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To All
HTML, PDF, and print This book is available as an eBook, a free pdf, or printed and bound. All versions
offer the same content and are synchronized such that cross-references match across versions. They can
each be found at pcc.edu/orcca.

There are some differences between the eBook, pdf, and printed versions.

• The eBook is recommended, as it offers interactive elements and easier navigation than print. It re-
quires no more than internet access and a modern web browser.

• A pdf version can be downloaded and then accessed without the internet. Some content is in color,
but most of the colorized content from the eBook has been converted to black and white to ensure
adequate contrast when printing in black and white. The exceptions are the graphs generated by
WeBWorK.

• Printed and bound copies are available online. Up-to-date information about purchasing a copy
should be available at pcc.edu/orcca. Contact the authors if you have trouble finding the latest ver-
sion online. For each online sale, all royalties go to a PCC Foundation account, where roughly half
will fund student scholarships, and half will fund continuedmaintenance of this book and other OER.

Copying Content The graphs and other images that appear in this manual may be copied in various file
formats using the eBook version. Below each image are links to .png, .eps, .svg, .pdf, and .tex files that
contain the image.

Mathematical content can be copied from the eBook. To copy math content into MS Word, right-click or
control-click over the math content, and click to Show Math As MathML Code. Copy the resulting code, and
Paste Special into Word. In the Paste Special menu, paste it as Unformatted Text. To copy math content
into LATEX source, right-click or control-click over themath content, and click to Show Math As TeX Commands.

Tables can be copied from the eBook version and pasted into applications like MS Word. However, mathe-
matical content within tables will not always paste correctly without a little extra effort as described above.

Accessibility The html version is intended to meet or exceed web accessibility standards. If you encounter
an accessibility issue, please report it.

• All graphs and images should have meaningful alt text that communicates what a sighted person
would see, without necessarily giving away anything that is intended to be deduced from the image.

• All math content is rendered using MathJax. MathJax has a contextual menu that can be accessed in
several ways, depending on what operating system and browser you are using. The most common
way is to right-click or control-click on some piece of math content.

• In the MathJax contextual menu, you may set options for triggering a zoom effect on math content,
and also by what factor the zoom will be. Also in the MathJax contextual menu, you can enable the
Explorer, which allows for sophisticated navigation of the math content.

• A screen reader will generally have success verbalizing the math content from MathJax. With cer-
tain screen reader and browser combinations, you may need to set some configuration settings in the
MathJax contextual menu.
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Tablets and Smartphones PreTeXt documents like this book are “mobile-friendly.” When you view the
html version, the display adapts to whatever screen size or window size you are using. Amath teacher will
always recommend that you do not study from the small screen on a phone, but if it’s necessary, the eBook
gives you that option.

WeBWorK for Online Homework Most exercises are available in a ready-to-use collection of WeBWorK
problem sets. Visit webwork.pcc.edu/webwork2/orcca-demonstration to see a demonstration WeBWorK
course where guest login is enabled. Anyone interested in using these problem sets should contact the
project leads.

Odd Answers The answers to the odd homework exercises at the end of each section are not contained in
the pdf or print versions. As the eBook evolves, they may or may not be contained in an appendix there. In
any case, odd answers are available somewhere. Check pcc.edu/orcca to see where.

Interactive and Static Examples Traditionally, a math textbook has examples throughout each section.
This textbook uses two types of “example”:

Static These are labeled “Example.” Static examples may or may not be subdivided into a “statement”
followed by a walk-through solution. This is basically what traditional examples frommath textbooks
do.

Active These are labeled “ Checkpoint,” not to be confused with the exercises that come at the end
of a section that might be assigned for homework, etc. In the html output, active examples have
WeBWorK answer blanks where a reader could try submitting an answer. In the pdf output, active
examples are almost indistinguishable from static examples, but there is a WeBWorK icon indicating
that a reader could interact more actively using the eBook. Generally, a walk-through solution is
provided immediately following the answer blank.

Some html readers will skip the opportunity to try an active example and go straight to its solution.
Some readers will try an active example once and then move on to the solution. Some readers will
tough it out for a period of time and resist reading the solution.

For readers of the pdf, it is expected that they would read the example and its solution just as they
would read a static example.

A reader is not required to try submitting an answer to an active example before moving on. A reader
is expected to read the solution to an active example, even if they succeed on their own at finding an
answer.

Interspersed through a section there are usually several exercises that are intended as active reading exer-
cises. A reader can work these examples and submit answers to WeBWorK to see if they are correct. The
important thing is to keep the reader actively engaged instead of providing another static written example.
In most cases, it is expected that a reader will read the solutions to these exercises just as they would be
expected to read a more traditional static example.
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Pedagogical Decisions
The authors and the greater PCC faculty have taken various stances on certain pedagogical and notational
questions that arise in basic algebra instruction. We attempt to catalog these decisions here, although this
list is certainly incomplete. If you find something in the book that runs contrary to these decisions, please
let us know.

• Interleaving is our preferred approach, compared to a proficiency-based approach. To us, this means
that once the book covers a topic, that topic will be appear in subsequent sections and chapters in
indirect ways.

• Chapter 1 is mostly written as a review, and is not intended to teach all of these topics from first prin-
ciples.

• We round decimal results to four significant digits, or possibly fewer leaving out trailing zeros. We do
this to maintain consistency with the most common level of precision that WeBWorK uses to assess
decimal answers. We round, not truncate. And we use the ≈ symbol. For example π ≈ 3.142 and
Portland’s population is ≈ 609500.

• We offer alternative video lessons associated with each section, found in most sections in the eBook.
We hope these videos provide readers with an alternative to whatever is in the reading, but there may
be discrpancies here and there between the video content and reading content.

• We believe in always trying to open a topic with some level of application rather than abstract exam-
ples. From applications and practical questions, we move to motivate more abstract definitions and
notation. This approach is perhaps absent in the first chapter, which is intended to be a review only.
At first this may feel backwards to some instructors, with some “easier” examples (with no context)
appearing after “more difficult” contextual examples.

• Linear inequalities are not strictly separated from linear equations. The section that teaches how to
solve 2x + 3 � 8 is immediately followed by the section teaching how to solve 2x + 3 < 8.

Our aim is to not treat inequalities as an add-on optional topic, but rather to show how intimately
related they are to corresponding equations.

• When issues of “proper formatting” of student work arise, we value that the reader understand why
such things help the reader to communicate outwardly. We believe that mathematics is about more
than understanding a topic, but also about understanding it well enough to communicate results to
others.

For example we promote progression of equations like

1 + 1 + 1 � 2 + 1
� 3

instead of
1 + 1 + 1 � 2 + 1 � 3.

And we want students to understand that the former method makes their work easier for a reader to
read. It is not simply a matter of “this is the standard and this is how it’s done.”
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• When solving equations (or systems of linear equations), most examples should come with a check,
intended to communicate to students that checking is part of the process. In Chapters 1–4, these checks
will be complete simplifications using order of operations one step at a time. The later sections will
often have more summary checks where either order of operations steps are skipped in groups, or we
promote entering expressions into a calculator. Occasionally in later sections the checks will still have
finer details, especially when there are issues like with negative numbers squared.

• Within a section, any first example of solving some equation (or system) should summarize with some
variant of both “the solution is…” and “the solution set is….” Later examples canmix it up, but always
offer at least one of these.

• There is a section on very basic arithmetic (five operations on natural numbers) in an appendix, not
in the first chapter. This appendix is only available in the eBook.

• With applications of linear equations (as opposed to linear systems), we limit applications to situations
where the setup will be in the form x + f (x) � C and also certain rate problems where the setup will
be in the form 5t + 4t � C. There are other classes of application problem (mixing problems, interest
problems, …) which can be handled with a system of two equations, and we reserve these until linear
systems are covered.

• With simplifications of rational expressions in one variable, we always include domain restrictions that
are lost in the simplification. For example, we would write x(x+1)

x+1 � x, for x , −1. With multivariable
rational expressions, we are content to ignore domain restrictions lost during simplification.
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Entering WeBWorK Answers
This preface offers some guidance with syntax for WeBWorK answers. WeBWorK answer blanks appear
in the active reading examples (called “checkpoints”) in the html version of the book. If you are using
WeBWorK for online homework, then you will also enter answers into WeBWorK answer blanks there.

Basic Arithemtic The five basic arithmetic operations are: addition, subtraction, multiplication, and rais-
ing to a power. The symbols for addition and subtraction are+ and−, and both of these are directly avialable
on most keyboards as + and -.

On paper, multiplication is sometimeswritten using× and sometimeswritten using · (a centered dot). Since
these symbols are not available on most keyboards, WeBWorK uses * instead, which is often shift-8 on a
full keyboard.

On paper, division is sometimes written using ÷, sometimes written using a fraction layout like 4
2 , and

sometimes written just using a slash, /. The slash is available on most full keyboards, near the question
mark. WeBWorK uses / to indicate division.

On paper, raising to a power is written using a two-dimensional layout like 42. Since we don’t have a way
to directly type that with a simple keyboard, calculators and computers use the caret character, ^, as in 4^2.
The character is usually shift-6.

Roots and Radicals Onpaper, a square root is representedwith a radical symbol like
√

. Since a keyboard
does not usually have this symbol, WeBWorK and many computer applications use sqrt( ) instead. For
example, to enter

√
17, type sqrt(17).

Higher-index radicals are written on paper like 4√12. Again we have no direct way to write this using most
keyboards. In someWeBWorK problems it is possible to type something like root(4, 12) for the fourth root
of twelve. However this is not enabled for all WeBWorK problems.

As an alternative that you may learn about in a later chapter, 4√12 is mathematically equal to 121/4, so it can
be typed as 12^(1/4). Take note of the parentheses, which very much matter.

Common Hiccups with Grouping Symbols Suppose you wanted to enter x+1
2 . You might type x+1/2, but

this is not right. The computer will use the order of operations (see Section 1.4) and do your division first,
dividing 1 by 2. So the computer will see x +

1
2 . To address this, you would need to use grouping symbols

like parentheses, and type something like (x+1)/2.

Suppose you wanted to enter 61/4, and you typed 6^1/4. This is not right. The order of operations places
a higher priority on exponentiation than division, so it calculates 61 first and then divides the result by 4.
That is simply not the same as raising 6 to the 1

4 power. Again the way to address this is to use grouping
symbols, like 6^(1/4).

Entering Decimal Answers Often you will find a decimal answer with decimal places that go on and on.
You are allowed to round, but not by too much. WeBWorK generally looks at how many significant digits
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you use, and generally expects you to use four or more correct significant digits.

“Significant digits” and “places past the decimal” are not the same thing. To count significant digits, read
the number left to right and look for the first nonzero digit. Then count all the digits to the right including
that first one.

The number 102.3 has four significant digits, but only one place past the decimal. This number could be a
correct answer to a WeBWorK question. The number 0.0003 has one significant digit and four places past
the decimal. This number might cause you trouble if you enter it, because maybe the “real” answer was
0.0003091, and rounding to 0.0003 was too much rounding.

Special Symbols There are a handful of special symbols that are easy to write on paper, but it’s not clear
how to type them. Here are WeBWorK’s expectations.

Symbol Name How to Type
∞ infinity infinity or inf
π pi pi

∪ union U

� the real numbers R

| such that | (shift-\, where \ is above the enter key)
≤ less than or equal to <=

≥ greater than or equal to >=

, not equal to !=
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CHAPTER 1
Basic Math Review

This chapter is mostly intended to review topics from a basic math course, especially Sections 1.1–1.4. These
topics are covered differently than they would be covered for a student seeing them for the first time.

1.1 Arithmetic with Negative Numbers

Adding, subtracting, multiplying, dividing, and raising to powers each have peculiarities when using neg-
ative numbers. This section reviews arithmetic with signed (both positive and negative) numbers.

1.1.1 Signed Numbers

Is it valid to subtract a large number from a smaller one? It may be hard to imagine what it would mean
physically to subtract 8 cars from your garage if you only have 1 car in there in the first place. Nevertheless,
mathematics has found a way to give meaning to expressions like 1 − 8 using signed numbers.

In daily life, the signed numbers we might see most often are temperatures. Most people on Earth use the
Celsius scale; if you’re not familiar with the Celsius temperature scale, think about these examples:

−50 −40 −30 −20 −10 10 20 30 40 50

Human body
temperature

Cool autumn day
Water freezes

Cold winter night
Average temperature at

North Pole in winter

0 ◦C

Figure 1.1.2: Number line with interesting Celsius temperatures

Figure 1.1.2 uses a number line to illustrate these positive and negative numbers. A number line is a useful
device for visualizing how numbers relate to each other and combine with each other. Values to the right
of 0 are called positive numbers and values to the left of 0 are called negative numbers.

Warning 1.1.3 Subtraction Sign versus Negative Sign. Unfortunately, the symbol we use for subtraction
looks just like the symbol we use for marking a negative number. It will help to identify when a “minus”
sign means “subtract” or means “negative.” The key is to see if there is a number to its left, not counting
anything farther left than an open parenthesis. Here are some examples.

• −13 has one negative sign and no subtraction sign.

• 20 − 13 has no negative signs and one subtraction sign.

• −20 − 13 has a negative sign and then a subtraction sign.

• (−20)(−13) has two negative signs and no subtraction sign.
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Chapter 1 Basic Math Review

Checkpoint 1.1.4. Identify “minus” signs.

In each expression, how many negative signs and subtraction signs are there?

a. 1 − 9

has negative signs and subtraction signs.

b. −12 + (−50)

has negative signs and subtraction signs.

c. −13 − (−15) − 17
23 − 4

has negative signs and subtraction signs.

Explanation.

a. 1 − 9 has zero negative signs and one subtraction sign.

b. −12 + (−50) has two negative signs and zero subtraction signs.

c. −13 − (−15) − 17
23 − 4 has two negative signs and three subtraction signs.

1.1.2 Adding

An easy way to think about adding two numbers with the same sign is to simply (at first) ignore the signs,
and add the numbers as if theywere both positive. Thenmake sure your result is either positive or negative,
depending on what the sign was of the two numbers you started with.

Example 1.1.5 Add Two Negative Numbers. If you needed to add −18 and −7, note that both are neg-
ative. Maybe you have this expression in front of you:

−18 + −7

but that “plus minus” is awkward, and in this book you are more likely to have this expression:

−18 + (−7)

with extra parentheses. (How many subtraction signs do you see? How many negative signs?)

Since both our terms are negative, we can add 18 and 7 to get 25 and immediately realize that our final
result should be negative. So our result is −25:

−18 + (−7) � −25

This approach works because adding numbers is like having two people tugging on a rope in one direction
or the other, with strength indicated by each number. In Example 1.1.5 we have two people pulling to the
left, onewith strength 18, the other with strength 7. Their forces combine to pull leftwith strength 25, giving
us our total of −25, as illustrated in Figure 1.1.6.

If we are adding two numbers that have opposite signs, then the two people tugging the rope are opposing
each other. If either of them is using more strength, then the overall effect will be a net pull in that person’s
direction. And the overall pull on the rope will be the difference of the two strengths. This is illustrated in
Figure 1.1.7.
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1.1 Arithmetic with Negative Numbers

−30 −25 −20 −15 −10 −5 5 10

Suriya Kate

−18
−7

−25

0 −20 −15 −10 −5 5 10 15 20

Suriya Kate

−15
12

−3

0

Figure 1.1.6: Working together Figure 1.1.7: Working in opposition

Example 1.1.8 Adding OneNumber of Each Sign. Here are four examples of addition where one num-
ber is positive and the other is negative.

a. −15 + 12

We have one number of each sign, with sizes 15 and 12. Their difference is 3. But of the two
numbers, the negative number dominated. So the result from adding these is −3.

b. 200 + (−100)
We have one number of each sign, with sizes 200 and 100. Their difference is 100. But of the two
numbers, the positive number dominated. So the result from adding these is 100.

c. 12.8 + (−20)
We have one number of each sign, with sizes 12.8 and 20. Their difference is 7.2. But of the two
numbers, the negative number dominated. So the result from adding these is −7.2.

d. −87.3 + 87.3

We have one number of each sign, both with size 87.3. The opposing forces cancel each other,
leaving a result of 0.

Checkpoint 1.1.9. Take a moment to practice adding when at least one negative number is involved.
The expectation is that readers can make these calculations here without a calculator.

a. Add −1 + 9.

b. Add −12 + (−98).
c. Add 100 + (−123).

d. Find the sum −2.1 + (−2.1).
e. Find the sum −34.67 + 81.53.

Explanation.

a. The two numbers have opposite sign, so we can think to subtract 9 − 1 � 8. Of the two numbers we
added, the positive is larger, so we stick with postive 8 as the answer.

b. The two numbers are both negative, so we can add 12 + 98 � 110, and take the negative of that as the
answer: −110.

c. The two numbers have opposite sign, so we can think to subtract 123 − 100 � 23. Of the two numbers
we added, the negative is larger, so we take the negative of 23 as the answer. That is, the answer is
−23.

d. The two numbers are both negative, so we can add 2.1+ 2.1 � 4.2, and take the negative of that as the
answer: −4.2.

e. The two numbers have opposite sign, so we can think to subtract 81.53 − 34.67 � 46.86. Of the two
numbers we added, the positive is larger, so we stick with postive 46.86 as the answer.
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Chapter 1 Basic Math Review

1.1.3 Subtracting

Perhaps you can handle a subtraction such as 18 − 5, where a small positive number is subtracted from a
larger number. There are other instances of subtraction that might leave you scratching your head. In such
situations, we recommend that you view each subtraction as adding the opposite number.

Original Adding the Opposite
Subtracting a larger positive number: 12 − 30 12 + (−30)
Subtracting from a negative number: −8.1 − 17 −8.1 + (−17)
Subtracting a negative number: 42 − (−23) 42 + 23

The benefit is that perhaps you already mastered addition with positive and negative numbers, and this
strategy that you convert subtraction to addition means you don’t have all that much more to learn. These
examples might be computed as follows:

12 − 30 � 12 + (−30)
� −18

−8.1 − 17 � −8.1 + (−17)
� −25.1

42 − (−23) � 42 + 23
� 65

Checkpoint 1.1.10. Take amoment to practice subtractingwhen at least one negative number is involved.
The expectation is that readers can make these calculations here without a calculator.

a. Subtract −1 from 9.

b. Subtract 32 − 50.

c. Subtract 108 − (−108).

d. Find the difference −5.9 − (−3.1).
e. Find the difference −12.04 − 17.2.

Explanation.

a. After writing this as 9 − (−1), we can rewrite it as 9 + 1 and get 10.

b. Subtrcting in the oppsite order with the larger number first, 50 − 32 � 18. But since we were asked to
subtract the larger number from the smaller number, the answer is −18.

c. After writing this as 108 − (−108), we can rewrite it as 108 + 108 and get 216.

d. After writing this as −5.9− (−3.1), we can rewrite it as −5.9+ 3.1. Now it is the sum of two numbers of
opposite sign, so we can subtract 5.9− 3.1 to get 2.8. But we were adding numbers where the negative
number was larger, so the final answer should be −2.8.

e. Since we are subtracting a positive number from a negative number, the result should be an evenmore
negative number. We can add 12.04 + 17.2 to get 29.24, but our final answer should be the opposite,
−29.24.

1.1.4 Multiplying

Making sense of multiplication of negative numbers isn’t quite so straightforward, but it’s possible. Should
the product of 3 and −7 be a positive number or a negative number? Remembering that we can view mul-
tiplication as repeated addition, we can see this result on a number line:
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−20 −10 10 20

adding −7 three times

0

Figure 1.1.11: Viewing 3 · (−7) as repeated addition

Figure 1.1.11 illustrates that 3 · (−7) � −21, and so it would seem that a positive number times a negative
number will always give a negative result. (Note that it would not change things if the negative number
came first in the product, since the order of multiplication doesn’t affect the result.)

What about the product −3 · (−7), where both factors are negative? Should the product be positive or
negative? If 3 · (−7) can be seen as adding −7 three times as in Figure 1.1.12, then it isn’t too crazy to
interpret −3 · (−7) as subtracting −7 three times, as in Figure 1.1.12.

−20 −10 10 20

subtracting −7 three times

0

Figure 1.1.12: Viewing −3 · (−7) as repeated subtraction

This illustrates that −3 · (−7) � 21, and it would seem that a negative number times a negative number
always gives a positive result.

Positive and negative numbers are not the whole story. The number 0 is neither positive nor negative. What
happens with multiplication by 0? You can choose to view 7 · 0 as adding the number 0 seven times. And
you can choose to view 0 · 7 as adding the number 7 zero times. Either way, you really added nothing at all,
which is the same as adding 0.

Fact 1.1.13 Multiplication by 0. Multiplying any number by 0 results in 0.

Checkpoint 1.1.14. Here are some practice exercises with multiplication and signed numbers. The ex-
pectation is that readers can make these calculations here without a calculator.

a. Multiply −13 · 2.
b. Find the product of 30 and −50.

c. Compute −12(−7).
d. Find the product −285(0).

Explanation.

a. Since 13 · 2 � 26, and we are multiplying numbers of opposite signs, the answer is negative: −26.

b. Since 30 ·50 � 1500, and we are multiplying numbers of opposite signs, the answer is negative: −1500.

c. Since 12 · 7 � 84, and we are multiplying numbers of the same sign, the answer is positive: 84.

d. Any number multiplied by 0 is 0.

5



Chapter 1 Basic Math Review

1.1.5 Powers

For early sections of this book the only exponents you will see will be the natural numbers: {1, 2, 3, . . .}.
But negative numbers can and will arise as the base of a power.

An exponent is a shorthand for how many times to multiply by the base. For example,

(−2)5 means

5 instances︷                               ︸︸                               ︷
(−2) · (−2) · (−2) · (−2) · (−2)

Will the result here be positive or negative? Since we can view (−2)5 as repeated multiplication, and we
now understand that multiplying two negatives gives a positive result, this expression can be thought of
this way:

(−2) · (−2)︸      ︷︷      ︸
positive

· (−2) · (−2)︸      ︷︷      ︸
positive︸                      ︷︷                      ︸

positive

·(−2)

and that lone last negative number will be responsible for making the final product negative.

More generally, if the base of a power is negative, then whether or not the result is positive or negative
depends on if the exponent is even or odd. It depends on whether or not the factors can all be paired up to
“cancel” negative signs, or if there will be a lone factor left by itself.

Once you understand whether the result is positive or negative, for a moment you may forget about signs.
Continuing the example, you may calculate that 25 � 32, and then since we know (−2)5 is negative, you can
report

(−2)5 � −32

Warning 1.1.15 Negative Signs and Exponents. Expressions like −34 may not mean what you think they
mean. What base do you see here? The correct answer is 3. The exponent 4 only applies to the 3, not to −3.
So this expression, −34, is actually the same as −

(
34) , which is −81. Be careful not to treat −34 as having

base −3. That would make it equivalent to (−3)4, which is positive 81.

Checkpoint 1.1.16. Here is some practice with natural exponents on negative bases. The expectation is
that readers can make these calculations here without a calculator.

a. Compute (−8)2.
b. Calculate the power (−1)203.

c. Find (−3)3.
d. Calculate −52.

Explanation.

a. Since 82 is 64 and we are raising a negative number to an even power, the answer is positive: 64.

b. Since 1203 is 1 and we are raising a negative number to an odd power, the answer is negative: −1.

c. Since 33 is 27 and we are raising a negative number to an odd power, the answer is negative: −27.

d. Careful: here we are raising positive 5 to the second power to get 25 and then negating the result: −25.
Since we don’t see “(−5)2,” the answer is not positive 25.
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1.1.6 Summary

Addition Add two negative numbers: add their positive counterparts and make the result negative.

Add a positive with a negative: find their difference using subtraction, and keep the sign of the dom-
inant number.

Subtraction Any subtraction can be converted to addition of the opposite number. For all but the most
basic subtractions, this is a useful strategy.

Multiplication Multiply two negative numbers: multiply their positive counterparts and make the result
positive.

Multiply a positive with a negative: multiply their positive counterparts andmake the result negative.

Multiply any number by 0: the result will be 0.

Division (not discussed in this section) Division by some number is the same as multiplication by its re-
ciprocal. So the multiplication rules can be adopted.

Division of 0 by any nonzero number always results in 0.

Division of any number by 0 is always undefined.

Powers Raise a negative number to an even power: raise the positive counterpart to that power.

Raise a negative number to an odd power: raise the positive counterpart to that power, then make the
result negative.

Expressions like −24 mean −
(
24) , not (−2)4.

Exercises

Add the following.

a. −8 + (−1) �

b. −6 + (−7) �

c. −1 + (−7) �

1. a. −10 + (−2) �

b. −5 + (−3) �

c. −2 + (−9) �

2. a. 2 + (−10) �

b. 5 + (−2) �

c. 7 + (−7) �

3.

a. 2 + (−6) �

b. 8 + (−3) �

c. 7 + (−7) �

4. a. −8 + 3 �

b. −4 + 10 �

c. −4 + 4 �

5. a. −10 + 3 �

b. −1 + 7 �

c. −4 + 4 �

6.

a. −41 + (−31) �

b. −31 + 58 �

c. 64 + (−27) �

7. a. −31 + (−63) �

b. −84 + 33 �

c. 62 + (−72) �

8.
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Subtract the following.

a. 5 − 6 �

b. 8 − 4 �

c. 4 − 19 �

9. a. 5 − 9 �

b. 5 − 3 �

c. 4 − 14 �

10. a. −5 − 2 �

b. −8 − 3 �

c. −6 − 6 �

11.

a. −4 − 1 �

b. −6 − 1 �

c. −6 − 6 �

12. a. −2 − (−8) �

b. −6 − (−2) �

c. −4 − (−4) �

13. a. −3 − (−6) �

b. −9 − (−2) �

c. −4 − (−4) �

14.

Perform the given addition and subtraction.

a. −15 − 10 + (−9) �

b. 4 − (−15) + (−12) �

15. a. −13 − 7 + (−5) �

b. 1 − (−15) + (−17) �

16.

a. −12 − 3 + (−1) �

b. 8 − (−15) + (−12) �

17. a. −11 − 10 + (−7) �

b. 5 − (−16) + (−17) �

18.

Multiply the following.

a. (−8) · (−2) �

b. (−4) · 3 �

c. 7 · (−2) �

d. (−5) · 0 �

19. a. (−10) · (−3) �

b. (−7) · 7 �

c. 7 · (−6) �

d. (−4) · 0 �

20. a. (−3) · (−4) · (−3) �

b. 5 · (−8) · (−2) �

c. (−84) · (−52) · 0 �

21.

a. (−3) · (−5) · (−5) �

b. 4 · (−8) · (−4) �

c. (−83) · (−70) · 0 �

22. a. (−2)(−1)(−2)(−1) �

b. (−3)(−3)(1)(−1) �

23. a. (−2)(−3)(−3)(−3) �

b. (−1)(−1)(−1)(−3) �

24.
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Evaluate the following.

a. −30
−5 �

b. 36
−6 �

c. −48
6 �

25. a. −12
−4 �

b. 20
−5 �

c. −24
6 �

26.

a. −3
−1 �

b. 9
−1 �

c. 110
−110 �

d. −10
−10 �

e. 8
0 �

f. 0
−4 �

27. a. −2
−1 �

b. 7
−1 �

c. 150
−150 �

d. −13
−13 �

e. 8
0 �

f. 0
−8 �

28.

a. (−9)2 �

b. −42
�

29. a. (−7)2 �

b. −62
�

30.

a. (−3)3 �

b. −13
�

31. a. (−2)3 �

b. −43
�

32.

a. 42
�

b. 23
�

c. (−4)2 �

d. (−3)3 �

33. a. 52
�

b. 43
�

c. (−3)2 �

d. (−5)3 �

34.

a. 110
�

b. (−1)11
�

c. (−1)12
�

d. 020
�

35. a. 15
�

b. (−1)13
�

c. (−1)18
�

d. 018
�

36.
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Simplify without using a calculator.

−9.33 + (−21.7) �37. −1.97 + (−81.3) �38. 6.6 − 1.62 �39.

6.3 − 3.32 �40. −6.12 + 7.9 �41. −3.82 + 7.6 �42.

−6.52 − (−8.3) �43. −2.21 − (−8.9) �44. 75 − 6.91 �45.

82 − 1.71 �46. −18 + 5.41 �47. −25 + 8.11 �48.

It’s given that 32 · 39 � 1248. Use this fact to
calculate the following without using a calcu-
lator:

3.2(−0.039) �

49. It’s given that 48 · 76 � 3648. Use this fact to
calculate the following without using a calcu-
lator:

4.8(−7.6) �

50.

It’s given that 55 · 24 � 1320. Use this fact to
calculate the following without using a calcu-
lator:

(−5.5)(−0.024) �

51. It’s given that 62 · 51 � 3162. Use this fact to
calculate the following without using a calcu-
lator:

(−6.2)(−5.1) �

52.

Applications

Consider the following situation inwhich you
borrow money from your cousin:

• On June 1st, you borrowed 1400 dollars
from your cousin.

• On July 1st, you borrowed 460 more dol-
lars from your cousin.

• On August 1st, you paid back 690 dollars
to your cousin.

• On September 1st, you borrowed another
960 dollars from your cousin.

How much money do you owe your cousin
now?

53. Consider the following scenario in which you
study your bank account.

• On Jan. 1, you had a balance of −450 dol-
lars in your bank account.

• On Jan. 2, your bank charged 40 dollar
overdraft fee.

• On Jan. 3, you deposited 870 dollars.

• On Jan. 10, you withdrew 650 dollars.

What is your balance on Jan. 11?

54.
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A mountain is 1100 feet above sea level. A
trench is 360 feet below sea level. What is the
difference in elevation between the mountain
top and the bottom of the trench?

55. A mountain is 1200 feet above sea level. A
trench is 420 feet below sea level. What is the
difference in elevation between the mountain
top and the bottom of the trench?

56.

Challenge

Select the correct word to make each statement true.

a. A positive number minus a positive number is (□ sometimes □ always □ never) nega-
tive.

b. A negative number plus a negative number is (□ sometimes □ always □ never) negative.

c. A positive number minus a negative number is (□ sometimes □ always □ never) posi-
tive.

d. A negative number multiplied by a negative number is (□ sometimes □ always □ never)
negative.

57.
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1.2 Fractions and Fraction Arithmetic

The word “fraction” comes from the Latin word fractio, which means “break into pieces.” For thousands of
years, cultures from all over the world have used fractions to understand parts of a whole.

1.2.1 Visualizing Fractions

Parts of a Whole One approach to understanding fractions is to think of them as parts of a whole.

In Figure 1.2.2, we see 1 whole divided into 7 parts.
Since 3 parts are shaded, we have an illustration
of the fraction 3

7 . The denominator 7 tells us how
many parts to cut up the whole; since we have 7
parts, they’re called “sevenths.” The numerator 3
tells us how many sevenths to consider.

1 one whole

1
7

1
7

1
7 three sevenths

Figure 1.2.2: Representing 3
7 as parts of a whole.

Checkpoint 1.2.3 A Fraction as Parts of a Whole. To visualize the fraction 14
35 , you might cut a rectangle

into equal parts, and then count up of them.

Explanation. You could cut a rectangle into 35 equal pieces, and then 14 of them would represent 14
35 .

We can also locate fractions on number lines.
When ticks are equally spread apart, as in Fig-
ure 1.2.4, each tick represents a fraction.

13
7

0

Figure 1.2.4: Representing 3
7 on a number line.

Checkpoint 1.2.5 A Fraction on a Number Line. In the given number line, what fraction is marked?

Explanation. There are 8 subdivisions between 0 and 1, and the mark is at the fifth subdivision. So the
mark is 5

8 of the way from 0 to 1 and therefore represents the fraction 5
8 .

Division Fractions can also be understood through division.

For example, we can view the fraction 3
7 as 3 di-

vided into 7 equal parts, as in Figure 1.2.6. Just
one of those parts represents 3

7 . −1 1 2 3 43
7

3 divided by 7

0

Figure 1.2.6: Representing 3
7 on a number line.
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Checkpoint 1.2.7 Seeing a Fraction as Division Arithmetic. The fraction 21
40 can be thought of as divid-

ing the whole number into equal-sized parts.

Explanation. Since 21
40 means the same as 21 ÷ 40, it can be thought of as dividing 21 into 40 equal parts.

1.2.2 Equivalent Fractions

It’s common to have two fractions that represent the same amount. Consider 2
5 and 6

15 represented in various
ways in Figures 1.2.8–1.2.10.

1
5

1
5

1
15

1
15

1
15

1
15

1
15

1
15

12
5

0

16
15

0

1 2 3 4 5 62
5

2 divided by 5

0

1 2 3 4 5 66
15

6 divided by 15

0

Figure 1.2.8: 2
5 and 6

15 as equal
parts of a whole

Figure 1.2.9: 2
5 and 6

15 as equal
on a number line

Figure 1.2.10: 2
5 and 6

15 as equal
results from division

Those two fractions, 2
5 and 6

15 are equal, as those figures demonstrate. Also, because they each equal 0.4
as a decimal. If we must work with this number, the fraction that uses smaller numbers, 2

5 , is preferable.
Working with smaller numbers decreases the likelihood of making a human arithmetic error. And it also
increases the chances that you might make useful observations about the nature of that number.

So if you are handed a fraction like 6
15 , it is important to try to reduce

it to “lowest terms.” The most important skill you can have to help
you do this is to know the multiplication table well. If you know it
well, you know that 6 � 2 · 3 and 15 � 3 · 5, so you can break down
the numerator and denominator that way. Both the numerator and
denominator are divisible by 3, so they can be “factored out” and then
as factors, cancel out.

6
15 �

2 · 3
3 · 5

�
2 · �3
�3 · 5

�
2 · 1
1 · 5

�
2
5

Checkpoint 1.2.11. Reduce these fractions into lowest terms.

a. 14
42 � b. 8

30 � c. 70
90 �

Explanation.

a. With 14
42 , we have 2·7

2·3·7 , which reduces to 1
3 .

b. With 8
30 , we have 2·2·2

2·3·5 , which reduces to 4
15 .

c. With 70
90 , we have 7·10

9·10 , which reduces to 7
9 .

Sometimes it is useful to do the opposite of reducing a fraction, and build up the fraction to use larger
numbers.

13
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Checkpoint 1.2.12. Sayid scored 21
25 on a recent exam. Build up this fraction so that the denominator is

100, so that Sayid can understand what percent score he earned.

Explanation. To change the denominator from 25 to 100, it needs to be multiplied by 4. So we calculate

21
25 �

21 · 4
25 · 4

�
84
100

So the fraction 21
25 is equivalent to 84

100 . (This means Sayid scored an 84%.)

1.2.3 Multiplying with Fractions

Example 1.2.13 Suppose a recipe calls for 2
3 cup of milk, but we’d like to quadruple the recipe (make

it four times as big). We’ll need four times as much milk, and one way to measure this out is to fill a
measuring cup to 2

3 full, four times:

When you count up the shaded thirds, there are eight of them. So multiplying 2
3 by the whole number

4, the result is 8
3 . Mathematically:

4 · 23 �
4 · 2

3

�
8
3

Fact 1.2.14 Multiplying a Fraction and a Whole Number. When you multiply a whole number by a fraction,
you may just multiply the whole number by the numerator and leave the denominator alone. In other words, as long
as d is not 0, then a whole number and a fraction multiply this way:

a · c
d
�

a · c
d

Example 1.2.15 We could also use multiplication to decrease amounts. Suppose we needed to cut the
recipe down to just one fifth. Instead of four of the 2

3 cup milk, we need one fifth of the 2
3 cup milk. So

instead of multiplying by 4, we multiply by 1
5 . But how much is 1

5 of 2
3 cup?

If we cut the measuring cup into five equal vertical strips along with the three
equal horizontal strips, then in total there are 3 · 5 � 15 subdivisions of the cup.
Two of those sections represent 1

5 of the 2
3 cup.

14
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In the end, we have 2
15 of a cup. The denominator 15 came from

multiplying 5 and 3, the denominators of the fractions we had to
multiply. The numerator 2 came from multiplying 1 and 2, the nu-
merators of the fractions we had to multiply.

