Converting Squared or Cubed Units. Convert 240 square inches into square centimeters.

240 in2 =
240 in2

1
Rewrite as a ratio.

=
240 in2

1
·
(
2.54 cm
1 in

)2

The unit ratio needs to be squared.

=
240 in2

1
· 2.54

2 cm2

1 in2
Everything inside the parentheses is squared.

=
240��in2

1
· 2.54

2 cm2

1��in2
Units may now cancel.

=
240

1
· 2.54

2 cm2

1
Only units of sq cm remain.

= 240 · 2.542 cm2 Multiply.
≈ 1548 cm2

So 240 square inches is approximately 1548 square centimeters.

Example 8.5.6 Converting Rates. Gold has a density of 19.3 g
mL . What is this density in ounces per cubic

inch?

19.3
g

mL =
19.3 g
1mL Write the rate as a ratio.

≈ 19.3 g
1mL · 16.39mL

1 in3
· 1 oz
28.35 g Use unit ratios to make cancellations.

=
19.3 �g
1HHmL · 16.39

HHmL
1 in3

· 1 oz
28.35 �g

Units may now cancel.

=
19.3

1
· 16.39
1 in3

· 1 oz
28.35

Only oz per cubic inch remain.

=
19.3 · 16.39

28.35

oz
in3

Multiply what’s left and then divide.

≈ 11.16
oz
in3

Notice that we did not need to raise any unit ratios to a power since there is a conversion fact that tells us
that 1 in3 ≈ 16.39mL.

Thus, the density of gold is about 11.16 oz
in3 .

8.5.3 Geometry Formulas
In Section 8.3 we established the following formulas.

Perimeter of a Rectangle P = 2(ℓ+w)
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Area of a Rectangle A = ℓw

Area of a Triangle A = 1
2
bh

Circumference of a Circle c = 2πr

Area of a Circle A = πr2

Volume of a Rectangular Prism V = wdh

Volume of a Cylinder V = πr2h

Volume of a Rectangular Prism or Cylinder V = Bh

8.5.4 Exercises

Scientific Notation Write the following number in scientific notation.
1. 350 2. 450000

3. 0.0055 4. 0.00065

Write the following number in decimal notation without using exponents.
5. 7.51× 104 6. 8.51× 103 7. 9.5× 100

8. 1.49× 100 9. 2.5× 10−3 10. 3.49× 10−4

Multiply the following numbers, writing your answer in scientific notation.
11. (5× 103)(7× 102) 12. (5× 105)(4× 105)

Divide the following numbers, writing your answer in scientific notation.

13. 5.4× 103

6× 10−2
14. 4.2× 104

7× 10−2

Unit Conversion
15. Convert 211 tbsp to teaspoons. 16. Convert 5.98 t to kilograms.
17. Convert 9.5 s to milliseconds. 18. Convert 43 hm to feet.
19. Convert 8.9 yd to centimeters. 20. Convert 2.7 pt to gallons.
21. Convert 48 cm2 to square inches. 22. Convert 2.08 ft3 to cubic miles.
23. Convert 52.8 dam

s to meters per millisecond. 24. Convert 226 mi2

wk to acres per day.
25. Convert 7.6 T

s to pounds per nanosecond. 26. Convert 46 B
d to kilobytes per week.
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27. Carly’s bedroom has
107 ft2 of floor. She would
like to carpet the floor, but
carpeting is sold by the
square yard. How many
square yards of carpeting
will she need to get?

28. Jon is traveling in Europe
and renting a car. He is
used to thinking of
gasoline amounts in
gallons, but in Europe it is
sold in liters. After filling
the gas tank, he notices it
took 32 L of gas. How
many gallons is that?

29. Cody was driving at a
steady speed of 39 mph
for 11 minutes. How far
did he travel in that time?

30. The algae in a pond is
growing at a rate of 0.3 kg

d .
How much algae is in the
poind after 4 weeks?

Geometry
31. Find the perimeter and area of the rectangle.

Its perimeter is and its area is
.

32. Find the perimeter and area of the rectangle.

Its perimeter is and its area is
.

33. Find the area of the
rectangle below.

34. Find the perimeter and
area of a rectangular table
top with a length of 5.9 ft
and a width of 32 in.
Its perimeter is
and its area is .

35. Find the perimeter and
area of the triangle.

Its perimeter is
and its area is .
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36. Find the perimeter and
area of the right triangle.

Its perimeter is
and its area is .

37. The area of the triangle
below is square
feet.

38. Find the area of a
triangular flag with a base
of 2.7 m and a height of
70 cm.
Its area is .

39. Find the perimeter and
area of this shape.

Its perimeter is
and its area is .

40. Find the perimeter and
area of this polygon.

Its perimeter is
and its area is .

41. The formula A = 1
2
r n s gives the area of a

regular polygon with side length s, number
of sides n and, apothem r. (The apothem is
the distance from the center of the polygon
to one of its sides.)
What is the area of a regular pentagon with
s = 72 in and r = 96 in?

42. A circle’s radius is 9 m.
a. The circumference, in terms of π, is

.
b. This circle’s circumference, rounded

to the hundredths place, is .
c. This circle’s area, in terms of π, is

.
d. This circle’s area, rounded to the

hundredths place, is .
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43. Find the perimeter and
area of this shape, which
is a semicircle on top of a
rectangle.

Its perimeter is
and its area is .

44. Find the volume of this
rectangular prism.

45. A cube’s side length is
3 cm. Its volume is

.

46. Find the volume of this
cylinder.

a. This cylinder’s
volume, in terms of
π, is .

b. This cylinder’s
volume, rounded to
the hundredths
place, is .

47. A cylinder’s base’s
diameter is 6 ft, and its
height is 5 ft.

a. This cylinder’s
volume, in terms of
π, is .

b. This cylinder’s
volume, rounded to
the hundredths
place, is .

48. A cylinder’s base’s
diameter is 18 ft, and its
height is 6 ft.

a. This cylinder’s
volume, in terms of
π, is .

b. This cylinder’s
volume, rounded to
the hundredths
place, is .

49. Fill out the table with various formulas as they were given in this section.
Rectangle Perimeter
Rectangle Area
Triangle Area
Circle Circumference
Circle Area
Rectangular Prism Volume
Cylinder Volume
Volume of either Rectangular Prism or Cylinder
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50. A circle’s circumference is 16π mm.
a. This circle’s diameter is

.
b. This circle’s radius is

.

51. A circle’s circumference is 47 cm. Find the
following values. Round your answer to at
least 2 decimal places.

a. This circle’s diameter is
.

b. This circle’s radius is
.

52. A circle’s circumference is 49 cm. Find the
following values. Round your answer to at
least 2 decimal places.

a. This circle’s diameter is
.

b. This circle’s radius is
.

53. A cylinder’s base’s radius is 2 m, and its
volume is 8π m3.
This cylinder’s height is .

54. A rectangular prism’s volume is 5355 ft3.
The prism’s base is a rectangle. The
rectangle’s length is 21 ft and the rectangle’s
width is 17 ft.
This prism’s height is .

55. A triangle’s area is 149.5 m2. Its base is
23 m.
Its height is .

56. The following two triangles are similar to
each other. Find the length of the missing
side.

The missing side’s length is

57. The following two triangles are similar to
each other. Find the length of the missing
side.

The missing side’s length is



Chapter 9

Topics in Graphing

9.1 Review of Graphing
This section is a short review of the basics of graphing. The topics here are introduced in Sections 3.1 and
3.2 from Part I. Here we only briefly remind readers of the basics to warm up for the graphing topics in the
rest of this chapter. Some readers may benefit from turning to those earlier sections instead of reviewing
from this section.

9.1.1 Cartesian Coordinates
A Cartesian coordinate system is usually repre-
sented as a graph where there are two “axes”
(straight lines extending infinitely), one horizontal
and one vertical. The horizontal axis is usually la-
beled “x”, and the vertical axis is usually labeled
“y”. The scale marks on the axes are used to define
locations on the plane that they span. An address
is a pair of “coordinates” written as in this exam-
ple: (3, 2). The first coordinate tells you where the
location is with respect to the horizontal axis, and
the second coordinate tells you a location with re-
spect to the vertical axis. The point (3, 2) is marked
in Figure 9.1.2.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(3, 2)

x

y

Figure 9.1.2

Example 9.1.3 On paper, sketch a Cartesian coordinate system with the axes scaled using regularly spaced
ticks and labels, and then plot the following points: (2, 3), (−5, 1), (0,−3), (4, 0).

205
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Explanation.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(2, 3)

(−5, 1)

(0,−3)

(4, 0) x

y

Figure 9.1.4: A Cartesian grid with the four points plotted.

Note that negative numbers in the first coordinate mean that a point is left of the y-axis. And similarly,
negative numbers in the second coordinate mean that a point is below the x-axis.

9.1.2 Graphing Equations by Plotting Points

When you have an equation in the form

y = expression in x

it suggests that we could substitute in different values for x and get back different values for y. Pairing
these x- and y-values together, we can plot points and create a “graph” of the equation. Creating a graph of
a given equation in x and y is the basic objective of this section. Sometimes the equation has special features
that give you a shortcut for creating a graph, for example as discussed in Section 3.5. However, here we
want to focus on the universal approach of just substituting in values for x and seeing what comes out.

Example 9.1.5Rheema helped plant a lovely Douglas Fir in a local park volunteering with Portland’s Friends
of Trees 1. The tree they planted was 4 ft tall when they planted it. Rheema watched the tree grow over the
next few years and noticed that every year, the tree grew about 1.5 ft. So, the height of the tree can be found
by using the formula y = 1.5x+ 4, where x-values represent the number of years since the tree was planted.
Let’s make a graph of this equation by making a table of values. The most straightforward method to graph
any equation is to build a table of x- and y-values, and then plot the points.
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x y = 1.5x+ 4 Point Interpretation
0 1.5(0) + 4

= 4

(0, 4) When the tree was
planted, the tree was
4 ft tall.

2 1.5(2) + 4

= 7

(2, 7) Two years after tree
was planted, the tree
was 7 ft tall.

4 1.5(4) + 4

= 10

(4, 10) Four years after tree
was planted, the tree
was 10 ft tall.

6 1.5(6) + 4

= 13

(6, 13) Six years after tree was
planted, the tree was
13 ft tall.

8 1.5(8) + 4

= 16

(8, 16) Eight years after tree
was planted, the tree
was 16 ft tall.

Figure 9.1.6: A table of values for y = 1.5x+ 4

1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

14

16

18

(0, 4)

(2, 7)
(4, 10)

(6, 13)
(8, 16)

x

y

Figure 9.1.7: A graph of y = 1.5x+ 4

Example 9.1.8 Make a graph of the linear equation y = 5
2
x − 3 by building a table of x- and y-values and

plotting the points.
Explanation. To create an easy-to-graph table of values, we should examine the formula and notice that
if all of the x-values were multiples of 2, then the fraction in the equation would cancel nicely and leave us
with integer y-values.

x y = 5
2
x− 3 Point

−4 5
2
(−4) − 3

= −13

(−4,−13)

−2 5
2
(−2) − 3

= −8

(−2,−8)

0 5
2
(0) − 3

= −3

(0,−3)

2 5
2
(2) − 3

= 2

(2, 2)

4 5
2
(4) − 3

= 7

(4, 7)

6 5
2
(6) − 3

= 12

(6, 12)

Figure 9.1.9: A table of values for y = 5
2
x− 3

−4 −2 2 4 6

−12

−9

−6

−3

3

6

9

12

(−4,−13)

(−2,−8)

(0,−3)

(2, 2)

(4, 7)

(6, 12)

x

y

Figure 9.1.10: A graph of y = 5
2
x− 3

Example 9.1.11 Create a table of ordered pairs and then make a plot of the equation y = −2
5
x− 3. Note that

this equation is a linear equation, and we can see that the slope is negative. Therefore we should expect to
see a downward sloping line as we view it from left to right. If we don’t see that in the end, it suggests some

1friendsoftrees.org/
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mistake was made.
Explanation. This time, with the slope having denominator 5, it is wise to use multiples of 5 as the x-values.

x y = −2
5
x− 3 Point

−5 −2
5
(−5) − 3

= −5

(−5,−5)

0 −2
5
(0) − 3

= −3

(0,−3)

5 −2
5
(5) − 3

= −1

(5,−1)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Checkpoint 9.1.12 Make a table for the equation.
x y = 11

5
x− 8

Explanation. Since this equation has a fractional coefficient for x with denominator 5, it would be wise to
choose our own x-values that are multiples of 5. Then when we use them to solve for y, the denominator
will be cleared, and we will not need to continue with fraction arithmetic.