1
5 ·

2
3 �

1 · 2
5 · 3

�
2
15

Fact 1.2.16 Multiplication with Fractions. As long as b and d are not 0, then fractions multiply this way:

a
b
· c

d
�

a · c
b · d

Checkpoint 1.2.17. Simplify these fraction products.

a. 1
3 ·

10
7 �

b. 12
3 ·

15
3 �

c. −14
5 ·

2
3 �

d. 70
27 ·

12
−20 �

Explanation.

a. Multiplying numerators gives 10, and multiplying denominators gives 21. The answer is 10
21 .

b. Before we multiply fractions, note that 12
3 reduces to 4, and 15

3 reduces to 5. So we just have 4 · 5 � 20.

c. Multiplying numerators gives 28, and multiplying denominators gives 15. The answer is 28
15 .

d. Before we multiply fractions, note that 12
−20 reduces to −3

5 . So we have 70
27 · −3

5 . Both the numerator of
the first fraction and denominator of the second fraction are divisible by 5, so it helps to reduce both
fractions accordingly and get 14

27 · −3
1 . Both the denominator of the first fraction and numerator of the

second fraction are divisible by 3, so it helps to reduce both fractions accordingly and get 14
9 · −1

1 . Now
we are just multiplying 14

9 by −1, so the result is −14
9 .

1.2.4 Division with Fractions

How does division with fractions work? Are we able to compute/simplify each of these examples?

a. 3 ÷ 2
7 b. 18

19 ÷ 5 c. 14
3 ÷ 8

9 d.
2
5
5
2

We know that when we divide something by 2, this is the same as multiplying it by 1
2 . Conversely, dividing

a number or expression by 1
2 is the same as multiplying by 2

1 , or just 2. The more general property is that
when we divide a number or expression by a

b , this is equivalent to multiplying by the reciprocal b
a .

Fact 1.2.18 Division with Fractions. As long as b, c and d are not 0, then division with fractions works this way:

a
b
÷ c

d
�

a
b
· d

c

15
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Example 1.2.19 With our examples from the beginning of this subsection:

a. 3 ÷ 2
7 � 3 · 72
�

3
1 ·

7
2

�
21
2

b. 18
19 ÷ 5 �

18
19 ÷

5
1

�
18
19 ·

1
5

�
18
95

c. 14
3 ÷

8
9 �

14
3 ·

9
8

�
14
1 ·

3
8

�
7
1 ·

3
4

�
21
4

d.
2
5
5
2

�
2
5 ÷

5
2

�
2
5 ·

2
5

�
4
25

Checkpoint 1.2.20. Simplify these fraction division expressions.

a. 1
3 ÷

10
7 � b. 12

5 ÷5 � c. −14÷ 3
2 � d. 70

9 ÷
11
−20 �

Explanation.

a. 1
3 ÷

10
7 �

1
3 ·

7
10

�
7
30

b. 12
5 ÷ 5 �

12
5 ·

1
5

�
12
25

c. −14 ÷ 3
2 � − 1

14 ·
2
3

� −1
7 ·

1
3

� − 1
21

d. 70
9 ÷

11
−20 � −70

9 ·
20
11

� −1400
99

1.2.5 Adding and Subtracting Fractions

With whole numbers and integers, operations of addition and subtraction are relatively straightforward.
The situation is almost as straightforward with fractions if the two fractions have the same denominator. Con-
sider

7
2 +

3
2 � 7 halves + 3 halves

In the same way that 7 tacos and 3 tacos make 10 tacos, we have:

7 halves + 3 halves � 10 halves
7
2 +

3
2 �

10
2

� 5
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Fact 1.2.21 Adding/Subtracting with Fractions Having the Same Denominator. To add or subtract two frac-
tions having the same denominator, keep that denominator, and add or subtract the numerators.

a
b
+

c
b
�

a + c
b

a
b
− c

b
�

a − c
b

If it’s possible, useful, or required of you, simplify the result by reducing to lowest terms.

Checkpoint 1.2.22. Add or subtract these fractions.

a. 1
3 +

10
3 � b. 13

6 − 5
6 �

Explanation.

a. Since the denominators are both 3, we can add the numerators: 1 + 10 � 11. The answer is 11
3 .

b. Since the denominators are both 6, we can subtract the numerators: 13 − 5 � 8. The answer is 8
6 , but

that reduces to 4
3 .

Whenever we’d like to combine fractional amounts that don’t represent the same number of parts of a whole
(that is, when the denominators are different), finding sums and differences is more complicated.

Example 1.2.23 Quarters and Dimes. Find the sum 3
4 +

2
10 . Does this seem intimidating? Consider this:

• 1
4 of a dollar is a quarter, and so 3

4 of a dollar is 75 cents.

• 1
10 of a dollar is a dime, and so 2

10 of a dollar is 20 cents.

So if you know what to look for, the expression 3
4 +

2
10 is like adding 75 cents and 20 cents, which gives

you 95 cents. As a fraction of one dollar, that is 95
100 . So we can report

3
4 +

2
10 �

95
100 .

(Although we should probably reduce that last fraction to 19
20 .)

This example was not something you can apply to other fraction addition situations, because the denom-
inators here worked especially well with money amounts. But there is something we can learn here. The
fraction 3

4 was equivalent to 75
100 , and the other fraction 2

10 was equivalent to 20
100 . These equivalent fractions

have the same denominator and are therefore “easy” to add. What we saw happen was:

3
4 +

2
10 �

75
100 +

20
100

�
95
100

This realization gives us a strategy for adding (or subtracting) fractions.

Fact 1.2.24 Adding/Subtracting FractionswithDifferentDenominators. To add (or subtract) generic fractions
together, use their denominators to find a common denominator. This means some whole number that is a whole
multiple of both of the original denominators. Then rewrite the two fractions as equivalent fractions that use this
common denominator. Write the result keeping that denominator and adding (or subtracting) the numerators. Reduce
the fraction if that is useful or required.
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Example 1.2.25 Let’s add 2
3 +

2
5 . The denominators are 3 and 5, so the number 15 would be a good

common denominator.

2
3 +

2
5 �

2 · 5
3 · 5 +

2 · 3
5 · 3

�
10
15 +

6
15

�
16
15

Checkpoint 1.2.26. A chef had 2
3 cups of flour and needed to use 1

8 cup to thicken a sauce. How much

flour is left?

Explanation. We need to compute 2
3 − 1

8 . The denominators are 3 and 8. One common denominator is 24,
so we move to rewrite each fraction using 24 as the denominator:

2
3 −

1
8 �

2 · 8
3 · 8 −

1 · 3
8 · 3

�
16
24 −

3
24

�
13
24

The numerical result is 13
24 , but a pure number does not answer this question. The amount of flour remaining

is 13
24 cups.

1.2.6 Mixed Numbers and Improper Fractions

A simple recipe for bread contains only a few ingredients:

1 1/2 tablespoons yeast
1 1/2 tablespoons kosher salt
6 1/2 cups unbleached, all-purpose flour (more for dusting)

Each ingredient is listed as a mixed number that quickly communicates how many whole amounts and
howmany parts are needed. It’s useful for quickly communicating a practical amount of something you are
cooking with, measuring on a ruler, purchasing at the grocery store, etc. But it causes trouble in an algebra
class. The number 1 1/2 means “one and one half.” So really,

1 1
2 � 1 +

1
2

The trouble is that with 1 1/2, you have two numbers written right next to each other. Normally with two
math expressions written right next to each other, they should be multiplied, not added. But with a mixed
number, they should be added.
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Fortunately we just reviewed how to add fractions. If we need to do
any arithmetic with a mixed number like 1 1/2, we can treat it as 1 +

1
2

and simplify to get a “nice” fraction instead: 3
2 . A fraction like 3

2 is
called an improper fraction because it’s actually larger than 1. And
a “proper” fraction would be something small that is only part of a
whole instead of more than a whole.

1 1
2 � 1 +

1
2

�
1
1 +

1
2

�
2
2 +

1
2

�
3
2

Exercises

Review and Warmup

Which letter is − 29
4 on the number line?

(□ A □ B □ C □ D)

1. Which letter is 23
4 on the number line?

(□ A □ B □ C □ D)

2.

The dot in the graph can be represented by
what fraction?

3. The dot in the graph can be represented by
what fraction?

4.

The dot in the graph can be represented by
what fraction?

5. The dot in the graph can be represented by
what fraction?

6.

Reducing Fractions

Reduce the fraction 7
70 .7. Reduce the fraction 14

63 .8. Reduce the fraction 10
50 .9.

Reduce the fraction 20
33 .10. Reduce the fraction 100

70 .11. Reduce the fraction 42
6 .12.
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Building Fractions

Find an equivalent fraction to 5
7 with denom-

inator 35.
13. Find an equivalent fraction to 3

7 with denom-
inator 14.

14.

Find an equivalent fraction to 1
17 with denom-

inator 68.
15. Find an equivalent fraction to 13

19 with denom-
inator 38.

16.

Multiplying/Dividing Fractions

Multiply: 1
7 ·

3
817. Multiply: 3

7 ·
3
818. Multiply: 6

11 ·
13
619.

Multiply: 7
11 ·

3
1420. Multiply: 3 · 3

1021. Multiply: 6 · 4522.

Multiply: −20
7 ·

7
2523. Multiply: −18

5 ·
13
2824. Multiply: 28 ·

(
−9

7

)
25.

Multiply: 6 ·
(
−1

3

)
26. Multiply: 7

4 ·
5
49 ·

6
2527. Multiply: 5

9 ·
14
25 ·

3
428.

Multiply: 14
3 ·

1
4 · 1529. Multiply: 7

5 ·
2
49 · 1530. Divide: 3

7 ÷
7
431.

Divide: 4
5 ÷

7
432. Divide: 7

10 ÷
(
−5

4

)
33. Divide: 1

20 ÷
(
− 5

12

)
34.

Divide: −3
2 ÷ (−15)35. Divide: −3

8 ÷ (−9)36. Divide: 20 ÷ 5
337.

Divide: 4 ÷ 2
338. Multiply: 3 8

9 · 2 1
1039. Multiply: 1 5

9 · 6 3
440.

Adding/Subtracting Fractions

Add: 2
27 +

1
2741. Add: 11

40 +
1
4042. Add: 5

7 +
11
2143.
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Add: 2
9 +

13
1844. Add: 1

9 +
13
1845. Add: 5

6 +
11
3046.

Add: 3
7 +

1
1047. Add: 3

8 +
3
748. Add: 1

6 +
1
1049.

Add: 3
10 +

1
650. Add: 5

6 +
9
1051. Add: 4

5 +
7
1052.

Add: −2
5 +

3
553. Add: −1

5 +
4
554. Add: −3

7 +
11
1455.

Add: −5
9 +

5
5456. Add: −1

8 +
1
757. Add: −1

8 +
1
558.

Add: 2 +
7
859. Add: 4 +

2
560. Add: 3

10 +
1
6 +

1
561.

Add: 1
3 +

1
8 +

1
662. Add: 2

3 +
1
6 +

3
1063. Add: 1

3 +
1
6 +

3
564.

Subtract: 16
21 −

4
2165. Subtract: 33

32 −
13
3266. Subtract: 4

7 −
33
3567.

Subtract: 4
9 −

43
4568. Subtract: 1

18 −
5
669. Subtract: 39

40 −
5
870.

Subtract: − 3
10 −

1
671. Subtract: −5

6 −
7
1072. Subtract: − 3

10 −
(
−5

6

)
73.

Subtract: −5
6 −

(
− 3

10

)
74. Subtract: −4 − 15

775. Subtract: 1 − 10
976.

Applications

Michele walked 3
10 of a mile in the morning, and then walked 3

8 of a mile in the afternoon. How far
did Michele walk altogether?

Michele walked a total of of a mile.

77.
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Kurt walked 1
11 of a mile in the morning, and then walked 1

9 of a mile in the afternoon. How far did
Kurt walk altogether?

Kurt walked a total of of a mile.

78.

Penelope and Kenji are sharing a pizza. Penelope ate 1
10 of the pizza, and Kenji ate 3

8 of the pizza.
How much of the pizza was eaten in total?

They ate of the pizza.

79.

The pie chart represents a school’s student population.

Together, white and black students make up of the school’s population.

80.

A trail’s total length is 19
45 of a mile. It has two legs. The first leg is 2

9 of a mile long. How long is the
second leg?

The second leg is of a mile in length.

81.

A trail’s total length is 5
18 of a mile. It has two legs. The first leg is 1

9 of a mile long. How long is the
second leg?

The second leg is of a mile in length.

82.
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Jessica is participating in a running event. In the first hour, she completed 1
10 of the total distance.

After another hour, in total she had completed 17
70 of the total distance.

What fraction of the total distance did Jessica complete during the second hour?

Jessica completed of the distance during the second hour.

83.

Each page of a book is 6 1
2 inches in height, and consists of a header (a topmargin), a footer (a bottom

margin), and the middle part (the body). The header is 2
9 of an inch thick and the middle part is 5 8

9
inches from top to bottom.

What is the thickness of the footer?

The footer is of an inch thick.

84.

The pie chart represents a school’s student population.

more of the school is white students than black students.

85.

Jessica and Carly are sharing a pizza. Jessica ate 2
9 of the pizza, and Carly ate 1

6 of the pizza. How
much more pizza did Jessica eat than Carly?

Jessica ate more of the pizza than Carly ate.

86.
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Kayla and Blake are sharing a pizza. Kayla ate 2
9 of the pizza, and Blake ate 1

8 of the pizza. How
much more pizza did Kayla eat than Blake?

Kayla ate more of the pizza than Blake ate.

87.

A school had a fund-raising event. The revenue came from three resources: ticket sales, auction
sales, and donations. Ticket sales account for 1

10 of the total revenue; auction sales account for 5
7 of

the total revenue. What fraction of the revenue came from donations?

of the revenue came from donations.

88.

A few years back, a car was purchased for $10,800. Today it is worth 1
3 of its original value. What is

the car’s current value?

The car’s current value is .

89.

A few years back, a car was purchased for $15,000. Today it is worth 1
3 of its original value. What is

the car’s current value?

The car’s current value is .

90.

A townhas 200 residents in total, ofwhich 3
4 arewhite/CaucasianAmericans. Howmanywhite/Caucasian

Americans reside in this town?

There are white/Caucasian Americans residing in this town.

91.

A company received a grant, and decided to spend 20
21 of this grant in research and development

next year. Out of the money set aside for research and development, 3
5 will be used to buy new

equipment. What fraction of the grant will be used to buy new equipment?

of the grant will be used to buy new equipment.

92.

A food bank just received 28 kilograms of emergency food. Each family in need is to receive 2
5

kilograms of food. How many families can be served with the 28 kilograms of food?

families can be served with the 28 kilograms of food.

93.

A construction team maintains a 52-mile-long sewage pipe. Each day, the team can cover 4
7 of a

mile. How many days will it take the team to complete the maintenance of the entire sewage pipe?

It will take the team days to complete maintaining the entire sewage pipe.

94.
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A child is stacking up tiles. Each tile’s height is 3
4 of a centimeter. How many layers of tiles are

needed to reach 15 centimeters in total height?

To reach the total height of 15 centimeters, layers of tiles are needed.

95.

A restaurant made 450 cups of pudding for a festival.

Customers at the festival will be served 1
10 of a cup of pudding per serving. How many customers

can the restaurant serve at the festival with the 450 cups of pudding?

The restaurant can serve customers at the festival with the 450 cups of pudding.

96.

A 2× 4 piece of lumber in your garage is 62 17
32 inches long. A second 2× 4 is 42 7

16 inches long. If you
lay them end to end, what will the total length be?

The total length will be inches.

97.

A 2 × 4 piece of lumber in your garage is 39 3
4 inches long. A second 2 × 4 is 31 3

4 inches long. If you
lay them end to end, what will the total length be?

The total length will be inches.

98.

Each page of a book consists of a header, a footer and the middle part. The header is 6
7 inches in

height; the footer is 3
14 inches in height; and the middle part is 3 3

7 inches in height.

What is the total height of each page in this book? Use mixed number in your answer if needed.

Each page in this book is inches in height.

99.

To pave the road on Ellis Street, the crew used 4 1
4 tons of cement on the first day, and used 5 5

6 tons
on the second day. How many tons of cement were used in all?

tons of cement were used in all.

100.

When driving on a high way, noticed a sign saying exit to Johnstown is 1 3
4 miles away, while exit to

Jerrystown is 3 1
2 miles away. How far is Johnstown from Jerrystown?

Johnstown and Jerrystown are miles apart.

101.

A cake recipe needs 2 1
4 cups of flour. Using this recipe, to bake 9 cakes, how many cups of flour are

needed?

To bake 9 cakes, cups of flour are needed.

102.
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Sketching Fractions

Sketch a number line showing each fraction. (Be sure to carefully indicate the correct number of
equal parts of the whole.)

(a) 2
3 (b) 6

8 (c) 5
4 (d) −4

5

103.

Sketch a number line showing each fraction. (Be sure to carefully indicate the correct number of
equal parts of the whole.)

(a) 1
6 (b) 3

9 (c) 7
6 (d) −8

5

104.

Sketch a picture of the product 3
5 · 1

2 , using a number line or rectangles.105.

Sketch a picture of the sum 2
3 +

1
8 , using a number line or rectangles.106.

Challenge

Given that a , 0, simplify 6
a
+

5
a
.107.

Given that a , 0, simplify 7
a
+

1
2a

.108.

Given that a , 0, simplify 8
a
− 8

5a
.109.
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1.3 Absolute Value and Square Root

In this section, we will learn the basics of absolute value and square root. These are actions you can do to
a given number, often changing the number into something else.

1.3.1 Introduction to Absolute Value

Definition 1.3.2. The absolute value of a number is the distance between that number and 0 on a number
line. For the absolute value of x, we write |x |.

Let’s look at |2| and |−2|, the absolute value of 2 and the absolute value of −2.

−3 −2 −1 1 2 3

dis
tance 2 from 0

dist. 2dist. 2
0 x

Figure 1.3.3: |2| and |−2|

Since the distance between 2 and 0 on the number line is 2 units, the absolute value of 2 is 2. We write
|2| � 2.

Since the distance between −2 and 0 on the number line is also 2 units, the absolute value of −2 is also 2.
We write |−2| � 2.

Fact 1.3.4 Absolute Value. Taking the absolute value of a number results in whatever the “positive version” of that
number is. This is because the real meaning of absolute value is its distance from zero.

Checkpoint 1.3.5 Calculating Absolute Value. Try calculating some absolute values.

a. |57| � b. |−43| � c.
�� 2
−5

�� �
Explanation.

a. 57 is 57 units away from 0 on a number line, so |57| � 57. Another way to think about this is that the
“positive version” of 57 is 57.

b. −43 is 43 units away from 0 on a number line, so |−43| � 43. Another way to think about this is that
the “positive version” of −43 is 43.

c. 2
−5 is 2

5 units away from 0 on a number line, so
�� 2
−5

�� � 2
5 . Another way to think about this is that the

“positive version” of 2
−5 is 2

5 .

Warning 1.3.6 Absolute Value Does Not Exactly “Make Everything Positive”. Students may see an ex-
pression like |2 − 5| and incorrectly think it is OK to “make everything positive” and write 2 + 5. This is
incorrect since |2 − 5| works out to be 3, not 7, as we are actually taking the absolute value of −3 (the equiv-
alent number inside the absolute value).
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1.3.2 Square Root Facts

If you have learned your basic multiplication table, you know:

× 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9
2 2 4 6 8 10 12 14 16 18
3 3 6 9 12 15 18 21 24 27
4 4 8 12 16 20 24 28 32 36
5 5 10 15 20 25 30 35 40 45
6 6 12 18 24 30 36 42 48 54
7 7 14 21 28 35 42 49 56 63
8 8 16 24 32 40 48 56 64 72
9 9 18 27 36 45 54 63 72 81

Table 1.3.7: Multiplication table with squares

The numbers along the diagonal are special; they are known as perfect squares. And for working with
square roots, it will be helpful if you can memorize these first few perfect square numbers.

“Taking a square root” is the opposite action of squaring a number. For example, when you square 3, the
result is 9. So when you take the square root of 9, the result is 3. Just knowing that 9 comes about as 32 lets
us realize that 3 is the square root of 9. This is why memorizing the perfect squares from the multiplication
table can be so helpful.

The notationwe use for taking a square root is the radical,
√

. For example, “the square root of 9” is denoted√
9. And now we know enough to be able to write

√
9 � 3.

Tossing in a few extra special square roots, it’s advisable to memorize the following:

√
0 � 0

√
1 � 1

√
4 � 2

√
9 � 3√

16 � 4
√

25 � 5
√

36 � 6
√

49 � 7√
64 � 8

√
81 � 9

√
100 � 10

√
121 � 11√

144 � 12
√

169 � 13
√

196 � 14
√

225 � 15

1.3.3 Calculating Square Roots with a Calculator

Most square roots are actually numbers with decimal places that go on forever. Take
√

5 as an example:
√

4 � 2
√

5 � ?
√

9 � 3

Since 5 is between 4 and 9, then
√

5 must be somewhere between 2 and 3. There are no whole numbers
between 2 and 3, so

√
5 must be some numberwith decimal places. If the decimal places eventually stopped,

then squaring it would give you another number with decimal places that stop further out. But squaring it
gives you 5 with no decimal places. So the only possibility is that

√
5 is a decimal between 2 and 3 that goes

on forever. With a calculator, we can see: √
5 ≈ 2.236
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Actually the decimal will not terminate, and that is why we used the ≈ symbol instead of an equals sign.
To get 2.236 we rounded down slightly from the true value of

√
5. With a calculator, we can check that

2.2362 � 4.999696, a little shy of 5.

1.3.4 Square Roots of Fractions

We can calculate the square root of some fractions by hand, such as
√

1
4 . The idea is the same: can you

think of a number that you would square to get 1
4? Being familiar with fraction multiplication, we know

that 1
2 · 1

2 �
1
4 and so

√
1
4 �

1
2 .

Checkpoint 1.3.8 Square Roots of Fractions. Try calculating some absolute values.

a.
√

1
25 � b.

√
4
9 � c.

√
81
121 �

Explanation.

a. Since
√

1 � 1 and
√

25 � 5,

then
√

1
25 �

1
5 .

b. Since
√

4 � 2 and
√

9 � 3,

then
√

4
9 �

2
3 .

c. Since
√

81 � 9 and
√

121 �

11, then
√

81
121 �

9
11 .

1.3.5 Square Root of Negative Numbers

Can we find the square root of a negative number, such as
√
−25? That would mean that there is some

number out there that multiplies by itself to make −25. Would
√
−25 be positive or negative? Either way,

once you square it (multiply it by itself) the result would be positive. So it couldn’t possibly square to −25.
So there is no square root of −25 or of any negative number for that matter.

Imaginary Numbers. Mathematicians
imagined a new type of number, neither
positive nor negative, that would square to
a negative result. But that is beyond the
scope of this chapter.

If you are confronted with an expression like
√
−25, or any other square

root of a negative number, you can state that “there is no real square root”
or that the result “does not exist” (as a real number).

Exercises

Review and Warmup

Evaluate the expressions.

a. 12

b. 32

c. 52

d. 72

e. 92

f. 112

1. Evaluate the expressions.

a. 22

b. 42

c. 62

d. 82

e. 102

f. 122

2.
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Absolute Value Evaluate the following.

|−3| �3. |0| �4. |31.69| �5.

|−15.76| �6.
����21

8

���� �7.
����−17

9

���� �8.

a. |2| �

b. |−2| �

c. −|2| �

d. −|−2| �

9. a. |3| �

b. |−3| �

c. −|3| �

d. −|−3| �

10. a. |3| �

b. |−8| �

c. |0| �

d. |16 + (−6)| �

e. |−9 − (−1)| �

11.

a. |4| �

b. |−2| �

c. |0| �

d. |20 + (−8)| �

e. |−9 − (−3)| �

12. a. −|3 − 7| �

b. |−3 − 7| �

c. −3|7 − 3| �

13. a. −|1 − 10| �

b. |−1 − 10| �

c. −3|10 − 1| �

14.

15. Which of the following are square numbers? There may be more than one correct answer.

□ 81 □ 34 □ 9 □ 116 □ 55 □ 121

16. Which of the following are square numbers? There may be more than one correct answer.

□ 15 □ 100 □ 64 □ 45 □ 32 □ 36

Square Roots Evaluate the following.

a.
√

144 =

b.
√

4 =

c.
√

1 =

17. a.
√

1 =

b.
√

100 =

c.
√

36 =

18. a.
√

4
121 =

b.
√
−16

9 =

19.
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a.
√

16
25 =

b.
√
−144

49 =

20. Do not use a calculator.

a.
√

25 =

b.
√

0.25 =

c.
√

2500 =

21. Do not use a calculator.

a.
√

49 =

b.
√

0.49 =

c.
√

4900 =

22.

Do not use a calculator.

a.
√

64 =

b.
√

6400 =

c.
√

640000 =

23. Do not use a calculator.

a.
√

81 =

b.
√

8100 =

c.
√

810000 =

24. Do not use a calculator.

a.
√

100 =

b.
√

1 =

c.
√

0.01 =

25.

Do not use a calculator.

a.
√

121 =

b.
√

1.21 =

c.
√

0.0121 =

26. Use a calculator to approxi-
mate with a decimal.
√

13 ≈

27. Use a calculator to approxi-
mate with a decimal.
√

17 ≈

28.

√
9

100 � .29.
√

16
121 � .30. −

√
49 � .31.

−
√

64 � .32.
√
−81 � .33.

√
−100 � .34.

√
−121

144 � .35.
√
− 1

49 � .36. −
√

4
25 � .37.

−
√

9
121 � .38. a.

√
100 −

√
36 �

b.
√

100 − 36 �

39. a.
√

25 −
√

9 �

b.
√

25 − 9 �

40.

5√
81

= .41. 7√
36

= .42.
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1.4 Order of Operations

Mathematical symbols are a means of communication, and it’s important that when you write something,
everyone else knows exactly what you intended. For example, if we say in English, “two times three
squared,” do we mean that:

• 2 is multiplied by 3, and then the result is squared?

• or that 2 is multiplied by the result of squaring 3?

English is allowed to have ambiguities like this. But mathematical language needs to be precise and mean
the same thing to everyone reading it. For this reason, a standard order of operations has been adopted,
which we review here.

1.4.1 Grouping Symbols

Consider the math expression 2 · 32. There are two mathematical operations here: a multiplication and
an exponentiation. The result of this expression will change depending on which operation you decide to
execute first: the multiplication or the exponentiation. If you multiply 2 · 3, and then square the result, you
have 36. If you square 3, and then multiply 2 by the result, you have 18. If we want all people everywhere
to interpret 2 · 32 in the same way, then only one of these can be correct.

The first tools that we have to tell readers what operations to execute first are grouping symbols, like paren-
theses and brackets. If you intend to execute the multiplication first, then writing

(2 · 3)2

clearly tells your reader to do that. And if you intend to execute the power first, then writing

2 ·
(
32)

clearly tells your reader to do that.

To visualize the difference between 2 ·
(
32) or (2 · 3)2, consider these garden plots:

9 yd2 9 yd2

3 yd 3 yd

3 yd

36 yd2

2 · 3 yd � 6 yd

6 yd

Figure 1.4.2: 3 yd is squared, then doubled:
2 ·

(
32) Figure 1.4.3: 3 yd is doubled, then squared:

(2 · 3)2
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1.4 Order of Operations

If we calculate 32, we have the area of one of the small square garden plots on the left. If we then double
that, we have 2 ·

(
32) , the area of the left garden plot.

But if we calculate (2 · 3)2, then first we are doubling 3. So we are calculating the area of a square garden
plot whose sides are twice as long. We end up with the area of the garden plot on the right.

The point is that these amounts are different.

Checkpoint 1.4.4. Calculate the value of 30−((2+3) ·2), respecting the order that the grouping symbols
are telling you to execute the arithmetic operations.

Explanation. The grouping symbols tell us what to work on first. In this exercise, we have grouping
symbols within grouping symbols, so any operation in there (the addition) should be executed first:

30 − ((2 + 3) · 2) � 30 − (5 · 2)
� 30 − 10
� 20

1.4.2 Beyond Grouping Symbols

If all math expressions used grouping symbols for each and every arithmetic operation, we wouldn’t need
to say anything more here. In fact, some computer systems work that way, requiring the use of grouping
symbols all the time. But it is much more common to permit math expressions with no grouping symbols
at all, like 5 + 3 · 2. Should the addition 5 + 3 be executed first, or should the multiplication 3 · 2? We need
what’s known formally as the order of operations to tell us what to do.

The order of operations is nothingmore than an agreement thatwe all havemade to prioritize the arithmetic
operations in a certain order.

(P)arentheses and other grouping symbols Grouping symbols should always direct you to
the highest priority arithmetic first.

(E)xponentiation After grouping symbols, exponentiation has the highest priority. Execute
any exponentiation before other arithmetic operations.

(M)ultiplication, (D)ivision, and Negation After all exponentiation has been executed, start
executing multiplications, divisions, and negations. These things all have equal priority.
If there are more than one of them in your expression, the highest priority is the one that
is leftmost (which comes first as you read it).

(A)ddition and (S)ubtraction After all other arithmetic has been executed, these are all that
is left. Addition and subtraction have equal priority. If there are more than one of them
in your expression, the highest priority is the one that is leftmost (which comes first as
you read it).

List 1.4.5: Order of Operations

A common acronym to help you remember this order of operations is pemdas. There are a handful of
mnemonic devices for remembering this ordering (such as Please Excuse My Dear Aunt Sally, People Eat
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More Donuts After School, etc.).

We’ll start with a few examples that only invoke a few operations each.

Example 1.4.6 Use the order of operations to simplify the following expressions.

a. 10 + 2 · 3. With this expression, we have the operations of addition and multiplication. The order
of operations says the multiplication has higher priority, so execute that first:

10 + 2 · 3 � 10 + 2 · 3
� 10 + 6
� 16

b. 4+ 10÷ 2− 1. With this expression, we have addition, division, and subtraction. According to the
order of operations, the first thing we need to do is divide. After that, we’ll apply the addition and
subtraction, working left to right:

4 + 10 ÷ 2 − 1 � 4 + 10 ÷ 2 − 1

� 4 + 5 − 1
� 9 − 1
� 8

c. 7 − 10 + 4. This example only has subtraction and addition. While the acronym PEMDAS may
mislead you to do addition before subtraction, remember that these operations have the same
priority, and so we work left to right when executing them:

7 − 10 + 4 � 7 − 10 + 4
� −3 + 4
� 1

d. 20 ÷ 4 · 7. This expression has only division and multiplication. Again, remember that although
PEMDAS shows “MD,” the operations of multiplication and division have the same priority, so
we’ll apply them left to right:

20 ÷ 4 · 5 � 20 ÷ 4 · 5
� 5 · 5
� 25

e. (6 + 7)2. With this expression, we have addition inside a set of parentheses, and an exponent of 2
outside of that. We must compute the operation inside the parentheses first, and after that we’ll
apply the exponent:

(6 + 7)2 � ( 6 + 7 )2

� 132

� 169
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1.4 Order of Operations

f. 4(2)3. This expression has multiplication and an exponent. There are parentheses too, but no
operation inside them. Parentheses used in this manner make it clear that the 4 and 2 are separate
numbers, not to be confused with 42. In other words, 4(2)3 and 423 mean very different things.
Exponentiation has the higher priority, so we’ll apply the exponent first, and then we’ll multiply:

4(2)3 � 4 (2)3

� 4(8)
� 32

Remark 1.4.7. There are many different ways that we write multiplication. We can use the symbols ·, ×,
and ∗ to denote multiplication. We can also use parentheses to denote multiplication, as we’ve seen in
Example 1.4.6, Item f. Once we start working with variables, there is even another way. No matter how
multiplication is written, it does not change the priority that multiplication has in the order of operations.

Checkpoint 1.4.8 Practice with order of operations. Simplify this expression one step at a time, using
the order of operations.

5 − 3(7 − 4)2 �

�

�

�

Explanation.
5 − 3( 7 − 4 )2 � 5 − 3 (3)2

� 5 − 3(9)
� 5 − 27
� −22

1.4.3 Absolute Value Bars, Radicals, and Fraction Bars are Grouping Symbols

When we first discussed grouping symbols, we only mentioned parentheses and brackets. Each of the
following operations has an implied grouping symbol aside from parentheses and brackets.

Absolute Value Bars The absolute value bars, as in |2 − 5|, group the expression inside it just like a set of
parentheses would.

Radicals The same is true of the radical symbol— everything inside the radical is grouped, as with
√

12 − 3.

Fraction Bars With a horizontal division bar, the numerator is treated as one group and the denominator
as another, as with 2+3

5−2 .

We don’t need parentheses for these three things since the absolute value bars, radical, and horizontal di-
vision bar each denote this grouping on their own. As far as priority in the order of operations goes, it’s
important to remember that these work just like our most familiar grouping symbols, parentheses.

With absolute value bars and radicals, these grouping symbols also do something to what’s inside (but only
after the operations inside have been executed). For example, |−2| � 2, and

√
9 � 3.

35



Chapter 1 Basic Math Review

Example 1.4.9 Use the order of operations to simplify the following expressions.

a. 4 − 3 |5 − 7|. For this expression, we’ll treat the absolute value bars just like we treat parentheses.
This implies we’ll simplify what’s inside the bars first, and then compute the absolute value. After
that, we’ll multiply and then finally subtract:

4 − 3 |5 − 7| � 4 − 3
��� 5 − 7

���
� 4 − 3 |−2|

� 4 − 3(2)
� 4 − 6
� −2

We may not do 4 − 3 � 1 first, because 3 is connected to the absolute value bars by multiplication
(although implicitly), which has a higher order than subtraction.

b. 8 −
√

52 − 8 · 2. This expression has an expression inside the radical of 52 − 8 · 2. We’ll treat this
radical like we would a set of parentheses, and simplify that internal expression first. We’ll then
apply the square root, and then our last step will be to subtract that expression from 8:

8 −
√

52 − 8 · 2 � 8 −
√

52 − 8 · 2

� 8 −
√

25 − 8 · 2

� 8 −
√

25 − 16

� 8 −
√

9
� 8 − 3
� 5

c. 24 + 3 · 6
5 − 18 ÷ 2 . For this expression, the first thing we want to do is to recognize that the main fraction
bar serves as a separator that groups the numerator and groups the denominator. Anotherway this
expression could bewritten is (24+3·6)÷(15−18÷2). This implieswe’ll simplify the numerator and
denominator separately according to the order of operations (since there are implicit parentheses
around each of these). As a final step we’ll simplify the resulting fraction (which is division).

24 + 3 · 6
5 − 18 ÷ 2 �

24
+ 3 · 6

5 − 18 ÷ 2

�
16 + 3 · 6

5 − 9

�
16 + 18
−4

�
34
−4

� −17
2
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Checkpoint 1.4.10 More Practice with Order of Operations. Use the order of operations to evaluate

6 + 3 |9 − 10|√
3 + 18 ÷ 3

.

Explanation. We start by identifying the innermost, highest priority operations:

6 + 3 |9 − 10|√
3 + 18 ÷ 3

�

6 + 3
��� 9 − 10

���√
3 + 18 ÷ 3

�

6 + 3 |−1|√
3 + 6

�

6 + 3(1)
√

9

�
6 + 3

3

�
9
3 � 3

1.4.4 Negation and Distinguishing (−a)m from −am

We noted in the order of operations that using the negative sign to negate a number has the same priority as
multiplication and division. To understand why this is, observe that −1 · 23 � −23, just for one example. So
negating 23 gives the same result as multiplying 23 by −1. For this reason, negation has the same priority
in the order of operations as multiplication. This can be a source of misunderstandings.

How would you write a math expression that takes the number −4 and squares it?

−42? (−4)2? it doesn’t matter?

It does matter. The second option, (−4)2 is squaring the number −4. The parentheses emphasize this.

But the expression −42 is different. There are two actions in this expression: a negation and and exponen-
tiation. According to the order of operations, the exponentiation has higher priority than the negation, so
the exponent of 2 in −42 applies to the 4 before the negative sign (multiplication by −1) is taken into account.

−42
� − 42

� −16

and this is not the same as (−4)2, which is positive 16.

Warning 1.4.11 Negative Numbers Raised to Powers. You may find yourself needing to raise a negative
number to a power, and using a calculator to do the work for you. If you do not understand the issue
described here, then you may get incorrect results.

• For example, entering -4^2 into a calculator will result in −16, the negative of 42.

• But entering (-4)^2 into a calculator will result in 16, the square of −4.
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Go ahead and try entering these into your own calculator.

Checkpoint 1.4.12 Negating and Raising to Powers. Compute the following:

a. −34 � and (−3)4 �

b. −43 � and (−4)3 �

c. −1.12 � and (−1.1)2 �

Explanation. In each part, the first expression asks you to exponentiate and then negate the result. The
second expression has a negative number raised to a power. So the answers are:

a. −34 � −81 and (−3)4 � 81

b. −43 � −64 and (−4)3 � −64

c. −1.12 � −1.21 and (−1.1)2 � 1.21

Remark 1.4.13. You might observe in the previous example that there is no difference between −43 and
(−4)3. It’s true that the results are the same, −64, but the two expressions still do say different things. With
−43, you raise to a power first, then negate. With (−4)3, you negate first, then raise to a power.