This solution will use the x-values −5, 0, 5, 10 and 15. The choice to use these x-values is arbitrary, but
they are small multiples of 5, which will make computation easier.

One at a time, we substitute these x-values into the equation y = 11
5
x− 8, and solve for y:

y =
11

5
(−5) − 8 =⇒ y = −19

y =
11

5
(0) − 8 =⇒ y = −8

y =
11

5
(5) − 8 =⇒ y = 3

y =
11

5
(10) − 8 =⇒ y = 14

y =
11

5
(15) − 8 =⇒ y = 25

So the table may be completed as:
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x y

−5 −19

0 −8

5 3

10 14

15 25

Even when the equation is not a linear equation, this method (making a table of points) will work to help
create a graph.

Example 9.1.13 Create a table of ordered pairs and then make a plot of the equation y = 6
x2−2x+2

.
Explanation. The form of this equation is not one that we recognize yet. But the general approach for
making a graph is still going to work out.

x y = 6
x2−2x+2

Point
−2 6

(−2)2−2(−2)+2

= 0.6

(−2, 0.6)

−1 6
(−1)2−2(−1)+2

= 1.2

(−1, 1.2)

0 6
(0)2−2(0)+2

= 3

(0, 3)

1 6
(1)2−2(1)+2

= 6

(1, 6)

2 6
(2)2−2(2)+2

= 3

(2, 3)

3 6
(3)2−2(3)+2

= 1.2

(3, 1.2)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

9.1.3 Graphing Lines Using Intercepts

As noted earlier, sometimes the form of an equation suggests an alternative way that we could graph it.
In the case of a linear equation, an alternative to making a table is to find the line’s “intercepts”. These
are the locations where the line crosses either the x-axis or the y-axis. In the case of a straight line, that is
theoretically all you need to graph the complete line. Here, we review this approach. We also hope this
example simply serves as a reminder of what intercepts are.

Recall that the standard form (3.7.1) of a line equation is Ax+By = C where where A, B, and C are three
numbers (each of which might be 0, although at least one of A and B must be nonzero). If a linear equation
is given in standard form, we can relative easily find the line’s x- and y-intercepts by substituting in y = 0

and x = 0, respectively.

Example 9.1.14 Find the intercepts of 3x+ 5y = 60, and then graph the equation given those intercepts.
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To find the x-intercept, set y = 0 and solve for x.

3x+ 5(0) = 60

3x = 60

x = 20

So the x-intercept is the point (20, 0).

To find the y-intercept, set x = 0 and solve for y.

3(0) + 5y = 60

5y = 60

y = 12

So, the y-intercept is the point (0, 12).

Next, we just plot these points and draw the line
that runs through them.

4 8 12 16 20

−3

3

6

9

12
(0, 12)

(20, 0)x

y

Figure 9.1.15: A graph of 3x+ 5y = 60

Checkpoint 9.1.16 Find the y-intercept and x-intercept of the line given by the equation. If a particular
intercept does not exist, enter none into all the answer blanks for that row.

2x+ 5y = −20

x-value y-value Location (as an ordered pair)
y-intercept
x-intercept

Explanation. A line’s y-intercept is on the y-axis, implying that its x-value must be 0. To find a line’s
y-intercept, we substitute in x = 0. In this problem we have:

2x+ 5y = −20

2(0) + 5y = −20

5y = −20

5y

5
=

−20

5

y = −4

This line’s y-intercept is (0,−4).
Next, a line’s x-intercept is on the x-axis, implying that its y-value must be 0. To find a line’s x-intercept,

we substitute in y = 0. In this problem we have:
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2x+ 5y = −20

2x+ 5(0) = −20

2x = −20

2x

2
=

−20

2

x = −10

The line’s x-intercept is (−10, 0).
The entries for the table are:

x-value y-value Location
y-intercept 0 −4 (0,−4)

x-intercept −10 0 (−10, 0)

9.1.4 Exercises

Identifying Coordinates Locate each point in the graph:
1.

Write each point’s position as an ordered
pair, like (1, 2).

A = B =

C = D =

2.

Write each point’s position as an ordered
pair, like (1, 2).

A = B =

C = D =

Plotting Points
3. Sketch the points (8, 2), (5, 5), (−3, 0), and

(2,−6) on a Cartesian plane.
4. Sketch the points (1,−4), (−3, 5), (0, 4), and

(−2,−6) on a Cartesian plane.
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Tables for Equations Make a table for the equation.
5.

x y = 4x
6.

x y = 8x

7.
x y = 6x+ 3

8.
x y = 8x− 3

9.
x y = 10

3
x+ 10

10.
x y = 13

10
x− 8

11.
x y = −9

8
x− 6

12.
x y = 9

8
x− 4

Graphs of Equations
13. Create a table of ordered pairs and then

make a plot of the equation y = 2x+ 3.
14. Create a table of ordered pairs and then

make a plot of the equation y = −x− 4.
15. Create a table of ordered pairs and then

make a plot of the equation y = 4
3
x.

16. Create a table of ordered pairs and then
make a plot of the equation y = −3

4
x+ 2.

17. Create a table of ordered pairs and then
make a plot of the equation y = x2 + 1.

18. Create a table of ordered pairs and then
make a plot of the equation y = (x− 2)2.
Use x-values from 0 to 4.

Lines and Intercepts
19. Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does

not exist, enter none into all the answer blanks for that row.

5x+ 6y = 30
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x-value y-value Location (as an ordered pair)
y-intercept
x-intercept

20. Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

6x+ 3y = −36

x-value y-value Location (as an ordered pair)
y-intercept
x-intercept

21. Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

6x− 7y = −42

x-value y-value Location (as an ordered pair)
y-intercept
x-intercept

22. Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

x− 7y = −14

x-value y-value Location (as an ordered pair)
y-intercept
x-intercept

23. Find the x- and y-intercepts of the line with equation 5x − 2y = 10. Then find one other point on
the line. Use your results to graph the line.

24. Find the x- and y-intercepts of the line with equation 5x− 6y = −90. Then find one other point on
the line. Use your results to graph the line.

25. Find the x- and y-intercepts of the line with equation x + 5y = −15. Then find one other point on
the line. Use your results to graph the line.

26. Find the x- and y-intercepts of the line with equation 6x + y = −18. Then find one other point on
the line. Use your results to graph the line.

27. Make a graph of the line −5x− y = −3. 28. Make a graph of the line x+ 5y = 5.
29. Make a graph of the line 20x− 4y = 8. 30. Make a graph of the line 3x+ 5y = 10.
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9.2 Key Features of Quadratic Graphs

In this section we will learn about quadratic graphs and their key features, including vertex, axis of sym-
metry and intercepts.

9.2.1 Properties of Quadratic Graphs

Hannah fired a toy rocket from the ground, which launched into the air with an initial speed of 64 feet per
second. The height of the rocket can be modeled by the equation y = −16t2 + 64t, where t is how many
seconds had passed since the launch. To see the shape of the graph made by this equation, we make a table
of values and plot the points.

t y = −16t2 + 64t Point
0 −16(0)2 + 64(0)

= 0

(0, 0)

1 −16(1)2 + 64(1)

= 48

(1, 48)

2 −16(2)2 + 64(2)

= 64

(2, 64)

3 −16(3)2 + 64(3)

= 48

(3, 48)

4 −16(4)2 + 64(4)

= 0

(4, 0)

Figure 9.2.2: Points for y = −16t2 + 64t −2 2 4 6

20

40

60

(0, 0)

(1, 48)

(2, 64)

(3, 48)

(4, 0) t

y

Figure 9.2.3: Graph of y = −16t2 + 64t

A curve with the shape that we see in Figure 9.2.3 is called a parabola. Notice the symmetry in Figure 9.2.2,
how the y-values in rows above the middle row match those below the middle row. Also notice the sym-
metry in the shape of the graph, how its left side is a mirror image of its right side.

The first feature that we will talk about is the direction that a parabola opens. All parabolas open either
upward or downward. This parabola in the rocket example opens downward because a is negative. That
means that for large values of t, the at2 term will be large and negative, and the resulting y-value will be
low on the y-axis. So the negative leading coefficient causes the arms of the parabola to point downward.

Here are some more quadratic graphs so we can see which way they open.
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−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 9.2.4: The graph of
y = x2 − 2x+ 2 opens upward.
Its leading coefficient is
positive.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 9.2.5: The graph of
y = −1

4
x2 − 1

2
x− 1

4
opens

downward. Its leading
coefficient is negative.
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Figure 9.2.6: The graph of
y = 3x2 − 18x+ 23.5 opens
upward. Its leading coefficient
is positive.

Fact 9.2.7 The graph of a quadratic equation y = ax2 + bx + c opens upward or downward according to the sign of
the leading coefficient a. If the leading coefficient is positive, the parabola opens upward. If the leading coefficient is
negative, the parabola opens downward.

Checkpoint 9.2.8 Determine whether each quadratic graph opens upward or downward.
a. The graph of y = 3x2 − 4x− 7 opens (□ upward □ downward) .
b. The graph of y = −5x2 + x opens (□ upward □ downward) .
c. The graph of y = 2+ 3x− x2 opens (□ upward □ downward) .
d. The graph of y = 1

3
x2 − 2

5
x+ 1

4
opens (□ upward □ downward) .

Explanation.
a. The graph of y = 3x2 − 4x− 7 opens upward as the leading coefficient is the positive number 3.
b. The graph of y = −5x2 + x opens downward as the leading coefficient is the negative number −5.
c. The graph of y = 2+ 3x− x2 opens downward as the leading coefficient is −1. (Note that the leading

coefficient is the coefficient on x2.)
d. The graph of y = 1

3
x2 − 2

5
x+ 1

4
opens upward as the leading coefficient is the positive number 1

3
.

The vertex of a quadratic graph is the highest or lowest point on the graph, depending on whether the
graph opens downward or upward. In Figure 9.2.3, the vertex is (2, 64). This tells us that Hannah’s rocket
reached its maximum height of 64 feet after 2 seconds. If the parabola opens downward, as in the rocket
example, then the y-value of the vertex is the maximum y-value. If the parabola opens upward then the
y-value of the vertex is the minimum y-value.

The axis of symmetry is a vertical line that passes through the vertex, cutting the quadratic graph into
two symmetric halves. We write the axis of symmetry as an equation of a vertical line so it always starts
with “x =.” In Figure 9.2.3, the equation for the axis of symmetry is x = 2.

The vertical intercept is the point where the parabola crosses the vertical axis. The vertical intercept is
the y-intercept if the vertical axis is labeled y. In Figure 9.2.3, the point (0, 0) is the starting point of the
rocket, and it is where the graph crosses the y-axis, so it is the vertical intercept. The y-value of 0 means the
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rocket was on the ground when the t-value was 0, which was when the rocket launched.
The horizontal intercept(s) are the points where the parabola crosses the horizontal axis. They are the

x-intercepts if the horizontal axis is labeled x. The point (0, 0) on the path of the rocket is also a horizontal
intercept. The t-value of 0 indicates the time when the rocket was launched from the ground. There is
another horizontal intercept at the point (4, 0), which means the rocket came back to hit the ground after 4
seconds.

It is possible for a quadratic graph to have zero, one, or two horizontal intercepts. The figures below
show an example of each.
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Figure 9.2.9: The graph of
y = x2 − 2x+ 2 has no
horizontal intercepts
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Figure 9.2.10: The graph of
y = −1
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has one

horizontal intercept
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Figure 9.2.11: The graph of
y = 3x2 − 18x+ 23.5 has two
horizontal intercepts

Here is a summary of the key features of quadratic graphs.