As was discussed in Subsection 1.1.5, if the base of a power is negative, then whether or not the result is
positive or negative depends on if the exponent is even or odd. It depends on whether or not the factors
can all be paired up to “cancel” negative signs, or if there will be a lone factor left by itself.

1.4.5 More Examples

Here are some example exercises that involve applying the order of operations to more complicated expres-
sions. Try these exercises and read the steps given in each solution.

Example 1.4.14 Simplify 10 − 4(5 − 7)3.

Explanation. For the expression 10 − 4(5 − 7)3, we have simplify what’s inside parentheses first, then
we’ll apply the exponent, then multiply, and finally subtract:

10 − 4(5 − 7)3 � 10 − 4( 5 − 7 )3

� 10 − 4 (−2)3

� 10 − 4(−8)
� 10 − (−32)
� 10 + 32
� 42

Checkpoint 1.4.15. Simplify 24 ÷ (15 ÷ 3 + 1) + 2.
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Explanation. With the expression 24÷(15÷3+1)+2, we’ll simplifywhat’s inside the parentheses according
to the order of operations, and then take 24 divided by that expression as our last step:

24 ÷ (15 ÷ 3 + 1) + 2 � 24 ÷ ( 15 ÷ 3 + 1) + 2

� 24 ÷ ( 5 + 1 ) + 2

� 24 ÷ 6 + 2
� 4 + 2
� 6

Example 1.4.16 Simplify 6 − (−8)2 ÷ 4 + 1.

Explanation. To simplify 6−(−8)2÷4+1, we’ll first apply the exponent of 2 to −8, making sure to recall
that (−8)2 � 64. After this, we’ll apply division. As a final step, we’ll be have subtraction and addition,
which we’ll apply working left-to-right:

6 − (−8)2 ÷ 4 + 1 � 6 − (−8)2 ÷ 4 + 1

� 6 − (64) ÷ 4 + 1

� 6 − 16 + 1
� −10 + 1
� −9

Checkpoint 1.4.17. Simplify (20 − 42) ÷ (4 − 6)3.

Explanation. The expression (20 − 42) ÷ (4 − 6)3 has two sets of parentheses, so our first step will be to
simplify what’s inside each of those first according to the order of operations. Once we’ve done that, we’ll
apply the exponent and then finally divide:

(20 − 42) ÷ (4 − 6)3 � (20 − 42 ) ÷ (4 − 6)3

� ( 20 − 16 ) ÷ (4 − 6)3

� 4 ÷ ( 4 − 6 )3

� 4 ÷ (−2)3

� 4 ÷ (−8)

�
4
−8

�
1
−2

� −1
2

Checkpoint 1.4.18. Simplify
2 |9 − 15| + 1√
(−5)2 + 122

.
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Explanation. To simplify this expression, the first thing we want to recognize is the role of the main frac-
tion bar, which groups the numerator and denominator. This implies we’ll simplify the numerator and
denominator separately according to the order of operations, and then reduce the fraction that results:

2 |9 − 15| + 1√
(−5)2 + 122

�

2
��� 9 − 15

��� + 1√
(−5)2 + 122

�

2 |−6| + 1√
25 + 122

�

2(6) + 1√
25 + 144

�
12 + 1
√

169

�
13
13

� 1

Exercises

Review and Warmup

Multiply the following.

a. (−9) · (−1) �

b. (−4) · 6 �

c. 8 · (−6) �

d. (−4) · 0 �

1. Multiply the following.

a. (−8) · (−3) �

b. (−7) · 4 �

c. 8 · (−3) �

d. (−3) · 0 �

2.

Multiply the following.

a. (−1) · (−4) · (−3) �

b. 2 · (−7) · (−4) �

c. (−81) · (−56) · 0 �

3. Multiply the following.

a. (−1) · (−5) · (−5) �

b. 7 · (−7) · (−2) �

c. (−80) · (−74) · 0 �

4.
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a. Compute −196.

b. Calculate the power (−3)4.
c. Find (−5)3.
d. Calculate −63.

5. a. Compute −23.

b. Calculate the power −82.

c. Find (−7)2.
d. Calculate (−3)2.

6.

Order of Operations Skills Evaluate the following.

4 + 6(3) �7. 7 + 3(4) �8. 5(3 + 2) �9.

4(4 + 4) �10. (4 · 2)2 �11. (4 · 4)2 �12.

5 · 33
�13. 2 · 22

�14. (11 − 2) · 4 �15.

(8 − 2) · 2 �16. 11 − 3 · 2 �17. 25 − 3 · 5 �18.

6 + 3 · 7 �19. 7 + 2 · 9 �20. 4 − 4 · 6 �21.

5 − 3 · 8 �22. 1 − 2(−10) �23. 1 − 4(−8) �24.

−[2 − (1 − 5)2] �25. −[3 − (2 − 9)2] �26. 7 − 5[7 − (5 + 3 · 2)] �27.

7 − 3[1 − (2 + 3 · 4)] �28. 4 + 4(139 − 5 · 33) �29. 4 + 3(114 − 4 · 33) �30.

−5[3 − (4 − 3 · 3)2] �31. −2[9 − (7 − 4 · 4)2] �32. 9 − 5[22 − (4 − 1)] �33.

64 − 4[42 − (3 − 2)] �34. (14 − 3)2 + 5(14 − 32)35. (12 − 3)2 + 3(12 − 32)36.

(4 · 2)2 − 4 · 22
�37. (4 · 5)2 − 4 · 52

�38. 9 · 32 − 32 ÷ 42 · 4 + 3 �39.

10 · 22 − 75 ÷ 52 · 6 + 3 �40. 4(7 − 2)2 − 4(7 − 22) �41. 6(6 − 2)2 − 6(6 − 22) �42.
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1 + 3
3 − 2 �43. 8 + 20

7 − 3 �44. 82 − 32

1 + 10 �45.

82 − 22

5 + 5 �46.
27 − (−4)3

10 − 17 �47.
27 − (−2)3

5 − 10 �48.

(−2) · (−1) − (−8) · 3
(−8)2 + (−66) �49.

(−2) · (−3) − (−8) · 3
(−8)2 + (−66) �50. − |1 − 4| �51.

− |2 − 10| �52. 2 − 7 |3 − 5| + 1 �53. 3 − 5 |5 − 9| + 1 �54.

−52 − |8 · (−7)| �55. −42 − |6 · (−5)| �56. 8 − 2
��−9 + (2 − 5)3

�� �57.

9 − 8
��−5 + (4 − 5)3

�� �58.

��27 + (−4)3
��

−1 �59.

��1 + (−2)3
��

−1 �60.

����1 + (−4)3
−3

���� �61.
����1 + (−2)3
−1

���� �62.
−3 |17 − 37|
22 − (−4)2 �63.

−3 |10 − 22|
18 − (−3)2 �64. 8

5 + 6 · 25 �65. 8
3 + 10 · 8

15 �66.

(
9
8 −

5
24

)
− 5

(
5
24 −

9
8

)
�67.

(
9
4 −

9
8

)
− 5

(
9
8 −

9
4

)
�68.

����32 − 3
10

���� − 5
���� 3
10 −

3
2

���� �69.

����38 − 7
32

���� − 5
���� 7
32 −

3
8

���� �70. 2
5 + 2

(
3
5

)2

�71. 1
5 + 6

(
4
5

)2

�72.

3
4 +

5
4 ÷

5
2 −

1
2 �73. 4

3 +
2
3 ÷

5
4 −

2
5 �74. 5

√
67 + 33 �75.

5
√

9 + 27 �76. 5
√
−27 + 6 · 6 �77. 2

√
64 + 9 · 4 �78.

1 − 2
√

34 − 9 �79. 8 − 3
√

76 − 72 �80.
√

36 − 2
√

5 + 95 �81.
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√
49 − 4

√
9 + 7 �82.

√
40 + 32 �83.

√
−17 + 92 �84.

√
82 + 62 �85.

√
92 + 122 �86.

√
49 + 9√
49 − 9

�87.

√
9 + 5√
9 − 5

�88.
√

4 + 2 · 6 + |−14 − 18|
−4 − (−2)3 �89.

√
94 + 2 · 3 + |−17 − 45|
−19 − (−3)3 �90.

4[17 − 5(5 + 6)] �91. 4[15 − 7(3 + 6)] �92. −82 − 7[2 − (2 − 33)] �93.

−102 − 5[6 − (7 − 33)] �94.

Challenge

In this challenge, your job is to create expressions, using addition, subtraction, multiplication, and
parentheses. You may use the numbers, 1, 2, 3, and 4 in your expression, using each number only
once. For example, you could make the expression: 1 + 2 · 3 − 4.

a. The greatest value that it is possible to create under these conditions is .

b. The least value that it is possible to create under these conditions is .

95.
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1.5 Set Notation and Types of Numbers

When we talk about how many or how much of something we have, it often makes sense to use different
types of numbers. For example, if we are counting dogs in a shelter, the possibilities are only 0, 1, 2, . . .. (It
would be difficult to have 1

2 of a dog.) On the other hand if you were weighing a dog in pounds, it doesn’t
make sense to only allow yourself to work with whole numbers. The dog might weigh something like 28.35
pounds. These examples highlight how certain kinds of numbers are appropriate for certain situations.
We’ll classify various types of numbers in this section.

1.5.1 Set Notation

What is the mathematical difference between these three “lists?”

28, 31, 30 {28, 31, 30} (28, 31, 30)

To a mathematician, the last one, (28, 31, 30) is an ordered triple. What matters is not merely the three num-
bers, but also the order in which they come. The ordered triple (28, 31, 30) is not the same as (30, 31, 28); they
have the same numbers in them, but the order has changed. For some context, February has 28 days; then
March has 31 days; then April has 30 days. The order of the three numbers is meaningful in that context.

With curly braces and {28, 31, 30}, a mathematician sees a collection of numbers and does not particularly
care in which order they are written. Such a collection is called a set. All that matters is that these numbers
are part of a collection. They’ve beenwritten in some particular order because that’s necessary to write them
down. But youmight as well have put the three numbers in a bag and shaken up the bag. For some context,
maybe your favorite three NBA players have jersey numbers 30, 31, and 28, and you like them all equally
well. It doesn’t really matter what order you use to list them.

So we can say:

{28, 31, 30} � {30, 31, 28} (28, 31, 30) , (30, 31, 28)

What about just writing 28, 31, 30? This list of three numbers is ambiguous. Without the curly braces or
parentheses, it’s unclear to a reader if the order is important. Set notation is the use of curly braces to
surround a list/collection of numbers, and we will use set notation frequently in this section.

Checkpoint 1.5.2 Set Notation. Practice using (and not using) set notation.

According to Google, the three most common error codes from visiting a web site are 403, 404, and 500.

a. Without knowing which error code is most common, express this set mathematically.

b. Error code 500 is themost common. Error code 403 is the least common of these three. And that leaves
404 in themiddle. Express the error codes in amathematical way that appreciates how frequently they
happen, from most often to least often.

Explanation.

a. Since we only have to describe a collection of three numbers and their order doesn’t matter, we can
write {403,404,500}.

b. Now we must describe the same three numbers and we want readers to know that the order we are
writing the numbers matters. We can write (500,404,403).
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1.5.2 Different Number Sets

In the introduction, we mentioned how different sets of numbers are appropriate for different situations.
Here are the basic sets of numbers that are used in basic algebra.

Natural Numbers When we count, we begin: 1, 2, 3, . . . and continue on in that pattern. These numbers
are known as natural numbers.

� � {1, 2, 3, . . . }
Whole Numbers If we include zero, then we have the set of whole numbers.

{0, 1, 2, 3, . . . } has no standard symbol, but some options are�0,� ∪ {0}, and �≥0.

Integers If we include the negatives of whole numbers, then we have the set of integers.

� � {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.
A � is used because one word in German for “numbers” is “Zahlen.”

Rational Numbers A rational number is any number that can be written as a fraction of integers, where
the denominator is nonzero. Alternatively, a rational number is any number that can be written with
a decimal that terminates or that repeats.

� �
{
0, 1,−1, 2, 1

2 ,− 1
2 ,−2, 3, 1

3 ,− 1
3 ,−3, 3

2 ,
2
3 . . .

}
� �

{
0, 1,−1, 2, 0.5,−0.5,−2, 3, 0.3,−0.3,−3, 1.5, 0.6 . . .

}
A � is used because fractions are quotients of integers.

Irrational Numbers Any number that cannot be written as a fraction of integers belongs to the set of ir-
rational numbers. Another way to say this is that any number whose decimal places goes on for-
ever without repeating is an irrational number. Some examples include π ≈ 3.1415926 . . .,

√
15 ≈

3.87298 . . ., e ≈ 2.71828 . . .

There is no standard symbol for the set of irrational numbers.

Real Numbers Any number that can be marked somewhere on a number line is a real number. Real num-
bers might be the only numbers you are familiar with. For a number to not be real, you have to start
considering things called complex numbers, which are not our concern right now.

The set of real numbers can be denoted with � for short.

i

Real Numbers

Irrational Numbers

π √
15 e

1.010010001 . . .Rational Numbers

1.25 4.3

3
17

Integers

−42
Whole

0
Natural

23

Figure 1.5.3: Types of Numbers
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Warning 1.5.4 Rational Numbers in Other Forms. Any number that can be written as a ratio of integers is
rational, even if it’s not written that way at first. For example, these numbers might not look rational to you
at first glance: −4,

√
9, 0π, and 3

√√
5 + 2 − 3

√√
5 − 2. But they are all rational, because they can respectively

be written as −4
1 , 3

1 ,
0
1 , and

1
1 .

Example 1.5.5 Determine If Numbers Are This Type or That Type. Determine which numbers from
the set

{
−102,−7.25, 0, π4 , 2,

10
3 ,
√

19,
√

25, 10.7
}
are natural numbers, whole numbers, integers, rational

numbers, irrational numbers, and real numbers.

Explanation. All of these numbers are real numbers, because all of these numbers can be positioned
on the real number line.

Each real number is either rational or irrational, and not both. −102, −7.25, 0, and 2 are rational because
we can see directly that their decimal expressions terminate. 10.7 is also rational, because its decimal
expression repeats. 10

3 is rational because it is a ratio of integers. And last but not least,
√

25 is rational,
because that’s the same thing as 5.

This leaves only π
4 and

√
19 as irrational numbers. Their decimal expressions go on forever without

entering a repetitive cycle.

Only −102, 0, 2, and
√

25 (which is really 5) are integers.

Of these, only 0, 2, and
√

25 are whole numbers, because whole numbers excludes the negative integers.

Of these, only 2 and
√

25 are natural numbers, because the natural numbers exclude 0.

Checkpoint 1.5.6.

a. Give an example of a whole number that is not an integer.

b. Give an example of an integer that is not a whole number.

c. Give an example of a rational number that is not an integer.

d. Give an example of a irrational number.

e. Give an example of a irrational number that is also an integer.

Explanation.

a. Since all whole numbers belong to integers, we cannotwrite anywhole numberwhich is not an integer.
Type DNE (does not exist) for this question.

b. Any negative integer, like −1, is not a whole number, but is an integer.

c. Any terminating decimal, like 1.2, is a rational number, but is not an integer.

d. π is the easiest number to remember as an irrational number. Another constant worth knowing is
e ≈ 2.718. Finally, the square root of most integers are irrational, like

√
2 and

√
3.

e. All irrational numbers are non-repeating and non-terminating decimals. No irrational numbers are
integers.

Checkpoint 1.5.7. In the introduction, wementioned that the different types of numbers are appropriate
in different situation. Which number set do you think ismost appropriate in each of the following situations?

46



1.5 Set Notation and Types of Numbers

a. The number of people in a math class that play the ukulele.

This number is best considered as a (□ natural number □ whole number □ integer □ rational
number □ irrational number □ real number) .

b. The hypotenuse’s length in a given right triangle.

This number is best considered as a (□ natural number □ whole number □ integer □ rational
number □ irrational number □ real number) .

c. The proportion of people in a math class that have a cat.

This number is best considered as a (□ natural number □ whole number □ integer □ rational
number □ irrational number □ real number) .

d. The number of people in the room with you who have the same birthday as you.

This number is best considered as a (□ natural number □ whole number □ integer □ rational
number □ irrational number □ real number) .

e. The total revenue (in dollars) generated for ticket sales at a Timbers soccer game.

This number is best considered as a (□ natural number □ whole number □ integer □ rational
number □ irrational number □ real number) .

Explanation.

a. The number of people who play the ukulele could be 0, 1, 2, . . . , so the whole numbers are the appro-
priate set.

b. A hypotenuse’s length could be 1, 1.2,
√

2 (which is irrational), or any other positive number. So the
real numbers are the appropriate set.

c. This proportion will be a ratio of integers, as both the total number of people in the class and the
number of people who have a cat are integers. So the rational numbers are the appropriate set.

d. We know that the number of people must be a counting number, and since you are in the room with
yourself, there is at least one person in that room with your birthday. So the natural numbers are the
appropriate set.

e. The total revenuewill be some number of dollars and cents, such as $631,897.15, which is a terminating
decimal and thus a rational number. So the rational numbers are the appropriate set.

1.5.3 Converting Repeating Decimals to Fractions

We have learned that a terminating decimal number is a rational number. It’s easy to convert a terminating
decimal number into a fraction of integers: you just need to multiply and divide by one of the numbers in
the set {10, 100, 1000, . . .}. For example, when we say the number 0.123 out loud, we say “one hundred and
twenty-three thousandths.” While that’s a lot to say, it makes it obvious that this number can be written as
a ratio:

0.123 �
123
1000 .

Similarly,

21.28 �
2128
100 �

532 · 4
25 · 4 �

532
25 ,

demonstrating how any terminating decimal can be written as a fraction.

Repeating decimals can also bewritten as a fraction. To understand how, use a calculator to find the decimal
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for, say, 73
99 and 189

999 You will find that

73
99 � 0.73737373 . . . � 0.73 189

999 � 0.189189189 . . . � 0.189.

The pattern is that diving a number by a number from {9, 99, 999, . . .} with the same number of digits will
create a repeating decimal that starts as “0.” and then repeats the numerator. We can use this observation
to reverse engineer some fractions from repeating decimals.

Checkpoint 1.5.8.

a. Write the rational number 0.772772772 . . . as a fraction.

b. Write the rational number 0.69696969 . . . as a fraction.

Explanation.

a. The three-digit number 772 repeats after the decimal. So we will make use of the three-digit denomi-
nator 999. And we have 772

999 .

b. The two-digit number 69 repeats after the decimal. So we will make use of the two-digit denominator
99. And we have 69

99 . But this fraction can be reduced to 23
33 .

Converting a repeating decimal to a fraction is not always quite this straightforward. There are complica-
tions if the number takes a few digits before it begins repeating. For your interest, here is one example on
how to do that.

Example 1.5.9 Can we convert the repeating decimal 9.134343434 . . . � 9.134 to a fraction? The trick is
to separate its terminating part from its repeating part, like this:

9.1 + 0.034343434 . . . .

Now note that the terminating part is 91
10 , and the repeating part is almost like our earlier examples,

except it has an extra 0 right after the decimal. So we have:

91
10 +

1
10 · 0.34343434 . . . .

With what we learned in the earlier examples and basic fraction arithmetic, we can continue:

9.134343434 . . . � 91
10 +

1
10 · 0.34343434 . . .

�
91
10 +

1
10 ·

34
99

�
91
10 +

34
990

�
91 · 99
10 · 99 +

34
990

�
9009
990 +

34
990 �

9043
990

Check that this is right by entering 9043
990 into a calculator and seeing if it returns the decimal we started

with, 9.134343434 . . ..
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Exercises

Review and Warmup

Write the decimal number as a fraction.

0.55 =

1. Write the decimal number as a fraction.

0.65 =

2.

Write the decimal number as a fraction.

7.65 =

3. Write the decimal number as a fraction.

8.25 =

4.

Write the decimal number as a fraction.

0.988 =

5. Write the decimal number as a fraction.

0.152 =

6.

Write the fraction as a decimal number. Do
not round your answers.

a. 3
5 =

b. 7
16 =

7. Write the fraction as a decimal number. Do
not round your answers.

a. 1
5 =

b. 3
20 =

8.

Write themixed number as a decimal number.
Do not round your answers.

a. 5 3
8 =

b. 3 1
4 =

9. Write themixed number as a decimal number.
Do not round your answers.

a. 4 13
16 =

b. 9 3
4 =

10.

Set Notation

There are two numbers that you can square to
get 36. Express this collection of two numbers
using set notation.

11. There are four positive, even, one-digit num-
bers. Express this collection of four numbers
using set notation.

12.

There are six two-digit perfect square num-
bers. Express this collection of six numbers
using set notation.

13. There is a set of three small positive integers
where you can square all three numbers, then
add the results, and get 61. Express this collec-
tion of three numbers using set notation.

14.
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Types of Numbers

Which of the following are whole numbers?
There may be more than one correct answer.

□ −2.197 □
√

4 □
√

3 □ 39
□−95159 □−2 □ 5.101001000100001 . . .
□ 3.521

15. Which of the following are whole numbers?
There may be more than one correct answer.

□ 6
31 □ 0 □−2 □

√
3 □ 4 □−13126

□ −6.871 □ −4.101001000100001 . . .

16.

Which of the following are integers? There
may be more than one correct answer.

□ −6 □ 9.101001000100001 . . . □ 69
□
√

16 □ 4.097 □ − 1
28 □ π

□ −4233

17. Which of the following are integers? There
may be more than one correct answer.

□ 17956 □−2 □ 6.267 □− 1
8 □−95340

□ 35 □ π □ 6.101001000100001 . . .

18.

Which of the following are rational numbers?
There may be more than one correct answer.

□ 8.157 □ 5.385 □−6 □ 2.101001000100001 . . .
□ 0 □

√
3 □ −86447 □ 99

19. Which of the following are rational numbers?
There may be more than one correct answer.

□ −0.957000000000001 □ 0 □ − 4
69

□ −7.101001000100001 . . . □ −77554
□
√

36 □
√

6 □ −2

20.

Which of the following are irrational num-
bers? There may be more than one correct an-
swer.

□−68660 □ 7
96 □−6 □ π □ 9.077

□ 43001 □ 0 □ 7.101001000100001 . . .

21. Which of the following are irrational num-
bers? There may be more than one correct an-
swer.

□ −59767 □ − 5
17 □ 4.245 □ −2

□ π □ 95 □
√

3 □ 0

22.

Which of the following are real numbers? There
may be more than one correct answer.

□ 60 □ 0 □ π □−86770 □− 6
95

□ 0.570 □−5 □ 5.101001000100001 . . .

23. Which of the following are real numbers? There
may be more than one correct answer.

□ 8.303 □ 7
13 □ 0 □

√
4

□ −2 □
√

11 □ π □ −41981

24.
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Determine the validity of each statement by
selecting True or False.

(a) The number π2 is rational

(b) The number 98 is an integer, but not a
whole number

(c) The number − 13
102 is rational

(d) The number
√

49
25 is an integer, but not a

whole number

(e) The number π is irrational

25. Determine the validity of each statement by
selecting True or False.

(a) The number 3
2 is rational, but not an inte-

ger

(b) The number 0.700700700700700... is ratio-
nal

(c) The number −11 is an integer that is also
a natural number

(d) The number
√

22 is a real number, but not
a rational number

(e) The number
√

4
36 is rational, but not an

integer

26.

27. In each situation, which number set do you think is most appropriate?

a. The number of dogs a student has owned throughout their lifetime.

This number is best considered as a (□ natural number □ whole number □ integer □ rational
number □ irrational number □ real number) .

b. The difference between the projected annual expenditures and the actual annual expenditures for a
given company.

This number is best considered as a (□ natural number □ whole number □ integer □ rational
number □ irrational number □ real number) .

c. The length around swimming pool in the shape of a half circle with radius 10 ft.

This number is best considered as a (□ natural number □ whole number □ integer □ rational
number □ irrational number □ real number) .

d. The proportion of students at a college who own a car.

This number is best considered as a (□ natural number □ whole number □ integer □ rational
number □ irrational number □ real number) .

e. The width of a sheet of paper, in inches.

This number is best considered as a (□ natural number □ whole number □ integer □ rational
number □ irrational number □ real number) .

f. The number of people eating in a non-empty restaurant.

This number is best considered as a (□ natural number □ whole number □ integer □ rational
number □ irrational number □ real number) .

28.a. Give an example of a whole number that is not an integer.

b. Give an example of an integer that is not a whole number.

c. Give an example of a rational number that is not an integer.

d. Give an example of a irrational number.

e. Give an example of a irrational number that is also an integer.
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Writing Decimals as Fractions

Write the rational number 6.35 as a fraction.29.

Write the rational number 77.162 as a fraction.30.

Write the rational number 0.78 � 0.7878 . . . as a fraction.31.

Write the rational number 0.955 � 0.955955 . . . as a fraction.32.

Write the rational number 4.412 � 4.41212 . . . as a fraction.33.

Write the rational number 8.1238 � 8.1238238 . . . as a fraction.34.

Challenge

Imagine making up a number according to the following pattern. After the decimal point, write the
natural numbers 1, 2, 3, 4, 5, etc. The decimal digits will extend infinitely according to my pattern.

0.12345 . . .

Is the number a rational number or an irrational number?

(□ rational □ irrational)

35.

52



1.6 Comparison Symbols and Notation for Intervals

1.6 Comparison Symbols and Notation for Intervals

As you know, 8 is larger than 3; that’s a specific comparison between two numbers. We can also make a
comparison between two less specific numbers, like if we say that average rent in Portland in 2016 is larger
than it was in 2009. That makes a comparison using unspecified amounts. This section will go over the
mathematical shorthand notation for making these kinds of comparisons.

In Oregon, only people who are 18 years old or older can vote in statewide elections.¹ Does that seem like a
statement about the number 18? Maybe. But it’s also a statement about numbers like 37 and 62: it says that
people of these ages may vote as well. This section will also get into the mathematical notation for large
collections of numbers like this.

1.6.1 Comparison Symbols

In everyday language you can say something like “8 is larger than 3.” In mathematical writing, it’s not
convenient to write that out in English. Instead the symbol “>” has been adopted, and it’s used like this:

8 > 3

and read out loud as “8 is greater than 3.” The symbol “>” is called the greater-than symbol.

Checkpoint 1.6.2.

a. Use mathematical notation to write “11.5 is greater than 4.2.”

b. Use mathematical notation to write “age is greater than 20.”

Explanation.

a. 11.5 > 4.2

b. We can just write the word age to represent age, and write age > 20. Or we could use an abbreviation
like a for age, andwrite a > 20. Or, it is common to use x as a generic abbreviation, andwe could write
x > 20.

Remark 1.6.3. At some point in history, someone felt that > was a good symbol for “is greater than.” In
“8 > 3,” the tall side of the symbol is with the larger of the two numbers, and the small pointed side is with
the smaller of the two numbers.

Alligator Jaws. Another visual was of
thinking about the greater-than symbol
“>” (and, as we will see later, the less-than
symbol “<”) is “the alligator wants to eat
the larger number” as a way of remember-
ing which direction to write the symbol.

We have to be careful when negative numbers are part of the comparison
though. Is −8 larger or smaller than −3? In some sense −8 is larger,
because if you owe someone 8 dollars, that’s more than owing them 3
dollars. But that is not how the > symbol works. This symbol is meant
to tell you which number is farther to the right on a number line. And if
that’s how it goes, then −3 > −8.

−8 −3 3 8

−3 > −8 8 > −3 greater
numbers

lesser
numbers

0 x

Figure 1.6.4: How the > symbol works.

¹Some other states like Washington allow 17-year-olds to vote in primary elections provided they will be 18 by the general election.

53



Chapter 1 Basic Math Review

Checkpoint 1.6.5. Use the > symbol to arrange the following numbers in order from greatest to least.
For example, your answer might look like 4>3>2>1>0.

−7.6 6 −6 9.5 8

Explanation. We can order these numbers by placing these numbers on a number line.

And so we see the answer is 9.5 > 8 > 6 > −6 > −7.6.

Checkpoint 1.6.6. Use the > symbol to arrange the following numbers in order from greatest to least.
For example, your answer might look like 4>3>2>1>0.

−5.2 π
10
3 4.6 8

Explanation. We can order these numbers by placing these numbers on a number line. Knowing or com-
puting their decimals helps with this.

And so we see the answer is 8 > 4.6 > 3.33333 > 3.14159 > −5.2.

The greater-than symbol has a close relative, the greater-than-or-equal-to symbol, “≥.” It means just like it
sounds: the first number is either greater than, or equal to, the second number. These are all true statements:

8 ≥ 3 3 ≥ −8 3 ≥ 3

but one of these three statements is false:

8 > 3 3 > −8 3
no
> 3

Remark 1.6.7. While it may not be that useful that we can write 3 ≥ 3, this symbol is quite useful when
specific numbers aren’t explicitly used on at least one side, like in these examples:

(hourly pay rate) ≥ (minimum wage)
(age of a voter) ≥ 18

Sometimes you want to emphasize that one number is less than another number instead of emphasizing
which number is greater. To do this, we have symbols that are reversed from > and ≥. The symbol “<” is
the less-than symbol and it’s used like this:

3 < 8
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and read out loud as “3 is less than 8.”

Table 1.6.8 gives the complete list of all six comparison symbols. Note that we’ve only discussed three in
this section so far, but you already know the equals symbol and have likely also seen the symbol “,,” which
means “not equal to.”

Symbol Means Examples
� equals 13 � 13 5

4 � 1.25 5 no
� 6

> is greater than 13 > 11 π > 3 9
no
> 9

≥ is greater than or equal to 13 ≥ 11 3 ≥ 3 11.2
no
≥ 10.2

< is less than −3 < 8 1
2 <

2
3 2

no
< −2

≤ is less than or equal to −3 ≤ 8 3 ≤ 3 4
5

no
≤ 3

5

, is not equal to 10 , 20 1
2 , 1.2 3

8
no
, 0.375

Table 1.6.8: Comparison Symbols

1.6.2 Set-Builder and Interval Notation

If you say
(age of a voter) ≥ 18

and have a particular voter in mind, what is that person’s age? There’s no way to know for sure. Maybe
they are 18, but maybe they are older. It’s helpful to use a variable a to represent age (in years) and then to
visualize the possibilities with a number line, as in Figure 1.6.9.

18

possibilities for age

0 a

Figure 1.6.9: (age of a voter) ≥ 18

The shaded portion of the number line in Figure 1.6.9 is a mathematical interval. For now, that just means
a collection of certain numbers. In this case, it’s all the numbers 18 and above.

The number line in Figure 1.6.9 is a graphical representation of a collection of certain numbers. We have
two notations, set-builder notation and interval notation, that we also use to represent such collections of
numbers.
Definition 1.6.10 Set-Builder Notation. Set-builder notation attempts to directly say the condition that
numbers in the interval satisfy. In general, we write set-builder notation like:

{x | condition on x}
and read it out loud as “the set of all x such that ….” For example,

{x | x ≥ 18}
is read out loud as “the set of all x such that x is greater than or equal to 18.” The breakdown is as follows.

{x | x ≥ 18} the set of
{x | x ≥ 18} all x
{x | x ≥ 18} such that
{x | x ≥ 18} x is greater than or equal to 18
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Definition 1.6.11 Interval Notation. Interval notation represents a collection of numbers by only stating
where the collection starts and stops, using parentheses and square brackets to show if the end values are
included (or not). For example, in Figure 1.6.9, the interval starts at 18. To the right, the interval extends
forever and has no end, so we use the∞ symbol (meaning ”infinity”). This particular interval is denoted:

[18,∞)

Why use “[” on one side and “)” on the other? The square bracket tells us that 18 is part of the interval and
the round parenthesis tells us that∞ is not part of the interval.²

In general there are four types of infinite intervals. Take note of the different uses of round parentheses and
square brackets.

a x a x

Figure 1.6.12: An open, infinite interval denoted
by (a ,∞) means all numbers a or larger, not
including a.

Figure 1.6.13: A closed, infinite interval de-
noted by [a ,∞) means all numbers a or larger,
including a.

a x a x

Figure 1.6.14: An open, infinite interval denoted
by (−∞, a) means all numbers a or smaller, not
including a.

Figure 1.6.15: A closed, infinite interval denoted
by (−∞, a] means all numbers a or smaller,
including a.

Checkpoint 1.6.16 Interval and Set-Builder Notation fromNumber Lines. For each interval expressed
in the number lines, give the interval notation and set-builder notation.

a. In set-builder notation:

In interval notation:

b. In set-builder notation:

In interval notation:

c. In set-builder notation:

In interval notation:

Explanation.

a. Since all numbers less than or equal to 2 are shaded, the set-builder notation is { x | x <= 2 }. The
shaded interval “starts” at −∞ and ends at 2 (including 2) so the interval notation is (-infinity,2].

b. Since all numbers less than to 2 are shaded, the set-builder notation is { x | x < 2 }. The shaded interval
“starts” at −∞ and ends at 2 (excluding 2) so the interval notation is (-infinity,2)

c. Since all numbers greater than or equal to 2 are shaded, the set-builder notation is { x | x >= 2 }. The
shaded interval starts at 2 (including 2) and “ends” at∞, so the interval notation is [2,infinity)

²And how could it be, since∞ is not even a number?
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Exercises

Review and Warmup

Write the decimal number as a fraction.

0.85 =

1. Write the decimal number as a fraction.

0.95 =

2.

Write the decimal number as a fraction.

1.95 =

3. Write the decimal number as a fraction.

2.65 =

4.

Write the decimal number as a fraction.

0.332 =

5. Write the decimal number as a fraction.

0.494 =

6.

Write the fraction as a decimal number. Do
not round your answers.

a. 13
16 =

b. 13
25 =

7. Write the fraction as a decimal number. Do
not round your answers.

a. 5
16 =

b. 2
5 =

8.

Write themixed number as a decimal number.
Do not round your answers.

a. 3 17
20 =

b. 1 18
25 =

9. Write themixed number as a decimal number.
Do not round your answers.

a. 8 3
25 =

b. 3 15
16 =

10.

Ordering Numbers Use the > symbol to arrange the following numbers in order from greatest to least.
For example, your answer might look like 4>3>2>1>0.

10 −6 0 3 7
11.

−9 8 9 −3 6
12.

−6.35 0.46 −2.94 −7.79 6.37
13.

−4.18 −6.97 5.43 6.04 −6.87
14.

−5
4 7 −7 19

7 6

15.

−19
6 −9

5 −11
3 −15

2
41
8

16.
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3 3
7
π
2

1
2 −8

√
3

17.
2
3 6

√
3 4

7 π 5

18.

True/False

Decide if each comparison is true or false.

a. 2 , −3 (□ True □ False)

b. 2 � −4 (□ True □ False)

c. 4 , 4 (□ True □ False)

d. −3 ≤ 7 (□ True □ False)

e. −3 < −3 (□ True □ False)

f. 6 � 6 (□ True □ False)

19. Decide if each comparison is true or false.

a. −7 < −7 (□ True □ False)

b. −3 < 4 (□ True □ False)

c. 8 ≥ −4 (□ True □ False)

d. −5 ≥ −5 (□ True □ False)

e. −4 , −4 (□ True □ False)

f. −6 , 4 (□ True □ False)

20.

Decide if each comparison is true or false.

a. 4
2 ,

12
6 (□ True □ False)

b. 5
5 >

15
15 (□ True □ False)

c. − 43
8 ,

5
2 (□ True □ False)

d. − 46
5 �

25
9 (□ True □ False)

e. 2
7 ≤ 4

14 (□ True □ False)

f. − 45
7 <

11
2 (□ True □ False)

21. Decide if each comparison is true or false.

a. − 7
6 � − 21

18 (□ True □ False)

b. 13
2 ≥ − 74

8 (□ True □ False)

c. 3
8 <

3
8 (□ True □ False)

d. 14
3 �

19
2 (□ True □ False)

e. − 5
5 , − 5

5 (□ True □ False)

f. − 9
4 ≥ − 9

4 (□ True □ False)

22.

Comparisons Choose <, >, or � to make a true statement.

−7
2 (□ < □ > □ =) −5

423. −6
7 (□ < □ > □ =) −1

224.

3
5 +

4
3 (□ < □ > □ =) 1

2 ÷ 5
325. 4

5 +
3
4 (□ < □ > □ =) 2

5 ÷ 4
326.

14
13 ÷ 14

13 (□ < □ > □ =) 8
12 − 2

327. 17
7 ÷ 17

7 (□ < □ > □ =) 12
10 − 6

528.

−6 1
3 (□ < □ > □ =) −629. −1 2

3 (□ < □ > □ =) −130.

−3 1
2 (□ < □ > □ =) 331. −3 2

3 (□ < □ > □ =) 132.