List 9.2.12: Summary of Key Features of Quadratic Graphs

Consider a quadratic equation in the form y = ax2 + bx + c and the parabola that it makes
when graphed.
Direction The parabola opens upward if a is positive and opens downward of a is negative.
Vertex The vertex of the parabola is the maximum or minimum point on the graph.
Axis of Symmetry The axis of symmetry is the vertical line that passes through the vertex.
Vertical Intercept The vertical intercept is the point where the graph intersects the vertical

axis. There is exactly one vertical intercept.
Horizontal Intercept(s) The horizontal intercept(s) are the point(s) where a graph intersects

the horizontal axis. The graph of a parabola can have zero, one, or two horizontal inter-
cepts.
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Example 9.2.13 Identify the key features of the quadratic graph of y = x2 − 2x− 8 shown in Figure 9.2.14.
Explanation.
First, we see that this parabola opens upward be-
cause the leading coefficient is positive.
Then we locate the vertex which is the point
(1,−9). The axis of symmetry is the vertical line
x = 1.
The vertical intercept or y-intercept is the point
(0,−8).
The horizontal intercepts are the points (−2, 0) and
(4, 0). −8 −6 −4 −2 2 4 6 8

−8

−6
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2

4

6

8

x

y

Figure 9.2.14: Graph of y = x2 − 2x− 8

Checkpoint 9.2.15 Use the graph to answer the following questions.

a. What are the coordinates of the vertex?

b. What is the equation of the axis of symmetry?

c. What are the coordinates of the x-intercept(s)?

d. What are the coordinates of the y-intercept?
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Explanation.
a. The vertex is at (−2, 1).
b. The equation of the axis of symmetry is x = −2.
c. There are no x-intercepts. (Answer None.)
d. The y-intercept is at (0, 5).

9.2.2 Finding the Vertex and Axis of Symmetry Algebraically
The coordinates of the vertex are not easy to identify on a graph if they are not integers . Another way to
find the coordinates of the vertex is by using a formula.

Fact 9.2.16 If we denote (h, k) as the coordinates of the vertex of a quadratic graph defined by y = ax2 +bx+ c, then
h = − b

2a
. Then we can find k by substituting h in for x.

To understand why, we can look at the quadratic formula 7.2.2. The vertex is on the axis of symmetry, so
it will always occur halfway between the two x-intercepts (if there are any). The quadratic formula shows
that the x-intercepts happen at − b

2a
minus some number and at − b

2a
plus that same number. So − b

2a
is right

in the middle, and it must be the horizontal coordinate of the vertex, h. If we have already memorized the
quadratic formula, this new formula for h is not hard to remember:

−b±
√
b2 − 4ac

2a

Example 9.2.17 Determine the vertex and axis of symmetry of the parabola y = x2 − 4x− 12.
We find the first coordinate of the vertex using the formula h = − b

2a
, for a = 1 and b = −4.

h = −
b

2a

= −
(−4)

2(1)

= 2

Now we know the first coordinate of the vertex is 2, so we may substitute x = 2 to determine the second
coordinate of the vertex:

k = (2)2 − 4(2) − 12

= 4− 8− 12

= −16

The vertex is the point (2,−16) and the axis of symmetry is the line x = 2.

Example 9.2.18 Determine the vertex and axis of symmetry of the parabola y = −3x2 − 3x+ 7.
Explanation. Using the formula h = − b

2a
with a = −3 and b = −3, we have :

h = −
b

2a
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= −
(−3)

2(−3)

= −
1

2

Now that we’ve determined h = −1
2

, we can substitute it for x to find the y-value of the vertex:

k = −3x2 − 3x+ 7

= −3

(
−
1

2

)2

− 3

(
−
1

2

)
+ 7

= −3

(
1

4

)
+

3

2
+ 7

= −
3

4
+

3

2
+ 7

= −
3

4
+

6

4
+

28

4

=
31

4

The vertex is the point (−1
2
, 31

4

) and the axis of symmetry is the line x = −1
2

.

9.2.3 Graphing Quadratic Equations by Making a Table
When we learned how to graph lines, we could choose any x-values to build a table of values. For quadratic
equations, we want to make sure the vertex is present in the table, since it is such a special point. So we find
the vertex first and then choose our x-values surrounding it. We can use the property of symmetry to speed
things up.
Example 9.2.19 Determine the vertex and axis of symmetry for the parabola y = −x2 − 2x + 3. Then make
a table of values and sketch the graph.
Explanation. To determine the vertex of y = −x2 − 2x+ 3, we want to find the x-value of the vertex first.
We use h = − b

2a
with a = −1 and b = −2:

h = −
(−2)

2(−1)

=
2

−2

= −1

To find the y-coordinate of the vertex, we substitute x = −1 into the equation for our parabola.
k = −x2 − 2x+ 3

= −(−1)2 − 2(−1) + 3

= −1+ 2+ 3

= 4

Now we know that our axis of symmetry is the line x = −1 and the vertex is the point (−1, 4). We set up our
table with two values on each side of x = −1. We choose x = −3, −2, −1, 0, and 1 as shown in Figure 9.2.20.
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Next, we determine the y-coordinates by replacing x with each value and we have the complete table as
shown in Figure 9.2.21. Notice that each pair of y-values on either side of the vertex match. This helps us to
check that our vertex and y-values are correct.

x y = −x2 − 2x+ 3 Point
−3

−2

−1

0

1

Figure 9.2.20: Setting up the table

x y = −x2 − 2x+ 3 Point
−3 −(−3)2 − 2(−3) + 3 = 0 (−3, 0)

−2 −(−2)2 − 2(−2) + 3 = 3 (−2, 3)

−1 −(−1)2 − 2(−1) + 3 = 4 (−1, 4)

0 −(0)2 − 2(0) + 3 = 3 (0, 3)

1 −(1)2 − 2(1) + 3 = 0 (1, 0)

Figure 9.2.21: Values and points for y = −x2 − 2x+ 3

Now that we have our table, we plot the points and draw in the axis of symmetry as shown in Figure 9.2.22.
We complete the graph by drawing a smooth curve through the points and drawing an arrow on each end
as shown in Figure 9.2.23.
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Figure 9.2.22: Plot of the points and axis of
symmetry
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Figure 9.2.23: Graph of y = −x2 − 2x+ 3

The method we used works best when the x-value of the vertex is an integer. We can still make a graph if
that is not the case as we will demonstrate in the next example.

Example 9.2.24 Determine the vertex and axis of symmetry for the parabola y = 2x2 − 3x − 4. Use this to
create a table of values and sketch the graph.
Explanation. To determine the vertex of y = 2x2 − 3x− 4, we find h = − b

2a
with a = 2 and b = −3:

h = −
(−3)

2(2)

=
3

4
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Next, we determine the y-coordinate by replacing x with 3
4

in y = 2x2 − 3x− 4:

k = 2

(
3

4

)2

− 3

(
3

4

)
− 4

= 2

(
9

16

)
−

9

4
− 4

=
9

8
−

18

8
−

32

8

= −
41

8

Thus the vertex occurs at (3
4
,−41

8

), or at (0.75,−5.125). The axis of symmetry is then the line x = 3
4

, or
x = 0.75. Now that we know the x-value of the vertex, we create a table. We choose x-values on both sides
of x = 0.75, but we choose integers because it will be easier to find the y-values.

x y = 2x2 − 3x− 4 Point
−1 2(−1)2 − 3(−1) − 4

= 1

(−1, 1)

0 2(0)2 − 3(0) − 4

= −4

(0,−4)

0.75 2(0.75)2 − 3(−0.75) − 4

= −5.125

(0.75,−5.125)

1 2(1)2 − 3(1) − 4

= −5

(1,−5)

2 2(2)2 − 3(2) − 4

= −2

(2,−2)

Figure 9.2.25: Values and points for
y = 2x2 − 3x− 4
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Figure 9.2.26: Plot of initial points
The points graphed in Figure 9.2.26 don’t have the symmetry we’d expect from a parabola. This is because
the vertex occurs at an x-value that is not an integer, and all of the chosen values in the table are integers.
We can use the axis of symmetry to determine more points on the graph (as shown in Figure 9.2.27), which
will give it the symmetry we expect. From there, we can complete the sketch of this graph.
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Figure 9.2.27: Plot of symmetric points
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Figure 9.2.28: Graph of y = 2x2 − 3x− 4

9.2.4 Applications of Quadratic Graphs Involving the Vertex.

We looked at the height of Hannah’s toy rocket with respect to time at the beginning of this section and
saw that it reached a maximum height of 64 feet after 2 seconds. Let’s look at some more applications that
involve finding the minimum or maximum y-value on a quadratic graph.

Example 9.2.29 Jae got a new air rifle for target practice. The first thing they did with it was some testing to
find out how accurate the targeting cross-hairs were. In Olympic 10-meter air rifle shooting1, the bulls-eye
is a 0.5 mm diameter dot, about the size of the head of a pin, so accuracy is key. To test the accuracy, Jae
stood at certain specific distances from a bullseye target, aimed the cross-hairs on the bullseye, and fired.
Jae recorded how far above or how far below the pellet hit relative to the bullseye.

Distance to Target in Yards 5 10 20 30 35 40 50

Above/Below Bulls-eye ↓ ↑ ↑ ↑ ⊙ ↓ ↓
Distance Above/Below in Inches 0.1 0.6 1.1 0.6 0 0.8 3.2

Figure 9.2.30: Shooting Distance vs Pellet Rise/Fall

Make a graph of the height of the pellet relative to the bulls-eye at the shooting distances Jae used in Fig-
ure 9.2.30 and find the vertex. What does the vertex mean in this context?
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Explanation.
Note that values measured below the bulls-eye
should be graphed as negative y-values. Keep in
mind that the units on the axes are different: along
the x-axis, the units are yards, whereas on the y-
axis, the units are inches.
Since the input values seem to be increasing by 5s
or 10s, we scale the x-axis by 10s. The y-axis needs
to be scaled by 1s.
From the graph we can see that the point (20, 1.1)
is our best guess for the vertex. This means the
highest above the cross-hairs Jae hit was 1.1 inches
when the target was 20 yards away.
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Figure 9.2.31: Graph of Target Data

Example 9.2.32 We looked at the quadratic equation R = (13 + 0.25x)(1500 − 50x) in Example 5.4.2 of Sec-
tion 5.4, where R was the revenue (in dollars) for x 25-cent price increases from an initial price of $13. The
expression simplified to

R = −12.5x2 − 275x+ 19500.
Find the vertex of this quadratic expression and explain what it means in the context of this model.
Explanation. Note that if we tried to use R = (13+0.25x)(1500−50x), we would not be able to immediately
identify the values of a and b needed to determine the vertex. Using the expanded form of R = −12.5x2 −
275x+ 19500, we see that a = −12.5 and b = −275, so the vertex occurs at:

h = −
b

2a

= −
−275

2(−12.5)

= −11

And the second coordinate for the vertex is at:

k = −12.5(−11)2 − 275(−11) + 19500

= 21012.5

So the vertex occurs at (−11, 21012.5).
Literally interpreting this, we can state that −11 of the 25-cent price increases result in a maximum rev-

enue of $21,012.50.
We can calculate “−11 of the 25-cent price increases” to be a decrease of $2.75. The price was set at $13

per jar, so the maximum revenue of $21,012.50 would occur when Avery sets the price at $10.25 per jar.

1en.wikipedia.org/wiki/ISSF_10_meter_air_rifle



224 CHAPTER 9. TOPICS IN GRAPHING

Example 9.2.33 Kali has 500 feet of fencing and she needs to build a rectangular pen for her goats. What are
the dimensions of the rectangle that would give her goats the largest area?
Explanation. We use ℓ for the length of the pen and w for the width, in feet. We know that the perimeter
must be 500 feet so that gives us

2ℓ+ 2w = 500

First we solve for the length:

2ℓ+ 2w = 500

2ℓ = 500− 2w

ℓ = 250−w

Now we can write a formula for the rectangle’s area:

A = ℓ ·w
A = (250−w) ·w
A = 250w−w2

A = −w2 + 250w

The area is a quadratic expression so we can identify a = −1 and b = 250 and find the vertex:

h = −
(250)

2(−1)

=
250

2

= 125

Since the width of the rectangle that will maximize area is 125 ft, we can find the length using our expression:

ℓ = 250−w

= 250− 125

= 125

To find the maximum area we can either substitute the width into the area formula or multiply the length
by the width:

A = ℓ ·w
A = 125 · 125
A = 15,625

The maximum area that Kali can get is 15,625 square feet if she builds her pen to be a square with a length
and width of 125 feet.
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9.2.5 Reading Questions
1. There are four key features of a quadratic graph discussed in this section. What are they?
2. Explain how the formula for the first coordinate of a parabola’s vertex is similar to the quadratic for-

mula.
3. If a parabola’s vertex is at (4, 6), and you know the coordinates of some points on the parabola where

x = 1, 2, 3, at what other x-values do you know coordinates on the parabola?