58



1.6 Comparison Symbols and Notation for Intervals����−3
5

���� (□ < □ > □ =) |0.6|33.
����−3

8

���� (□ < □ > □ =) |0.375|34.

35. For each interval expressed in the number lines, give the interval notation and set-builder notation.

a. In set-builder notation:

In interval notation:

b. In set-builder notation:

In interval notation:

c. In set-builder notation:

In interval notation:

36. For each interval expressed in the number lines, give the interval notation and set-builder notation.

a. In set-builder notation:

In interval notation:

b. In set-builder notation:

In interval notation:

c. In set-builder notation:

In interval notation:

Set-builder and Interval Notation

Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

37. Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

38. Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

39.
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Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

40. Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

41. Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

42.

Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

43. Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

44.

Convert to Interval Notation A set is written using set-builder notation. Write it using interval notation.

{x | x ≤ 5}45. {x | x ≤ 7}46. {x | x ≥ 9}47. {x | x ≥ −9}48.

{x | x < −7}49. {x | x < −5}50. {x | x > −2}51. {x | x > 10}52.

{x | 2 > x}53. {x | 5 > x}54. {x | 7 ≥ x}55. {x | 9 ≥ x}56.

{x | −9 ≤ x}57. {x | −7 ≤ x}58. {x | −5 < x}59. {x | −2 < x}60.

{
x | 5

9 < x
}

61.
{

x | 7
6 < x

}
62.

{
x | x ≤ −8

3

}
63.

{
x | x ≤ −9

7

}
64.

{x | x ≤ 0}65. {x | 0 < x}66.
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1.7 Basic Math Chapter Review

1.7.1 Arithmetic with Negative Numbers

Adding Real Numbers with the Same Sign When adding two numbers with the same sign, we can ignore
the signs, and simply add the numbers as if they were both positive.

Example 1.7.1

a. 5 + 2 � 7 b. −5 + (−2) � −7

Adding Real Numbers with Opposite Signs When adding two numbers with opposite signs, we find
those two numbers’ difference. The sum has the same sign as the number with the bigger value. If those
two numbers have the same value, the sum is 0.

Example 1.7.2

a. 5 + (−2) � 3 b. (−5) + 2 � −3

Subtracting a Positive Number When subtracting a positive number, we can change the problem to
adding the opposite number, and then apply the methods of adding numbers.

Example 1.7.3

a. 5 − 2 � 5 + (−2)
� 3

b. 2 − 5 � 2 + (−5)
� −3

c. −5 − 2 � −5 + (−2)
� 3

Subtracting a Negative Number When subtracting a negative number, we can change those two negative
signs to a positive sign, and then apply the methods of adding numbers.

Example 1.7.4

a. 5 − (−2) � 5 + 2
� 7

b. −5 − (−2) � −5 + 2
� −3

c. −2 − (−5) � −2 + 5
� 3

Multiplication and Division of Real Numbers When multiplying and dividing real numbers, each pair
of negative signs cancel out each other (becoming a positive sign). If there is still one negative sign left, the
result is negative; otherwise the result is positive.

Example 1.7.5

a. (6)(−2) � −12

b. (−6)(2) � −12

c. (−6)(−2) � 12

d. (−6)(−2)(−1) � −12

e. (−6)(−2)(−1)(−1) � 12

f. 12
−2 � −6

g. −12
2 � −6

h. −12
−2 � 6
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Powers When we raise a negative number to a certain power, apply the rules of multiplying real numbers:
each pair of negative signs cancel out each other.

Example 1.7.6

a. (−2)2 � (−2)(−2)
� 4

b. (−2)3 � (−2)(−2)(−2)
� −8

c. (−2)4 � (−2)(−2)(−2)(−2)
� 16

Difference between (−a)n and −an For the exponent expression 23, the number 2 is called the base, and
the number 3 is called the exponent. The base of (−a)n is −a, while the base of −an is a. This makes a
difference in the result when the power is an even number.

Example 1.7.7

a. (−4)2 � (−4)(−4)
� 16

b. −42
� −(4)(4)
� −16

c. (−4)3 � (−4)(−4)(−4)
� −64

d. −43
� −(4)(4)(4)
� −64

1.7.2 Fraction Arithmetic

Example 1.7.8 Multiplying Fractions.

When multiplying two fractions, we simply multiply the numera-
tors and denominators. To avoid big numbers, we should reduce
fractions before multiplying. If one number is an integer, we can
write it as a fraction with a denominator of 1. For example, 2 �

2
1 .

1
2 ·

3
4 �

1 · 3
2 · 4

�
3
8

Example 1.7.9 Dividing Fractions.

When dividing two fractions, we “flip” the second number, and
then do multiplication. 1

2 ÷
4
3 �

1
2 ·

3
4

�
3
8
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Example 1.7.10 Adding/Subtracting Fractions.

Before adding/subtracting fractions, we need to change each frac-
tion’s denominator to the same number, called the common de-
nominator. Then, we add/subtract the numerators, and the de-
nominator remains the same.

1
2 −

1
3 �

1
2 ·

3
3 −

1
3 ·

2
2

�
3
6 −

2
6

�
1
6

1.7.3 Absolute Value and Square Root

Example 1.7.11 Absolute Value.

The absolute value of a number is the distance
from that number to 0 on the number line. An
absolute value is always positive or 0. a. |2| � 2

b.
��− 1

2
�� � 1

2

c. |0| � 0

Example 1.7.12 Square Root.

The symbol
√

b has meaning when b ≥ 0. It
means the positive number that can be squared
to result in b. a.

√
9 � 3

b.
√

2 ≈ 1.414
c.

√
9
16 �

3
4

d.
√
−1 is undefined

1.7.4 Order of Operations

Example 1.7.13 Order of Operations.

When evaluating an expression with multiple
operations, we must follow the order of opera-
tions:

1. (P)arentheses and other grouping symbols

2. (E)xponentiation

3. (M)ultiplication, (D)ivision, and Negation

4. (A)ddition and (S)ubtraction

4 − 2
(
3 − (2 − 4)2

)
� 4 − 2

(
3 − ( 2 − 4 )2

)
� 4 − 2

(
3 − (−2)2

)
� 4 − 2

(
3 − 4

)
� 4 − 2 (−1)
� 4 − (−2)
� 6
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1.7.5 Set Notation and Types of Numbers

A set is an unordered collection of items. Braces, {}, are used to show what items are in a set. For example,
the set {1, 2, π} is a set with three items that contains the numbers 1, 2, and π.

Types of Numbers Real numbers are categorized into the following sets: natural numbers, whole num-
bers, integers, rational numbers and irrational numbers.

Example 1.7.14 Here are some examples of numbers from each set of numbers:

Natural Numbers The natural numbers are all counting numbers larger 1 and larger.

1, 251, 3462

Whole Numbers The whole numbers are all counting numbers larger 0 and larger.

0, 1, 42, 953

Integers The integers are all counting numbers both negative and positive.

−263,−10, 0, 1, 834

Rational Numbers The rational numbers are all possible fractions of integers.
1
3 ,−3, 1.1, 0, 0.73

Irrational Numbers The irrational numbers are all numbers that cannot be written as a fraction of inte-
gers.

π, e ,
√

2

1.7.6 Comparison Symbols and Notation for Intervals

The following are symbols used to compare numbers.

Symbol Meaning Examples
� equals 13 � 13 5

4 � 1.25
> is greater than 13 > 11 π > 3
≥ is greater than or equal to 13 ≥ 11 3 ≥ 3
< is less than −3 < 8 1

2 <
2
3

≤ is less than or equal to −3 ≤ 8 3 ≤ 3
, is not equal to 10 , 20 1

2 , 1.2

Table 1.7.15: Comparison Symbols

The following are some examples of set-builder notation and interval notation.
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Graph Set-builder Notation Interval Notation

−2 −1 1 20 x {x | x ≥ 1} [1,∞)

−2 −1 1 20 x {x | x > 1} (1,∞)

−2 −1 1 20 x {x | x ≤ 1} (−∞, 1]

−2 −1 1 20 x {x | x < 1} (−∞, 1)

Exercises

Perform the given addition
and subtraction.

a. −19 − 8 + (−2) �

b. 2 − (−19) + (−14) �

1. Perform the given addition
and subtraction.

a. −18 − 5 + (−8) �

b. 9 − (−19) + (−19) �

2. Multiply the following.

a. (−2) · (−6) · (−3) �

b. 5 · (−9) · (−2) �

c. (−99) · (−60) · 0 �

3.

Multiply the following.

a. (−2) · (−4) · (−5) �

b. 3 · (−9) · (−5) �

c. (−98) · (−77) · 0 �

4. Evaluate the following.

a. −25
−5 �

b. 10
−5 �

c. −35
5 �

5. Evaluate the following.

a. −8
−4 �

b. 32
−4 �

c. −15
5 �

6.

Evaluate the following.

a. (−1)2 �

b. −42
�

7. Evaluate the following.

a. (−1)2 �

b. −82
�

8. Evaluate the following.

a. (−4)3 �

b. −13
�

9.

Evaluate the following.

a. (−4)3 �

b. −33
�

10. Add: − 9
10 +

5
611. Add: −1

6 +
7
1012.

Subtract: −5
6 −

(
− 9

10

)
13. Subtract: − 1

10 −
(
−5

6

)
14. Subtract: 2 − 28

915.
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Subtract: 4 − 25
616. Multiply: −12

13 ·
7
2217. Multiply: − 2

13 ·
5
2618.

Multiply: −4 · 5619. Multiply: −5 · 9
2020. Divide: 7

15 ÷
(
− 5

12

)
21.

Divide: 1
9 ÷

(
− 5

12

)
22. Divide: 27 ÷ 9

423. Divide: 9 ÷ 9
424.

Evaluate the following.

a. −|3 − 10| �

b. |−3 − 10| �

c. −2|10 − 3| �

25. Evaluate the following.

a. −|1 − 7| �

b. |−1 − 7| �

c. −2|7 − 1| �

26. Evaluate the following.

a.
√

1 =

b.
√

81 =

c.
√

100 =

27.

Evaluate the following.

a.
√

4 =

b.
√

25 =

c.
√

9 =

28. Evaluate the following.

a.
√

16
49 =

b.
√
−25

64 =

29. Evaluate the following.

a.
√

25
81 =

b.
√
−144

49 =

30.

Evaluate the following.

−62 − 5[4 − (6 − 43)] �

31. Evaluate the following.

−62 − 9[8 − (4 − 43)] �

32. Evaluate the following.

27 − (−4)3
3 − 10 �

33.

Evaluate the following.

27 − (−2)3
7 − 12 �

34. Evaluate the following.

10 − 8
��−9 + (4 − 7)3

�� �
35. Evaluate the following.

1 − 6
��−5 + (3 − 6)3

�� �
36.

Compare the following integers:

a. 2 (□ < □ > □ =) −7

b. −2 (□ < □ > □ =) −7

c. −7 (□ < □ > □ =) 0

37. a. 3 (□ < □ > □ =) −6

b. −1 (□ < □ > □ =) −6

c. −6 (□ < □ > □ =) 0

38.
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Determine the validity of each statement by selecting True or False.

(a) The number
√
(−60)2 is irrational

(b) The number
√

9
16 is an integer, but not a

whole number

(c) The number
√

23 is rational

(d) The number 60 is an integer, but not a
whole number

(e) The number 0 is a natural number

39. (a) The number
√

25
81 is rational, but not an

integer

(b) The number 19
43 is rational, but not an in-

teger

(c) The number
√

11 is a real number, but not
an irrational number

(d) The number 0.14404004000400004... is ra-
tional

(e) The number
√

4 is a real number, but not
a rational number

40.

A set is written using set-builder notation. Write it using interval notation.

{x | x > 2}41. {x | x > 4}42.

43. For each interval expressed in the number lines, give the interval notation and set-builder notation.

a. In set-builder notation:

In interval notation:

b. In set-builder notation:

In interval notation:

c. In set-builder notation:

In interval notation:

44. For each interval expressed in the number lines, give the interval notation and set-builder notation.

a. In set-builder notation:

In interval notation:

b. In set-builder notation:

In interval notation:

c. In set-builder notation:

In interval notation:
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CHAPTER 2
Variables, Expressions, and Equations

2.1 Variables and Evaluating Expressions

To move past arithmetic to algebra, we begin working with variables. Any combination of numbers and
variables usingmathematical operations is called amathematical expression. Some expressions are simple,
and some are complicated. Some expressions are abstract, whereas some have context and meaning. One
example of a simple mathematical expression with context is “220 − a,” which has one variable, a, and is
the expression for the maximum heart rate of a person who is a years old.

In this section, we’ll focus on variables and expressions. In Section 2.2 we’ll continue with a focus on ge-
ometry formulas. In the remainder of this chapter, we’ll focus on mathematical equations and inequalities
which are also very important in algebra.

2.1.1 Introduction to Variables

When we want to represent an unknown or changing numerical quantity, we use a variable to do so. For
example, if you’d like to discuss the gas mileage of various cars, you could let the symbol “1” represent a
car’s gas mileage. The mileage might be 25 mpg, 30 mpg, or some other quantity. If we agree to use mpg
for the units of measure, 1 might be a place holder for 25, 30, or some other number. Since we are using a
variable and not a specific number, we can discuss gasmileage for Honda Civics at the same timewe discuss
gas mileage for Ford Explorers.

When variables stand for actual physical quantities, it’s good to use letters that clearly correspond to the
quantity they represent. For example, it’s wise to use 1 to represent gas mileage. This helps the people who
might read your work in the future to understand it better.

It is also important to identify what unit of measurement goes along with each variable you use, and clearly
tell your reader this. For example, suppose you are workingwith 1 � 25. A car whose gasmileage is 25 mpg
is very different from a car whose gas mileage is 25 kpg (kilometers per gallon). So it would be important
to tell readers that 1 represents gas mileage in miles per gallon.

Checkpoint 2.1.2. Identify a variable youmight use to represent each quantity. And identify what units
would be most appropriate.

a. Let be the age of a student, measured in .

b. Let be the amount of time passed since a driver left Portland, Oregon, bound for Boise, Idaho,

measured in .

c. Let be the area of a two-bedroom apartment, measured in .
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Explanation.

a. The unknown quantity is age, which we generally measure in years. So we could define this variable
as:

“Let a be the age of a student, measured in years.”

b. The amount of time passed is the unknown quantity. Since this is a drive from Portland to Boise, it
would make sense to measure this in hours. So we could define this variable as:

“Let t be the amount of time passed since a driver left Portland, Oregon, bound for Boise, Idaho,
measured in hours.”

c. The unknown quantity is area. Apartment area is usually measured in square feet. So we’ll define
this variable as:

“Let A be the area of a two-bedroom apartment, measured in ft2.”

Unless an algebra problem specifies which letter(s) to use, we may choose which letter(s) to use for our
variable(s). However without any context to a problem, x, y, and z are the most common letters used as
variables, and you may see these variables (especially x) a lot.

Also note that the units we use are often determined indirectly by other information given in an algebra
problem. For example, if we’re told that a car has used so many gallons of gas after traveling so manymiles,
then it suggests we should measure gas mileage in mpg.

2.1.2 Mathematical Expressions

A mathematical expression is any combination of variables and numbers using arithmetic operations. The
following are all examples of mathematical expressions:

x + 1 2ℓ + 2w
√

x
y + 1 nRT

Note that this definition of “mathematical expression” does not include anything with signs like these in
them: �, <, ≤, etc.

Example 2.1.3 The expression:
5
9 (F − 32)

can be used to convert from degrees Fahrenheit to degrees Celsius. To do this, we need a Fahrenheit
temperature, F. Then we can evaluate the expression. This means replacing its variable(s) with specific
numbers and calculating the result. In this case, we can replace F with a specific number.

Let’s convert the temperature 89 °F to the Celsius scale by evaluating the expression.

5
9 (F − 32) � 5

9 (89 − 32)

�
5
9 (57)

�
285
9 ≈ 31.67

This shows us that 89 °F is equivalent to approximately 31.67 ◦C.

Warning 2.1.4 Evaluating Versus Solving. The steps in Example 2.1.3 are not considered “solving” any-
thing. “Solving” is a word youmight be tempted to use, because in some sense the steps from Example 2.1.3
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are “finding an answer.” There is a special meaning in algebra for words like “solve” and “solution” that
will come soon. Instead, when we substitute a value and compute the result, the proper vocabulary is
“evaluating an expression.”

Checkpoint 2.1.5. Try evaluating the temperature expression for yourself.

Use the expression 5
9 (F − 32) to evaluate some Celsius temperatures.

a. If a temperature is 50◦F what is that temperature measured in Celsius?

b. If a temperature is −20◦F what is that temperature measured in Celsius?

Explanation.

a. 5
9 (F − 32) � 5

9 (50 − 32)

�
5
9 (18)

�
5
1 (2)

� 10

So 50◦F is equavalent to 10◦C.

b. 5
9 (F − 32) � 5

9 (−20 − 32)

�
5
9 (−52)

� −260
9

≈ −28.89

So −20◦F is equavalent to about −28.89◦C.

Example 2.1.6 Target heart rate. According to the American Heart Association, a person’s maximum
heart rate, in beats per minute (bpm), is given by 220 − a, where a is their age in years.

a. Determine the maximum heart rate for someone who is 31 years old.

b. A person’s target heart rate formoderate exercise is 50% to 70% of theirmaximumheart rate. If they
want to reach 65% of their maximum heart rate during moderate exercise, we’d use the expression
0.65(220 − a), where a is their age in years. Determine the target heart rate at this 65% level for
someone who is 31 years old.

Explanation. Both of these parts ask us to evaluate an expression.

a. Since a is defined to be age in years, we will evaluate this expression by substituting a with 31:

220 − a � 220 − 31
� 189

This tells us that the maximum heart rate for someone who is 31 years old is 189 bpm.

b. We’ll again substitute a with 31, but this time using the target heart rate expression:

0.65(220 − a) � 0.65(220 − 31)
� 0.65(189)
� 122.85

This tells us that the target heart rate for someone who is 31 years old undertaking moderate
exercise is 122.85 bpm.

Checkpoint 2.1.7. The target heart rate for moderate exercise is 50% to 70% of maximum heart rate. We
can use the expression p

100 (220 − a) to represent a person’s target heart rate when their target rate is p% of
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their maximum heart rate, and they are a years old.

Determine the target heart rate at the 53% level for moderate exercise for someone who is 56 years old.

At the 53% level, the target heart rate for moderate exercise for someone who is 56 years old is beats
per minute.

Explanation.
p

100 (220 − a) � 53
100 (220 − 56)

�
53
100 (164)

�
53
25 (41)

� 86.92

At the 53% level, the target heart rate for moderate exercise for someone who is 56 years old is 86.92 beats
per minute.

Checkpoint 2.1.8 Rising Rents. An expression estimating the average rent of a one-bedroom apartment
in Portland, Oregon, from January, 2011 to October, 2016, is given by 10.173x+974.78, where x is the number
of months since January, 2011.

a. According to this model, what was the average rent of a one-bedroom apartment in Portland in Jan-
uary, 2011?

b. According to this model, what was the average rent of a one-bedroom apartment in Portland in Jan-
uary, 2016?

Explanation.

a. This model uses x as the number of months after January, 2011. So in January, 2011, x is 0:

10.173x + 974.48 � 10.173(0) + 974.48
≈ 974.48

According to this model, the average monthly rent for a one-bedroom apartment in Portland, Oregon,
in January, 2011, was $974.78.

b. The date we are given is January, 2016, which is 5 years after January, 2011. Recall that x is the number
of months since January, 2011. So we need to use x � 60:

10.173x + 974.48 � 10.173(60) + 974.48
≈ 1584.86

According to this model, the average monthly rent for a one-bedroom apartment in Portland, Oregon,
was $1584.86 in January 2016.

2.1.3 Evaluating Expressions with Exponents, Absolute Value, and Radicals

Mathematical expressionswill often have exponents, absolute value bars, and radicals. This does not change
the basic approach to evaluating them.
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Example 2.1.9 Tsunami Speed. The speed of a tsunami (inmeters per second) can bemodeled by
√

9.8d,
where d is the depth of the tsunami (in meters). Determine the speed of a tsunami that has a depth of
30 m to four significant digits.

Explanation. Using d � 30, we find:
√

9.8d �

√
9.8(30)

�
√

294

≈

four︷︸︸︷
17.14 6428 . . .

The speed of tsunami with a depth of 30 m is about 17.15 m
s .

Up to now, we have been evaluating expressions, but we can evaluate formulas in the same way. A formula
usually has a single variable that represents the output of an expression. For example, the expression for
a person’s maximum heart rate in beats per minute, 220 − a, can be written as the formula, H � 220 − a.
When we substitute a value for a we are evaluating the formula. Even though we have an equation, we are
not solving yet. That will come soon.

Checkpoint 2.1.10 Tent Height. While camping, the height (in feet) inside a tent when you are d ft from
the north side of the tent is given by the formula h � −2 |d − 3| + 6.

a. When you are 5 ft from the north side, the
height will be .

b. When you are 2.5 ft from the north side, the
height will be .

Explanation.

a. When d � 5, we have:

h � −2 |d − 3| + 6
� −2 |5 − 3| + 6
� −2 |2| + 6
� −2(2) + 6
� −4 + 6
� 2

Thus when you are 5 ft from the north side, the
height in the tent is 2 ft.

b. When d � 2.5, we have:

h � −2 |d − 3| + 6
� −2 |2.5 − 3| + 6
� −2 |−0.5| + 6
� −2(0.5) + 6
� −1 + 6
� 5

Thus when you are 2.5 ft from the north side,
the height in the tent is 5 ft.

Checkpoint 2.1.11 Mortgage Payments. If we borrow L dollars for a home mortgage loan at an annual
interest rate r, and intend to pay off the loan after n months, then the amount we should pay each month
M, in dollars, is given by the formula

M �
rL

(
1 +

r
12

)n

12
( (

1 +
r

12
)n − 1

)
If we borrow $200,000 at an interest rate of 6% with the intent to pay off the loan in 30 years, what should
our monthly payment be? (Using a calculator is appropriate here.)
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Explanation. We must use L � 200000. Because the interest rate is a percentage, r � 0.06 (not 6). The
variable n is supposed to be a number on months, but we will pay off the loan in 30 years. Therefore we
take n � 360.

M �
rL

(
1 +

r
12

)n

12
( (

1 +
r

12
)n − 1

) �
(0.06)(200000)

(
1 +

0.06
12

)360

12
( (

1 +
0.06
12

)360 − 1
)

�
(0.06)(200000)(1 + 0.005)360

12 ((1 + 0.005)360 − 1)

≈ (0.06)(200000)(6.022575 . . .)
12 (6.022575 . . . − 1)

≈ (0.06)(200000)(6.022575 . . .)
12(5.022575 . . .)

≈ 72270.90 . . .
60.2709 . . .

≈ 1199.10

Our monthly payment should be $1,199.10.

Warning 2.1.12 Evaluating Expressions with Negative Numbers. When we substitute negative numbers
into an expression, it’s important to use parentheses around them or else it’s easy to forget that a negative
number is being raised to a power. Let’s look at some examples.

Example 2.1.13 Evaluate x2 if x � −2.

We substitute:

x2
� (−2)2

� 4

If we don’t use parentheses, we would have:

x2
� −22 incorrect!
� −4

The original expression takes x and squares it. With −22 � −4, the number −2 is not being squared.
Since the exponent has higher priority than the negation, it’s just the number 2 that is being squared.
With (−2)2 � 4 the number −2 is being squared, which is what we would want given the expression x2.

So it is wise to always use some parentheses when substituting in any negative number.

Checkpoint 2.1.14. Evaluate and simplify the following expressions for x � −5 and y � −2:

a. x3 y2 � b. (−2x)3 � c. −3x2 y �
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Explanation.

a. x3 y2
� (−5)3(−2)2

� (−125)(4)
� −500

b. (−2x)3 � (−2(−5))3

� (10)3

� 1000

c. −3x2 y � −3(−5)2(−2)
� −3(25)(−2)
� 150

Exercises

Evaluating Expressions

Evaluate x − 10 for x � 6.1. Evaluate x + 4 for x � 9.2. Evaluate−4 − x for x � −10.3.

Evaluate 10 − x for x � −8.4. Evaluate 3x + 6 for x � −5.5. Evaluate−5x − 6 for x � −3.6.

Evaluate −7c for c � 9.7. Evaluate −2B for B � 2.8.

Evaluate the expression r2:

a. When r � 3, r2
�

b. When r � −5, r2
�

9. Evaluate the expression t2:

a. When t � 9, t2
�

b. When t � −9, t2
�

10. Evaluate the expression t3:

a. When t � 4, t3
�

b. When t � −3, t3
�

11.

Evaluate the expression x3:

a. When x � 2, x3
�

b. When x � −4, x3
�

12. Evaluate the following ex-
pressions.

a. Evaluate 5x2 when x �

2. 5x2
�

b. Evaluate (5x)2 when x �

2. (5x)2 �

13. Evaluate the following ex-
pressions.

a. Evaluate 3x2 when x �

2. 3x2
�

b. Evaluate (3x)2 when x �

2. (3x)2 �

14.

Evaluate −
(
y + 2

)
for y � −7.15. Evaluate −7

(
y + 9

)
for y � 6.16.

Evaluate 9r − 5
3r

for r � −1.17. Evaluate 3r − 7
3r

for r � −8.18.

Evaluate −9B + 9A for B � −10 and A � −6.19. Evaluate −2C − c for C � −9 and c � 5.20.

Evaluate −5
x
− 4

a
for x � 7 and a � −3.21. Evaluate −5

y
− 8

B
for y � 9 and B � −5.22.
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Evaluate −7t + 9c − 3
7t − 2c

for t � −4 and c � 9.23. Evaluate −2a − B + 9
−8a + 7B

for a � 3 and B � −7.24.

Evaluate the expression 1
7
(
x + 2

)2 − 7 when
x � −9.

25. Evaluate the expression 1
4
(
x + 3

)2 − 4 when
x � −7.

26.

Evaluate the expression 1
2 h

(
B + b

)
when h �

10, B � 8, b � 7.
27. Evaluate the expression 1

2 h
(
B + b

)
when h �

12, B � 6, b � 5.
28.

Evaluate the expression−16t2+64t+128when
t � 3.

29. Evaluate the expression−16t2+64t+128when
t � −5.

30.

Evaluate the following expressions.

a. Evaluate x2r3 when x � −3 and r � −1.

x2r3
�

b. Evaluate x3r2 when x � −3 and r � −1.

x3r2
�

31. Evaluate the following expressions.

a. Evaluate x2 y3 when x � −1 and y � −2.

x2 y3
�

b. Evaluate x3 y2 when x � −1 and y � −2.

x3 y2
�

32.

Evaluate the following expressions.

a. Evaluate
(
−3y

)2 when y � −1.(
−3y

)2
�

b. Evaluate
(
−3y

)3 when y � −1.(
−3y

)3
�

33. Evaluate the following expressions.

a. Evaluate
(
−y

)2 when y � −2.(
−y

)2
�

b. Evaluate
(
−y

)3 when y � −2.(
−y

)3
�

34.

Evaluate each algebraic expression for the given
value(s):

y3 +
√

x − 4
|2x − y | , for x � 104 and y � −4:

35. Evaluate each algebraic expression for the given
value(s):

y3 +
√

x − 4
|5x − y | , for x � 29 and y � 7:

36.

Evaluate each algebraic expression for the given
value(s):
√

x
y
− y

x
, for x � 81 and y � 3:

37. Evaluate each algebraic expression for the given
value(s):
√

x
y
− y

x
, for x � 100 and y � −6:

38.
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Evaluate

y2 − y1

x2 − x1

for x1 � −20, x2 � 13, y1 � 19, and y2 � −1:

39. Evaluate

y2 − y1

x2 − x1

for x1 � −15, x2 � −2, y1 � −5, and y2 � −12:

40.

Evaluate √
(x2 − x1)2 + (y2 − y1)2

for x1 � 8, x2 � 4, y1 � 8, and y2 � 11:

41. Evaluate √
(x2 − x1)2 + (y2 − y1)2

for x1 � −2, x2 � 4, y1 � −8, and y2 � −16:

42.

Evaluate the algebraic expression 3a + b for
a �

5
7 and b �

4
9 .

43. Evaluate the algebraic expression −8a + b for
a �

6
5 and b �

1
2 .

44.

Evaluate each algebraic expression for the given
value(s):
5 + 5|y − x |

x + 5y
, for x � 6 and y � −3:

45. Evaluate each algebraic expression for the given
value(s):
4 + 5|y − x |

x + 3y
, for x � 11 and y � −3:

46.

To convert a temperature measured in degrees Fahrenheit to degrees Celsius, there is a formula:

C �
5
9 (F − 32)

where C represents the temperature in degrees Celsius and F represents the temperature in degrees Fahren-
heit.

If a temperature is 113◦F, what is that temper-
ature measured in Celsius?

47. If a temperature is 5◦F, what is that tempera-
ture measured in Celsius?

48.

If a temperature is 14◦F, what is that temper-
ature measured in Celsius?

49. If a temperature is 122◦F, what is that temper-
ature measured in Celsius?

50.

A formula for converting meters into feet is
F � 3.28M

where M is a number of meters, and F is the corresponding number of feet.

Use the formula to find the number of feet that
corresponds to fourteen meters.

feet corresponds
to fourteen meters.

51. Use the formula to find the number of feet that
corresponds to eight meters.

feet corresponds
to eight meters.

52.
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The formula
y �

1
2 a t2

+ v0 t + y0

gives the vertical position of an object, at time t, thrownwith an initial velocity v0, from an initial position y0

in a place where the acceleration of gravity is a. The acceleration of gravity on earth is −9.8 m
s2 . It is negative,

because we consider the upward direction as positive in this situation, and gravity pulls down.

What is the height of a baseball thrown with
an initial velocity of v0 � 78 m

s , from an initial
position of y0 � 97 m, and at time t � 14 s?

Fourteen seconds after the baseballwas thrown,
it was high in the air.

53. What is the height of a baseball thrown with
an initial velocity of v0 � 84 m

s , from an initial
position of y0 � 80 m, and at time t � 5 s?

Five seconds after the baseball was thrown, it
was high in the air.

54.

The percentage of births in the U.S. delivered via C-section can be given by the following formula for the
years since 1996:

p � 0.8(y − 1996) + 21

In this formula y is a year after 1996 and p is the percentage of births delivered via C-section for that year.

What percentage of births in the U.S. were de-
livered via C-section in the year 2010?

of births in the U.S.
were delivered via C-section in the year 2010.

55. What percentage of births in the U.S. were de-
livered via C-section in the year 2012?

of births in the U.S.
were delivered via C-section in the year 2012.

56.

Target heart rate for moderate exercise is 50% to 70% of maximum heart rate. If we want to represent a
certain percent of an individual’s maximum heart rate, we’d use the formula

rate � p(220 − a)

where p is the percent, and a is age in years.

Determine the target heart rate at 51% level
for someone who is 43 years old. Round your
answer to an integer.

The target heart rate at 51% level for someone
who is 43 years old is
beats per minute.

57. Determine the target heart rate at 53% level
for someone who is 22 years old. Round your
answer to an integer.

The target heart rate at 53% level for someone
who is 22 years old is
beats per minute.

58.

The diagonal length (D) of a rectangle with side lengths L and W is given by:

D �

√
L2 + W2

Determine the diagonal length of rectangles
with L � 6 ft and W � 8 ft.

The diagonal length of rectangleswith L � 6 ft
and W � 8 ft is .

59. Determine the diagonal length of rectangles
with L � 9 ft and W � 12 ft.

The diagonal length of rectangleswith L � 9 ft
and W � 12 ft is .

60.
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The height inside a camping tent when you
are d feet from the edge of the tent is given by

h � −1.1|d − 5.4| + 6

where h stands for height in feet.

Determine the height when you are:

a. 6.5 ft from the edge.

The height inside a camping tent when
you 6.5 ft from the edge of the tent is

b. 4.4 ft from the edge.

The height inside a camping tent when
you 4.4 ft from the edge of the tent is

61. The height inside a camping tent when you
are d feet from the edge of the tent is given by

h � −0.6|d − 5.8| + 5.5

where h stands for height in feet.

Determine the height when you are:

a. 9.7 ft from the edge.

The height inside a camping tent when
you 9.7 ft from the edge of the tent is

b. 2.9 ft from the edge.

The height inside a camping tent when
you 2.9 ft from the edge of the tent is

62.
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2.2 Geometry Formulas

Two- and three- dimensional shapes provide some formulas with variables that we can evaluate.

2.2.1 Evaluating Perimeter and Area Formulas

Rectangles The rectangle in Figure 2.2.2 has a length (as measured by the edges on the top and bottom)
and a width (as measured by the edges on the left and right).

length � 3 cmw
id

th
�

2c
m

Figure 2.2.2: A Rectangle

Perimeter is the distance around the edge(s) of a two-dimensional shape. To calculate perimeter, start from
a point on the shape (usually a corner), travel around the shape, and add up the total distance traveled. For
the rectangle in the Figure 2.2.2, if we travel around it, the total distance would be:

rectangle perimeter � 3 cm + 2 cm + 3 cm + 2 cm
� 10 cm.

Another way to compute a rectangle’s perimeter would be to start at one corner, add up the edge length
half-way around, and then double that. So we could have calculated the perimeter this way:

rectangle perimeter � 2(3 cm + 2 cm)
� 2(5 cm)
� 10 cm.

There is nothing special about this rectangle having length 3 cm and width 2 cm. With a generic rectangle,
it has some length we can represent with the variable ℓ and some width we can represent with the variable
w. We can use P to represent its perimeter, and then the perimeter of the rectangle will be given by:

P � 2(ℓ + w).

Area is the number of 1 × 1 squares that fit inside a two-dimensional shape (possibly after morphing them
into non-square shapes). If the edges of the squares are, say, 1 cm long, then the area is measured in “square
cm,” written cm2. In Figure 2.2.2, the rectangle has six 1 cm× 1 cm squares, so its area is 6 square centimeters.

Note that we can find that area by multiplying the length and the width:

rectangle area � (3 cm) · (2 cm)
� 6 cm2
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Again, there is nothing special about this rectangle having length 3 cm and width 2 cm. With a generic
rectangle, it has some length we can represent with the variable ℓ and some width we can represent with
the variable w. We can represent its area with the variable A, and then the area of the rectangle will be given
by:

A � ℓ · w.

Checkpoint 2.2.3. Find the perimeter and area of the rectangle.

Its perimeter is and its area is .

Explanation. Using the perimeter and area formulas for a rectangle, we have:

P � 2(ℓ + w) A � ℓ · w
� 2(14 + 10) � 14 · 10
� 2(24) � 140
� 48

Since length and width were measured in meters, we find that the perimeter is 28 meters and the area is 140
square meters.

Triangles The perimeter of a general triangle has no special formula — all that is needed is to add the
lengths of its three sides. The area of a triangle is a bit more interesting. In Figure 2.2.4, there are three
triangles. From left to right, there is an acute triangle, a right triangle, and an obtuse triangle. Each triangle
is drawn so that there is a “bottom” horizontal edge. This edge is referred to as the “base” of the triangle.
With each triangle, a “height” that is perpendicular to the base is also illustrated.

base=3 cm

height=2 cm

base=3 cm

height=2 cm

base=3 cm

height=2 cm

Figure 2.2.4: Triangles

Each of these triangles has the same base width, 3 cm, and the same height, 2 cm. Note that they each have
the same area as well. Figure 2.2.5 illustrates how they each have an area of 3 cm2.
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Figure 2.2.5: Triangles

As with the triangles in Figure 2.2.5, you can always rearrange little pieces of a triangle so that the resulting
shape is a rectangle with the same base width, but with a height that’s one-half of the triangle’s height.
With a generic rectangle, it has some base width we can represent with the variable b and some height we
can represent with the variable h. We can represent its area with the variable A, and then the area of the
triangle will be given by A � b ·

( 1
2 h

)
, or more conventionally:

A �
1
2 bh.

Checkpoint 2.2.6. Find the perimeter and area of the triangle.

Its perimeter is and its area is .

Explanation. For perimeter, we just add the three side lengths:

P � 13 + 25 + 33
� 71

For area, we use the triangle area formula:

A �
1
2 bh

�
1
2 (13)(22)

� 13(11)
� 143

Since length and width were measured in meters, we find that the perimeter is 71 meters and the area is 143
square meters.
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Circles To find formulas for the perimeter and area of a circle, it helps to first know that there is a special
number called π (spelled “pi” and pronounced like “pie”) that appears in many places in mathematics. The
decimal value of π is about 3.14159265 . . ., and it helps to memorize some of these digits. It also helps to
understand that π is a little larger than 3. There are many definitions for π that can explain where it comes
from and how you can find all its decimal places, but here we are just going to accept that it is a special
number, and it is roughly 3.14159265 . . ..