9.2.6 Exercises
Review and Warmup Make a table for the equation.

1. The first row is an example.
x y = −x+ 2 Points
−3 5 (−3, 5)

−2

−1

0

1

2

2. The first row is an example.
x y = −x+ 3 Points
−3 6 (−3, 6)

−2

−1

0

1

2

3. The first row is an example.
x y = 3

10
x− 3 Points

−30 −12 (−30,−12)

−20

−10

0

10

20

4. The first row is an example.
x y = 5

6
x+ 9 Points

−18 −6 (−18,−6)

−12

−6

0

6

12

5. Evaluate the expression 1

5

(
x+ 3

)2
− 2 when

x = −8.
6. Evaluate the expression 1

3

(
x+ 3

)2
− 8 when

x = −6.
7. Evaluate the expression −16t2 + 64t+ 128

when t = 3.
8. Evaluate the expression −16t2 + 64t+ 128

when t = 2.

Algebraically Determining the Vertex and Axis of Symmetry of Quadratic Equations Find the axis of
symmetry and vertex of the quadratic function.

9. y = 5x2 + 20x− 5 10. y = −4x2 + 8x− 1 11. y = 4+ 40x− 4x2

12. y = −3− 16x− 4x2 13. y = −2− x2 + 2x 14. y = −4− x2 − 10x

15. y = 2x2 + 8x 16. y = 3x2 − 12x 17. y = 5+ 4x2

18. y = 1+ 5x2 19. y = −4x2 + 12x− 3 20. y = −3x2 − 15x+ 1

21. y = −4x2 − 4x− 5 22. y = −2x2 + 6x− 1 23. y = 2x2

24. y = 3x2 25. y = 0.4x2 + 2 26. y = 4x2 − 4

27. y = 0.5(x+ 2)
2
− 2 28. y = −0.5(x+ 5)

2
− 1
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Graphing Quadratic Equations Using the Vertex and a Table For the given quadratic equation, find the
vertex. Then create a table of ordered pairs centered around the vertex and make a graph.

29. y = x2 + 2 30. y = x2 + 1

31. y = x2 − 5 32. y = x2 − 3

33. y = (x− 2)2 34. y = (x− 4)2

35. y = (x+ 3)2 36. y = (x+ 2)2

Graphing Quadratic Equations Using the Vertex and a Table
37. For y = 4x2 − 8x+ 5, determine the vertex, create a table of ordered pairs, and then make a graph.
38. For y = 2x2 + 4x+ 7, determine the vertex, create a table of ordered pairs, and then make a graph.
39. For y = −x2+ 4x+ 2, determine the vertex, create a table of ordered pairs, and then make a graph.
40. For y = −x2+ 2x− 5, determine the vertex, create a table of ordered pairs, and then make a graph.
41. For y = x2 − 5x+ 3, determine the vertex, create a table of ordered pairs, and then make a graph.
42. For y = x2 + 7x− 1, determine the vertex, create a table of ordered pairs, and then make a graph.
43. For y = −2x2−5x+6, determine the vertex, create a table of ordered pairs, and then make a graph.
44. For y = 2x2 − 9x, determine the vertex, create a table of ordered pairs, and then make a graph.

Finding Maximum and Minimum Values for Applications of Quadratic Equations
45. Consider two numbers where one number is 5 less than a second number. Find a pair of such

numbers that has the least product possible. One approach is to let x represent the smaller number,
and write a formula for a function of x that outputs the product of the two numbers. Then find its
vertex and interpret it.

These two numbers are and the least possible product is .
46. Consider two numbers where one number is 6 less than a second number. Find a pair of such

numbers that has the least product possible. One approach is to let x represent the smaller number,
and write a formula for a function of x that outputs the product of the two numbers. Then find its
vertex and interpret it.

These two numbers are and the least possible product is .
47. Consider two numbers where one number is 4 less than 4 times a second number. Find a pair of

such numbers that has the least product possible. One approach is to let x represent the smaller
number, and write a formula for a function of x that outputs the product of the two numbers. Then
find its vertex and interpret it.

These two numbers are and the least possible product is .
48. Consider two numbers where one number is 9 less than 4 times a second number. Find a pair of

such numbers that has the least product possible. One approach is to let x represent the smaller
number, and write a formula for a function of x that outputs the product of the two numbers. Then
find its vertex and interpret it.

These two numbers are and the least possible product is .
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49. You will build a rectangular sheep enclosure next to a river. There is no need to build a fence along
the river, so you only need to build on three sides. You have a total of 470 feet of fence to use. Find
the dimensions of the pen such that you can enclose the maximum possible area. One approach is
to let x represent the length of fencing that runs perpendicular to the river, and write a formula for
a function of x that outputs the area of the enclosure. Then find its vertex and interpret it.

The length of the pen (parallel to the river) should be , the width (perpendicular
to the river) should be , and the maximum possible area is .

50. You will build a rectangular sheep enclosure next to a river. There is no need to build a fence along
the river, so you only need to build on three sides. You have a total of 480 feet of fence to use. Find
the dimensions of the pen such that you can enclose the maximum possible area. One approach is
to let x represent the length of fencing that runs perpendicular to the river, and write a formula for
a function of x that outputs the area of the enclosure. Then find its vertex and interpret it.

The length of the pen (parallel to the river) should be , the width (perpendicular
to the river) should be , and the maximum possible area is .

51. You will build a rectangular sheep enclosure next to a river. There is no need to build a fence along
the river, so you only need to build on three sides. You have a total of 490 feet of fence to use. Find
the dimensions of the pen such that you can enclose the maximum possible area. One approach is
to let x represent the length of fencing that runs perpendicular to the river, and write a formula for
a function of x that outputs the area of the enclosure. Then find its vertex and interpret it.

The length of the pen (parallel to the river) should be , the width (perpendicular
to the river) should be , and the maximum possible area is .

52. You will build a rectangular sheep enclosure next to a river. There is no need to build a fence along
the river, so you only need to build on three sides. You have a total of 500 feet of fence to use. Find
the dimensions of the pen such that you can enclose the maximum possible area. One approach is
to let x represent the length of fencing that runs perpendicular to the river, and write a formula for
a function of x that outputs the area of the enclosure. Then find its vertex and interpret it.

The length of the pen (parallel to the river) should be , the width (perpendicular
to the river) should be , and the maximum possible area is .

53. You will build two identical rectangular enclosures next to a each other, sharing a side. You have
a total of 300 feet of fence to use. Find the dimensions of each pen such that you can enclose the
maximum possible area. One approach is to let x represent the length of fencing that the two pens
share, and write a formula for a function of x that outputs the total area of the enclosures. Then
find its vertex and interpret it.

The length of each (along the wall that they share) should be , the width
should be , and the maximum possible area of each pen is .

54. You will build two identical rectangular enclosures next to a each other, sharing a side. You have
a total of 324 feet of fence to use. Find the dimensions of each pen such that you can enclose the
maximum possible area. One approach is to let x represent the length of fencing that the two pens
share, and write a formula for a function of x that outputs the total area of the enclosures. Then
find its vertex and interpret it.

The length of each (along the wall that they share) should be , the width
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should be , and the maximum possible area of each pen is .
55. You plan to build four identical rectangular animal enclosures in a row. Each adjacent pair of pens

share a fence between them. You have a total of 336 feet of fence to use. Find the dimensions of
each pen such that you can enclose the maximum possible area. One approach is to let x represent
the length of fencing that adjacent pens share, and write a formula for a function of x that outputs
the total area. Then find its vertex and interpret it.

The length of each pen (along the walls that they share) should be , the
width (perpendicular to the river) should be , and the maximum possible
area of each pen is .

56. You plan to build four identical rectangular animal enclosures in a row. Each adjacent pair of pens
share a fence between them. You have a total of 352 feet of fence to use. Find the dimensions of
each pen such that you can enclose the maximum possible area. One approach is to let x represent
the length of fencing that adjacent pens share, and write a formula for a function of x that outputs
the total area. Then find its vertex and interpret it.

The length of each pen (along the walls that they share) should be , the
width (perpendicular to the river) should be , and the maximum possible
area of each pen is .

57. Currently, an artist can sell 240 paintings every year at the price of $90.00 per painting. Each time
he raises the price per painting by $15.00, he sells 5 fewer paintings every year.

a. To obtain maximum income of , the artist should set the price per painting
at .

b. To earn $43,875.00 per year, the artist could sell his paintings at two different prices. The
lower price is per painting, and the higher price is
per painting.

58. Currently, an artist can sell 270 paintings every year at the price of $150.00 per painting. Each time
he raises the price per painting by $5.00, he sells 5 fewer paintings every year.

a. To obtain maximum income of , the artist should set the price per painting
at .

b. To earn $43,700.00 per year, the artist could sell his paintings at two different prices. The
lower price is per painting, and the higher price is
per painting.
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9.3 Graphing Quadratic Expressions
We have learned how to visually locate the key features of quadratic graphs and how to find the vertex
algebraically. In this section we’ll explore how to find the intercepts algebraically and use their coordinates
to more precisely graph a quadratic equation. Then we will see how to interpret the key features in context
and distinguish between quadratic and other graphs.
Let’s start by looking at a quadratic equation that
models the path of a baseball after it is hit by Igna-
cio, the batter. The height of the baseball, H, mea-
sured in feet, after t seconds is given by H =
−16t2+75t+4.7. We know the graph will have the
shape of a parabola and we want to know the ini-
tial height, the maximum height, and the amount
of time it takes for the ball to hit the ground if it
is not caught. These important ideas correspond
to the vertical intercept, the vertex, and one of the
horizontal intercepts.
The graph of this equation is shown in Figure 9.3.2.
We cannot easily read where the intercepts occur
from the graph because they are not integers. We
previously covered how to determine the vertex al-
gebraically. In this section, we’ll learn how to find
the intercepts algebraically. Then we’ll come back
to this example and find the intercepts for the path
of the baseball.
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Figure 9.3.2: Graph of H = −16t2 + 75t+ 4.7

9.3.1 Finding the Vertical and Horizontal Intercepts Algebraically
In List 9.2.12, we identified that the vertical intercept occurs where the graph intersects the vertical axis. If
we’re using x and y as our variables, the x-value on the vertical axis is x = 0. We can substitute 0 for x to
find the value of y.

The horizontal intercepts occur where the graph intersects the horizontal axis. If we’re using x and y as
our variables, the y-value on the horizontal axis is y = 0, so we can substitute 0 for y and find the value(s)
of x.
Example 9.3.3 Find the intercepts for the quadratic equation y = x2 − 4x− 12 using algebra.

To determine the y-intercept, we substitute x = 0 and find y = 02 − 4(0) − 12 = −12. So the y-intercept
occurs where y = −12. On a graph, this is the point (0,−12).

To determine the x-intercept(s), we set y = 0 and solve for x:
0 = x2 − 4x− 12

x =
−(−4)±

√
(−4)2 − 4(1)(−12)

2(1)

=
4±

√
16+ 48

2

=
4±

√
64

2
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=
4± 8

2

x =
4− 8

2
or x =

4+ 8

2

x =
−4

2
or x =

12

2

x = −2 or x = 6

The x-intercepts occur where x = −2 and where x = 6. On a graph, these are the points (−2, 0) and (6, 0).
Notice in Example 9.3.3 that the y-intercept was (0,−12) and the value of c was −12. When we substitute 0

for x we will always get the value of c.
Fact 9.3.4 The vertical intercept of a quadratic equation occurs at the point (0, c) where c is the constant term, because
substituting x = 0 leaves only the constant term.

Example 9.3.5 Algebraically determine any horizontal and vertical intercepts of the quadratic equation y =
−x2 + 5x− 7.
Explanation. To determine the vertical intercept, take the constant term −7, and recognize that the y-
intercept is at the point (0,−7).

To determine the horizontal intercepts, we’ll set y = 0 and solve for x:

0 = −x2 + 5x− 7

x =
−5±

√
52 − 4(−1)(−7)

2(−1)

x =
−5±

√
−3

−2

The radicand is negative so there are no real solutions to the equation. This means there are no horizontal
intercepts.

9.3.2 Graphing Quadratic Equations Using Their Key Features
To graph a quadratic equation using its key features, we can use algebra to determine the following: whether
the parabola opens upward or downward, the vertical intercept, the horizontal intercepts and the vertex.
Then we can graph the points and connect them with a smooth curve.

Example 9.3.6 Graph the quadratic equation y = 2x2+10x+8 by algebraically determining its key features.
To start, we’ll note that this parabola will open upward, since the leading coefficient is positive.
To find the y-intercept, we substitute x = 0 to find 2(0)2 + 10(0) + 8 = 8. The y-intercept is (0, 8).
Next, we’ll find the horizontal intercepts by setting y = 0 and solving for x:

2x2 + 10x+ 8 = 0

x =
−10±

√
102 − 4(2)(8)

2(2)
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=
−10±

√
100− 64

4

=
−10±

√
36

4

=
−10± 6

4

x =
−10− 6

4
or x =

−10+ 6

4

x =
−16

4
or x =

−4

4

x = −4 or x = −1

The x-intercepts are (−4, 0) and (−1, 0).
Lastly, we’ll determine the vertex. Noting that a = 2 and b = 10, we have:

h = −
b

2a

= −
10

2(2)

= −2.5

Using this x-value to find the y-coordinate, we have:

k = 2(−2.5)2 + 10(−2.5) + 8

= 12.5− 25+ 8

= −4.5

The vertex is the point (−2.5,−4.5), and the axis of symmetry is the line x = −2.5.
We’re now ready to graph this curve. We’ll start by drawing and scaling the axes so all of our key features

will be displayed as shown in Figure 9.3.7. Next, we’ll plot these key points as shown in Figure 9.3.8. Finally,
we’ll note that this parabola opens upward and connect these points with a smooth curve, as shown in
Figure 9.3.9.
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Figure 9.3.7: Setting up the grid.
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Figure 9.3.8: Marking key
features.
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Figure 9.3.9: Completing the
graph.
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Example 9.3.10Graph the quadratic equation y = −x2+4x−5 by algebraically determining its key features.
To start, we’ll note that this parabola will open downward, as the leading coefficient is negative.
To find the y-intercept, we’ll substitute x with 0:

y = −(0)2 + 4(0) − 5

= −5

The y-intercept is (0,−5).
Next, we’ll find the horizontal intercepts by setting y = 0 and solving for x.

−x2 + 4x− 5 = 0

x =
−4±

√
(4)2 − 4(−1)(−5)

2(−1)

=
−4±

√
16− 20

−2

=
−4±

√
−8

−2

The radicand is negative, so there are no real solutions to the equation. This is a parabola that does not have
any horizontal intercepts.

To determine the vertex, we’ll use a = −1 and b = 4:

h = −
4

2(−1)

= 2

Using this x-value to find the y-coordinate, we have:
k = −(2)2 + 4(2) − 5

= −4+ 8− 5

= −1

The vertex is the point (2,−1), and the axis of symmetry is the line x = 2.
Plotting this information in an appropriate grid, we have:
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Figure 9.3.11: Setting up the grid.
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features.
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Figure 9.3.13: Using the axis of
symmetry to determine one
additional point.



9.3. GRAPHING QUADRATIC EXPRESSIONS 233

Since we don’t have any x-intercepts, we would like to have a few more points to graph. We make a table
with a few more values around the vertex, plot these, and then draw a smooth curve. This is shown in
Figure 9.3.14 and Figure 9.3.15.

x y = −x2 + 4x− 5 Point
0 −(0)2 + 4(0) − 5

= −5

(0,−5)

1 −(1)2 + 4(1) − 5

= −2

(1,−2)

2 −(2)2 + 4(2) − 5

= −1

(2,−1)

3 −(3)2 + 4(3) − 5

= −2

(3,−2)

4 −(4)2 + 4(4) − 5

= −5

(4,−5)

Figure 9.3.14: Determine additional points to plot.
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Figure 9.3.15: Completing the graph.

9.3.3 Applications of Quadratic Equations

Now we have learned how to find all the key features of a quadratic equation algebraically. Here are some
applications of quadratic equations so we can learn how to identify and interpret the vertex, intercepts and
additional points in context.

Example 9.3.16 Returning to the path of the baseball in Figure 9.3.2, the equation that represents the height
of the baseball after Ignacio hit it, is H = −16t2+75t+4.7. The height is in feet and the time, t, is in seconds.
Find and interpret the following, in context.

a. The vertical intercept.
b. The horizontal intercept(s).
c. The vertex.
d. The height of the baseball 1 second after it was hit.
e. The time(s) when the baseball is 80 feet above the ground.

Explanation.
a. To determine the vertical intercept, we’ll substitute t = 0 to find −16(0)2 + 75(0) + 4.7 = 4.7. The

vertical intercept occurs at (0, 4.7). This is the height of the baseball at time t = 0, so the initial height
of the baseball was 4.7 feet.
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b. To determine the horizontal intercepts, we’ll solve H = 0.

H = 0

−16t2 + 75t+ 4.7 = 0

t =
−75±

√
752 − 4(−16)(4.7)

2(−16)

=
−75±

√
5925.8

−32

Rounding these two values with a calculator, we obtain:

≈ −0.06185, 4.749

The horizontal intercepts occur at approximately (−0.06185, 0) and (4.749, 0). If we assume that the
ball was hit when t = 0, a negative time does not make sense. The second horizontal intercept tells us
that the ball hit the ground after approximately 4.75 seconds.

c. The vertex occurs at t = h = − b
2a

, and for this equation a = −16 and b = 75. So we have:

h = −
75

2(−16)

= 2.34375

And then we can find the vertex’s second coordinate:

k = −16(2.34375)2 + 75(2.34375) + 4.7

≈ 92.59

Thus the vertex is about (2.344, 92.59).
The vertex tells us that the baseball reached a maximum height of approximately 92.6 feet about 2.3
seconds after Ignacio hit it.

d. To find the height of the baseball after 1 second, we can compute H when t = 1:

−16(1)2 + 75(1) + 4.7 = 63.7

The height of the baseball was 63.7 feet after 1 second.
e. If we want to know when the baseball was 80 feet in the air, then we set H = 80 and we have:

H = 80

−16t2 + 75t+ 4.7 = 80

−16t2 + 75t− 75.3 = 0

t =
−75±

√
752 − 4(−16)(−75.3)

2(−16)
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=
−75±

√
805.8

−32

Rounding these two values with a calculator, we obtain:

≈ 1.457, 3.231

The baseball was 80 feet above the ground at two times, at about 1.5 seconds on the way up and about
3.2 seconds on the way down.

Example 9.3.17 The profit that Keenan’s manufacturing company makes for producing n refrigerators is
given by P = −0.01n2 + 520n− 54000, for 0 ≤ n ≤ 51,896.

a. Determine the profit the company will make when they produce 1000 refrigerators.
b. Determine the maximum profit and the number of refrigerators produced that yields this profit.
c. How many refrigerators need to be produced in order for the company to “break even?” (In other

words, for their profit to be $0.)
d. How many refrigerators need to be produced in order for the company to make a profit of $1,000,000?

Explanation.
a. This question is giving us an input value and asking for the output value. We substitute 1000 for n

and we have:
P = −0.01(1000)2 + 520(1000) − 54000

= 366000

If Keenan’s company sells 1000 refrigerators it will make a profit of $366,000.
b. This question is asking for the maximum, so we need to find the vertex. This parabola opens down-

ward so the vertex will tell us the maximum profit and the corresponding number of refrigerators that
need to be produced. Using a = −0.01 and b = 520, we have:

h = −
b

2a

= −
520

2(−0.01)

= 26000

Now we find the value of P when n = 26000:
k = −0.01(26000)2 + 520(26000) − 54000

= 6706000

The maximum profit is $6,706,000, which occurs if 26,000 units are produced.
c. This question is giving a height of 0 and asking us to find the time(s). So we will be finding the

horizontal intercept(s). We set P = 0 and solve for n using the quadratic formula:
0 = −0.01n2 + 520n− 54000
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n =
−520±

√
5202 − 4(−0.01)(−54000)

2(−0.01)

=
−520±

√
268240

−0.02

≈ 104, 51896

The company will break even if they produce about 104 refrigerators or 51,896 refrigerators. If the
company produces more refrigerators than it can sell its profit will go down.

d. This question is giving us the profit value. We set P = 1000000 and solve for n using the quadratic
formula:

1000000 = −0.01n2 + 520n− 54000

0 = −0.01n2 + 520n− 1054000

n =
−520±

√
5202 − 4(−0.01)(−1054000)

2(−0.01)

=
−520±

√
228240

−0.02

≈ 2113, 49887

The company will make $1,000,000 in profit if they produce about 2113 refrigerators or 49,887 refrig-
erators.

Example 9.3.18 Maia has a remote-controlled airplane and she is going to do a stunt dive where the plane
dives toward the ground and back up along a parabolic path. The height of the plane after t seconds is given
by H = 0.7t2 − 23t+ 200, for 0 ≤ t ≤ 30. The height is measured in feet.

a. Determine the starting height of the plane as the dive begins.
b. Determine the height of the plane after 5 seconds.
c. Will the plane hit the ground, and if so, at what time?
d. If the plane does not hit the ground, what is the closest it gets to the ground, and at what time?
e. At what time(s) will the plane have a height of 50 feet?

Explanation.
a. This question is asking for the starting height which is the vertical intercept. So we find H when t = 0:

0.7(0)2 − 23(0) + 200 = 200

When Maia begins the stunt, the plane has a height of 200 feet. Recall that we can also look at the value
of c = 200 to determine the vertical intercept.

b. This question is telling us to use t = 5 and find H:

0.7(5)2 − 23(5) + 200 = 102.5

After 5 seconds, the plane is 102.5 feet above the ground.
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c. The ground has a height of 0 feet, so it is asking us to find the horizontal intercept(s) if there are any.
We set H = 0 and solve for t using the quadratic formula:

H = 0.7t2 − 23t+ 200

0 = 0.7t2 − 23t+ 200

t =
23±

√
(−23)2 − 4(0.7)(200)

2(0.7)

t =
23±

√
−31

1.4

The radicand is negative so there are no real solutions to the equation H = 0. That means the plane
did not hit the ground.

d. This question is asking for the lowest point of the airplane so we should find the vertex. Using a = 0.7

and b = −23, we have:

h = −
b

2a

= −
(−23)

2(0.7)

≈ 16.43

Now we can find the value of H when t ≈ 16.43:

k = 0.7(16.43)2 − 23(16.43) + 200

≈ 11.07

The minimum height of the plane is about 11 feet, which occurs after about 16 seconds.
e. This question is giving us a height and asking for the corresponding time(s) so we set H = 50 and

solve for t using the quadratic formula:

H = 0.7t2 − 23t+ 200

50 = 0.7t2 − 23t+ 200

0 = 0.7t2 − 23t+ 150

t =
23±

√
(−23)2 − 4(0.7)(150)

2(0.7)

=
23±

√
109

1.4

≈ 8.971, 23.89

Maia’s plane will be 50 feet above the ground about 9 seconds and 24 seconds after the plane begins
the stunt.
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9.3.4 Distinguishing Quadratic Equations from Other Equations

So far, we’ve seen that the graphs of quadratic equations are parabolas and have a specific curved with a
vertex. We’ve also seen that they have the algebraic form of y = ax2+bx+c. Here, we practice recognizing
a quadratic equation so that we can call to mind that the equation has these features, which may be useful
in some application.

Example 9.3.19 Determine if each equation is a quadratic equation.
a. y+ 5x2 − 4 = 0

b. x2 + y2 = 9

c. y = −5x+ 1

d. y = (x− 6)2 + 3

e. y =
√
x+ 1+ 5

Explanation.
a. As y+ 5x2 − 4 = 0 can be re-written as y = −5x2 + 4, this equation is a quadratic equation.
b. The equation x2 + y2 = 9 cannot be re-written in the form y = ax2 + bx + c (due to the y2 term), so

this equation is not a quadratic equation.
c. The equation y = −5x+ 1 is a linear equation, not a quadratic equation.
d. The equation y = (x− 6)2 + 3 can be re-written as y = x2 − 12x+ 39, so this is a quadratic equation.
e. The equation y =

√
x+ 1+ 5 is not a quadratic equation as x is inside a radical, not squared.