The perimeter of a circle is the distance around its edge. For circles, the perimeter has a special name: the cir-
cumference. Imagine wrapping a string around the circle and cutting it so that it makes one complete loop.
If we straighten out that piece of string, we have a length that is just as long as the circle’s circumference.

diameter

circumference � π · diameter

Figure 2.2.7: Circle Diameter and Circumference

As we can see in Figure 2.2.7, the circumference of a circle is a little more than three times as long as its
diameter. (The diameter of a circle is the length of a straight line running from a point on the edge through
the center to the opposite edge.) In fact, the circumference is actually exactly π times the length of the
diameter. With a generic circle, it has some diameter we can represent with the variable d. We can represent
its circumference with the variable c, and then the circumference of the circle will be given by:

c � πd.

Alternatively, we often prefer toworkwith a circle’s radius instead of its diameter. The radius is the distance
from any point on the circle’s edge to its center. (Note that the radius is half the diameter.) From this
perspective, we can see in Figure 2.2.8 that the circumference is a little more than 6 times the radius.

radius

circumference � π · 2 radius

Figure 2.2.8: Circle Diameter and Circumference

This gives us another formula for a circle’s circumerence that uses the variable r for its radius: c � π · 2r.
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Or more conventionally,
c � 2πr.

There is also a formula for the area of a circle based on its radius. Figure 2.2.9 shows how three squares can
be cut up and rearranged to fit inside a circle. This shows how the area of a circle of radius r is just a little
larger than 3r2. Since π is just a little larger than 3, could it be that the area of a circle is given by πr2?

r

3r

area 3r · r, or 3r2 area still 3r2

circle area slightly more than 3r2

Figure 2.2.9: Circle area is slightly larger than 3r2.

One way to establish this formula is to imagine slicing up the circle into many pie slices as in Figure 2.2.10.
Then you can rearrange the slices into a strange shape that is almost a rectangle with height equal to the
radius of the original circle, and width equal to half the circumference of the original circle.

cir
cum

ference 2πr

half of circumference, πr

other half of circumference, πr

radius r radius r

Figure 2.2.10: Reasoning the circle area formula.

Since the area of the circle is equal to the area of the almost-rectangular shape in Figure 2.2.10, we have the
circle area formula:

A � πr2.
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Checkpoint 2.2.11. A circle’s diameter is 6 m.

a. This circle’s circumference, in terms of π, is .

b. This circle’s circumference, rounded to the hundredth place, is .

c. This circle’s area, in terms of π, is .

d. This circle’s area, rounded to the hundredth place, is .

Explanation. We use r to represent radius and d to represent diameter. In this problem, it’s given that the
diameter is 6 m. A circle’s radius is half as long as its diameter, so the radius is 3 m.

Throughout these computations, all quantities have units attached, but we only show them in the final step.

a. c � πd
� π · 6
� 6π m

b. c � πd
≈ 3.1415926 · 6
≈ 18.85 m

c. A � πr2

� π · 32

� π · 9
� 9π m2

d. A � πr2

≈ 3.1415926 · 32

≈ 3.1415926 · 9
≈ 28.27 m2

2.2.2 Volume

The volume of a three-dimensional object is the number of 1× 1× 1 cubes that fit inside the object (possibly
after morphing them into non-cube shapes). If the edges of the cubes are, say, 1 cm long, then the volume
is measured in “cubic cm,” written cm3.

Rectangular Prisms The 3D shape in Figure 2.2.12 is called a rectangular prism.

5 in

3 in

4 i
n

Figure 2.2.12: Volume of a Rectangular Prism

The rectangular prism in Figure 2.2.12 is composed of 1 in × 1 in × 1 in unit cubes, with each cube’s volume
being 1 cubic inch (or in3). The shape’s volume is the number of such unit cubes. The bottom face has
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5 · 4 � 20 unit squares. Since there are 3 layers of cubes, the shape has a total of 3 · 20 � 60 unit cubes. In
other words, the shape’s volume is 60 in3 because it has sixty 1 in × 1 in × 1 in cubes inside it.

We found the number of unit squares in the bottom face by multiplying 5 · 4 � 20. Then to find the volume,
we multiplied by 3 because there are three layers of cubes. So one formula for a prism’s volume is

V � wdh

where V stands for volume, w for width, d for depth, and h for height.

Checkpoint 2.2.13. A masonry brick is in the shape of a rectangular prism and is 8 inches wide, 3.5
inches deep, and 2.25 inches high. What is its volume?

Explanation. Using the formula for the volume of a rectangular prism:

V � wdh
� 8(3.5)(2.25)
� 63

So the brick’s volume is 63 cubic inches.

Cylinders A cylinder is not a prism, but it has some similarities. Instead of a square base, the base is a
circle. Its volume can also be calculated in a similar way to how prism volume is calculated. Let’s look at
an example.

Example 2.2.14 Find the volume of a cylinder with a radius of 3 meters and a height of 2 meters.

3m

2m

Figure 2.2.15: A Cylinder

Explanation. The base of the cylinder is a circle. We know the area of a circle is given by the formula
A � πr2, so the base area is 9πm2, or about 28.27 m2. That means about 28.27 unit squares can fit into
the base. One of them is drawn in Figure 2.2.16 along with two unit cubes above it.

Figure 2.2.16: Finding Cylinder Volume
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For each unit square in the base circle, there are two unit cubes of volume. So the volume is the base
area times the height: 9πm2 · 2m, which equals 18πm3. Approximating π with a decimal value, this is
about 56.55 m3.

Example 2.2.14 demonstrates that the volume of a cylinder can be calculated with the formula

V � πr2h

where r is the radius and h is the height.

Checkpoint 2.2.17. A soda can is basically in the shape of a cylinder with radius 1.3 inches and height
4.8 inches. What is its volume?

Its exact volume in terms of π is: .

As a decimal approximation rounded to four significant digits, its volume is: .

Explanation. Using the formula for the volume of a cylinder:

V � πr2h

� π(1.3)2(4.8)
� 8.112π
≈ 25.48

So the can’s volume is 8.112π cubic inches, which is about 25.48 cubic inches.

Note that the volume formulas for a rectangular prism and a cylinder have something in common: both
formulas first find the area of the base (which is a rectangle for a prism and a circle for a cylinder) and then
multiply by the height. So there is another formula

V � Bh

thatworks for both shapes. Here, B stands for the base area (which is wd for a prism and πr2 for a cylinder.)

2.2.3 Summary

You may be required to memorize the geometry formulas that have been cataloged in this section. Check
that you have each of them memorized here.

Checkpoint 2.2.18. Fill out the table with various formulas as they were given in this section.

Rectangle Perimeter
Rectangle Area
Triangle Area
Circle Circumference
Circle Area
Rectangular Prism Volume
Cylinder Volume
Volume of either Rectangular Prism or Cylinder
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Exercises

Perimeter and Area

Find the perimeter and area of the rectangle.

Its perimeter is and

its area is .

1. Find the perimeter and area of the rectangle.

Its perimeter is and

its area is .

2.

Find the perimeter of the rect-
angle below.

3. Find the perimeter of the rect-
angle below.

4. Find the area of the rectan-
gle below.

5.

Find the area of the rectan-
gle below.

6. Find the perimeter and area
of a rectangular table topwith
a length of 4 ft and a width
of 27 in.

Its perimeter is

and its area is .

7. Find the perimeter and area
of a rectangular table topwith
a length of 4.2 ft and awidth
of 36 in.

Its perimeter is

and its area is .

8.
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Find the perimeter and area
of the square.

a. The square’s perimeter
is .

b. The square’s area is .

9. Find the perimeter and area
of the square.

a. The square’s perimeter
is .

b. The square’s area is .

10. Find the perimeter and area
of the triangle.

Its perimeter is

and its area is .

11.

Find the perimeter and area
of the triangle.

Its perimeter is

and its area is .

12. Find the perimeter and area
of the right triangle.

Its perimeter is

and its area is .

13. Find the perimeter and area
of the right triangle.

Its perimeter is

and its area is .

14.

Find the perimeter and area
of the triangle.

Its perimeter is

and its area is .

15. Find the perimeter and area
of the triangle.

Its perimeter is

and its area is .

16. The area of the triangle be-

low is
square feet.

17.
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The area of the triangle be-

low is
square feet.

18. Find the area of a triangular
flagwith a base of 2.6 m and
a height of 60 cm.

Its area is .

19. Find the area of a triangular
flagwith a base of 2.9 m and
a height of 130 cm.

Its area is .

20.

A circle’s radius is 6 m.

a. This circle’s circumfer-
ence, in terms of π, is

.

b. This circle’s circumfer-
ence, rounded to the hun-
dredth place, is .

c. This circle’s area, in terms
of π, is .

d. This circle’s area, rounded
to the hundredth place,
is .

21. A circle’s radius is 7 m.

a. This circle’s circumfer-
ence, in terms of π, is

.

b. This circle’s circumfer-
ence, rounded to the hun-
dredth place, is .

c. This circle’s area, in terms
of π, is .

d. This circle’s area, rounded
to the hundredth place,
is .

22. A circle’s diameter is 16 m.

a. This circle’s circumfer-
ence, in terms of π, is

.

b. This circle’s circumfer-
ence, rounded to the hun-
dredth place, is .

c. This circle’s area, in terms
of π, is .

d. This circle’s area, rounded
to the hundredth place,
is .

23.

A circle’s diameter is 18 m.

a. This circle’s circumfer-
ence, in terms of π, is

.

b. This circle’s circumfer-
ence, rounded to the hun-
dredth place, is .

c. This circle’s area, in terms
of π, is .

d. This circle’s area, rounded
to the hundredth place,
is .

24. Find the perimeter and area
of this shape, which is a semi-
circle on top of a rectangle.

Its perimeter is

and its area is .

25. Find the perimeter and area
of this shape, which is a semi-
circle on top of a rectangle.

Its perimeter is

and its area is .

26.
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Find the perimeter and area
of this polygon.

Its perimeter is

and its area is .

27. Find the perimeter and area
of this polygon.

Its perimeter is

and its area is .

28. Find the perimeter and area
of this shape.

Its perimeter is

and its area is .

29.

Find the perimeter and area
of this shape.

Its perimeter is

and its area is .

30. Find the perimeter and area
of this polygon.

Its perimeter is

and its area is .

31. Find the perimeter and area
of this polygon.

Its perimeter is

and its area is .

32.

The formula
A �

1
2 r n s

gives the area of a regular polygon with side length s, number of sides n and, apothem r. (The apothem is
the distance from the center of the polygon to one of its sides.)

What is the area of a regular pentagon with
s � 90 in and r � 82 in?

The area is .

33. What is the area of a regular 28-gon with s �

99 in and r � 90 in?

The area is .

34.
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A trapezoid’s area can be calculated by the formula A �
1
2 (b1 + b2)h, where A stands for area, b1 for the first

base’s length, b2 for the second base’s length, and h for height.

Find the area of the trapezoid below.35. Find the area of the trapezoid below.36.

Volume

Find the volume of this rect-
angular prism.

37. Find the volume of this rect-
angular prism.

38. Find the volume of this rect-
angular prism.

39.

Find the volume of this rect-
angular prism.

40. Acube’s side length is 8 cm.

Its volume is .

41. Acube’s side length is 9 cm.

Its volume is .

42.
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Find the volumeof this cylin-
der.

a. This cylinder’s volume,
in terms of π, is .

b. This cylinder’s volume,
rounded to the hundredth
place, is .

43. Find the volumeof this cylin-
der.

a. This cylinder’s volume,
in terms of π, is .

b. This cylinder’s volume,
rounded to the hundredth
place, is .

44. Find the volumeof this cylin-
der.

a. This cylinder’s volume,
in terms of π, is .

b. This cylinder’s volume,
rounded to the hundredth
place, is .

45.

Find the volumeof this cylin-
der.

a. This cylinder’s volume,
in terms of π, is .

b. This cylinder’s volume,
rounded to the hundredth
place, is .

46. A cylinder’s base’s diame-
ter is 10 ft, and its height is
5 ft.

a. This cylinder’s volume,
in terms of π, is .

b. This cylinder’s volume,
rounded to the hundredth
place, is .

47. A cylinder’s base’s diame-
ter is 4 ft, and its height is
6 ft.

a. This cylinder’s volume,
in terms of π, is .

b. This cylinder’s volume,
rounded to the hundredth
place, is .

48.

The formula V �
1
3 · s2 · h gives the volume of a right square pyramid.

What is the volume of a right square pyramid
with s � 66 in and h � 69 in?

49. What is the volume of a right square pyramid
with s � 78 in and h � 34 in?

50.
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2.3 Combining Like Terms

In the last section we worked with algebraic expressions. In order to simplify algebraic expressions, it is
useful to identify which quantities we can combine.

2.3.1 Identifying Terms

In an algebraic expression, the terms are the quantities that are added. For example, the expression 3x + 2y
has two terms, which are 3x and 2y. Let’s look at some more examples.

Example 2.3.2 List the terms in the expression 2l + 2w.

The expression has two terms that are being added, 2l and 2w.

If there is any subtraction, wewill rewrite the expression using addition. Here is an example of that.

Example 2.3.3 List the terms in the expression −3x2 + 5x − 4.

We can rewrite this expression as −3x2 + 5x + (−4) to see that the terms are −3x2, 5x, and −4. The last
term is negative because subtracting is the same as adding the opposite.

Example 2.3.4 List the terms in the expression 3 cm + 2 cm + 3 cm + 2 cm.

This expression has four terms: 3 cm, 2 cm, 3 cm, and 2 cm.

Checkpoint 2.3.5. List the terms in the expression 5x − 4x + 10z.

Explanation. The terms are 5x, −4x, and 10z.

2.3.2 Combining Like Terms

In the examples above, you may have wanted to combine some of the terms. Look at the quantities below
to see which ones you can add or subtract.

a. 5 in + 20 in

b. 16 ft − 4 ft2
c. 2🍎 + 5🍎

d. 5min + 50 ft

e. 5🐶 − 2🐱

f. 20m − 6m

The terms that we can combine are called like terms. We can combine terms with the same units, but we
cannot combine units such as minutes and feet or cats and dogs. Here are the answers:

a. 5 in + 20 in � 25 in

b. 16 ft− 4 ft2 cannot be simpli-
fied

c. 2🍎 + 5🍎 � 7🍎

d. 5min + 50 ft cannot be sim-
plified

e. 5🐶 − 2🐱 cannot be simpli-
fied

f. 20m − 6m � 14min

Now let’s look at some examples that have variables in them.
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Checkpoint 2.3.6. Which expressions have like terms that you can combine?

a. 10x + 3y (□ can □ cannot) be combined.

b. 4x − 8x (□ can □ cannot) be combined.

c. 9y − 4y (□ can □ cannot) be combined.

d. −6x + 17z (□ can □ cannot) be combined.

e. −3x − 7x (□ can □ cannot) be combined.

f. 5t + 8t2 (□ can □ cannot) be combined.

Explanation. The terms that we can combine have the same variable part, including any exponents.

a. 10x + 3y cannot be combined.

b. 4x − 8x � −4x

c. 9y − 4y � 5y

d. −6x + 17z cannot be combined.

e. −3x − 7x � −10x

f. 5t + 8t2 cannot be combined.

Example 2.3.7 Simplify the expression 20x − 16x + 4y, if possible, by combining like terms.

This expression has two like terms, 20x and −16x, which we can combine.

20x − 16x + 4y � 4x + 4y

Note that we cannot combine 4x and 4y because x and y represent different quantities.

Example 2.3.8 Simplify the expression 100x + 100x2, if possible, by combining like terms.

This expression cannot be simplified because the variable parts are not the same. We cannot add x and
x2 just like we cannot add feet, a measure of length, and square feet, a measure of area.

Example 2.3.9 Simplify the expression −10r + 2s − 5t, if possible, by combining like terms.

This expression cannot be simplified because there are not any like terms.

Example 2.3.10 Simplify the expression y + 5y, if possible, by combining like terms.

This expression can be thought of as 1y + 5y. When we have a single y, the coefficient of 1 is not usually
written. Now we have two like terms, 1y and 5y. We will add those together:

x + 5x � 1x + 5x
� 6x

So far we have combined terms with whole numbers and integers, but we can also combine like terms when
the coefficients are decimals (or fractions).

Example 2.3.11 Simplify the expression x − 0.15x, if possible, by combining like terms.

Note that this expression can be rewritten as 1.00x − 0.15x, and combined like this:

x − 0.15x � 1.00x − 0.15x
� 0.85x
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Checkpoint 2.3.12. Simplify each expression, if possible, by combining like terms.

a. 4x − 7y + 10x

b. y − 8y + 2x2

c. x + 0.25x

d. 4x + 1.5y − 9z

Explanation.

a. This expression has two like terms that can be combined to get 14x − 7y.

b. In this expression we can combine the y terms to get −7y + 2x2.

c. Rewrite this expression as 1.00x + 0.25x and simplify to get 1.25x.

d. This expression cannot be simplified further because there are not any like terms.

Remark 2.3.13 The Difference Between Terms and Factors. We have learned that terms are quantities that
are added, such as 3x and−2x in 3x−2x. These are different than factors, which are parts that aremultiplied
together. For example, the term 2x has two factors: 2 and x (with themultiplication symbol implied between
them). The term 2πr has three factors: 2, π, and r.

Exercises

Review and Warmup

Add the following.

a. 2 + (−6) �

b. 8 + (−3) �

c. 9 + (−9) �

1. Add the following.

a. 2 + (−7) �

b. 10 + (−4) �

c. 9 + (−9) �

2. Add the following.

a. −9 + 3 �

b. −1 + 7 �

c. −2 + 2 �

3.

Add the following.

a. −6 + 3 �

b. −2 + 9 �

c. −2 + 2 �

4. Subtract the following.

a. 4 − 8 �

b. 6 − 2 �

c. 6 − 12 �

5. Subtract the following.

a. 4 − 7 �

b. 8 − 1 �

c. 6 − 17 �

6.

Subtract the following.

a. −1 − 5 �

b. −10 − 5 �

c. −4 − 4 �

7. Subtract the following.

a. −1 − 3 �

b. −8 − 3 �

c. −4 − 4 �

8. Subtract the following.

a. −1 − (−6) �

b. −10 − (−1) �

c. −5 − (−5) �

9.
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Subtract the following.

a. −2 − (−8) �

b. −6 − (−2) �

c. −5 − (−5) �

10.

Identifying Terms

Count the number of terms
in each expression.

a. 8t2 − 6t

b. 4x − 4 − 9y

c. −8z2 − z2 + 2y2 + 6t

d. −3s + 2t + 2z

11. Count the number of terms
in each expression.

a. −7t − 5x

b. −4s2

c. 2x2 − 6x2

d. −2s2 + 8z + 4t2

12. Count the number of terms
in each expression.

a. 1.8t + 0.7z2 + x2

b. 8.1s − 8.9s + 5.2 + 0.6y

c. 3s2 + 5.9z

d. 0.1s

13.

Count the number of terms
in each expression.

a. −3.2t − 6.6x2 + 4.2

b. −8.5t + 2.5s

c. −0.4x − 6.2x − 6.8 + 2s2

d. −3.6x2 + 7.6t + 2.7 + 3.6s

14. List the terms in each expres-
sion.

a. −2t + 6x + 3x − 2x2

b. 2t

c. −9s + 4 + 6x

d. s2 − 3z + 2t2

15. List the terms in each expres-
sion.

a. 6t − 1 + 4x + 8t2

b. −7s − 3z2 + 8y2

c. −6s − x − 3y + t2

d. 9z2 − 8s

16.

List the terms in each expres-
sion.

a. −5t − 8t + 4.4x − 3.6y2

b. 8.3s2 − 5.8z

c. 6.7t − 4.9s

d. 3.9z

17. List the terms in each expres-
sion.

a. 3.3t

b. 3.4t2 + 5.2x

c. −7.9s2 − 4.4t2 + 0.7 − 7.5x

d. −2.4t + 4.5y + 7.5t + 0.8t

18. List the terms in each expres-
sion.

a. −1.8t2 + 0.3y2

b. 7.8t + 3.2t − 3 + 8.9y

c. −6.6z2

d. −2.2s2 − 8.1x + 5.2x

19.

List the terms in each expres-
sion.

a. 2.9t + 6.9s2

b. −3.7x + 4.1y + 1.1z

c. −6.6z − 5.3z2 − 4t

d. −3.9t

20.
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Combining Like Terms Simplify each expression, if possible, by combining like terms.

a. 7t2 + 2s2

b. 8s2 + 5z

c. 8t2 + t2

d. −5y2 − 5z

21. a. −9z + 5z

b. 7y2 − 4s2

c. −s2 + 8x

d. −2z + 5t

22.

a. z + 8z2 + 8z

b. −3z2 + 7y2

c. −9y − y − 7t2 + s2

d. 3s2 + 6y

23. a. −5z + 3z2 + 2z2 − 3z2

b. −2z2 − 9 + 3y2 + 9z2

c. −9s − 8z

d. 7z2 + y2

24.

a. −5z − 79z − 76 − 99z

b. −79x − 51t − 53s

c. −89x − 44x − 16z

d. 22x + 38x2 + 50x2 + 90

25. a. −21z + 14s − 18z − 56z

b. 90z − 32

c. 30y2 − 61t2 + 89t2 + 94t2

d. 23y2 + 53y2 − 90y2

26.

a. −3.8z − 2.5t

b. −5.2s − 6.7s − 5.4y − z2

c. −1.5t − 4.5s2 + 1.3t2

d. 8.8y + 2.3y

27. a. 1.3z − 0.4z

b. −5.7s2 − 7.6s2 + 4.5y2

c. 0.8y − 8.8 − 2.7t − 5.1t

d. 5t2 + 2.5t

28.

a. 4z − 5
8 s

b. 9
5 y − 2

3 y

c. 3
4 y − 9y + y

d. 4
7 y + z2 − z − 5

2 z2

29. a. 5
4 z +

5
9 x +

4
3 x

b. − 4
9 t2 + 7

6 z2 + 1 − 6
7 y2

c. 1
3 y +

8
3 s2 − 8

7 t

d. 7
3 x − 3

7 y

30.

a. 8
9 z2 + 4

7 t2 − 7
2 z

b. − 2
5 x2 + 8

9 y2 − 7
3

c. 6t2 − 2
9 t2

d. − 7
2 t2 + 5

2 t

31. a. − 8
3 z +

4
5 z +

3
4 z

b. − 9
4 y + y2

c. 4
5 y +

3
2 t + z2

d. 9
5 t + 6t + 1

3 t + 7x

32.
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2.4 Equations and Inequalities as True/False Statements

This section introduces the concepts of algebraic equations and inequalities, and what it means for a num-
ber to be a solution to an equation or inequality.

2.4.1 Equations, Inequalities, and Solutions

An equation is two mathematical expressions with an equals sign between them. The two expressions can
be relatively simple or more complicated:

A relatively simple equation:

x + 1 � 2

A more complicated equation:(
x2

+ y2 − 1
)3

� x2 y3

An inequality is quite similar, but the sign between the expressions is one of these: <, ≤, >, ≥, or ,.

A relatively simple inequality:

x ≥ 15

A more complicated inequality:

x2
+ y2 < 1

A linear equation in one variable can be written in the form ax + b � 0, where a , b are real numbers, and
a , 0. The variable doesn’t have to be x. The variable cannot have an exponent other than 1 (x � x1), and
the variable cannot be inside a root symbol (square root, cube root, etc.) or in a denominator.

The following are some linear equations in one variable:

4 − y � 5 4 − z � 5z 0 �
1
2 p

3 − 2(q + 2) � 10
√

2 · r + 3 � 10 s
2 + 3 � 5

(Note that r is outside the square root symbol.) We will see in later sections that all equations above can be
converted into the form ax + b � 0.

The following are some non-linear equations:

1 + 2 � 3 (There is no variable.)
4 − 2y2

� 5 (The exponent of y is not 1.)
√

2r + 3 � 10 (r is inside the square root.)
2
s
+ 3 � 5 (s is in a denominator.)

This chapter focuses on linear equations in one variable. We will study other types of equations in later
chapters.

The simplest equations and inequalities have numbers and no variables. When this happens, the equation
is either true or false. The following equations and inequalities are true statements:

2 � 2 −4 � −4 2 > 1 −2 < −1 3 ≥ 3
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The following equations and inequalities are false statements:

2 � 1 −4 � 4 2 < 1 −2 ≥ −1 0 , 0

When equations and inequalities have variables, we can consider substituting values in for the variables.
If replacing a variable with a number makes an equation or inequality true, then that number is called a
solution to the equation.

Example 2.4.2 A Solution. Consider the equation y + 2 � 3, which has only one variable, y. If we
substitute in 1 for y and then simplify:

y + 2 � 3

1 + 2 ?
� 3

3 ✓� 3

we get a true equation. So we say that 1 is a solution to y + 2 � 3. Notice that we used a question mark
at first because we are unsure if the equation is true or false until the end.

If replacing a variablewith a valuemakes a false equation or inequality, that number is not a solution.

Example 2.4.3 Not a Solution. Consider the inequality x + 4 > 5, which has only one variable, x. If we
substitute in 0 for x and then simplify:

x + 4 > 5

0 + 4
?
> 5

4
no
> 5

we get a false equation. So we say that 0 is not a solution to x + 4 > 5.

2.4.2 Checking Possible Solutions

Given an equation or an inequality (with one variable), checking if some particular number is a solution is
just amatter of replacing the value of the variablewith the specified number anddetermining if the resulting
equation/inequality is true or false. This may involve some amount of arithmetic simplification.

Example 2.4.4 Is 8 a solution to x2 − 5x �
√

2x + 20?

To find out, substitute in 8 for x and see what happens.

x2 − 5x �
√

2x + 20

82 − 5(8) ?
�

√
2(8) + 20

64 − 5(8) ?
�
√

16 + 20

64 − 40 ?
� 4 + 20

24 ✓� 24
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So yes, 8 is a solution to x2 − 5x �
√

2x + 20.

Example 2.4.5 Is −5 a solution to
√

169 − y2 � y2 − 2y?

To find out, substitute in −5 for y and see what happens.√
169 − y2 � y2 − 2y√

169 − (−5)2 ?
� (−5)2 − 2(−5)

√
169 − 25 ?

� 25 − 2(−5)
√

144 ?
� 25 − (−10)

12 no
� 35

So no, −5 is not a solution to
√

169 − y2 � y2 − 2y.

But is −5 a solution to the inequality
√

169 − y2 ≤ y2 − 2y? Yes, because substituting −5 in for y would
give you

12 ≤ 35,

which is true.

Checkpoint 2.4.6. Is −3 a solution for x in the equation 2x− 3 � 5−(4+ x)? Evaluating the left and right
sides gives:

2x − 3 � 5 − (4 + x)
?
�

So −3 (□ is □ is not) a solution to 2x − 3 � 5 − (4 + x).

Explanation. We will substitute x with −3 in the equation and simplify each side of the equation to deter-
mine if the statement is true or false:

2x − 3 � 5 − (4 + x)

2(−3) − 3 ?
� 5 − (4 + (−3))

−6 − 3 ?
� 5 − (1)

−9 χ� 4

Since −9 � 4 is not true, −3 is not a solution for x in the equation 2x − 3 � 5 − (4 + x).

Checkpoint 2.4.7. Is 1
3 a solution for t in the equation 2t � 4

(
t − 1

2
)
? Evaluating the left and right sides

gives:

2t � 4
(
t − 1

2
)

?
�

So 1
3 (□ is □ is not) a solution to 2t � 4

(
t − 1

2
)
.
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Checkpoint 2.4.8. Is −2 a solution to y2 + y − 5 ≤ y − 1? Evaluating the left and right sides gives:

y2 + y − 5 ≤ y − 1
?
≤

So −3 (□ is □ is not) a solution to y2 + y − 5 ≤ y − 1.

Checkpoint 2.4.9. Is 2 a solution to z+3
z−1 �

√
18z? Evaluating the left and right sides gives:

z + 3
z − 1 �

√
18z

?
�

So 2 (□ is □ is not) a solution to z+3
z−1 �

√
18z.

Checkpoint 2.4.10. Is −3 a solution to x2 + x + 1 ≤ 3x+2
x+2 ? Evaluating the left and right sides gives:

x2 + x + 1 ≤ 3x + 2
x + 2

?
≤

So −3 (□ is □ is not) a solution to x2 + x + 1 ≤ 3x+2
x+2 .

A cylinder’s volume is related to its radius and its height by:

V � πr2h,

where V is the volume, r is the base’s radius, and h is the height. If we
know the volume is 96π cm3 and the radius is 4 cm, then we have:

96π � 16πh

Is 4 cm the height of the cylinder? In other words, is 4 a solution to
96π � 16πh? We will substitute h in the equation with 4 to check:

96π � 16πh

96π ?
� 16π · 4

96π no
� 64π

Since 96π � 64π is false, h � 4 does not satisfy the equation 96π �

16πh.
4 cm

96π cm3

Figure 2.4.12: A cylinder
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Example 2.4.11 Cylinder Volume. Next, we will try h � 6:

96π � 16πh

96π ?
� 16π · 6

96π ✓� 96π

When h � 6, the equation 96π � 16πh is true. This tells us that 6 is a solution to 96π � 16πh.

Remark 2.4.13. Note that we did not approximate π with 3.14 or any other approximation. We often leave
π as π throughout our calculations. If we need to round, we do so as a final step.

Example 2.4.14 Jaylen has budgeted a maximum of $300 for an appliance repair. The total cost of the
repair can be modeled by 89 + 110(h − 0.25), where $89 is the initial cost and $110 is the hourly labor
charge after the first quarter hour. Is 2 hours a solution for h in the inequality 89 + 110(h − 0.25) ≤ 300?

To determine if h � 2 satisfies the inequality, we will replace h with 2 and check if the statement is true:

89 + 110(h − 0.25) ≤ 300

89 + 110(2 − 0.25)
?
≤ 300

89 + 110(1.75)
?
≤ 300

89 + 192.5
?
≤ 300

281.5
✓
≤ 300

Thus, 2 hours is a solution for h in the inequality 89 + 110(h − 0.25) ≤ 300. In context, this means that
Jaylen would stay within their $300 budget if 2 hours of labor were performed.

Exercises

Review and Warmup

Evaluate −9 − x for x � −4.1. Evaluate 5 − x for x � −2.2.

Evaluate −2x + 7 for x � 1.3. Evaluate −10x − 5 for x � 3.4.

Evaluate −4(r + 2) for r � 4.5. Evaluate −10(t + 9) for t � −3.6.

Evaluate the expression 1
3
(
x + 4

)2 − 2 when
x � −7.

7. Evaluate the expression 1
4
(
x + 1

)2 − 7 when
x � −5.

8.

Evaluate the expression−16t2+64t+128when
t � −3.

9. Evaluate the expression−16t2+64t+128when
t � −5.

10.
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Identifying Linear Equations and Inequalities

Are the equations below linear equations in
one variable?

a.
√

9 − 5.5r � 7 (□ is □ is not) a linear
equation in one variable.

b. 2 − 3r2 � 18 (□ is □ is not) a linear
equation in one variable.

c. x − 6q2 � 27 (□ is □ is not) a linear
equation in one variable.

d. 2πr � 2π (□ is □ is not) a linear equa-
tion in one variable.

e. 8.59y � −9 (□ is □ is not) a linear
equation in one variable.

f. 12 − 3z � 4 (□ is □ is not) a linear
equation in one variable.

11. Are the equations below linear equations in
one variable?

a. −5 − 4y2 � −21 (□ is □ is not) a lin-
ear equation in one variable.

b.
√

1 − 4.7x � 2 (□ is □ is not) a linear
equation in one variable.

c. 9q − y2 � 1 (□ is □ is not) a linear
equation in one variable.

d. 2πr � 12π (□ is □ is not) a linear
equation in one variable.

e. −r − 11 � 3 (□ is □ is not) a linear
equation in one variable.

f. 6.6y � 6 (□ is □ is not) a linear equa-
tion in one variable.

12.

Are the equations below linear equations in
one variable?

a. 4.61q � 14 (□ is □ is not) a linear
equation in one variable.

b. 5qVx � −42 (□ is □ is not) a linear
equation in one variable.

c. V2+ y2 � −68 (□ is □ is not) a linear
equation in one variable.

d. πr2 � 48π (□ is □ is not) a linear
equation in one variable.

e. 7 − 2r � 17 (□ is □ is not) a linear
equation in one variable.

f. r
√

12 � −84 (□ is □ is not) a linear
equation in one variable.

13. Are the equations below linear equations in
one variable?

a. q
√

24 � 63 (□ is □ is not) a linear
equation in one variable.

b. πr2 � 35π (□ is □ is not) a linear
equation in one variable.

c. −2.96x � −22 (□ is □ is not) a linear
equation in one variable.

d. −8prz � 52 (□ is □ is not) a linear
equation in one variable.

e. 15x − 4 � 28 (□ is □ is not) a linear
equation in one variable.

f. q2 + y2 � 4 (□ is □ is not) a linear
equation in one variable.

14.

Are the inequalities below linear inequalities
in one variable?

a. 4p2− y > −51 (□ is □ is not) a linear
inequality in one variable.

b. −1 > 1 − 5p (□ is □ is not) a linear
inequality in one variable.

c. −3z2−7y2 < 1 (□ is □ is not) a linear
inequality in one variable.

15. Are the inequalities below linear inequalities
in one variable?

a. 3x2 + 6z2 > 1 (□ is □ is not) a linear
inequality in one variable.

b. 9V2+6p > 51 (□ is □ is not) a linear
inequality in one variable.

c. 4 ≥ −5 − 3y (□ is □ is not) a linear
inequality in one variable.

16.
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Are the inequalities below linear inequalities
in one variable?

a. −5.8x > 96 (□ is □ is not) a linear
inequality in one variable.

b. −1 > −4878r − 2301p (□ is □ is not)
a linear inequality in one variable.

c.
√

9p − 9 ≤ −6 (□ is □ is not) a linear
inequality in one variable.

17. Are the inequalities below linear inequalities
in one variable?

a. −6y < −43 (□ is □ is not) a linear
inequality in one variable.

b.
√

9r + 6 < −6 (□ is □ is not) a linear
inequality in one variable.

c. 198 ≤ 4182y−9693x (□ is □ is not) a
linear inequality in one variable.

18.

Checking a Solution for an Equation

Is−3 a solution for x in the equation x + 7 � 3?
(□ Yes □ No)

19. Is 2 a solution for x in the equation x + 9 � 7?
(□ Yes □ No)

20.

Is −9 a solution for r in the equation −3 − r �

5? (□ Yes □ No)
21. Is 6 a solution for r in the equation 5 − r � −1?

(□ Yes □ No)
22.

Is−1 a solution for r in the equation−7r − 8 �

−1? (□ Yes □ No)
23. Is −9 a solution for t in the equation 2t + 8 �

−10? (□ Yes □ No)
24.

Is 5 a solution for t in the equation −10t + 2 �

−9t − 3? (□ Yes □ No)
25. Is 2 a solution for x in the equation −2x − 4 �

−9x − 18? (□ Yes □ No)
26.

Is−9 a solution for x in the equation 9(x − 11) �
20x? (□ Yes □ No)

27. Is 3 a solution for y in the equation 2
(
y + 14

)
�

9y? (□ Yes □ No)
28.

Is−3 a solution for y in the equation−3
(
y − 13

)
�

16
(
y + 6

)
? (□ Yes □ No)

29. Is−10 a solution for r in the equation 19(r + 1) �
9(r − 9)? (□ Yes □ No)

30.

Is 7
10 a solution for x in the equation 10x − 1 �

−8? (□ Yes □ No)
31. Is 14

5 a solution for x in the equation 5x − 4 �

9? (□ Yes □ No)
32.

Is 4 a solution for t in the equation− 10
3 t − 3

10 �

− 17
15? (□ Yes □ No)

33. Is − 9
2 a solution for t in the equation 2

5 t − 9
10 �

− 27
10? (□ Yes □ No)

34.

105



Chapter 2 Variables, Expressions, and Equations

Checking a Solution for an Inequality Decide whether each value is a solution to the given inequality.

−2x + 9 > 7

a. x � −5 (□ is □ is not) a solution.

b. x � 6 (□ is □ is not) a solution.

c. x � 0 (□ is □ is not) a solution.

d. x � 1 (□ is □ is not) a solution.

35. 2x − 5 > 1

a. x � 3 (□ is □ is not) a solution.

b. x � 0 (□ is □ is not) a solution.

c. x � 13 (□ is □ is not) a solution.

d. x � 2 (□ is □ is not) a solution.

36.

3x − 8 ≥ −5

a. x � 0 (□ is □ is not) a solution.

b. x � 8 (□ is □ is not) a solution.

c. x � 1 (□ is □ is not) a solution.

d. x � −5 (□ is □ is not) a solution.

37. −3x + 19 ≥ 10

a. x � 2 (□ is □ is not) a solution.

b. x � 0 (□ is □ is not) a solution.

c. x � 3 (□ is □ is not) a solution.

d. x � 13 (□ is □ is not) a solution.

38.

4x − 16 ≤ 4

a. x � 0 (□ is □ is not) a solution.

b. x � 10 (□ is □ is not) a solution.

c. x � 5 (□ is □ is not) a solution.

d. x � 3 (□ is □ is not) a solution.

39. 4x − 10 ≤ −2

a. x � 1 (□ is □ is not) a solution.

b. x � 2 (□ is □ is not) a solution.

c. x � 12 (□ is □ is not) a solution.

d. x � 0 (□ is □ is not) a solution.

40.

Checking Solutions for Application Problems

A triangle’s area is 99 squaremeters. Its height
is 11 meters. Suppose we wanted to find how
long is the triangle’s base. A triangle’s area
formula is

A �
1
2 bh

where A stands for area, b for base and h for
height. If we let b be the triangle’s base, in me-
ters, we can solve this problemusing the equa-
tion:

99 �
1
2 (b)(11)

Check whether 36 is a solution for b of this
equation. (□ Yes □ No)

41. A triangle’s area is 95 squaremeters. Its height
is 10 meters. Suppose we wanted to find how
long is the triangle’s base. A triangle’s area
formula is

A �
1
2 bh

where A stands for area, b for base and h for
height. If we let b be the triangle’s base, in me-
ters, we can solve this problemusing the equa-
tion:

95 �
1
2 (b)(10)

Check whether 38 is a solution for b of this
equation. (□ Yes □ No)

42.
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When a plant was purchased, it was 2 inches
tall. It grows 1 inches per day. Howmanydays
later will the plant be 17 inches tall?

Assume the plant will be 17 inches tall d days
later. We can solve this problemusing the equa-
tion:

1d + 2 � 17

Check whether 17 is a solution for d of this
equation. (□ Yes □ No)

43. When a plantwas purchased, it was 1.2 inches
tall. It grows 0.2 inches per day. How many
days later will the plant be 5.2 inches tall?

Assume the plant will be 5.2 inches tall d days
later. We can solve this problemusing the equa-
tion:

0.2d + 1.2 � 5.2

Check whether 21 is a solution for d of this
equation. (□ Yes □ No)

44.

Awater tank has 163 gallons ofwater in it, and
it is being drained at the rate of 7 gallons per
minute. After how many minutes will there
be 37 gallons of water left?

Assume the tank will have 37 gallons of water
after m minutes. We can solve this problem
using the equation:

163 − 7m � 37

Check whether 19 is a solution for m of this
equation. (□ Yes □ No)

45. Awater tank has 171 gallons ofwater in it, and
it is being drained at the rate of 9 gallons per
minute. After how many minutes will there
be 45 gallons of water left?

Assume the tank will have 45 gallons of water
after m minutes. We can solve this problem
using the equation:

171 − 9m � 45

Check whether 17 is a solution for m of this
equation. (□ Yes □ No)

46.

A cylinder’s volume is 126π cubic centime-
ters. Its height is 14 centimeters. Suppose we
wanted to find how long is the cylinder’s ra-
dius. A cylinder’s volume formula is

V � πr2h

where V stands for volume, r for radius and
h for height. Let r represent the cylinder’s ra-
dius, in centimeters. We can solve this prob-
lem using the equation:

126π � πr2(14)

Checkwhether 3 is a solution for r of this equa-
tion. (□ Yes □ No)

47. A cylinder’s volume is 960π cubic centime-
ters. Its height is 15 centimeters. Suppose we
wanted to find how long is the cylinder’s ra-
dius. A cylinder’s volume formula is

V � πr2h

where V stands for volume, r for radius and
h for height. Let r represent the cylinder’s ra-
dius, in centimeters. We can solve this prob-
lem using the equation:

960π � πr2(15)

Check whether 64 is a solution for r of this
equation. (□ Yes □ No)

48.
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Acountry’s national debtwas 140million dol-
lars in 2010. The debt increased at 50 million
dollars per year. If this trend continues, when
will the country’s national debt increase to 640
million dollars?

Assume the country’s national debt will be-
come 640 million dollars y years after 2010.
We can solve this problem using the equation:

50y + 140 � 640

Check whether 10 is a solution for y of this
equation. (□ Yes □ No)

49. Acountry’s national debtwas 100million dol-
lars in 2010. The debt increased at 60 million
dollars per year. If this trend continues, when
will the country’s national debt increase to 1180
million dollars?

Assume the country’s national debt will be-
come 1180 million dollars y years after 2010.
We can solve this problem using the equation:

60y + 100 � 1180

Check whether 20 is a solution for y of this
equation. (□ Yes □ No)

50.

A school district has a reserve fundworth 41.1
million dollars. It plans to spend 2.9 million
dollars per year. After how many years, will
there be 15 million dollars left?

Assume there will be 15 million dollars left af-
ter y years. We can solve this problem using
the equation:

41.1 − 2.9y � 15

Check whether 11 is a solution for y of this
equation. (□ Yes □ No)

51. A school district has a reserve fund worth 32
million dollars. It plans to spend 3million dol-
lars per year. After howmany years, will there
be 11 million dollars left?

Assume there will be 11 million dollars left af-
ter y years. We can solve this problem using
the equation:

32 − 3y � 11

Checkwhether 8 is a solution for y of this equa-
tion. (□ Yes □ No)

52.

A rectangular frame’s perimeter is 6 feet. If
its length is 2 feet, suppose we want to find
how long is its width. A rectangle’s perimeter
formula is

P � 2(l + w)

where P stands for perimeter, l for length and
w for width. We can solve this problem using
the equation:

6 � 2(2 + w)

Checkwhether 4 is a solution for w of this equa-
tion. (□ Yes □ No)

53. A rectangular frame’s perimeter is 7 feet. If
its length is 2.1 feet, suppose we want to find
how long is its width. A rectangle’s perimeter
formula is

P � 2(l + w)

where P stands for perimeter, l for length and
w for width. We can solve this problem using
the equation:

7 � 2(2.1 + w)

Check whether 1.4 is a solution for w of this
equation. (□ Yes □ No)

54.
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2.5 Solving One-Step Equations

We have learned how to check whether a specific number is a solution to an equation or inequality. In this
section, we will begin learning how to find the solution(s) to basic equations ourselves.

2.5.1 Imagine Filling in the Blanks

Let’s start with a very simple situation — so simple, that you might have success entirely in your head
without writing much down. It’s not exactly the algebra we want you to learn, but the example may serve
as a good warm-up.

Example 2.5.2 A number plus 2 is 6. What is that number?

You may be so familiar with basic arithmetic that you know the answer already. The algebra approach
would be to start by translating “A number plus 2 is 6” into amath statement— in this case, an equation:

x + 2 � 6

where x is the number we are trying to find. In other words, what should be substituted in for x…

x + 2 � 6

… to make the equation true?

Now, how do you determine what x is? One valid option is to just imagine what number you could put
in place of x that would result in a true equation. Would 0 work? No, that wouldmean 0+2 no

� 6. Would
17 work? No, that would mean 17 + 2 no

� 6. Would 4 work? Yes, because 4 + 2 � 6 is a true equation.

So one solution to x + 2 � 6 is 4. No other numbers are going to be solutions, because when you add 2
to something smaller or larger than 4, the result is going to be smaller or larger than 6.

This approach might work for you to solve very basic equations, but in general equations are going to be too
complicated to solve in your head this way. So we move on to more systematic approaches.

2.5.2 The Basic Principle of Algebra

2.5.2.1 Opposite Operations

Let’s revisit Example 2.5.2, thinking it through differently.

Example 2.5.3 If a number plus 2 is 6, what is the number?

One way to solve this riddle is to use the opposite operation. If a number plus 2 is 6, we should be able
to subtract 2 from 6 and get that unknown number. So the unknown number is 6 − 2 � 4.

Let’s try this strategy with another riddle.

Example 2.5.4 If a number minus 2 is 6, what is the number? This time, we should be able to add 2 to 6
to get the unknown number. So the unknown number is 6 + 2 � 8.

Does this strategy work with multiplication and division?
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Example 2.5.5 If a number times 2 is 6, what is the number? This time, we should be able to divide 6 by
2 to get the unknown number. So the unknown number is 6 ÷ 2 � 3.

Example 2.5.6 If a number divided by 2 equals 6, what is the number? This time, we can multiply 6 by
2, and the unknown number is 6 · 2 � 12.

These examples explore an important principle for solving an equation — applying an opposite arithmetic
operation.

2.5.2.2 Balancing Equations Like a Scale

We can revisit Example 2.5.2 with yet another strategy. If a number plus 2 is 6, what is the number? As is
common in algebra, we can use x to represent the unknown number. The question translates into the math
equation

x + 2 � 6.

Try to envision the equals sign as the middle of a balanced scale. The left side has 2 one-pound objects and
a block with unknown weight x lb. Together, the weight on the left is x + 2. The right side has 6 one-pound
objects. Figure 2.5.7 shows the scale.

x lb

1 lb

1 lb

1 lb

1 lb

1 lb

1 lb

1 lb

1 lb

x lb 1 lb

1 lb

1 lb

1 lb

Figure 2.5.7: Scale to represent x + 2 � 6 Figure 2.5.8: Scale to represent the solution to
x + 2 � 6, after taking away 2 from each side

To find the weight of the unknown block, we can take away 2 one-pound blocks from both sides of the scale
(to keep the scale balanced). Figure 2.5.8 shows the solution.

An equation is like a balanced scale, as the two sides of the equation are equal. In the same way that we
can take away 2 lb from both sides of a balanced scale, we can subtract 2 on both sides of the equals sign. So
instead of two pictures of balance scales, we can use algebra symbols and solve the equation x +2 � 6 in the
following manner:

x + 2 � 6 a balanced scale
x + 2 − 2 � 6 − 2 remove the same quantity from each side

x � 4 still balanced; now it tells you the solution
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It’s important to note that each line shows what is called an equivalent equation. In other words, each
equation shown is algebraically equivalent to the one above it and the one below it and will have exactly
the same solution(s). The final equivalent equation x � 4 tells us that the solution to the equation is 4. The
solution set to this equation is the set that lists every solution to the equation. For this example, the solution
set is {4}.
We have learned we can add or subtract the same number on both sides of the equals sign, just like we
can add or remove the same amount of weight on a balanced scale. Can we multiply and divide the same
number on both sides of the equals sign?

Let’s look at Example 2.5.5 again: If a number times 2 is 6, what is the number? Another balance scale can
help visualize this.

x lb

x lb

1 lb

1 lb

1 lb

1 lb

1 lb

1 lb

x lb 1 lb

1 lb

1 lb

Figure 2.5.9: Scale to represent the equation
2x � 6

Figure 2.5.10: Scale to represent the equation the
solution to 2x � 6, after cutting each side in half

Currently, the scale is balanced. If we cut the weight in half on both sides, the scale should still be balanced.

We can see from the scale that x � 3 is correct. Removing half of the weight on both sides of the scale is like
dividing both sides of an equation by 2:

2x � 6
2x
2 �

6
2

x � 3

The equivalent equation in this example is x � 3, which tells us that the solution to the equation is 3 and
the solution set is {3}.

Remark 2.5.11. Note that when we divide each side of an equation by a number, we use the fraction line in
place of the division symbol. The fact that 6

2 � 6÷ 2 is a reminder that the fraction line and division symbol
have the same purpose. The division symbol is rarely used in later math courses.

Similarly, we could multiply both sides of an equation by 2, just like we can keep a scale balanced if we
double the weight on each side. We will summarize these properties.

Fact 2.5.12 Properties of Equivalent Equations. If there is an equation A � B, we can do the following to obtain
an equivalent equation:

• add the same number to each side: A + c � B + c
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• subtract the same number from each side: A − c � B − c

• multiply each side of the equation by the same non-zero number: A · c � B · c
• divide each side of the equation by the same non-zero number: A

c �
B
c

With practice, you will learn when it is helpful to use each of these properties.

2.5.3 Solving One-Step Equations and Stating Solution Sets

Notice that when we solved equations in Subsection 2.5.2.2, the final equation looked like x � number,
where the variable x is separated from other numbers and stands alone on one side of the equals sign. The
goal of solving any equation is to isolate the variable in this same manner.

Putting together both strategies (applying the opposite operation and balancing equations like a scale) that
we just explored, we will summarize how to solve a one-step linear equation.

Process 2.5.13 Steps to Solving Simple (One-Step) Linear Equations.

Apply Apply the opposite operation to both sides of the equation. If a number was added to the variable, subtract that
number, and vice versa. If a number was multiplied by the variable, divide by that number, and vice versa.

Check Check the solution. This means, verify that what you think is the solution actually solves the equation. For
one reason, it’s human to have made a simple arithmetic mistake, and by checking you will protect yourself from
this. For another reason, there are situations where solving an equation will tell you that certain numbers are
possible solutions, but they do not actually solve the original equation. Checking solutions will catch these
situations.

Summarize State the solution set, or in the case of application problems, summarize the result using a complete
sentence and appropriate units.

Let’s look at a few examples.

Example 2.5.14 Solve for y in the equation 7 + y � 3.

Explanation.

To isolate y, we need to remove 7 from the left
side. Since 7 is being added to y, we need to sub-
tract 7 from each side of the equation.

7 + y � 3
7 + y − 7 � 3 − 7

y � −4

We should always check the solution when we
solve equations. For this problem, we will sub-
stitute y in the original equation with −4:

7 + y � 3

7 + (−4) ?
� 3

3 ✓� 3

The solution −4 is checked, so the solution set is
{−4}.

Checkpoint 2.5.15. Solve for z in the equation −7.3 + z � 5.1.

The solution is .

The solution set is .
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Explanation. To remove the −7.3 from the left side, we need to add 7.3 to each side of the equation. (If
we make the mistake of subtracting 7.3 from each side, we would have −7.3 + z − 7.3 � 5.1 − 7.3, which
simplifies to z − 14.3 � −2.2, which would not isolate z.)

−7.3 + z � 5.1
−7.3 + z + 7.3 � 5.1 + 7.3

z � 12.4

We will check the solution by substituting z in the original equation with 12.4:

−7.3 + z � 5.1

−7.3 + (12.4) ?
� 5.1

5.1 ✓� 5.1

The solution 12.4 is checked and the solution set is {12.4}.

Checkpoint 2.5.16. Solve for a in the equation 10 � −2a.

The solution is .

The solution set is .

Explanation. To isolate the variable a, we need to divide each side by −2 (because a is being multiplied by
−2). One common mistake is to add 2 to each side. This would not isolate a, but would instead leave us
with the expression −2a + 2 on the right-hand side.

10 � −2a
10
−2 �

−2a
−2

−5 � a

We will check the solution by substituting a in the original equation with −5:

10 � −2a

10 ?
� −2(−5)

10 ✓� 10

The solution −5 is checked and the solution set is {−5}.

Note that in solving the equation in Checkpoint 2.5.16 we found that −5 � a, which is equivalent to
a � −5. We did not write a � −5 as an extra step though, as −5 � a identified the solution.

Example 2.5.17 The formula for a circle’s circumference is C � πd, where C stands for circumference,
d stands for diameter, and π is a constant with the value of 3.1415926 . . .. If a circle’s circumference is
12π ft, find this circle’s diameter and radius.

Explanation. The circumference is given as 12π feet. Approximating π with 3.14, this means the cir-
cumference is approximately 37.68 ft. It is nice to have a rough understanding of how long the circum-
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ference is, but if we use 3.14 instead of π, we are using a slightly smaller number than π, and the result
of any calculations we do would not be as accurate. This is why we will use the symbol π throughout
solving this equation and round only at the end in the conclusion summary (if necessary).

We will substitute C in the formula with 12π and solve for d:

C � πd
12π � πd
12π
π

�
πd
π

12 � d

So the circle’s diameter is 12 ft. And since radius is half of diameter, the radius is 6 ft.

Example 2.5.18 Solve for b in −b � 2.

Explanation. Note that b is not yet isolated as there is a negative sign in front of it. One way to solve
for b is to recognize that multiplying on both sides by −1 would clear away that negative sign:

−b � 2
−1 · (−b) � −1 · (2)

b � −2

We removed the negative sign from −b using the fact that −1 · (−b) � b. A second way to remove the
negative sign −1 from −b is to divide both sides by −1. If you view the original −b as −1 · b, then this
approach resembles the solution from Checkpoint 2.5.16.

−b � 2
−1 · b � 2
−1 · b
−1 �

2
−1

b � −2

A third way to remove the original negative sign, is to recognize that the opposite operation of negation
is negation. So negating both sides will work out too:

−b � 2
−(−b) � −2

b � −2

We will check the solution by substituting b in the original equation with −2:

−b � 2

−(−2) ?
� 2
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2 ✓� 2

The solution −2 is checked and the solution set is {−2}.

2.5.4 Solving One-Step Equations Involving Fractions

When equations have fractions, solving them will make use of the same principles. You may need to use
fraction arithmetic, and there may be special considerations that will make the calculations easier. So we
have separated the following examples.

Example 2.5.19 Solve for 1 in 2
3 + 1 � 1

2 .

Explanation.

In Section 3.3, we will learn a skill to avoid frac-
tion operations entirely in equations like this one.
For now, let’s solve the equation by using sub-
traction to isolate 1:

2
3 + 1 �

1
2

2
3 + 1 − 2

3 �
1
2 −

2
3

1 �
3
6 −

4
6

1 � −1
6

We will check the solution by substituting 1 in
the original equation with − 1

6 :

2
3 + 1 �

1
2

2
3 +

(
−1

6

)
?
�

1
2

4
6 +

(
−1

6

)
?
�

1
2

3
6

?
�

1
2

1
2
✓
�

1
2

The solution − 1
6 is checked and the solution set

is
{
− 1

6
}
.

Checkpoint 2.5.20. Solve for q in the equation q − 3
7 �

3
2 .

The solution is .

The solution set is .

Explanation. To remove the 3
7 from the left side, we need to add 3

7 to each side of the equation.

q − 3
7 �

3
2

q − 3
7 +

3
7 �

3
2 +

3
7

q �
27
14
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We will check the solution by substituting q in the original equation with 27
14 :

q − 3
7 �

3
2

27
14 −

3
7

?
�

3
2

27
14 −

6
14

?
�

3
2

21
14

?
�

3
2

3
2
✓
�

3
2

The solution 27
14 is checked and the solution set is

{ 27
14

}
.

Example 2.5.21 Solve for c in c
5 � 4.

Explanation.

Note that the fraction line here implies division,
so our variable c is being divided by 5. The op-
posite operation is to multiply by 5:

c
5 � 4

5 · c
5 � 5 · 4

c � 20

We will check the solution by substituting c in
the original equation with 20:

c
5 � 4

20
5

?
� 4

4 ✓� 4

The solution 20 is checked and the solution set is
{20}.

Example 2.5.22 Solve for d in − 1
3 d � 6.

Explanation. It’s true that in this example, the variable d is multiplied by − 1
3 . This means that dividing

each side by − 1
3 would be a valid strategy for solving this equation. However, dividing by a fraction

could lead to human error, so consider this alternative strategy.

Another way to be rid of the − 1
3 is to multiply by −3. Indeed, − 1

3 d is the same as d
−3 , and when we view

the expression this way, d is being divided by −3. So multiplying by −3 would be the opposite operation.

−1
3 d � 6

(−3) ·
(
−1

3 d
)
� (−3) · 6

d � −18

116



2.5 Solving One-Step Equations

If you choose to divide each side by − 1
3 , that will work out as well:

−1
3 d � 6

− 1
3 d

− 1
3

�
6
− 1

3

d �
6
1 ·
−3
1

d � −18

This gives the same solution.

We will check the solution by substituting d in the original equation with −18:

−1
3 d � 6

−1
3 · (−18) ?

� 6

6 ✓� 6

The solution −18 is checked and the solution set is {−18}.

Example 2.5.23 Solve for x in 3x
4 � 10.

Explanation. The variable x appears to have two operations that apply to it: first multiplication by 3,
and then division by 4. But note that

3x
4 �

3
4 ·

x
1 �

3
4 x.

If we view the left side this way, we can get away
with solving the equation in one step, by multi-
plying on each side by the reciprocal of 3

4 .

3x
4 � 10

3
4 x � 10

4
3 ·

3
4 x �

4
3 · 10

x �
4
3 ·

10
1

x �
40
3

We will check the solution by substituting x in
the original equation with 40

3 :

3x
4 � 10

3
( 40

3
)

4
?
� 10

40
4

?
� 10

10 ✓� 10

The solution 40
3 is checked and the solution set is{ 40

3
}
.

Checkpoint 2.5.24. Solve for H in the equation −7H
12 �

2
3 .

The solution is .

The solution set is .
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Explanation. The left side is effectively the same things as − 7
12 H, so multiplying by − 12

7 will isolate H.

−7H
12 �

2
3

− 7
12 H �

2
3(

−12
7

)
·
(
− 7

12 H
)
�

(
−12

7

)
· 23

H � −4
7 ·

2
1

H � −8
7

We will check the solution by substituting H in the original equation with − 8
7 :

−7H
12 �

2
3

−7
(
− 8

7
)

12
?
�

2
3

8
12

?
�

2
3

2
3
✓
�

2
3

The solution − 8
7 is checked and the solution set is

{
− 8

7
}
.

Exercises

Review and Warmup

Add the following.

a. −8 + (−1) �

b. −7 + (−7) �

c. −2 + (−9) �

1. Add the following.

a. −8 + (−2) �

b. −5 + (−3) �

c. −2 + (−7) �

2. Add the following.

a. 5 + (−9) �

b. 5 + (−2) �

c. 7 + (−7) �

3. Add the following.

a. 1 + (−6) �

b. 7 + (−3) �

c. 6 + (−6) �

4.

Add the following.

a. −8 + 1 �

b. −4 + 10 �

c. −5 + 5 �

5. Add the following.

a. −10 + 2 �

b. −1 + 6 �

c. −5 + 5 �

6. Evaluate the follow-
ing.

a. −63
−7 �

b. 30
−5 �

c. −35
7 �

7. Evaluate the follow-
ing.

a. −36
−6 �

b. 28
−7 �

c. −63
7 �

8.
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Do the followingmul-
tiplications:

a. 15 · 45 �

b. 20 · 45 �

c. 25 · 45 �

9. Do the followingmul-
tiplications:

a. 36 · 49 �

b. 45 · 49 �

c. 54 · 49 �

10. Evaluate the follow-
ing.

a. −3
−1 �

b. 7
−1 �

c. 130
−130 �

d. −16
−16 �

e. 11
0 �

f. 0
−7 �

11. Evaluate the follow-
ing.

a. −2
−1 �

b. 4
−1 �

c. 180
−180 �

d. −19
−19 �

e. 11
0 �

f. 0
−3 �

12.

Solving One-Step Equations with Addition/Subtraction Solve the equation.

x + 7 � 1013. x + 5 � 1214. y + 1 � −915. y + 8 � 116.

5 � y + 817. −2 � r + 618. −9 � r − 719. −14 � t − 920.

t + 78 � 021. x + 50 � 022. x − 3 � 223. y − 10 � −224.

−16 � y − 725. −9 � y − 426. r − (−5) � 727. r − (−7) � 1028.

−1 � t − (−5)29. −8 � t − (−1)30. 3 + x � −431. 1 + x � −932.

3 � −3 + y33. 4 � −6 + y34. y +
3
4 �

3
435. r +

7
10 �

9
1036.

−2
7 + r � − 5

1437. −8
3 + t � −5

638. 2
7 + q � −1

839. 6
5 + x � −1

440.

Solving One-Step Equations with Multiplication/Division Solve the equation.

2x � 2241. 8y � 5642. 40 � −8y43. 33 � −3y44.

0 � 13B45. 0 � −22C46. 1
10 n � 547. 1

7 q � 848.
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4
13 x � 849. 7

12 r � 2850. 5
2 t � 451. 5

3 b � 252.

9
8 � − c

1053. 3
2 � −B

654. 3C � −855. 9n � −256.

−35 � −30p57. −25 � −10x58. − r
18 �

4
959. − t

30 �
8
560.

− b
8 � −3

261. − c
24 � −7

862. −3
5 �

3B
1063. −7

2 �
7C
964.

x
72 �

5
965. x

50 �
3
1066. 9

2 �
x
1867. 2

3 �
x
2168.

Comparisons Solve the equation.

a. 4y � 32

b. 4 + r � 32

69. a. 8y � 16

b. 8 + t � 16

70. a. 28 � −7y

b. 28 � −7 + r

71. a. 18 � −3r

b. 18 � −3 + x

72.

a. −r � 5

b. −t � −5

73. a. −t � 13

b. −r � −13

74. a. −1
2 p � 7

b. −1
2 r � −7

75. a. −1
6 x � 5

b. −1
6 n � −5

76.

a. 36 � −9
2 y

b. −36 � −9
2A

77. a. 16 � −4
9 t

b. −16 � −4
9 r

78. a. 8y � 32

b. 12t � 68

79. a. 4y � 16

b. 21x � 51

80.

a. 30 � −6r

b. 64 � −12x

81. a. 40 � −10r

b. 80 � −35t

82.

Geometry Application Problems

A circle’s circumference is 18π mm.

a. This circle’s diameter is .

b. This circle’s radius is .

83. A circle’s circumference is 20π mm.

a. This circle’s diameter is .

b. This circle’s radius is .

84.
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A circle’s circumference is 30 cm. Find the fol-
lowing values. Round your answer to at least
2 decimal places.

a. This circle’s diameter is .

b. This circle’s radius is .

85. A circle’s circumference is 32 cm. Find the fol-
lowing values. Round your answer to at least
2 decimal places.

a. This circle’s diameter is .

b. This circle’s radius is .

86.

A circle’s circumference is 8π mm.

a. This circle’s diameter is .

b. This circle’s radius is .

87. A circle’s circumference is 10π mm.

a. This circle’s diameter is .

b. This circle’s radius is .

88.

A circle’s circumference is 39 cm. Find the fol-
lowing values. Round your answer to at least
2 decimal places.

a. This circle’s diameter is .

b. This circle’s radius is .

89. A circle’s circumference is 42 cm. Find the fol-
lowing values. Round your answer to at least
2 decimal places.

a. This circle’s diameter is .

b. This circle’s radius is .

90.

A cylinder’s base’s radius is 7 m, and its vol-
ume is 392π m3.

This cylinder’s height is .

91. A cylinder’s base’s radius is 4 m, and its vol-
ume is 144π m3.

This cylinder’s height is .

92.

A rectangle’s area is 570 mm2. Its height is
19 mm.

Its base is .

93. A rectangle’s area is 300 mm2. Its height is
15 mm.

Its base is .

94.

A rectangular prism’s volume is 3822 ft3. The
prism’s base is a rectangle. The rectangle’s length
is 21 ft and the rectangle’s width is 13 ft.

This prism’s height is .

95. Arectangular prism’s volume is 10450 ft3. The
prism’s base is a rectangle. The rectangle’s length
is 22 ft and the rectangle’s width is 19 ft.

This prism’s height is .

96.

A triangle’s area is 187.5 m2. Its base is 25 m.

Its height is .

97. A triangle’s area is 162.5 m2. Its base is 25 m.

Its height is .

98.
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Challenge

Write a linear equation whose solution is x � 5. You may not write an equation whose left side is
just “x” or whose right side is just “x.”

There are infinitely many correct answers to this problem. Be creative. After finding an equation that
works, see if you can come up with a different one that also works.

99.

Fill in the blanks with the numbers 38 and 77 (using each number only once) to create an equation
where x has the greatest possible value.

a. + x �

b. � · x

100.

122



2.6 Solving One-Step Inequalities

2.6 Solving One-Step Inequalities

We have learned how to check whether a specific number is a solution to an equation or inequality. In this
section, we will begin learning how to find the solution(s) to basic inequalities ourselves.

With one small complication, we can use very similar properties to Fact 2.5.12 when we solve inequalities
(as opposed to equations).

Here are some numerical examples.

Add to both sides If 2 < 4, then 2 + 1
✓
< 4 + 1.

Subtract from both sides If 2 < 4, then 2 − 1
✓
< 4 − 1.

Multiply on both sides by a positive number If 2 < 4, then 3 · 2 ✓< 3 · 4.

Divide on both sides by a positive number If 2 < 4, then 2
2
✓
< 4

2 .

However, something interesting happens when we multiply or divide by the same negative number on both
sides of an inequality: the direction reverses! To understand why, consider Figure 2.6.2, where the numbers
2 and 4 are multiplied by the negative number −1.

−4 −3 −2 −1 1 2 3 4
multiply by -1

multiply by -1

2 < 4−2 > −4
0 x

Figure 2.6.2: Multiplying two numbers by a negative number, and how their relationship changes

So even though 2 < 4, if we multiply both sides by −1, we have −2
no
< −4. (The true inequality is −2 > −4.)

In general, we must apply the following property when solving an inequality.

Fact 2.6.3 Changing theDirection of the Inequality Sign. When we multiply or divide each side of an inequality
by the same negative number, the inequality sign must change direction. Do not change the inequality sign when
multiplying/dividing by a positive number, or when adding/subtracting by any number.

Example 2.6.4 Solve the inequality −2x ≥ 12. State the solution set graphically, using interval notation,
and using set-builder notation. (Interval notation and set-builder notation are discussed in Section 1.6.

Explanation. To solve this inequality, we will divide each side by −2:

−2x ≥ 12
−2x
−2 ≤

12
−2 Note the change in direction.

x ≤ −6

Note that the inequality sign changed direction at the step where we divided each side of the inequality
by a negative number.

When we solve a linear equation, there is usually exactly one solution. When we solve a linear inequality,
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there are usually infinitely many solutions. For this example, any number smaller than −6 or equal to
−6 is a solution.

There are at least three ways to represent the solution set for the solution to an inequality: graphically,
with set-builder notation, and with interval notation. Graphically, we represent the solution set as:

−10 −8 −6 −4 −2 2 4 6 8 100 x

Using interval notation, we write the solution set as (−∞,−6]. Using set-builder notation, we write the
solution set as {x | x ≤ −6}.
As with equations, we should check solutions to catch both human mistakes as well as for possible
extraneous solutions (numbers which were possible solutions according to algebra, but which actually
do not solve the inequality).

Since there are infinitely many solutions, it’s impossible to literally check them all. We found that all
values of x for which x ≤ −6 are solutions. One approach is to check that −6 satisfies the inequality, and
also that one number less than −6 (any number, your choice) is a solution.

−2x ≥ 12 −2x ≥ 12

−2(−6)
?
≥ 12 −2(−7)

?
≥ 12

12
✓
≥ 12 14

✓
≥ 12

Thus both −6 and −7 are solutions. It’s important to note this doesn’t directly verify that all solutions
to this inequality check. But it is evidence that our solution is correct, and it’s valuable in that making
these two checks would likely help us catch an error if we had made one. Consult your instructor to see
if you’re expected to check your answer in this manner.

Example 2.6.5 Solve the inequality t + 7 < 5. State the solution set graphically, using interval notation,
and using set-builder notation.

Explanation. To solve this inequality, we will subtract 7 from each side. There is not much difference
between this process and solving the equation t + 7 � 5, because we are not going to multiply or divide
by negative numbers.

t + 7 < 5
t + 7 − 7 < 5 − 7

t < −2

Note again that the direction of the inequality did not change, since we did not multiply or divide each
side of the inequality by a negative number at any point.

Graphically, we represent this solution set as:

−8 −6 −4 −2 2 4 6 80 t

124



2.6 Solving One-Step Inequalities

Using interval notation, we write the solution set as (−∞,−2). Using set-builder notation, we write the
solution set as {t | t < −2}.
We should check that −2 is not a solution, but that some number less than −2 is a solution.

t + 7 < 5 t + 7 < 5

−2 + 7
?
< 5 −10 + 7

?
< 5

5
no
< 5 −3

✓
< 5

So our solution is reasonably checked.

Checkpoint 2.6.6. Solve the inequality x − 5 > −4. State the solution set using interval notation and
using set-builder notation.

In interval notation, the solution set is .

In set-builder notation, the solution set is .

Explanation. To solve this inequality, we will add 5 to each side.

x − 5 > −4
x − 5 + 5 > −4 + 5

x > 1

Note again that the direction of the inequality did not change, since we did not multiply or divide each side
of the inequality by a negative number at any point.

Graphically, we represent this solution set as:

Using interval notation, wewrite the solution set as (1,∞). Using set-builder notation, we write the solution
set as {x | x > 1}.
We should check that 1 is not a solution, but that some number greater than 1 is a solution.

x − 5 > −4 x − 5 > −4

1 − 5
?
< −4 10 − 5

?
< −4

−4
no
< −4 5

✓
< −4

So our solution is reasonably checked.

Checkpoint 2.6.7. Solve the inequality − 1
2 z ≥ −1.74. State the solution set using interval notation and

using set-builder notation.

In interval notation, the solution set is .

In set-builder notation, the solution set is .
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Explanation. To solve this inequality, we will multiply by −2 to each side.

−1
2 z ≥ −1.74

(−2)
(
−1

2 z
)
≤(−2)(−1.74)

z ≤ 3.48

In this exercise, we did multiply by a negative number and so the direction of the inequality sign changed.

Graphically, we represent this solution set as:

Using interval notation, we write the solution set as (−∞, 3.48]. Using set-builder notation, we write the
solution set as {z | z ≤ 3.48}.
We should check that 3.48 is a solution, and also that some number less than 3.48 is a solution.

−1
2 z ≥ −1.74 −1

2 z ≥ −1.74

−1
2 (3.48)

?
≥ −1.74 −1

2 (0)
?
≥ −1.74

−1.74
✓
≥ −1.74 0

✓
≥ −1.74

So our solution is reasonably checked.

Exercises

Review and Warmup

Add the following.

a. −10 + (−2) �

b. −5 + (−3) �

c. −3 + (−10) �

1. Add the following.

a. −10 + (−3) �

b. −7 + (−4) �

c. −3 + (−8) �

2. Add the following.

a. 2 + (−7) �

b. 8 + (−3) �

c. 3 + (−3) �

3.

Add the following.

a. 2 + (−8) �

b. 10 + (−4) �

c. 3 + (−3) �

4. Add the following.

a. −10 + 3 �

b. −1 + 7 �

c. −8 + 8 �

5. Add the following.

a. −7 + 3 �

b. −2 + 9 �

c. −8 + 8 �

6.
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Evaluate the following.

a. −20
−4 �

b. 28
−7 �

c. −12
6 �

7. Evaluate the following.

a. −6
−3 �

b. 50
−5 �

c. −42
6 �

8. Do the following multipli-
cations:

a. 16 · 58 �

b. 24 · 58 �

c. 32 · 58 �

9.

Do the following multipli-
cations:

a. 15 · 25 �

b. 20 · 25 �

c. 25 · 25 �

10. Evaluate the following.

a. −9
−1 �

b. 10
−1 �

c. 190
−190 �

d. −19
−19 �

e. 5
0 �

f. 0
−10 �

11. Evaluate the following.

a. −8
−1 �

b. 8
−1 �

c. 130
−130 �

d. −11
−11 �

e. 5
0 �

f. 0
−5 �

12.

Solving One-Step Inequalities using Addition/Subtraction Solve this inequality.

x + 2 > 7

In set-builder notation, the solution set is .

In interval notation, the solution set is .

13. x + 3 > 10

In set-builder notation, the solution set is .

In interval notation, the solution set is .

14.

x − 3 ≤ 8

In set-builder notation, the solution set is .

In interval notation, the solution set is .

15. x − 4 ≤ 7

In set-builder notation, the solution set is .

In interval notation, the solution set is .

16.

4 ≤ x + 10

In set-builder notation, the solution set is .

In interval notation, the solution set is .

17. 5 ≤ x + 8

In set-builder notation, the solution set is .

In interval notation, the solution set is .

18.
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1 > x − 7

In set-builder notation, the solution set is .

In interval notation, the solution set is .

19. 1 > x − 10

In set-builder notation, the solution set is .

In interval notation, the solution set is .

20.

Solving One-Step Inequalities using Multiplication/Division Solve this inequality.

2x ≤ 6

In set-builder notation, the solution set is .

In interval notation, the solution set is .

21. 3x ≤ 6

In set-builder notation, the solution set is .

In interval notation, the solution set is .

22.

9x > 5

In set-builder notation, the solution set is .

In interval notation, the solution set is .