Example 9.3.20 Determine if each graph could be the graph of a quadratic equation.
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Figure 9.3.21
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Figure 9.3.23
Explanation.

a. Since this graph has multiple maximum points and minimum points, it is not a parabola and it is not
possible that it represents a quadratic equation.

b. This graph looks like a parabola, and it’s possible that it represents a quadratic equation.
c. This graph does not appear to be a parabola, but looks like a straight line. It’s not likely that it repre-

sents a quadratic equation.
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9.3.5 Reading Questions
1. Explain how to find a parabola’s y-intercept when you have the equation for the parabola.
2. Why does a parabola sometimes have zero x-intercepts, sometimes have one, and sometimes have

two?
3. When you have the equation for a quadratic graph, what can you always try to use to find any hori-

zontal intercepts?

9.3.6 Exercises

Review and Warmup Solve the equation.
1. x2 + 10x+ 16 = 0 2. x2 + 8x+ 15 = 0 3. x2 − 8x+ 16 = 0

4. x2 − 12x+ 36 = 0 5. x2 − 1 = 0 6. x2 − 9 = 0

7. 41x2 − 47 = 0 8. 17x2 − 59 = 0 9. 3x2 − 8x− 4 = 0

10. 7x2 + 4x− 2 = 0 11. 2x2 + 3x+ 6 = 0 12. 5x2 + 5x+ 7 = 0

Finding the Intercepts of Quadratic Equations Algebraically Find the y-intercept and any x-intercept(s)
of the quadratic curve.

13. y = x2 + 4x+ 3 14. y = −x2 − 2x+ 3 15. y = x2 − 4

16. y = −x2 + 9 17. y = x2 − 4x 18. y = −x2 + 5x

19. y = x2 + 8x+ 16 20. y = x2 + x+ 3 21. y = x2 + 3x+ 4

22. y = x2 + 2x+ 5 23. y = x2 + x+ 6 24. y = x2 + 8x+ 3

25. y = x2 + 8x+ 6 26. y = x2 + 7x+ 8 27. y = x2 + 8x+ 10

28. y = 2x2 − 9x+ 10 29. y = 4x2 + 4x+ 1 30. y = 4x2 − 49

31. y = −11x− 7− 4x2 32. y = 5x− 4x2

Sketching Graphs of Quadratic Equations Graph each curve by algebraically determining its key features.
33. y = x2 − 7x+ 12 34. y = x2 + 5x− 14 35. y = −x2 − x+ 20

36. y = −x2 + 4x+ 21 37. y = x2 − 8x+ 16 38. y = x2 + 6x+ 9

39. y = x2 − 4 40. y = x2 − 9 41. y = x2 + 6x

42. y = x2 − 8x 43. y = −x2 + 5x 44. y = −x2 + 16

45. y = x2 + 4x+ 7 46. y = x2 − 2x+ 6 47. y = x2 + 2x− 5

48. y = x2 − 6x+ 2 49. y = −x2 + 4x− 1 50. y = −x2 − x+ 3

51. y = 2x2 − 4x− 30 52. y = 3x2 + 21x+ 36

Applications of Quadratic Equations
53. An object was shot up into the air with an initial vertical speed of 544 feet per second. Its height

as time passes can be modeled by the quadratic equation y = −16t2 + 544t. Here t represents the
number of seconds since the object’s release, and y represents the object’s height in feet.

a. After , this object reached its maximum height of .
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b. This object flew for before it landed on the ground.

c. This object was in the air 22 s after its release.

d. This object was 3600 ft high at two times: once after its release, and
again later after its release.

54. An object was shot up into the air with an initial vertical speed of 576 feet per second. Its height
as time passes can be modeled by the quadratic equation y = −16t2 + 576t. Here t represents the
number of seconds since the object’s release, and y represents the object’s height in feet.

a. After , this object reached its maximum height of .

b. This object flew for before it landed on the ground.

c. This object was in the air 11 s after its release.

d. This object was 5120 ft high at two times: once after its release, and
again later after its release.

55. From an oceanside clifftop 200 m above sea level, an object was shot into the air with an initial
vertical speed of 274.4 m

s . It fell into the ocean. Its height (above sea level) as time passes can be
modeled by the quadratic equation y = −4.9t2 + 274.4t+ 200. Here t represents the number of
seconds since the object’s release, and y represents the object’s height (above sea level) in meters.

a. After , this object reached its maximum height of .

b. This object flew for before it landed in the ocean.

c. This object was above sea level 20 s after its release.

d. This object was 3081.2 m above sea level twice: once after its release,
and again later after its release.

56. From an oceanside clifftop 160 m above sea level, an object was shot into the air with an initial
vertical speed of 294 m

s . It fell into the ocean. Its height (above sea level) as time passes can be
modeled by the quadratic equation y = −4.9t2 + 294t+ 160. Here t represents the number of
seconds since the object’s release, and y represents the object’s height (above sea level) in meters.

a. After , this object reached its maximum height of .

b. This object flew for before it landed in the ocean.

c. This object was above sea level 46 s after its release.

d. This object was 1747.6 m above sea level twice: once after its release,
and again later after its release.
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57. A remote control aircraft will perform a stunt by flying toward the ground and then up. Its height,
in feet, can be modeled by the equation h = 0.4t2 − 2.4t+ 0.6, where t is in seconds. The plane
(□ will □ will not) hit the ground during this stunt.

58. A remote control aircraft will perform a stunt by flying toward the ground and then up. Its height,
in feet, can be modeled by the equation h = 1.1t2 − 8.8t+ 21.6, where t is in seconds. The plane
(□ will □ will not) hit the ground during this stunt.

59. A submarine is traveling in the sea. Its depth, in meters, can be modeled by d = −0.1t2 + t− 1.5,
where t stands for time in seconds. The submarine (□ will □ will not) hit the sea surface
along this route.

60. A submarine is traveling in the sea. Its depth, in meters, can be modeled byd = −0.8t2 + 9.6t− 31.8,
where t stands for time in seconds. The submarine (□will □will not) hit the sea surface along
this route.

61. An object is launched upward at the height of 310 meters. Its height can be modeled by

h = −4.9t2 + 100t+ 310,

where h stands for the object’s height in meters, and t stands for time passed in seconds since its
launch. The object’s height will be 360 meters twice before it hits the ground. Find how many
seconds since the launch would the object’s height be 360 meters. Round your answers to two
decimal places if needed.

The object’s height would be 360 meters the first time at seconds, and
then the second time at seconds.

62. An object is launched upward at the height of 330 meters. Its height can be modeled by

h = −4.9t2 + 80t+ 330,

where h stands for the object’s height in meters, and t stands for time passed in seconds since its
launch. The object’s height will be 350 meters twice before it hits the ground. Find how many
seconds since the launch would the object’s height be 350 meters. Round your answers to two
decimal places if needed.

The object’s height would be 350 meters the first time at seconds, and
then the second time at seconds.

63. Currently, an artist can sell 280 paintings every year at the price of $60.00 per painting. Each time
he raises the price per painting by $15.00, he sells 10 fewer paintings every year.

Assume he will raise the price per painting x times, then he will sell 280− 10x paintings every
year at the price of 60+ 15x dollars. His yearly income can be modeled by the equation:

i = (60+ 15x)(280− 10x)

where i stands for his yearly income in dollars. If the artist wants to earn $28,800.00 per year from
selling paintings, what new price should he set?

To earn $28,800.00 per year, the artist could sell his paintings at two different prices. The lower
price is per painting, and the higher price is per painting.
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64. Currently, an artist can sell 280 paintings every year at the price of $80.00 per painting. Each time
he raises the price per painting by $10.00, he sells 5 fewer paintings every year.

Assume he will raise the price per painting x times, then he will sell 280 − 5x paintings every
year at the price of 80+ 10x dollars. His yearly income can be modeled by the equation:

i = (80+ 10x)(280− 5x)

where i stands for his yearly income in dollars. If the artist wants to earn $29,150.00 per year from
selling paintings, what new price should he set?

To earn $29,150.00 per year, the artist could sell his paintings at two different prices. The lower
price is per painting, and the higher price is per painting.

Challenge
65. Consider the equation y = x2 +nx+p. Let n and p be real numbers. Give your answers as points.

a. Suppose the graph has two real x-intercepts. What are they?
b. What is its y-intercept?
c. What is its vertex?
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9.4 Graphically Solving Equations and Inequalities

It is possible to solve equations and inequalities simply by reading a graph well. In this section, we take
that approach to solving equations.

9.4.1 Solving Equations Using a Graph

To algebraically solve an equation like −0.01x2 + 0.7x− 18 = −0.04x2 − 3.6x+ 32, we’d start by rearranging
terms so that we could apply the quadratic formula. That would be a lot of pencil-and-paper work, and a
lot of opportunity to make human errors. An alternative is to graphically solve this equation. We start by
graphing both

y = −0.01x2 + 0.7x− 18 and y = −0.04x2 − 3.6x+ 32.

It happens that we learned how to graph equations like these by hand in Section 9.3, but we will “cheat” in
this section and use graphing technology to just make the graphs for us.

Example 9.4.2 Solve the equation −0.01x2 + 0.7x− 18 = −0.04x2 − 3.6x+ 32 graphically.
Explanation.
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Figure 9.4.3: y = −0.01x2 + 0.7x− 18 and
y = −0.04x2 − 3.6x+ 32

There are two points of intersection where the
curves cross each other: (22.46, 28.677) and
(74.207, 14.878). Each one of them tells you a so-
lution to the equation we started with. The point
(22.46, 28.677) means that when x is about 22.46,
both −0.01x2 + 0.7x − 18 and −0.04x2 − 3.6x + 32

work out to the same result. That result is about
28.677, but that really doesn’t matter right now. Its
the x-value, about 22.46, that matters. That is one
solution to the equation.
The second point of intersection similarly shows us
that 74.207 is another approximate solution. We
can conclude that the solution set to the equation
is approximately {22.46, 74.207}.

Example 9.4.4 Graphically solve the equation −0.01(x− 90)(x+ 20) = 25.
Explanation. Start by graphing two curves on the same plot: y = left and y = right. Specifically for this
example, y = −0.01(x− 90)(x+ 20) and y = 25.



244 CHAPTER 9. TOPICS IN GRAPHING

−40 −20 20 40 60 80

−30

−20

−10

10

20

30

40

50

(12.
807

, 25
)

(57.
913

, 25
)

x

y

Figure 9.4.5: y = −0.01(x− 90)(x+ 20) and y = 25

The points of intersection are (12.807, 25) and
(57.913, 25), which tells us that the solutions are ap-
proximately 12.807 and 57.913. The solution set is
approximately {12.807, 57.913}.

One excellent thing about solving equations graphically is that it doesn’t really matter what “kind” of equa-
tion it is. The equation can have mathematics in it that you haven’t specifically studied, but as long as
something (like a computer or your teacher) provides you with the graphs, you can still solve the equation.