23. 1x > 6

In set-builder notation, the solution set is .

In interval notation, the solution set is .

24.

−4x ≥ 8

In set-builder notation, the solution set is .

In interval notation, the solution set is .

25. −5x ≥ 20

In set-builder notation, the solution set is .

In interval notation, the solution set is .

26.

15 ≥ −5x

In set-builder notation, the solution set is .

In interval notation, the solution set is .

27. 4 ≥ −2x

In set-builder notation, the solution set is .

In interval notation, the solution set is .

28.

3 < −x

In set-builder notation, the solution set is .

In interval notation, the solution set is .

29. 4 < −x

In set-builder notation, the solution set is .

In interval notation, the solution set is .

30.

−x ≤ 5

In set-builder notation, the solution set is .

In interval notation, the solution set is .

31. −x ≤ 6

In set-builder notation, the solution set is .

In interval notation, the solution set is .

32.

128



2.6 Solving One-Step Inequalities

6
5 x > 6

In set-builder notation, the solution set is .

In interval notation, the solution set is .

33. 7
10 x > 14

In set-builder notation, the solution set is .

In interval notation, the solution set is .

34.

−8
7 x ≤ 32

In set-builder notation, the solution set is .

In interval notation, the solution set is .

35. −9
4 x ≤ 18

In set-builder notation, the solution set is .

In interval notation, the solution set is .

36.

−3 < 1
10 x

In set-builder notation, the solution set is .

In interval notation, the solution set is .

37. −2 < 2
7 x

In set-builder notation, the solution set is .

In interval notation, the solution set is .

38.

−9 < −3
4 x

In set-builder notation, the solution set is .

In interval notation, the solution set is .

39. −8 < −4
9 x

In set-builder notation, the solution set is .

In interval notation, the solution set is .

40.

3x > −9

In set-builder notation, the solution set is .

In interval notation, the solution set is .

41. 4x > −8

In set-builder notation, the solution set is .

In interval notation, the solution set is .

42.

−16 < −4x

In set-builder notation, the solution set is .

In interval notation, the solution set is .

43. −15 < −5x

In set-builder notation, the solution set is .

In interval notation, the solution set is .

44.

3
10 ≥

x
20

In set-builder notation, the solution set is .

In interval notation, the solution set is .

45. 9
2 ≥

x
8

In set-builder notation, the solution set is .

In interval notation, the solution set is .

46.
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− z
12 < −

5
2

In set-builder notation, the solution set is .

In interval notation, the solution set is .

47. − z
12 < −

3
4

In set-builder notation, the solution set is .

In interval notation, the solution set is .

48.

Challenge

Choose the correct inequality or equal sign to make the relation true.

a. Let x and y be integers, such that x < y.

Then x − y (□ < □ > □ =) y − x.

b. Let x and y be integers, such that 1 < x < y.

Then x y (□ < □ > □ =) x + y.

c. Let x and y be rational numbers, such that 0 < x < y < 1.

Then x y (□ < □ > □ =) x + y.

d. Let x and y be integers, such that x < y.

Then x + 2y (□ < □ > □ =) 2x + y.

49.

130



2.7 Percentages

2.7 Percentages

Percent-related problems arise in everyday life. This section reviews some basic calculations that can be
made with percentages.

In many situations when translating from English to math, the word “of” translates as multiplication. Also
the word “is” (and many similar words related to “to be”) translates to an equals sign. For example:

One third of thirty is ten.
1
3 · 30 � 10

Here is another example, this time involving a percentage. We know that “2 is 50% of 4,” so we can say:

2 is 50% of 4
2 � 0.5 · 4

Example 2.7.2 Translate each statement involving percents below into an equation. Define any variables
used. (Solving these equations is an exercise).

a. How much is 30% of $24.00?

b. $7.20 is what percent of $24.00?

c. $7.20 is 30% of how much money?

Explanation. Each question can be translated from English into a math equation by reading it slowly
and looking for the right signals.

a. The word “is” means about the same thing as the equals sign. “How much” is a question phrase,
and we can let x be the unknown amount (in dollars). The word “of” translates to multiplication,
as discussed earlier. So we have:

how much
|
x

is
|
�

30%
|

0.30

of
|
·

$24
|

24

b. Let P be the unknown value. We have:

$7.20
|

7.2

is
|
�

what percent
|
P

of
|
·

$24
|

24

With this setup, P is going to be a decimal value (0.30) that you would translate into a percentage
(30%).

c. Let x be the unknown amount (in dollars). We have:

$7.20
|

7.2

is
|
�

30%
|

0.30

of
|
·

how much
|
x

Checkpoint 2.7.3. Solve each equation from Example 2.7.2.
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a. Howmuch is 30% of $24.00?

x � 0.3 · 24

x is .

b. $7.20 is what percent of
$24.00?

7.2 � P · 24

P is .

c. $7.20 is 30% of how much
money?

7.2 � 0.3 · x

x is .

Explanation.

a. x � 0.3 · 24
x � 8

b. 7.2 � P · 24
7.2
24 �

P · 24
24

0.3 � P

c. 7.2 � 0.3 · x
7.2
0.3 �

0.3 · x
0.3

24 � x

2.7.1 Setting up and Solving Percent Equations

An important skill for solving percent-related problems is to boil down a complicated word problem into a
simple form like “2 is 50% of 4.” Let’s look at some further examples.

Example 2.7.4

In Fall 2016, Portland Community College had
89,900 enrolled students. According to Figure 2.7.5,
how many black students were enrolled at PCC in
Fall 2016?

68 %

White

11 %
Hispanic

8 %

Asian6 %

Black

7 %

Other

Figure 2.7.5: Racial breakdown of PCC
students in Fall 2016

Explanation. After reading this word problem and the chart, we can translate the problem into “what
is 6% of 89,900?” Let x be the number of black students enrolled at PCC in Fall 2016. We can set up and
solve the equation:

what
|
x

is
|
�

6%
|

0.06

of
|
·

89,900
|

89900
x � 5394

There was not much “solving” to do, since the variable we wanted to isolate was already isolated.

As of Fall 2016, Portland Community College had 5394 black students. Note: this is not likely to be
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perfectly accurate, because the numbers we started with (89,900 enrolled students and 6%) appear to be
rounded.

Example 2.7.6

The bar graph in Figure 2.7.7 displays how many
students are in each class at a local high school. Ac-
cording to the bar graph, what percentage of the
school’s student population is freshman?
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Figure 2.7.7: Number of students at a high
school by class

Explanation. The school’s total number of students is:

134 + 103 + 96 + 86 � 419

With that calculated, we can translate the main question:

“What percentage of the school’s student population is freshman?”

into:

“What percent of 419 is 134?”

Using P to represent the unknown quantity, we write and solve the equation:

what percent
|
P

of
|
·

419
|

419

is
|
�

134
|

134
P · 419

419 �
134
419

P ≈ 0.3198
P ≈ 31.98%

Approximately 31.98% of the school’s student population is freshman.

Remark 2.7.8. When solving equations that do not have context we state the solution set. However, when
solving an equation or inequality that arises in an application problem (such as the context of the high school
in Example 2.7.6), it makes more sense to summarize our result with a sentence, using the context of the
application. This allows us to communicate the full result, including appropriate units.
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Example 2.7.9 Carlos just received his monthly paycheck. His gross pay (the amount before taxes and
related things are deducted) was $2,346.19, and his total tax and other deductions was $350.21. The rest
was deposited directly into his checking account. What percent of his gross pay went into his checking
account?

Explanation. Train yourself to read the word problem and not try to pick out numbers to substitute
into formulas. Youmay find it helps to read the problem over to yourself three or more times before you
attempt to solve it. There are three dollar amounts to discuss in this problem, and many students fall
into a trap of using the wrong values in the wrong places. There is the gross pay, the amount that was
deducted, and the amount that was deposited. Only two of these have been explicitly written down.
We need to use subtraction to find the dollar amount that was deposited:

2346.19 − 350.21 � 1995.98

Now, we can translate the main question:

“What percent of his gross pay went into his checking account?”

into:

“What percent of $2346.19 is $1995.98?”

Using P to represent the unknown quantity, we write and solve the equation:

what percent
|
P

of
|
·

$2346.19
|

2346.19

is
|
�

$1995.98
|

1995.98
P · 2346.19

2346.19 �
1995.98
2346.19

P ≈ 0.8507
P ≈ 85.07%

Approximately 85.07% of his gross pay went into his checking account.

Checkpoint 2.7.10. Alexis sells cars for a living, and earns 28% of the dealership’s sales profit as com-
mission. In a certain month, she plans to earn $2200 in commissions. How much total sales profit does she
need to bring in for the dealership?

Alexis needs to bring in in sales profit.

Explanation. Be careful that you do not calculate 28% of $2200. That might be what a student would do
who doesn’t thoroughly read the question. If you have ever trained yourself to quickly find numbers in
word problems and substitute them into formulas, you must unlearn this. The issue is that $2200 is not the
dealership’s sales profit, and if you mistakenly multiply 0.28 · 2200 � 616, then $616 makes no sense as an
answer to this question. How could Alexis bring in only $616 of sales profit, and be rewarded with $2200
in commission?

We can translate the problem into “$2200 is 28% of what?” Letting x be the sales profit for the dealership
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(in dollars), we can write and solve the equation:

$2200
|

2200

is
|
�

28%
|

0.28

of
|
·

what
|
x

2200
0.28 �

0.28x
0.28

7857.14 ≈ x
x ≈ 7857.14

To earn $2200 in commission, Alexis needs to bring in approximately $7857.14 of sales profit for the dealer-
ship.

Example 2.7.11

According to e-Literate, the average cost of a new
college textbook has been increasing. Find the
percentage of increase from 2009 to 2013.
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Figure 2.7.12: Average New Textbook Price
from 2009 to 2013

Explanation. The actual amount of increase from 2009 to 2013 was 79 − 62 � 17, dollars. We need to
answer the question “$17 is what percent of $62?” Note that we are comparing the 17 to 62, not to 79.
In these situations where one amount is the earlier amount, the earlier original amount is the one that
represents 100%. Let P represent the percent of increase. We can set up and solve the equation:

$17
|

17

is
|
�

what percent
|
P

of
|
·

$62
|

62
17 � 62P
17
62 �

62P
62

0.2742 ≈ P

From 2009 to 2013, the average cost of a new textbook increased by approximately 27.42%.

Checkpoint 2.7.13. Last month, a full tank of gas for a car you drive cost you $40.00. You hear on the
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news that gas prices have risen by 12%. By how much, in dollars, has the cost of a full tank gone up?

A full tank of gas now costs more than it did last month.

Explanation. Let x represent the amount of increase. We can set up and solve the equation:

12%
|

0.12

of
|
·

old cost
|

40

is
|
�

how much
|
x

4.8 � x

A full tank now costs $4.80 more than it did last month.

Example 2.7.14 Enrollment at your neighborhood’s elementary school two years ago was 417 children.
After a 15% increase last year and a 15% decrease this year, what’s the new enrollment?

Explanation. It is tempting to think that increasing by 15% and then decreasing by 15% would bring
the enrollment right back to where it started. But the 15% decrease applies to the enrollment after it had
already increased. So that 15% decrease is going to translate to more students lost than were gained.

Using 100% as corresponding to the enrollment from two years ago, the enrollment last year was 100%+

15% � 115% of that. But then using 100% as corresponding to the enrollment from last year, the enroll-
ment this year was 100% − 15% � 85% of that. So we can set up and solve the equation

this year’s enrollment
|
x

is
|
�

85%
|

0.85

of
|
·

115%
|

1.15

of
|
·

enrollment two years ago
|

417
x � 0.85 · 1.15 · 417
x � 407.6175

We would round and report that enrollment is now 408 students. (The percentage rise and fall of 15%
were probably rounded in the first place, which is why we did not end up with a whole number.)

Exercises

Review and Warmup

Change the follow-
ingpercentages into
decimals:

17% �

54% �

1. Change the follow-
ingpercentages into
decimals:

18% �

51% �

2. Convert the follow-
ingdecimals into per-
centages:

0.29 �

0.67 �

3. Convert the follow-
ingdecimals into per-
centages:

0.21 �

0.64 �

4.
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Change the follow-
ingpercentages into
decimals:

3% �

30% �

100% �

300% �

5. Change the follow-
ingpercentages into
decimals:

4% �

40% �

100% �

400% �

6. Convert the follow-
ingdecimals into per-
centages:

0.05 �

0.5 �

5 �

1 �

7. Convert the follow-
ingdecimals into per-
centages:

0.06 �

0.6 �

6 �

1 �

8.

Convert the follow-
ingdecimals into per-
centages:

6.67 �

0.667 �

0.0667 �

9. Convert the follow-
ingdecimals into per-
centages:

7.22 �

0.722 �

0.0722 �

10. Change the follow-
ingpercentages into
decimals:

895% �

89.5% �

8.95% �

11. Change the follow-
ingpercentages into
decimals:

959% �

95.9% �

9.59% �

12.

Basic Percentage Calculation

3% of 200 is .13. 8% of 300 is .14. 60% of 400 is .15.

30% of 490 is .16. 780% of 590 is .17. 530% of 690 is .18.

Answer with a percent.

176 is of 220.

19. Answer with a percent.

720 is of 800.

20. Answer with a percent.

142.1 is of 49.

21.

Answer with a percent.

21.6 is of 18.

22. Answer with a percent.

12 is about of 47.

23. Answer with a percent.

8 is about of 44.

24.

14% of
is 68.6.

25. 72% of
is 424.8.

26. 4% of is
27.6.

27.

9% of is
71.1.

28. 420% of
is 3738.

29. 250% of
is 2450.

30.
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Applications

A town has 1400 registered residents. Among
them, 39% were Democrats, 38% were Repub-
licans. The restwere Independents. Howmany
registered Independents live in this town?

There are registered Independent
residents in this town.

31. A town has 1800 registered residents. Among
them, 36% were Democrats, 27% were Repub-
licans. The restwere Independents. Howmany
registered Independents live in this town?

There are registered Independent
residents in this town.

32.

Martha is paying adinner bill of $29.00. Martha
plans to pay 12% in tips. How much tip will
Martha pay?

Martha will pay in tip.

33. Evan is paying a dinner bill of $33.00. Evan
plans to pay 20% in tips. How much tip will
Evan pay?

Evan will pay in tip.

34.

Ashley is paying a dinner bill of $36.00. Ash-
ley plans to pay 16% in tips. How much in to-
tal (including bill and tip) will Ashley pay?

Ashley will pay in total (including
bill and tip).

35. Rita is paying a dinner bill of $40.00. Rita
plans to pay 12% in tips. How much in total
(including bill and tip) will Rita pay?

Rita will pay in total (including
bill and tip).

36.

A watch’s wholesale price was $440.00. The
retailer marked up the price by 40%. What’s
the watch’s new price (markup price)?

The watch’s markup price is .

37. A watch’s wholesale price was $460.00. The
retailer marked up the price by 30%. What’s
the watch’s new price (markup price)?

The watch’s markup price is .

38.

In the past few seasons’ basketball games, Tim-
othy attempted 170 free throws, andmade 153
of them. What percent of free throws did Tim-
othy make?

Timothy made of free throws
in the past few seasons.

39. In the past few seasons’ basketball games, Nina
attempted 430 free throws, andmade 86 of them.
What percent of free throws did Nina make?

Nina made of free throws
in the past few seasons.

40.

A painting is on sale at $360.00. Its original
price was $450.00. What percentage is this off
its original price?

The painting was off its original
price.

41. A painting is on sale at $450.00. Its original
price was $500.00. What percentage is this off
its original price?

The painting was off its original
price.

42.
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The pie chart represents a collector’s collec-
tion of signatures from various artists.

If the collector has a total of 1050 signatures,
there are signatures by Sting.

43. The pie chart represents a collector’s collec-
tion of signatures from various artists.

If the collector has a total of 1250 signatures,
there are signatures by Sting.

44.

In the last election, 34% of a county’s residents,
or 12240people, turned out to vote. Howmany
residents live in this county?

This county has residents.

45. In the last election, 59% of a county’s residents,
or 23836people, turned out to vote. Howmany
residents live in this county?

This county has residents.

46.

70.68 grams of pure alcohol was used to pro-
duce a bottle of 18.6% alcohol solution. What
is the weight of the solution in grams?

The alcohol solution weighs .

47. 43.6 grams of pure alcohol was used to pro-
duce a bottle of 10.9% alcohol solution. What
is the weight of the solution in grams?

The alcohol solution weighs .

48.

Connor paid a dinner and left 17%, or $3.74, in
tips. How much was the original bill (without
counting the tip)?

The original bill (not including the tip)was .

49. Sydney paid a dinner and left 13%, or $3.38, in
tips. How much was the original bill (without
counting the tip)?

The original bill (not including the tip)was .

50.
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Rebecca sells cars for a living. Each month,
she earns $2,000.00 of base pay, plus a certain
percentage of commission from her sales.

Onemonth, Rebecca made $52,500.00 in sales,
and earned a total of $3,186.50 in that month
(including base pay and commission). What
percent commission did Rebecca earn?

Rebecca earned in commission.

51. Ryan sells cars for a living. Each month, he
earns $2,000.00 of base pay, plus a certain per-
centage of commission from his sales.

Onemonth, Ryanmade $57,000.00 in sales, and
earned a total of $4,644.80 in that month (in-
cluding base pay and commission). What per-
cent commission did Ryan earn?

Ryan earned in commission.

52.

The following is a nutrition fact label from a
certain macaroni and cheese box.

The highlighted rowmeans each serving ofmac-
aroni and cheese in this box contains 7.8 g of
fat, which is 12% of an average person’s daily
intake of fat. What’s the recommended daily
intake of fat for an average person?

The recommendeddaily intake of fat for an av-
erage person is .

53. The following is a nutrition fact label from a
certain macaroni and cheese box.

The highlighted rowmeans each serving ofmac-
aroni and cheese in this box contains 14 g of
fat, which is 20% of an average person’s daily
intake of fat. What’s the recommended daily
intake of fat for an average person?

The recommendeddaily intake of fat for an av-
erage person is .

54.

Sydney earned $278.07 of interest from a mu-
tual fund, which was 0.69% of his total invest-
ment. How much money did Sydney invest
into this mutual fund?

Sydney invested in this mutual
fund.

55. Shane earned $102.81 of interest from a mu-
tual fund, which was 0.23% of his total invest-
ment. Howmuchmoney did Shane invest into
this mutual fund?

Shane invested in this mutual
fund.

56.

140



2.7 Percentages

A town has 5000 registered residents. Among
them, there are 1950 Democrats and 1750 Re-
publicans. The rest are Independents. What
percentage of registered voters in this town are
Independents?

In this town, of all registered
voters are Independents.

57. A town has 1300 registered residents. Among
them, there are 468Democrats and 299Repub-
licans. The rest are Independents. What per-
centage of registered voters in this town are In-
dependents?

In this town, of all registered
voters are Independents.

58.

Acommunity college conducted a survey about
the number of students riding each bus line
available. The following bar graph is the re-
sult of the survey.

What percent of students ride Bus #1?

Approximately of students
ride Bus #1.

59. Acommunity college conducted a survey about
the number of students riding each bus line
available. The following bar graph is the re-
sult of the survey.

What percent of students ride Bus #1?

Approximately of students
ride Bus #1.

60.

Percent Increase/Decrease

The population of cats in a shelter decreased
from 100 to 75. What is the percentage de-
crease of the shelter’s cat population?

The percentage decrease is .

61. The population of cats in a shelter decreased
from 120 to 108. What is the percentage de-
crease of the shelter’s cat population?

The percentage decrease is .

62.

The population of cats in a shelter increased
from 55 to 73. What is the percentage increase
of the shelter’s cat population?

The percentage increase is approximately .

63. The population of cats in a shelter increased
from 63 to 75. What is the percentage increase
of the shelter’s cat population?

The percentage increase is approximately .

64.
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Last year, a small town’s population was 760.
This year, the populationdecreased to 753. What
is the percentage decrease?

The percentage decrease of the town’s popu-
lation was approximately .

65. Last year, a small town’s population was 800.
This year, the populationdecreased to 798. What
is the percentage decrease?

The percentage decrease of the town’s popu-
lation was approximately .

66.

Your salary used to be $39,000 per year.

You had to take a 2% pay cut. After the cut,
your salary was per year.

Then, you earned a 2% raise. After the raise,
your salary was per year.

67. Your salary used to be $31,000 per year.

You had to take a 2% pay cut. After the cut,
your salary was per year.

Then, you earned a 2% raise. After the raise,
your salary was per year.

68.

This line graph shows a certain stock’s price
change over a few days.

From 11/1 to 11/5, what is the stock price’s
percentage change?

From 11/1 to 11/5, the stock price’s percent-
age change was approximately .

69. This line graph shows a certain stock’s price
change over a few days.

From 11/1 to 11/5, what is the stock price’s
percentage change?

From 11/1 to 11/5, the stock price’s percent-
age change was approximately .

70.

Ahousewas bought two years ago at the price
of $110,000. Each year, the house’s value de-
creased by 5%. What’s the house’s value this
year?

The house’s value this year is .

71. Ahousewas bought two years ago at the price
of $380,000. Each year, the house’s value de-
creased by 6%. What’s the house’s value this
year?

The house’s value this year is .

72.
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2.8 Modeling with Equations and Inequalities

One purpose of learning math is to be able to model real-life situations and then use the model to ask and
answer questions about the situation. In this lesson, we will examine the basics of modeling to set up an
equation (or inequality).

2.8.1 Setting Up Equations for Rate Models

To set up an equation modeling a real world scenario, the first thing we need to do is identify what variable
we will use. The variable we use will be determined by whatever is unknown in our problem statement.
Once we’ve identified and defined our variable, we’ll use the numerical information provided to set up our
equation.

Example 2.8.2 A savings account starts with $500. Each month, an automatic deposit of $150 is made.
Write an equation that represents the number of months it will take for the balance to reach $1,700.

Explanation.

To determine this equation, we might start by
making a table in order to identify a general pat-
tern for the total amount in the account after m
months.

Using this pattern, we can determine that an
equation showing the unknown number of
months, m, when the total savings equals $1700
would look like this:

500 + 150m � 1700

Months Since
Saving Started

Total Amount Saved
(in Dollars)

0 500
1 500 + 150 � 650
2 500 + 150(2) � 800
3 500 + 150(3) � 950
4 500 + 150(4) � 1100
...

...
m 500 + 150m

Table 2.8.3: Amount in Savings Account

Remark 2.8.4. To determine the solution to the equation in Example 2.8.2, we could continue the pattern in
Table 2.8.3:

We can see that the value of m thatmakes the equa-
tion true is 8 as 500+ 150(8) � 1700. Thus it would
take 8 months for an account starting with $500 to
reach $1,700 if $150 is saved each month.

Months Since
Saving Started

Total Amount Saved
(in Dollars)

5 500 + 150(5) � 1250
6 500 + 150(6) � 1400
7 500 + 150(7) � 1550
8 500 + 150(8) � 1700

Table 2.8.5: Amount in Savings Account

Here we are able to determine the solution by creating a table and using inputs that were whole numbers.
Often the solution will not be something we can find this way. We will need to solve the equation using
algebra, aswe’ll learn how to do in later sections. For this section, we’ll only focus on setting up the equation.
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Example 2.8.6 A bathtub contains 2.5 ft3 of water. More water is being poured in at a rate of 1.75 ft3 per
minute. Write an equation representing when the amount of water in the bathtub will reach 6.25 ft3.

Explanation.

Since this problem refers to when the amount of
water will reach a certain amount, we immedi-
ately know that the unknown quantity is time.
As the volume of water in the tub is measured
in ft3 per minute, we know that time needs to
be measured in minutes. We’ll define t to be the
number of minutes that water is poured into the
tub. To determine this equation, we’ll start by
making a table of values:

Minutes Water
Has Been Poured

Total Amount
of Water (in ft3)

0 2.5
1 2.5 + 1.75 � 4.25
2 2.5 + 1.75(2) � 6
3 2.5 + 1.75(3) � 7.75
...

...
t 2.5 + 1.75t

Table 2.8.7: Amount of Water in the Bathtub

Using this pattern, we can determine that the equation representing when the amount will be 6.25 ft3 is:

2.5 + 1.75t � 6.25

2.8.2 Setting Up Equations for Percent Problems

Section 2.7 reviewed some basics of working with percentages, and even solved some one-step equations
that were set up using percentages. Here we look at some scenarios where there is an equation to set up
based on percentages, but it is slightly more involved than a one-step equation.

Example 2.8.8 Jakobi’s annual salary as a nurse in Portland, Oregon, is $73,290. His salary increased by
4% from last year. Write a linear equation modeling this scenario, where the unknown value is Jakobi’s
salary last year.

Explanation. We need to know Jakobi’s salary last year. So we’ll introduce s, defined to be Jakobi’s
salary last year (in dollars). To set up the equation, we need to think about how he arrived at this year’s
salary. To get to this year’s salary, his employer took last year’s salary and added 4% to it. Conceptually,
this means we have:

(last year’s salary) + (4% of last year’s salary) � (this year’s salary)

We’ll represent 4% of last year’s salary with 0.04s since 0.04 is the decimal representation of 4%. This
means that the equation we set up is:

s + 0.04s � 73290

Checkpoint 2.8.9. Kirima offered to pay the bill and tip at a restaurant where she and her freinds had
dinner. In total she paid $150, which made the tip come out to a little more than 19%. We’d like to know
what was the bill before tip. Set up an equation for this situation.

Explanation. A common mistake is to translate a question like this into “what is 19% of $150?” as a way
to calculate the tip amount, and then subtract that from $150. But that is not how tipping works. The tip
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percentage is applied to the original bill, not the final total. If we let x represent the original bill, then:

bill
|
x

plus
|
+

19%
|

0.19

of
|
·

bill
|
x

is
|
�

$150
|

150

Example 2.8.10 The price of a refrigerator after a 15% discount is $612. Write a linear equation mod-
eling this scenario, where the original price of the refrigerator (before the discount was applied) is the
unknown quantity.

Explanation. We’ll let c be the original price of the refrigerator. To obtain the discounted price, we
take the original price and subtract 15% of that amount. Conceptually, this looks like:

(original price) − (15% of the original price) � (discounted price)

Since the amount of the discount is 15% of the original price, we’ll represent thiswith 0.15c. The equation
we set up is then:

c − 0.15c � 612

Checkpoint 2.8.11. A shirt is on sale at 20% off. The current price is $51.00. Write an equation based on
this scenario where the variable represents the shirt’s original price.

Explanation. Let x represent the original price of the shirt. Since 20% is removed to bring the cost to $51,
we can set up the equation:

original
|
x

minus
|
−

20%
|

0.20

of
|
·

original
|
x

is
|
�

$51
|

51

2.8.3 Setting Up Equations for Geometry Problems

With geometry problems and algebra, there is often the possibility to draw some picture to help understand
the scenario better. Additionally it is often necessary to rely on some formula from geometry, such as the
formulas from Subsection 2.2.1.

Example 2.8.12 An Olympic-size swimming pool is rectangular and 50 m in length. We don’t know its
width, but we do know that it required 150 m of painter’s tape to outline the edge of the pool during
recent renovations. Use this information to set up an equation that models the width of the pool.

Explanation.

Since the pool’s shape is a rectangle, it helps to sketch a rect-
angle representing the pool as in Figure 2.8.13. Sinceweknow
its length is 50 m, it is a good idea to label that in the sketch.
Thewidth is our unknown quantity, sowe can use w as a vari-
able to represent the pool’s width inmeters and label that too.

50

w

Figure 2.8.13: An Olympic-size
pool
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Since it required 150 m of painter’s tape to outline the pool, we know the perimeter of the pool is 150 m.
This suggests using the perimeter formula for a rectangle: P � 2(ℓ + w). (This formula was discussed in
Subsection 2.2.1).

With this formula, we can substitute 150 in for P and 50 in for ℓ:

150 � 2(50 + w)

and this equation models the width of the pool.

Checkpoint 2.8.14. One sail on a sail boat is approximately shaped like a triangle. If the base length is
10 feet and the total sail area is 125 square feet, we can wonder how tall is the sail. Set up an equation to
model the sail’s height.

Explanation. Since the sail’s shape is (approximately) a triangle, it helps to sketch a triangle representing
the sail. Since we know its base width is 10 feet, it is a good idea to label that in the sketch. The heigth is
our unknown quantity, so we can use h as a variable to represent the sail’s height in feet and label that too.

Since the total area is known to be 125 square feet, this suggests using the area formula for a triangle: A �
1
2 bh.

With this formula, we can substitute 125 in for A and 100 in for b:

125 �
1
2 (10)h

and this equation models the height of the pool.

2.8.4 Setting Up Inequalities for Models

In general, we’ll model using inequalities when we want to determine a maximum or minimum value. To
identify that an inequality is needed instead of an equality, we’ll look for phrases like at least, at most, at a
minimum or at a maximum.

Example 2.8.15 The car share company car2go has a one-time registration fee of $5 and charges $14.99
per hour for use of their vehicles. Hana wants to use car2go and has a maximum budget of $300. Write
a linear inequality representing this scenario, where the unknown quantity is the number of hours she
uses their vehicles.

Explanation. We’ll let h be the number of hours that Hana uses car2go. We need the initial cost and
the cost from the hourly charge to be less than or equal to $300, which we set up as:

5 + 14.99h ≤ 300
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Example 2.8.16 When an oil tank is decommissioned, it is drained of its remaining oil and then re-filled
with an inert material, such as sand. A cylindrical oil tank has a volume of 275 gal and is being filled
with sand at a rate of 700 gal per hour. Write a linear inequality representing this scenario, where the
time it takes for the tank to overflow with sand is the unknown quantity.

Explanation. The unknown in this scenario is time, so we’ll define t to be the number of hours that
sand is poured into the tank. (Note that we chose hours based on the rate at which the sand is being
poured.) We’ll represent the amount of sand poured in as 700t as each hour an additional 700 gal are
added. Given that we want to know when this amount exceeds 275 gal, we set this equation up as:

700t > 275

2.8.5 Translating Phrases into Mathematical Expressions and Equations/Inequalities

The following table shows how to translate common phrases into mathematical expressions:

English Phrases Math Expressions
the sum of 2 and a number x + 2 or 2 + x
2 more than a number x + 2 or 2 + x
a number increased by 2 x + 2 or 2 + x
a number and 2 together x + 2 or 2 + x
the difference between a number and 2 x − 2
the difference of 2 and a number 2 − x
2 less than a number x − 2 (not 2 − x)
a number decreased by 2 x − 2
2 decreased by a number 2 − x
2 subtracted from a number x − 2
a number subtracted from 2 2 − x
the product of 2 and a number 2x
twice a number 2x
a number times 2 x · 2 or 2x
two thirds of a number 2

3 x
25% of a number 0.25x
the quotient of a number and 2 x/2
the quotient of 2 and a number 2/x
the ratio of a number and 2 x/2
the ratio of 2 and a number 2/x

Table 2.8.17: Translating English Phrases into Math Expressions

We can extend this to setting up equations and inequalities. Let’s look at some examples. The key is to break
a complicated phrase or sentence into smaller parts, identifying key vocabulary such as “is,” “of,” “greater
than,” “at most,” etc.
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English Sentences Math Equations
and Inequalities

The sum of 2 and a number is 6. x + 2 � 6
2 less than a number is at least 6. x − 2 ≥ 6
Twice a number is at most 6. 2x ≤ 6
6 is the quotient of a number and 2. 6 �

x
2

4 less than twice a number is greater than 10. 2x − 4 > 10
Twice the difference between 4 and a number is 10. 2(4 − x) � 10
The product of 2 and the sum of 3 and a number is less than 10. 2(x + 3) < 10
The product of 2 and a number, subtracted from 5, yields 8. 5 − 2x � 8
Two thirds of a number subtracted from 10 is 2. 10 − 2

3 x � 2
25% of the sum of 7 and a number is 2. 0.25(x + 7) � 2

Table 2.8.18: Translating English Sentences into Math Equations

Exercises

Review and Warmup

Identify a variable you might use to represent each quantity. And identify what units would be
most appropriate.

a. Let be the area of a house, measured in .

b. Let be the age of a dog, measured in .

c. Let be the amount of time passed since a driver left Seattle, Washington, bound for Portland,

Oregon, measured in .

1.

Identify a variable you might use to represent each quantity. And identify what units would be
most appropriate.

a. Let be the age of a person, measured in .

b. Let be the distance traveled by a driver that left Portland, Oregon, bound for Boise, Idaho,

measured in .

c. Let be the surface area of the walls of a room, measured in .

2.
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Modeling with Linear Equations

Chris’s annual salary as a radiography tech-
nician is $39,858.00. His salary increased by
2.2% from last year. What was his salary last
year?

Assumehis salary last yearwas s dollars. Write
an equation tomodel this scenario. There is no
need to solve it.

3. Sherial’s annual salary as a radiography tech-
nician is $42,630.00. Her salary increased by
1.5% from last year. What was her salary last
year?

Assumeher salary last yearwas s dollars. Write
an equation tomodel this scenario. There is no
need to solve it.

4.

Abicycle for sale costs $194.04, which includes
7.8% sales tax. What was the cost before sales
tax?

Assume the bicycle’s price before sales tax is
p dollars. Write an equation to model this sce-
nario. There is no need to solve it.

5. Abicycle for sale costs $224.07, which includes
6.7% sales tax. What was the cost before sales
tax?

Assume the bicycle’s price before sales tax is
p dollars. Write an equation to model this sce-
nario. There is no need to solve it.

6.

The price of a washingmachine after 10% dis-
count is $216.00. What was the original price
of the washing machine (before the discount
was applied)?

Assume the washing machine’s price before
the discount is p dollars. Write an equation to
model this scenario. There is no need to solve
it.

7. The price of a washingmachine after 30% dis-
count is $189.00. What was the original price
of the washing machine (before the discount
was applied)?

Assume the washing machine’s price before
the discount is p dollars. Write an equation to
model this scenario. There is no need to solve
it.

8.

Theprice of a restaurant bill, including an 15%
gratuity charge, was $115.00. What was the
price of the bill before gratuity was added?

Assume the bill without gratuity is b dollars.
Write an equation tomodel this scenario. There
is no need to solve it.

9. Theprice of a restaurant bill, including an 11%
gratuity charge, was $11.10. Whatwas the price
of the bill before gratuity was added?

Assume the bill without gratuity is b dollars.
Write an equation tomodel this scenario. There
is no need to solve it.

10.

In May 2016, the median rent price for a one-
bedroom apartment in a city was reported to
be $908.10 per month. This was reported to be
an increase of 0.9% over the previous month.
Based on this reporting, what was the median
price of a one-bedroomapartment inApril 2016?

Assume the median price of a one-bedroom
apartment in April 2016 was p dollars. Write
an equation to model this scenario. There is
no need to solve it.

11. In May 2016, the median rent price for a one-
bedroom apartment in a city was reported to
be $1,006.00 per month. This was reported to
be an increase of 0.6% over the previousmonth.
Based on this reporting, what was the median
price of a one-bedroomapartment inApril 2016?

Assume the median price of a one-bedroom
apartment in April 2016 was p dollars. Write
an equation to model this scenario. There is
no need to solve it.

12.
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Izabelle is driving an average of 42 miles per
hour, and she is 58.8 miles away from home.
After howmanyhourswill she reach his home?

Assume Izabellewill reach home after h hours.
Write an equation tomodel this scenario. There
is no need to solve it.

13. Blake is driving an average of 46 miles per
hour, and he is 156.4 miles away from home.
After howmany hourswill he reach his home?

Assume Blake will reach home after h hours.
Write an equation tomodel this scenario. There
is no need to solve it.

14.

Uhaul charges an initial fee of $32.65 and then
$0.68 per mile to rent a 15-foot truck for a day.
If the total bill is $116.29, howmanymileswere
driven?

Assume m miles were driven. Write an equa-
tion to model this scenario. There is no need
to solve it.

15. Uhaul charges an initial fee of $34.85 and then
$0.53 per mile to rent a 15-foot truck for a day.
If the total bill is $132.90, howmanymileswere
driven?

Assume m miles were driven. Write an equa-
tion to model this scenario. There is no need
to solve it.

16.

A cat litter box has a rectangular base that is
24 inches by 24 inches. What will the height
of the cat litter be if 4 cubic feet of cat litter is
poured? (Hint: 1 ft3 � 1728 in3)

Assume h inches will be the height of the cat
litter if 4 cubic feet of cat litter is poured. Write
an equation tomodel this scenario. There is no
need to solve it.

17. A cat litter box has a rectangular base that is
24 inches by 18 inches. What will the height
of the cat litter be if 6 cubic feet of cat litter is
poured? (Hint: 1 ft3 � 1728 in3)

Assume h inches will be the height of the cat
litter if 6 cubic feet of cat litter is poured. Write
an equation tomodel this scenario. There is no
need to solve it.