Example 9.4.6 Graphically solve the equation |x+ 5| = 1
x+1

.
Explanation. If you’ve only been learning algebra from this textbook, this equation has some unfamiliar
bits and pieces. The vertical bars in |x+5| represent the basic math concept of absolute value, which you can
brush up on in Appendix A.3. On the other side of the equation there is the expression 1

x+1
, with a variable

in the denominator. This textbook hasn’t discussed such things yet.
Even though we don’t yet have general knowledge for these kinds of math expressions and their graphs,

we can still trust some source to provide the graphs for us.
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Figure 9.4.7: y = |x+ 5| and y = 1
x+1

It appears there is only one point of intersection at
about (−0.7639, 4.236). So the solution set is ap-
proximately {−0.7639}.
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If we are solving graphically and something is already providing you with the graph, it’s not even necessary
to have math expressions for the two curves.
Example 9.4.8
In Figure 9.4.9, there are two curves plotted. The
horizontal axis represents years, one curve repre-
sents the population of California, and the other
curve represents the population of New York. In
what year did the population of California equal
the population of New York?
It appears there is only one point of intersection at
about (1963, 17.5). So the solution set is approxi-
mately {1963}. But in context, this says that 1963
is the year when California’s population equaled
New York’s.
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Figure 9.4.9: Populations of California and New
York

9.4.2 Solving Inequalities Using a Graph
In Part I of this book, we learn how to solve linear inequalities such as 2x + 1 < 5 using algebra. By using
graphs instead of symbolic algebra, we can solve inequalities with more complicated math expressions, as
well as inequalities in context that may not even have math expressions.
Example 9.4.10
In Figure 9.4.11, there are two curves plotted. The
horizontal axis represents years, one curve repre-
sents the percent of US women ages 25–34 years
old participating in the workforce, and the other
curve represents the percent of US women ages 45–
54 years old participating in the workforce. When
was the percent from the 25–34 group more than
the percent from the 45–54 group?
The curve for women 25–34 appears to rise above
the other curve between the years 1975 and 1997.
So the solution set is the interval (1975, 1997). But
in context, this means that in between 1975 and
1997, the percentage of women 25–34 in the work-
force was greater than the percentage of women
45–54 in the workforce.
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Figure 9.4.11: Women in the Workforce
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It is helpful to take another look at this graph, with
some annotations. We wanted the 25–34 curve to
be greater than the 45–54 curve. Visually, we lock
sights onto the indicated region. The solution set
we are looking for is the years that this happened,
which are down on the horizontal axis. So we have
to project the region we’ve identified down onto
the horizontal axis. After we’ve done this, the in-
terval we see on the horizontal axis is the solution
set.
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Figure 9.4.12: Women in the Workforce

Example 9.4.13 Graphically solve the following inequalities.
a. −20t2 − 70t+ 300 ≥ −5t+ 300 b. −20t2 − 70t+ 300 < −5t+ 300

Explanation.
For both parts of this example, we start by graph-
ing the equations y = −20t2 − 70t + 300 and
y = −5t+ 300 and determining the points of inter-
section. You may use some piece of technology to
do this, or perhaps you find yourself provided with
these graphs, with the intersection points clearly
marked or easy to determine.
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Figure 9.4.14: Points of intersection for
y = −20t2 − 70t+ 300 and y = −5t+ 300
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a.
To solve −20t2−70t+300 ≥ −5t+300, we need
to determine where the y-values of the parabola
are higher than (or equal to) those of the line.
This region is highlighted in Figure 9.4.15.
We can see that this region includes all values of
t between, and including, t = −3.25 and t = 0.
So the solutions to this inequality include all val-
ues of t for which −3.25 ≤ t ≤ 0. We can write
this solution set in interval notation as [−3.25, 0]
or in set-builder notation as {t | −3.25 ≤ t ≤ 0}.
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Figure 9.4.15
b.

To now solve −20t2 − 70t + 300 < −5t + 300,
we will need to determine where the y-values of
the parabola are less than those of the line. This
region is highlighted in Figure 9.4.16.
We can see that −20t2 − 70t + 300 < −5t + 300

for all values of t where t < −3.25 or t > 0. We
can write this solution set in interval notation as
(−∞,−3.25) ∪ (0,∞) or in set-builder notation
as {t | t < −3.25 or t > 0}.
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Figure 9.4.16



248 CHAPTER 9. TOPICS IN GRAPHING

Occasionally, a curve abruptly “stops”, and we need to recognize this in a solution to an inequality.

Example 9.4.17 Solve the inequality 1− x >
√
x+ 5 using a graph.

Explanation.
We plot y = 1−x and y =

√
x+ 5, and then look for

the intersection(s) of the graphs. The two curves
intersect at (−1, 2).
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Figure 9.4.18: y = 1− x and y =
√
x+ 5

Since the inequality is
line︷ ︸︸ ︷

1− x >

half-parabola︷ ︸︸ ︷√
x+ 5 , we want

to identify the region where the line is higher
than the half-parabola. While the line extends
higher and higher off to the left, the half-parabola
abruptly stops at (−5, 0). So the solution set needs
to stop at the corresponding place. As illustrated,
the solution set is the interval [−5,−1).

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y =
√
x+ 5

y
=
1−

x

x

y

Figure 9.4.19: y = 1− x and y =
√
x+ 5

9.4.3 Reading Questions
1. Suppose you have an equation where x is the only variable. In order to solve that equation, explain

how you could use a graph. Assume that some technology can provide you with any graph you would
like to see.
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2. The curves y = x4−3x2+x and y = 1−
√
x− 1 cross at three locations. How many solutions are there

to x4 − 3x2 + x = 1−
√
x− 1?

3. The solution set to an inequality is generally not a single number or a small collection of numbers. In
general, the solution set to an inequality is a .

9.4.4 Exercises

Points of Intersection Use technology to make some graphs and determine how many times the graphs of
the following curves cross each other.

1. y = (441− 17x)(−67− 16x) and y = −8000

intersect (□ zero times □ one time
□ two times □ three times) .

2. y = (−143− 12x)(−344+ 11x) and
y = −9000 intersect (□ zero times □ one
time □ two times □ three times) .

3. y = −4x3 − x2 + 5x and y = 7x− 4 intersect
(□ zero times □ one time □ two times
□ three times) .

4. y = −x3 − 3x2 − 6x and y = 2x− 4 intersect
(□ zero times □ one time □ two times
□ three times) .

5. y = −0.5
(
5x2 + 2

) and y = 0.45(7x− 3)
intersect (□ zero times □ one time
□ two times □ three times) .

6. y = −0.5
(
6x2 − 9

) and y = −0.46(4x− 9)
intersect (□ zero times □ one time
□ two times □ three times) .

7. y = 1.05(x+ 9)
2
− 1.05 and y = 1.1x− 1

intersect (□ zero times □ one time
□ two times □ three times) .

8. y = 1.5(x− 4)
2
+ 6.45 and y = −0.05x− 1

intersect (□ zero times □ one time
□ two times □ three times) .

Solving Equations and Inequalities Graphically
9. The equations y = 1

2
x2 + 2x− 1 and y = 5

are plotted.

a. What are the points of intersection?
b. Solve 1

2
x2 + 2x− 1 = 5.

c. Solve 1
2
x2 + 2x− 1 > 5.

10. The equations y = 1
3
x2 − 3x+ 3 and y = −3

are plotted.

a. What are the points of intersection?
b. Solve 1

3
x2 − 3x+ 3 = −3.

c. Solve 1
3
x2 − 3x+ 3 > −3.
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11. The equations y = −x2 + 1.5x+ 5 and
y = −5 are plotted.

a. What are the points of intersection?
b. Solve −x2 + 1.5x+ 5 = −5.
c. Solve −x2 + 1.5x+ 5 > −5.

12. The equations y = −x2 − 3.5x+ 2 and y = 2

are plotted.

a. What are the points of intersection?
b. Solve −x2 − 3.5x+ 2 = 2.
c. Solve −x2 − 3.5x+ 2 > 2.

13. The equations y = 1
2
x2 − x− 1 and

y = −x+ 1 are plotted.

a. What are the points of intersection?
b. Solve 1

2
x2 − x− 1 = −x+ 1.

c. Solve 1
2
x2 − x− 1 > −x+ 1.

14. The equations y = −1
3
x2 + 2x+ 3 and

y = x− 3 are plotted.

a. What are the points of intersection?
b. Solve −1

3
x2 + 2x+ 3 = x− 3.

c. Solve −1
3
x2 + 2x+ 3 > x− 3.

15. The equations y = 1
4
x3 and y = x are

plotted.

a. What are the points of intersection?
b. Solve 1

4
x3 = x.

c. Solve 1
4
x3 > x.

16. The equations y = x3 + x and y = 1
6
x2 are

plotted.

a. What are the points of intersection?
b. Solve x3 + x = 1

6
x2.

c. Solve x3 + x > 1
6
x2.
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17. The equations y =
√
x+ 4 and y = 4x2+x+3

36

are plotted.

a. What are the points of intersection?

b. Solve √
x+ 4 = 4x2+x+3

36
.

c. Solve √
x+ 4 > 4x2+x+3

36
.

18. The equations y =
√
4− x and y = −2− x

are plotted.

a. What are the points of intersection?
b. Solve √

4− x = −2− x.
c. Solve √

4− x > −2− x.

19. The equations y = 1
2
x2 + 2x and

y = 3
√
9− 2x2 + 23

50
x− 52

25
are plotted.

a. What are the points of intersection?
b. Solve

1
2
x2 + 2x = 3

√
9− 2x2 + 23

50
x− 52

25
.

c. Solve
1
2
x2 + 2x >

3
√
9− 2x2 + 23

50
x− 52

25
.

20. The equations y = x− 2 and
y = |x+ |x− 3|− 4| are plotted.

a. What are the points of intersection?
b. Solve x− 2 = |x+ |x− 3|− 4|.
c. Solve x− 2 > |x+ |x− 3|− 4|.
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9.5 Topics in Graphing Chapter Review

9.5.1 Review of Graphing

In Section 9.1, we reviewed the fundamentals of graph-making. In particular, given an equation of the form
y = expression in x, the fundamental approach to making a graph is to make a table of points to plot.

We also looked back at the notions of “intercepts” on a graph. In the case of a linear equation in x and
y, finding the x- and y-intercepts can be a way to create a graph.

9.5.2 Key Features of Quadratic Graphs

In Section 9.2, we identified the key features of a quadratic graph (which takes the shape of a parabola). The
key features are the direction that it opens, the vertex, the axis of symmetry, the vertical intercept, and the
horizontal intercepts (if there are any).

If the equation for a quadratic curve is y = ax2 + bx + c, then the formula h = − b
2a

gives the first
coordinate of the vertex. So you can find the location of the vertex with that coordinate and subbing that
number into the equation to find the second coordinate.

If we know the location of a parabola’s vertex and the direction that it opens, we can sketch the parabola.
It helps to make a table finding a few points the the left and to the right of the vertex. The symmetry of a
parabola means you only need to find points on one side to automatically get corresponding points on the
other side.

9.5.3 Graphing Quadratic Equations

In Section 9.3, we practiced finding the exact locations of the vertical and horizontal intercepts for a quadratic
equation curve. The vertical intercept can be found by lettting x = 0. The result is a number on the y-axis.

The horizontal intercepts can be found by setting y equal to 0. This leaves you with a quadratic equation
in one variable, x, and the quadratic formula can be used to solve for x. There might be no solutions, as is
the case when the parabola doesn’t touch the x-axis. There might be one solution, when the vertex is on the
x-axis. Or there might be two solutions, and therefore two horizontal intercepts.

When we know the exact locations of the intercepts (as well as the location of the vertex as found in
Section 9.2) then we can plot accurate graphs of quadratic equations.

9.5.4 Graphically Solving Equations and Inequalities

In Section 9.4, we see how a graph can be used to solve an equation or inequality. Each side of an equation
gives you a curve, and where the two curves cross tells you where there are solutions to the equation.

For example, to solve the equation x2 + x − 1 = 2x + 1, we could plot two curves: y = x2 + x − 1 and
y = 2x+ 1. We might use a computer to make the graphs for us, as in Figure 9.5.1.
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Figure 9.5.1: y = x2 + x− 1 and y = 2x+ 1

Since the curves cross at (−1,−1) and (2, 5), the solutions are x = −1 and x = 2. This means the solution set
is {−1, 2}.

9.5.5 Exercises

Review of Graphing Make a table for the equation.
1.

x y = −9x
2.

x y = −3x+ 5

3.
x y = 10

3
x+ 1

4.
x y = −5

4
x+ 3

5. Create a table of ordered pairs and then
make a plot of the equation y = 2x+ 3.

6. Create a table of ordered pairs and then
make a plot of the equation y = −3

4
x+ 2.



254 CHAPTER 9. TOPICS IN GRAPHING

7. Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

8x+ 7y = −168

x-value y-value Location (as an ordered pair)
y-intercept
x-intercept

8. Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

8x− 5y = −80

x-value y-value Location (as an ordered pair)
y-intercept
x-intercept

9. Find the x- and y-intercepts of the line with
equation 5x− 6y = −90. Then find one
other point on the line. Use your results to
graph the line.

10. Find the x- and y-intercepts of the line with
equation x+ 5y = −15. Then find one other
point on the line. Use your results to graph
the line.

Key Features of Quadratic Graphs Find the axis of symmetry and vertex of the quadratic function.
11. y = 5x2 − 50x+ 3 12. y = −3− 30x− 5x2 13. y = −1− x2 + 6x

14. y = −2x2 + 20x 15. y = 2− x2 16. y = −2x2 − 10x+ 4

17. y = 2x2 + 10x− 2 18. y = 3x2 19. y = 0.4x2 − 4

20. y = 5(x+ 3)
2
+ 4

For the given quadratic equation, find the vertex. Then create a table of ordered pairs centered around the
vertex and make a graph.

21. y = x2 + 2 22. y = x2 − 5 23. y = (x− 2)2 24. y = (x+ 3)2

25. For y = 4x2 − 8x+ 5, determine the vertex, create a table of ordered pairs, and then make a graph.
26. For y = −x2+ 4x+ 2, determine the vertex, create a table of ordered pairs, and then make a graph.
27. For y = x2 − 5x+ 3, determine the vertex, create a table of ordered pairs, and then make a graph.
28. For y = −2x2−5x+6, determine the vertex, create a table of ordered pairs, and then make a graph.

29. Consider two numbers where one number is 4 less than a second number. Find a pair of such
numbers that has the least product possible. One approach is to let x represent the smaller number,
and write a formula for a function of x that outputs the product of the two numbers. Then find its
vertex and interpret it.
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These two numbers are and the least possible product is .
30. You will build a rectangular sheep enclosure next to a river. There is no need to build a fence along

the river, so you only need to build on three sides. You have a total of 420 feet of fence to use. Find
the dimensions of the pen such that you can enclose the maximum possible area. One approach is
to let x represent the length of fencing that runs perpendicular to the river, and write a formula for
a function of x that outputs the area of the enclosure. Then find its vertex and interpret it.

The length of the pen (parallel to the river) should be , the width (perpendicular
to the river) should be , and the maximum possible area is .

Graphing Quadratic Equations Find the y-intercept and any x-intercept(s) of the quadratic curve.
31. y = x2 − 2x− 8 32. y = −x2 + 1

33. y = x2 + 6x+ 9 34. y = x2 + 4x+ 7

35. y = x2 + 8x+ 5 36. y = 5x2 − 8x− 4

37. y = −x+ 18− 5x2 38. y = 5x− 2x2

Graph each curve by algebraically determining its key features.
39. y = x2 − 7x+ 12 40. y = −x2 − x+ 20 41. y = x2 − 8x+ 16

42. y = x2 − 4 43. y = x2 + 6x 44. y = −x2 + 5x

45. y = x2 + 4x+ 7 46. y = x2 + 2x− 5 47. y = −x2 + 4x− 1

48. y = 2x2 − 4x− 30

49. An object was shot up into the air with an initial vertical speed of 384 feet per second. Its height
as time passes can be modeled by the quadratic equation y = −16t2 + 384t. Here t represents the
number of seconds since the object’s release, and y represents the object’s height in feet.

a. After , this object reached its maximum height of .

b. This object flew for before it landed on the ground.

c. This object was in the air 3 s after its release.

d. This object was 704 ft high at two times: once after its release, and
again later after its release.

50. A remote control aircraft will perform a stunt by flying toward the ground and then up. Its height,
in feet, can be modeled by the equationh = t2 − 10t+ 28, where t is in seconds. The plane (□will
□ will not) hit the ground during this stunt.

51. An object is launched upward at the height of 280 meters. Its height can be modeled by
h = −4.9t2 + 70t+ 280,

where h stands for the object’s height in meters, and t stands for time passed in seconds since its
launch. The object’s height will be 330 meters twice before it hits the ground. Find how many
seconds since the launch would the object’s height be 330 meters. Round your answers to two
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decimal places if needed.
The object’s height would be 330 meters the first time at seconds, and

then the second time at seconds.

52. Currently, an artist can sell 230 paintings every year at the price of $70.00 per painting. Each time
he raises the price per painting by $10.00, he sells 10 fewer paintings every year.

Assume he will raise the price per painting x times, then he will sell 230− 10x paintings every
year at the price of 70+ 10x dollars. His yearly income can be modeled by the equation:

i = (70+ 10x)(230− 10x)

where i stands for his yearly income in dollars. If the artist wants to earn $21,600.00 per year from
selling paintings, what new price should he set?

To earn $21,600.00 per year, the artist could sell his paintings at two different prices. The lower
price is per painting, and the higher price is per painting.

Graphically Solving Equations and Inequalities Use technology to make some graphs and determine how
many times the graphs of the following curves cross each other.

53. y = (286+ 5x)(78+ 10x) and y = 6000

intersect (□ zero times □ one time
□ two times □ three times) .

54. y = 5x3 − x2 − 6x and y = −4x+ 3 intersect
(□ zero times □ one time □ two times
□ three times) .

55. y = 0.2
(
8x2 + 2

) and y = 0.2(x− 9)
intersect (□ zero times □ one time
□ two times □ three times) .

56. y = 1.85(x− 4)
2
− 8.4 and y = x+ 1

intersect (□ zero times □ one time
□ two times □ three times) .

57. The equations y = 1
2
x2 + 2x− 1 and y = 5

are plotted.

a. What are the points of intersection?
b. Solve 1

2
x2 + 2x− 1 = 5.

c. Solve 1
2
x2 + 2x− 1 > 5.

58. The equations y = −x2 + 1.5x+ 5 and
y = −5 are plotted.

a. What are the points of intersection?
b. Solve −x2 + 1.5x+ 5 = −5.
c. Solve −x2 + 1.5x+ 5 > −5.
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59. The equations y = 1
2
x2 − x− 1 and

y = −x+ 1 are plotted.

a. What are the points of intersection?
b. Solve 1

2
x2 − x− 1 = −x+ 1.

c. Solve 1
2
x2 − x− 1 > −x+ 1.

60. The equations y = 1
4
x3 and y = x are

plotted.

a. What are the points of intersection?
b. Solve 1

4
x3 = x.

c. Solve 1
4
x3 > x.

61. The equations y =
√
x+ 4 and y = 4x2+x+3

36

are plotted.

a. What are the points of intersection?

b. Solve √
x+ 4 = 4x2+x+3

36
.

c. Solve √
x+ 4 > 4x2+x+3

36
.

62. The equations y = 1
2
x2 + 2x and

y = 3
√
9− 2x2 + 23

50
x− 52

25
are plotted.

a. What are the points of intersection?
b. Solve

1
2
x2 + 2x = 3

√
9− 2x2 + 23

50
x− 52

25
.

c. Solve
1
2
x2 + 2x >

3
√
9− 2x2 + 23

50
x− 52

25
.
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Appendix B

Unit Conversions

Units of Length
in the US/Imperial System

Units of Length
in the Metric System

System to System
Length Conversions

1 foot (ft)
= 12 inches (in)

1 meter (m)
= 1000 millimeters (mm)

1 inch (in)
= 2.54 centimeters (cm)

1 yard (yd)
= 3 feet (ft)

1 meter (m)
= 100 centimeters (cm)

1 meter (m)
≈ 3.281 feet (ft)

1 yard (yd)
= 36 inches (in)

1 meter (m)
= 10 decimeters (dm)

1 meter (m)
≈ 1.094 yard (yd)

1 mile (mi)
= 5280 feet (ft)

1 dekameter (dam)
= 10 meters (m)

1 mile (mi)
≈ 1.609 kilometer (km)

1 hectometer (hm)
= 100 meters (m)
1 kilometer (km)
= 1000 meters (m)

Table B.0.1: Length Unit Conversion Factors

1
2

3
4

5
6

7
8

9
10

11

B1
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Units of Area
in the US/Imperial System

Units of Area
in the Metric System

System to System
Area Conversions

1 acre
= 43560 square feet (ft2)

1 hectare (ha)
= 10000 square meters (m2)

1 hectare (ha)
≈ 2.471 acres

640 acres
= 1 square mile (mi2)

100 hectares (ha)
= 1 square kilometer (km2)

Table B.0.2: Area Unit Conversion Factors

Units of Volume
in the US/Imperial System

Units of Volume
in the Metric System

System to System
Volume Conversions

1 tablespoon (tbsp)
= 3 teaspoon (tsp)

1 cubic centimeter (cc)
= 1 cubic centimeter (cm3)

1 cubic inch (in3)
≈ 16.39 milliliters (mL)

1 fluid ounce (fl oz)
= 2 tablespoons (tbsp)

1 milliliter (mL)
= 1 cubic centimeter (cm3)

1 fluid ounce (fl oz)
≈ 29.57 milliliters (mL)

1 cup (c)
= 8 fluid ounces (fl oz)

1 liter (L)
= 1000 milliliters (mL)

1 liter (L)
≈ 1.057 quarts (qt)

1 pint (pt)
= 2 cups (c)

1 liter (L)
= 1000 cubic centimeters (cm3)

1 gallon (gal)
≈ 3.785 liters (L)

1 quart (qt)
= 2 pints (pt)
1 gallon (gal)
= 4 quarts (qt)
1 gallon (gal)
= 231 cubic inches (in3)

Table B.0.3: Volume Unit Conversion Factors

Units of Mass/Weight
in the US/Imperial System

Units of Mass/Weight
in the Metric System

System to System
Mass/Weight Conversions

1 pound (lb)
= 16 ounces (oz)

1 gram (g)
= 1000 milligrams (mg)

1 ounce (oz)
≈ 28.35 grams (g)

1 ton (T)
= 2000 pounds (lb)

1 gram (g)
= 1000 kilograms (kg)

1 kilogram (kg)
≈ 2.205 pounds (lb)

1 metric ton (t)
= 1000 kilograms (kg)

Table B.0.4: Weight/Mass Unit Conversion Factors
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Precise Units
of Time

Imprecise Units
of Time

Units of Time
in the Metric System

1 week (wk)
= 7 days (d)

1 year (yr)
≈ 12 months (mo)

1 second (s)
= 1000 milliseconds (ms)

1 day (d)
= 24 hours (h)

1 year (yr)
≈ 52 weeks (wk)

1 second (s)
= 106 microseconds (µs)

1 hour (h)
= 60 minutes (min)

1 year (yr)
≈ 365 days (d)

1 second (s)
= 109 nanoseconds (ns)

1 minute (min)
= 60 seconds (s)

1 month (mo)
≈ 30 days (d)

Table B.0.5: Time Unit Conversion Factors

1
2
3

4
567

8
9
10

11 12

1 byte (B)
= 8 bits (b)

1 kilobit (kb)
= 1024 bits (b)

1 kilobyte (kB)
= 1024 bytes (B)

1 megabit (Mb)
= 1024 kilobits (kb)

1 megabyte (MB)
= 1024 kilobytes (kB)
1 gigabyte (GB)
= 1024 megabytes (MB)
1 terabyte (TB)
= 1024 gigabytes (GB)

Table B.0.6: Computer Storage/Memory Conversion Factors

01001111
01010010
01000011
01000011
01000001
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Index

foil, 28

addition
of polynomials, 6

area, 172
axis of symmetry, 215

base, 14
binomial, 5

circumference, 175
coefficient, 4
complex number, 132
conjugates, 39
constant polynomial, 5
constant term, 5
cubic polynomial, 5

degree
of a polynomial, 5
of a term, 5

difference of squares, 39
discriminant, 124
dividing a polynomial by a monomial, 22

empty set, 97, 108
equation

radical, 96
exponent, 14

base, 14
introductory rules, 17
negative exponent rule, 48
power, 14
power to a power rule, 15

product rule, 14
product to a power rule, 16
quotient of powers rule, 21
quotient to a power rule, 45
zero power rule, 47

extraneous solutions, 96

generic rectangle, 27

horizontal intercept, 229

imaginary numbers, 131
imaginary unit, 131
index, 68
intercept

horizontal, 229
vertical, 229
x, 229
y, 229

leading coefficient
of a polynomial, 5

leading term
of a polynomial, 5

linear polynomial, 5

maximum, 215
minimum, 215
monomial, 5

nth radical, 68
nth root, 68
nth root, 68

order of magnitude, 154



II INDEX

parabola
axis of symmetry, 215
horizontal intercept, 216
opening up or down, 215
vertex, 215
vertical intercept, 215

perfect square trinomial, 36
perfect squares, 66
perimeter, 172
polynomial, 3

addition and subtraction, 6
binomial, 5
coefficients, 4
constant, 5
constant term, 5
cubic, 5
degree, 5
divided by a monomial, 22
leading coefficient, 5
leading term, 5
linear, 5
quadratic, 5
quartic, 5
quintic, 5
terms of, 3

power, 14
product of a sum and its conjugate, 39
properties

square root property, 111
Pythagorean theorem, 114

quadratic
vertex, 218

quadratic polynomial, 5
quartic polynomial, 5
quintic polynomial, 5

radical, 65
radical equation, 96
radicand, 65, 68
rationalizing the denominator, 79
root, 65

scientific notation, 154
solving

quadratic equations
quadratic formula, 122
using the square root property, 111

radical equations, 98
square root, 65
square root property, 111
squaring a binomial, 36, 37

trinomial, 5

unit ratio, 162

vertex, 215
vertical-intercept, 229
volume, 178

cylinder, 181
prism, 179

x-intercept, 229

y-intercept, 229