18.

Modeling with Linear Inequalities

A truck that haulswater is capable of carrying
amaximumof 1500 lb. Waterweighs 8.3454 lb

gal ,
and the plastic tank on the truck that holds
waterweighs 53 lb. Assume the truck can carry
a maximum of 1 gallons of water. Write an
inequality to model this scenario. There is no
need to solve it.

19. A truck that haulswater is capable of carrying
amaximumof 2600 lb. Waterweighs 8.3454 lb

gal ,
and the plastic tank on the truck that holds
waterweighs 59 lb. Assume the truck can carry
a maximum of 1 gallons of water. Write an
inequality to model this scenario. There is no
need to solve it.

20.

Grant’s maximum lung capacity is 5.2 liters.
If his lungs are full and he exhales at a rate of
0.8 liters per second, write an inequality that
modelswhen hewill still have at least 0.4 liters
of air left in his lungs. There is no need to solve
it.

21. Izabelle’smaximum lung capacity is 5.6 liters.
If her lungs are full and she exhales at a rate
of 0.8 liters per second, write an inequality that
modelswhen shewill still have at least 2.8 liters
of air left in his lungs. There is no need to solve
it.

22.
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A swimming pool is being filled with water
from a garden hose at a rate of 8 gallons per
minute. If the pool already contains 60 gallons
of water and can hold up to 276 gallons, set
up an inequalitymodeling how much time can
pass without the pool overflowing. There is
no need to solve it.

23. A swimming pool is being filled with water
from a garden hose at a rate of 6 gallons per
minute. If the pool already contains 70 gallons
of water and can hold up to 154 gallons, set
up an inequalitymodeling how much time can
pass without the pool overflowing. There is
no need to solve it.

24.

An engineer is designing a cylindrical spring-
formpan (the kind of pan a cheesecake is baked
in). The pan needs to be able to hold a volume
at least 398 cubic inches and have a diameter of
13 inches. Write an inequality modeling possi-
ble height of the pan. There is no need to solve
it.

25. An engineer is designing a cylindrical spring-
formpan (the kind of pan a cheesecake is baked
in). The pan needs to be able to hold a volume
at least 338 cubic inches and have a diameter of
14 inches. Write an inequality modeling possi-
ble height of the pan. There is no need to solve
it.

26.

Translating English Phrases into Math Expressions and Equations Translate the following phrase or
sentence into a math expression or equation (whichever is appropriate).

three more than a number27. ten less than a number28. the sumof a number and six29.

the difference between a num-
ber and three

30. the difference between nine
and a number

31. the difference between six
and a number

32.

two subtracted from a num-
ber

33. nine added to a number34. five decreased by a number35.

two increased by a number36. a number decreased by eight37. a number increased by five38.

two times a number, increased
by five

39. eight times a number, de-
creased by ten

40. five less than four times a
number

41.

one less than eight times a
number

42. eightmore than the quotient
of three and a number

43. four less than the quotient
of seven and a number

44.

Two times a number is six-
teen.

45. Seven times a number is twenty-
eight.

46. The sum of fifty-six and a
number is seventy-three.

47.
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Thedifference between thirty-
three and anumber is twenty-
eight.

48. The quotient of a number and
seventeen is fourteen seven-
teenths.

49. The quotient of a number and
twenty-five is one twenty-fifth.

50.

The quotient of twenty-six
and anumber is thirteen twenty-
fifths.

51. The quotient of eighteen and
anumber is nine twenty-thirds.

52. The sumof three times a num-
ber and eleven is fifty-six.

53.

The sumof eight times a num-
ber and twenty-three is thirty-
one.

54. One less than five times a
number yields fifty-nine.

55. Two less than three times a
number yields ninety-one.

56.

The product of seven and a
number, increased by eight,
yields ninety-nine.

57. The product of five and a
number, added to four, yields
234.

58. The product of three and a
number increased by seven,
yields 123.

59.

The product of seven and a
number added to three, yields
168.

60. one sixth of a number61. one half of a number62.

twenty-three thirty-eighths
of a number

63. thirteen forty-firsts of a num-
ber

64. a number decreased by one
eleventh of itself

65.

a number decreased by seven
thirtieths of itself

66. A number increased by two
ninths is one ninth of that num-
ber.

67. Anumber decreased by one
sixth is one eighth of that num-
ber.

68.

One more than the product
of three elevenths and anum-
ber yields three tenths of that
number.

69. Five more than the product
of one fifth and anumber gives
two sevenths of that number.

70.

Challenge

Last year, Joan received a 2.5% raise. This year, she received a 4% raise. Her current wage is $11.46
an hour. What was her wage before the two raises?

71.
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2.9 Introduction to Exponent Rules

In this section, we will look at some rules or properties we use when simplifying expressions that involve
multiplication and exponents.

2.9.1 Exponent Basics

Before we discuss any exponent rules, we need to quickly remind ourselves of some important concepts and
vocabulary.

When working with expressions with exponents, we have the following vocabulary:

baseexponent � power

For example, when we calculate 82 � 64, the base is 8, the exponent is 2, and the expression 82 is called the
2nd power of 8.

The other foundational concept is that if an exponent is a positive integer, the power can be rewritten as
repeated multiplication of the base. For example, the 4th power of 3 can be written as 4 factors of 3 like so:

34
� 3 · 3 · 3 · 3

2.9.2 Exponent Rules

Product Rule If we write out 35 · 32 without using exponents, we’d have:

35 · 32
� (3 · 3 · 3 · 3 · 3) · (3 · 3)

If we then count how many 3s are being multiplied together, we find we have 5 + 2 � 7, a total of seven 3s.

35 · 32
� 35+2

� 37

Example 2.9.2 Simplify x2 · x3.

To simplify x2 · x3, we write this out in its expanded form, as a product of x’s, we have

x2 · x3
� (x · x)(x · x · x)
� x · x · x · x · x
� x5

Note that we obtained the exponent of 5 by adding 2 and 3.

This is our first rule, the Product Rule: when multiplying two expressions that have the same base, we can
simplify the product by adding the exponents.

xm · xn
� xm+n (2.9.1)
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Checkpoint 2.9.3. Use the properties of exponents to simplify the expression.

x19 · x13

Explanation. We add the exponents as follows:

x19 · x13
� x19+13

� x32

Power to a Power Rule The second rule is an extension of the first rule. If we write out
(
35)2 without

using exponents, we’d have 35 multiplied by itself:(
35)2

�
(
35) · (35)

� (3 · 3 · 3 · 3 · 3) · (3 · 3 · 3 · 3 · 3)

If we again count how many 3s are being multiplied, we have a total of two groups each with five 3s. So
we’d have 2 · 5 � 10 instances of a 3. (

35)2
� 32·5

� 310

Example 2.9.4 Simplify
(
x2)3.

To simplify
(
x2)3, we write this out in its expanded form, as a product of x’s, we have(

x2)3
�

(
x2) · (x2) · (x2)

� (x · x) · (x · x) · (x · x)
� x6

Note that we obtained the exponent of 6 by multiplying 2 and 3.

We have our second rule, the Power to a Power Rule: when a base is raised to an exponent and that expres-
sion is raised to another exponent, we multiply the exponents.

(xm)n � xm·n

Checkpoint 2.9.5. Use the properties of exponents to simplify the expression.(
r2)5

Explanation. We multiply the exponents as follows:(
r2)5

� r2·5

� r10

Product to a Power Rule The third exponent rule deals with having multiplication inside a set of paren-
theses and an exponent outside the parentheses. If we write out (3t)5 without using an exponent, we’d have
3t multiplied by itself five times:

(3t)5 � (3t)(3t)(3t)(3t)(3t)
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Keeping in mind that there is multiplication between every 3 and t and multiplication between all of the
parentheses, we can reorder and regroup the factors:

(3t)5 � (3 · t) · (3 · t) · (3 · t) · (3 · t) · (3 · t)
� (3 · 3 · 3 · 3 · 3) · (t · t · t · t · t)
� 35t5

We essentially applied the outer exponent to each factor inside the parentheses.

Example 2.9.6 Simplify (x y)5.
To simplify (x y)5, we write this out in its expanded form, as a product of x’s and y’s, we have

(x y)5 � (x · y) · (x · y) · (x · y) · (x · y) · (x · y)
� (x · x · x · x · x) · (y · y · y · y · y)
� x5 y5

Note that the exponent on x y can simply be applied to both x and y.

This is our third rule, the Product to a Power Rule: when a product is raised to an exponent, we can apply
the exponent to each factor in the product. (

x · y
)n

� xn · yn

Checkpoint 2.9.7. Use the properties of exponents to simplify the expression.

(5x)2

Explanation. We multiply the exponents and apply the rule (ab)m � am · bm as follows:

(5x)2 � (5)2x2

� 25x2

If a and b are real numbers, and n and m are positive integers, then we have the following
rules:

Product Rule an · am � an+m

Power to a Power Rule (an)m � an·m

Product to a Power Rule (ab)n � an · bn

List 2.9.8: Summary of the Rules of Exponents for Multiplication

Many examples we’ll come across will make use of more than one exponent rule. In deciding which expo-
nent rule to work with first, it’s important to remember that the order of operations still applies.

Example 2.9.9 Simplify the following expressions.

a.
(
37r5)4

b.
(
t3)2 ·

(
t4)5
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Explanation.

a. Since we cannot simplify anything inside the parentheses, we’ll begin simplifying this expression
using the Product to a Power Rule. We’ll apply the outer exponent of 4 to each factor inside the
parentheses. Then we’ll use the Power to a Power Rule to finish out simplification process:(

37r5)4
�

(
37)4 ·

(
r5)4

� 37·4 · r5·4

� 328r20

b. According to the order of operations, we should first simplify any exponents before carrying out
any multiplication. Therefore, we’ll begin simplifying this by applying the Power to a Power Rule
and then finish using the Product Rule:(

t3)2 ·
(
t4)5

� t3·2 · t4·5

� t6 · t20

� t6+20

� t26

Remark 2.9.10. We cannot simplify an expression like x2 y3 using the Product Rule, as the factors x2 and y3

do not have the same base.

Exercises

Review and Warmup Evaluate the following.

a. 32
�

b. 43
�

c. (−4)2 �

d. (−5)3 �

1. a. 32
�

b. 23
�

c. (−2)2 �

d. (−3)3 �

2. a. 17
�

b. (−1)15
�

c. (−1)14
�

d. 019
�

3.

a. 18
�

b. (−1)13
�

c. (−1)16
�

d. 017
�

4. a. (−3)2 �

b. −102
�

5. a. (−1)2 �

b. −22
�

6.

a. (−1)3 �

b. −23
�

7. a. (−4)3 �

b. −13
�

8.
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Exponent Rules Use the properties of exponents to simplify the expression.

3 · 399. 4 · 4610. 52 · 5711. 58 · 5212.

r13 · r913. t15 · t314. y17 · y15 · y815. x19 · x8 · x1616.

(
22)317.

(
48)718.

(
x4)519.

(
y6)1220.

(4t)321.
(
3y

)322. (5rx)423. (4xt)424.

(
4r12)225.

(
5y2)426. (5r4) · (10r12)27. (9t7) · (−4t5)28.

(
− x9

3

)
·
(

x18

5

)
29.

(
−x11

6

)
·
(
−x11

4

)
30.

(
−10t8)231.

(
−7r9)332.

Use the properties of exponents to simplify the expression.

(−3y17) · (−9y10) · (−y9)33. (−2r19) · (−5r4) · (4r4)34.

a.
(
−2x2)2

�

b. −
(
2x2)2

�

35. a.
(
−6r3)2

�

b. −
(
6r3)2

�

36.

Challenge

a. Let x7 · xa � x17. Let’s say that a is a natural number. How many possibilities are there for a?

b. Let xb · xc � x75. Let’s say that b and c are natural numbers. How many possibilities are there
for b?

c. Let xd · xe � x800. Let’s say that d and e are natural numbers. How many possibilities are there
for d?

37.

Choose the correct inequality or equal sign to make the relation true.

2500 (□ < □ > □ =) 5200

38.
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2.10 Simplifying Expressions

We know that if we have two apples and add three more, then our result is the same as if we’d had three
apples and added two more. In this section, we’ll formally define and extend these basic properties we
know about numbers to variable expressions.

2.10.1 Identities and Inverses

Wewill start with some definitions. The number 0 is called the additive identity. If the sum of two numbers
is the additive identity, 0, these two numbers are called additive inverses. For example, 2 is the additive
inverse of −2, and the additive inverse of −2 is 2.

Similarly, the number 1 is called themultiplicative identity. If the product of two numbers is themultiplica-
tive identity, 1, these two numbers are called multiplicative inverses. For example, 2 is the multiplicative
inverse of 1

2 , and the multiplicative inverse of − 2
3 is − 3

2 . The multiplicative inverse is also called reciprocal.

2.10.2 Introduction to Algebraic Properties

Commutative Property When we compute the area of a rectangle, we generally multiply the length by
the width. Does the result change if we multiply the width by the length?

4 cm

3 cm
A � 4 · 3

� 12 (cm2)

3 cm

4 cm
A � 3 · 4

� 12 (cm2)

Figure 2.10.2: Horizontal and Vertical Rectangles

We can see 3 · 2 � 2 · 3. If we denote the length of a rectangle with ℓ and the width with w, this implies
ℓw � wℓ. This is referred to as the commutative property of multiplication. The commutative property
also applies to addition, as in 1+2 � 2+1, where it is called the commutative property of addition. However,
there is no commutative property of subtraction or division, as 2 − 1 , 1 − 2, and 4

2 ,
2
4 .

Associative Property Let’s extend that example to a rectangular prism with width w � 4 cm, depth d �

3 cm, and height h � 2 cm. To compute the volume of this solid, we multiply the width, depth and height,
which we write as wdh.

In the following figure, on the left side, wemultiply the length andwidth first, and thenmultiply the height;
on the right side, we multiply the width and height first, and then multiply the length. Let’s compare the
products.
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.4 cm

2c
m

3 c
m

.4 cm

2c
m

3 c
m

Figure 2.10.3: (4 · 3) · 2 � 24 Figure 2.10.4: 4 · (3 · 2) � 24

We can see (wd)h � w(dh). This is known as the associative property of multiplication. The associative
property also applies to addition, as in (1 + 2) + 3 � 1 + (2 + 3), which is called the associative property of
addition. However, there is no associative property of subtraction, as (3 − 2) − 1 , 3 − (2 − 1).

Distributive Property The final property we’ll explore is called the distributive property, which involves
both multiplication and addition. To conceptualize this property, let’s consider what happens if we buy 3
boxes that each contain one apple and one pear. This will have the same total cost as if we’d bought 3 apples
and 3 pears. We write this algebraically:

3(a + p) � 3a + 3p.

Visually, we can see that it’s just a means of re-grouping: 3(🍎 + 🍐) � 3(🍎) + 3(🍐).

2.10.3 Summary of Algebraic Properties

Let a, b, and c represent real numbers, variables, or algebraic expressions. Then the following
properties hold:

Commutative Property of Multiplication a · b � b · a

Associative Property of Multiplication a · (b · c) � (a · b) · c

Commutative Property of Addition a + b � b + a

Associative Property of Addition a + (b + c) � (a + b) + c

Distributive Property a(b + c) � ab + ac

List 2.10.5: Algebraic Properties

Let’s practice these properties in the following exercises.

Checkpoint 2.10.6.

a. Use the commutative property of multiplication to write an equivalent expression to 53m.

b. Use the associative property of multiplication to write an equivalent expression to 3(5n).
c. Use the commutative property of addition to write an equivalent expression to q + 84.
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d. Use the associative property of addition to write an equivalent expression to x + (20 + c).
e. Use the distributive property to write an equivalent expression to 3(r + 7) that has no grouping sym-

bols.

Explanation.

a. To use the commutative property of multiplication, we change the order in which two factors are
multiplied:

53m
� m · 53.

b. To use the associative property of multiplication, we leave factors written in their original order, but
change the grouping symbols so that a different multiplication has higher priority:

3(5n)
� (3 · 5)n.

You may further simplify by carrying out the multiplication between the two numbers:

3(5n)
� (3 · 5)n
� 15n.

c. To use the commutative property of addition, we change the order in which two terms are added:

q + 84
� 84 + q.

d. To use the associative property of addition, we leave terms written in their original order, but change
the grouping symbols so that a different addition has higher priority:

x + (20 + c)
� (x + 20) + c.

e. To use the distributive property, we multiply the number outside the parentheses, 3, with each term
inside the parentheses:

3(r + 7)
� 3 · r + 3 · 7
� 3r + 21.

2.10.4 Applying the Commutative, Associative, and Distributive Properties

Like Terms One of the main ways that we will use the commutative, associative, and distributive prop-
erties is to simplify expressions. In order to do this, we need to recognize like terms, as discussed in Sec-
tion 2.3. We combine like terms when we take an expression lilke 2a + 3a and write the result as 5a. The
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formal process actually involves using the distributive property:

2a + 3a � (2 + 3)a
� 5a

In practice, however, it’s more helpful to think of this as having 2 of an object and then an additional 3 of
that same object. In total, we then have 5 of that object.

Example 2.10.7 Where possible, simplify the following expressions by combining like terms.

a. 6c + 12c − 5c b. −5q2 − 3q2 c. x − 5y + 4x d. 2x − 3y + 4z

Explanation.

a. All three terms are like terms, so they may combined. We combine them two at a time:

6c + 12c − 5c � 18c − 5c
� 13c

b. The two terms −5q2 and −3q2 are like terms, so we may combine them:

−5q2 − 3q2
� −8q2

c. The two terms x and 4x are like terms, while the other term is different. Using the associative and
commutative properties of addition in the first step allows us to place the two like terms next to
each other, and then combine them:

x − 5y + 4x � x + 4x + (−5y)
� 1x + 4x + (−5y)
� 5x − 5y

Note the expression x is the same as 1x. Usually we don’t write the “1” as it is implied. However,
it’s helpful when combining like terms to remember that x � 1x. (Similarly, −x is equal to −1x,
which can be helpful when combining −x with like terms.)

d. The expression 2x − 3y + 4z cannot be simplified as there are no like terms.

Adding Expressions When we add an expression like 4x − 5 to an expression like 3x − 7, we write them as
follows:

(4x − 5) + (3x − 7)
In order to remove the given sets of parentheses and apply the commutative property of addition, we will
rewrite the subtraction operation as “adding the opposite”:

4x + (−5) + 3x + (−7)

At this point we can apply the commutative property of addition and then combine like terms. Here’s how
the entire problem will look:

(4x − 5) + (3x − 7) � 4x + (−5) + 3x + (−7)
� 4x + 3x + (−5) + (−7)
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� 7x + (−12)
� 7x − 12

Remark 2.10.8. Once we become more comfortable simplifying such expressions, we will simply write this
kind of simplification in one step:

(4x − 5) + (3x − 7) � 7x − 12

Example 2.10.9 Use the associative, commutative, and distributive properties to simplify the following
expressions as much as possible.

a. (2x + 3) + (4x + 5) b. (−5x + 3) + (4x − 7)

Explanation.

a. We will remove parentheses, and then combine like terms:

(2x + 3) + (4x + 5) � 2x + 3 + 4x + 5
� 2x + 4x + 3 + 5
� 6x + 8

b. We will remove parentheses, and then combine like terms:

(−5x + 3) + (4x − 7) � −5x + 3 + 4x + (−7)
� −x + (−4)
� −x − 4

Applying the Distributive Property with Negative Coefficients Applying the distributive property in an
expression such as 2(3x+4) is fairly straightforward, in that this becomes 2(3x)+2(4)whichwe then simplify
to 6x + 8. Applying the distributive property is a little trickier when subtraction or a negative constant is
involved, for example, with the expression 2(3x − 4). Recalling that subtraction is defined as “adding the
opposite,” we can change the subtraction of positive 4 to the addition of negative 4:

2
(
3x + (−4)

)
Now when we distribute, we obtain:

2(3x) + 2(−4)
As a final step, we see that this simplifies to:

6x − 8

Remark 2.10.10. We can also extend the distributive property to use subtraction, and state that a(b − c) �
ab − ac. With this property, we would simplify 2(3x − 4)more efficiently:

2(3x − 4) � 2(3x) − 2(4)
� 6x − 8

In general, we will use this approach.
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Example 2.10.11 Apply the distributive property to each expression and simplify it as much as possible.

a. −3(5x + 7) b. 2(−4x − 1)

Explanation.

a. We will distribute −3 to the 5x and 7:

−3(5x + 7) � −3(5x) + (−3)(7)
� −15x − 21

b. We will distribute 2 to the −4x and −1:

2(−4x − 1) � 2(−4x) − 2(1)
� −8x − 2

Checkpoint 2.10.12. Use the distributive property to write an equivalent expression to −4(x − 2) that
has no grouping symbols.

Explanation. To use the distributive property, we multiply the number outside the parentheses, −4, with
each term inside the parentheses:

−4(x − 2) � −4 · x − 4(−2)
� −4x + 8

Subtracting Expressions To subtract one expression from another expression, such as (5x + 9) − (3x + 2),
we will again rely on the fact that subtraction is defined as “adding the opposite.” To add the opposite of an
expression, we will technically distribute a constant factor of −1 and simplify from there:

(5x + 9) − (3x + 2) � (5x + 9) + (−1)(3x + 2)
� 5x + 9 + (−1)(3x) + (−1)(2)
� 5x + 9 + (−3x) + (−2)
� 2x + 7

Remark 2.10.13. The above example demonstrates how we apply the distributive property in order to sub-
tract two expressions. But in practice, it can be pretty cumbersome. A shorter (and often clearer) approach
is to instead subtract every term in the expression we are subtracting, which is shown like this:

(5x + 9) − (3x + 2) � 5x + 9 − 3x − 2
� 2x + 7

In general, we’ll use this approach.

Example 2.10.14 Use the associative, commutative, and distributive properties to simplify the following
expressions as much as possible.

a. (−6x + 4) − (3x − 7) b. (−2x − 5) − (−4x − 6)

Explanation.

a. We will remove parentheses using the distributive property, and then combine like terms:

(−6x + 4) − (3x − 7) � −6x + 4 − 3x − (−7)
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� −6x + 4 − 3x + 7
� −9x + 11

b. We will remove parentheses using the distributive property, and then combine like terms:

(−2x − 5) − (−4x − 6) � −2x − 5 − (−4x) − (−6)
� −2x − 5 + 4x + 6
� 2x + 1

2.10.5 The Role of the Order of Operations in Applying the Commutative,
Associative, and Distributive Properties

When simplifying an expression such as 3+ 4(5x + 7), we need to respect the order of operations. Since the
terms inside the parentheses are not like terms, there is nothing to simplify there. The next highest priority
operation is multiplying the 4 by (5x + 7). This must be done before anything happens with the adding of
that 3. We cannot say 3 + 4(5x + 7) � 7(5x + 7), because that would mean we treated the addition as having
higher priority than the multiplication.

So to simplify 3 + 4(5x + 7), we will first examine the multiplication of 4 with (5x + 7), and here we may
apply the distributive property. After that, we will use the commutative and associative properties:

3 + 4(5x + 7) � 3 + 4(5x) + 4(7)
� 3 + 20x + 28
� 20x + 3 + 28
� 20x + 31

Example 2.10.15 Simplify the following expressions using the commutative, associative, and distribu-
tive properties.

a. 4 − (3x − 9) b. 5x + 9(−2x + 3) c. 5(x − 9) + 4(x + 4)

Explanation.

a. We will remove parentheses using the distributive property, and then combine like terms:

4 − (3x − 9) � 4 − 3x − (−9)
� 4 − 3x + 9
� −3x + 13

b. We will remove parentheses using the distributive property, and then combine like terms:

5x + 9(−2x + 3) � 5x + 9(−2x) + 9(3)
� 5x − 18x + 27
� −13x + 27
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c. We will remove parentheses using the distributive property, and then combine like terms:

5(x − 9) + 4(x + 4) � 5x − 45 + 4x + 16
� 9x − 29

Checkpoint 2.10.16. Use the distributive property to simplify 3 − 9(9 − 8r) completely.

Explanation. We first use distributive property to get rid of parentheses, and then combine like terms:

3 − 9(9 − 8r) � 3 + (−9)(9 − 8r)
� 3 + (−9)(9) + (−9)(−8r)
� 3 − 81 + 72r
� −78 + 72r
� 72r − 78

Note that either of the last two expressions are acceptable final answers.

2.10.6 Rules of Exponents and Simplifying

In Section 2.9, we introduced three exponent rules. We continue to use these rules when simplifying expres-
sions. Sometimes though, students incorrectly apply “rules” of exponents where they havemisremembered
the actual rule. Let’s summarize what we can and cannot do.

When we add/subtract two expressions, we can only combine like terms. For example:

• 3x − x � 2x • t2 + t2 � 2t2 • q2 + q cannot be combined.

However, we can multiply two expressions regardless of whether or not they are like terms. For example:

• x · x � x2 • t2 · t3 � t5 • (q2)(q) � q3

Consider:

• When we combine like terms that have a variable, the exponent doesn’t change, as in x2 + x2 � 2x2.

• When we multiply powers of a variable that use the same variable, the exponent will change, as in
(x2)(x2) � x4.

• We cannot combine “unlike terms,” as something like x2 + x is as simplified as it can be.

• We can multiply powers with different exponents, as in (x2)(x) � x3.

The next few examples test your understanding of these concepts.

Example 2.10.17 Simplify the following expressions using the rules of exponents and the distributive
property.

a. 3x2 + 2x + x2 b. (3x2)(2x)(x2) c. 2x(3x + 4) d. x3 − 3x2(5x − 2)
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Explanation.

a. We will combine like terms 3x2 and x2:

3x2
+ 2x + x2

� 4x2
+ 2x

b. We will apply the Product Rule:

(3x2)(2x)(x2) � 6x5

c. To simplify 2x(3x + 4), we want to first distribute 2x, and then we can apply the Product Rule:

2x(3x + 4) � 2x(3x) + 2x(4)
� 6x2

+ 8x

d. We will use the distributive property first, apply the Product Rule, and combine like terms:

x3 − 3x2(5x − 2) � x3 − 3x2(5x) − (−3x2)(2)
� x3 − 15x3

+ 6x2

� −14x3
+ 6x2

Exercises

Review and Warmup

Count the number of terms
in each expression.

a. −6x − 7 + 3t − 8z2

b. −6t + 1

c. 4s2 − 6y − 6s2

d. 2s − 2z − 5y2 + 7s

1. Count the number of terms
in each expression.

a. −4x2 + z + y − 9t

b. 8x2 − 6t + 2s2 + 5t

c. −7x2

d. −8z2 + 5y − 5

2. List the terms in each expres-
sion.

a. −2x

b. −8.5s2 − 1.2s + 8t2

c. 3.8t + 6.4 − 0.3x

d. −2.3y − 7.8

3.

List the terms in each expres-
sion.

a. −0.4x2 − 0.3

b. −3.2t + 6.8t

c. −0.2y + 0.2s − 2.6x + 8.3s

d. −3.5y2

4. List the terms in each expres-
sion.

a. 1.2x + 7.9t

b. −5.2y + 5.6 − 4.3s2 − 6

c. −4.8y + 0.9z

d. 8.4y − 0.1z − 8.5t

5. List the terms in each expres-
sion.

a. 2.8x2 − 2x2

b. −7.2s + 4.3t2 − 8.3z

c. 5.8s − 7.1 − 6.5x + 7.4z

d. 8.4x2 − z

6.

166



2.10 Simplifying Expressions

Simplify each expression, if
possible, by combining like
terms.

a. 5x + 6y2 + 9y

b. 3s + 6s

c. −z + 5z2

d. x2 + 4x2

7. Simplify each expression, if
possible, by combining like
terms.

a. 6x2 − 4s2 + 7s2

b. 2s2 + 2y2 − 7 + 7y

c. −3y2 + 6z + 8z

d. −4s − 2x − 8s2 + 2s2

8.

These exercises involve the concepts of like terms and the commutative, associative, and distributive prop-
erties.

The additive inverse of 4 is9. The additive inverse of 7 is10. Themultiplicative inverse of

9 is

11.

Themultiplicative inverse of

−10 is

12. Use the associative property
of addition towrite an equiv-
alent expression to r +

(
38 + q

)
.

13. Use the associative property
of addition towrite an equiv-
alent expression to t + (2 + n).

14.

Use the associative property
of addition towrite an equiv-
alent expression to 10 + (9 + b).

15. Use the associative property
of addition towrite an equiv-
alent expression to 3 + (17 + c).

16. Use the associative property
of multiplication to write an
equivalent expression to 4(5m).

17.

Use the associative property
of multiplication to write an
equivalent expression to 8(3b).

18. Use the commutative prop-
erty of addition to write an
equivalent expression to n + 8.

19. Use the commutative prop-
erty of addition to write an
equivalent expression to p + 73.

20.

Use the commutative prop-
erty of addition to write an
equivalent expression to 10x + 38.

21. Use the commutative prop-
erty of addition to write an
equivalent expression to 5y + 3.

22. Use the commutative prop-
erty of addition to write an
equivalent expression to 8(t + 69).

23.

Use the commutative prop-
erty of addition to write an
equivalent expression to 3(b + 34).

24. Use the commutative prop-
erty ofmultiplication towrite
an equivalent expression to
99c.

25. Use the commutative prop-
erty ofmultiplication towrite
an equivalent expression to
92x.

26.

Use the commutative prop-
erty ofmultiplication towrite
an equivalent expression to
43 + 7a.

27. Use the commutative prop-
erty ofmultiplication towrite
an equivalent expression to
95 + 9n.

28. Use the commutative prop-
erty ofmultiplication towrite
an equivalent expression to
4
(
p + 60

)
.

29.
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Use the commutative prop-
erty ofmultiplication towrite
an equivalent expression to
8(x + 25).

30. Use the distributive property
towrite an equivalent expres-
sion to 10

(
y + 2

)
that has no

grouping symbols.

31. Use the distributive property
towrite an equivalent expres-
sion to 6(t + 6) that has no
grouping symbols.

32.

Use the distributive property
towrite an equivalent expres-
sion to −9(b + 9) that has no
grouping symbols.

33. Use the distributive property
towrite an equivalent expres-
sion to −3(c − 3) that has no
grouping symbols.

34. Use the distributive property
towrite an equivalent expres-
sion to − (m − 2) that has no
grouping symbols.

35.

Use the distributive property
towrite an equivalent expres-
sion to − (r − 7) that has no
grouping symbols.

36. Use the distributive property
to simplify 9 + 7(9 + 8n) com-
pletely.

37. Use the distributive property
to simplify 6 + 2

(
7 + 7p

)
com-

pletely.

38.

Use the distributive property
to simplify 3 − 7(−4 + 3x) com-
pletely.

39. Use the distributive property
to simplify 8 − 3

(
−10 + 3y

)
com-

pletely.

40. Use the distributive property
to simplify 5 − (−5 + 5t) com-
pletely.

41.

Use the distributive property
to simplify 2 − (4 + 2a) com-
pletely.

42. Use the distributive property
to simplify 8 − (−6c − 8) com-
pletely.

43. Use the distributive property
to simplify 6 − (2b + 9) com-
pletely.

44.

Use the distributive property
to simplify 10

7 (2 − 5x) com-
pletely.

45. Use the distributive property
to simplify 8

5 (−3 + n) completely.
46. Use the distributive property

to simplify 5
8
(
−9 +

3
2 p

)
com-

pletely.

47.

Use the distributive property
to simplify 10

3
(
7 +

3
4 x

)
com-

pletely.

48.

The expression y + t + c would be ambiguous
if we did not have a left-to-right reading con-
vention. Use grouping symbols to emphasize
the order that these additions should be car-
ried out.

Use the associative property of addition towrite
an equivalent (but different) algebraic expres-
sion.

49. The expression t + a + x would be ambiguous
if we did not have a left-to-right reading con-
vention. Use grouping symbols to emphasize
the order that these additions should be car-
ried out.

Use the associative property of addition towrite
an equivalent (but different) algebraic expres-
sion.

50.

168



2.10 Simplifying Expressions

51. A student has (correctly) simplified an algebraic expression in the following steps. Between each pair
of steps, identify the algebraic property that justifies moving from one step to the next.

9(a + 5) + 9a

(□ commutative property of addition □ commutative property of multiplication □ associative prop-
erty of addition □ associative property of multiplication □ distributive property)

� (9a + 45) + 9a

(□ commutative property of addition □ commutative property of multiplication □ associative prop-
erty of addition □ associative property of multiplication □ distributive property)

� (45 + 9a) + 9a

(□ commutative property of addition □ commutative property of multiplication □ associative prop-
erty of addition □ associative property of multiplication □ distributive property)

� 45 + (9a + 9a)

(□ commutative property of addition □ commutative property of multiplication □ associative prop-
erty of addition □ associative property of multiplication □ distributive property)

� 45 + (9 + 9) a

� 45 + 18a

(□ commutative property of addition □ commutative property of multiplication □ associative prop-
erty of addition □ associative property of multiplication □ distributive property)

� 18a + 45

52. A student has (correctly) simplified an algebraic expression in the following steps. Between each pair
of steps, identify the algebraic property that justifies moving from one step to the next.

6(c + 8) + 7c

(□ commutative property of addition □ commutative property of multiplication □ associative prop-
erty of addition □ associative property of multiplication □ distributive property)

� (6c + 48) + 7c

(□ commutative property of addition □ commutative property of multiplication □ associative prop-
erty of addition □ associative property of multiplication □ distributive property)

� (48 + 6c) + 7c
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(□ commutative property of addition □ commutative property of multiplication □ associative prop-
erty of addition □ associative property of multiplication □ distributive property)

� 48 + (6c + 7c)

(□ commutative property of addition □ commutative property of multiplication □ associative prop-
erty of addition □ associative property of multiplication □ distributive property)

� 48 + (6 + 7) c

� 48 + 13c

(□ commutative property of addition □ commutative property of multiplication □ associative prop-
erty of addition □ associative property of multiplication □ distributive property)

� 13c + 48

53. The number of students enrolled in math courses at Portland Community College has grown over the
years. The formulas

M � 0.47x + 3.7 W � 0.38x + 4.3 N � 0.02x + 0.1

describe the numbers (of thousands) of men, women, and gender-non-binary students enrolled in math
courses at PCC x years after 2005. (Note this is an exercise using randomized numbers, not actual data.)
Give a simplified formula for the total number T of thousands of students at PCC taking math classes x
years after 2005. Be sure to give the entire formula, starting with T=.

54. The number of students enrolled in math courses at Portland Community College has grown over the
years. The formulas

M � 0.51x + 5.7 W � 0.51x + 3.4 N � 0.02x + 0.2

describe the numbers (of thousands) of men, women, and gender-non-binary students enrolled in math
courses at PCC x years after 2005. (Note this is an exercise using randomized numbers, not actual data.)
Give a simplified formula for the total number T of thousands of students at PCC taking math classes x
years after 2005. Be sure to give the entire formula, starting with T=.

Multiply the polynomials.

6x (x − 6) �55. 8x (x + 4) �56. 2x (−10x − 5) �57.

3x (−5x + 5) �58. −6x2 (x + 4) �59. −3x2 (x − 8) �60.

6y2 (
−3y2 + 4y

)
�61. −3r2 (

−10r2 + 8r
)
�62.

170



2.10 Simplifying Expressions

Simplify the following expressions if possible.

a. m2
+ m2

�

b. (m2)(m2) �

c. m2
+ m3

�

d. (m2)(m3) �

63. a. n2
+ n2

�

b. (n2)(n2) �

c. n2
+ n4

�

d. (n2)(n4) �

64. a. p + p �

b. (p)(p) �

c. p + p2
�

d. (p)(p2) �

65.

a. x3
+ x3

�

b. (x3)(x3) �

c. x3
+ x4

�

d. (x3)(x4) �

66. a. −y − 4y �

b. (−y)(−4y) �

c. −y − 2y4
�

d. (−y)(−2y4) �

67. a. −4t3 − 2t3
�

b. (−4t3)(−2t3) �

c. −4t3 − 2t �

d. (−4t3)(−2t) �

68.

a. 2a2
+ 4a2

�

b. (2a2)(4a2) �

c. 2a2
+ 4a �

d. (2a2)(4a) �

69. a. −c − c �

b. (−c)(−c) �

c. −c + 2c3
�

d. (−c)(2c3) �

70. a. 2q − q2 − 2q �

b. (2q)(−q2)(−2q) �

71.

a. −3r3 − 2r4
+ 2r3

�

b. (−3r3)(−2r4)(2r3) �

72.

Simplify the following expression.

2n2 (5n4)2
�73. 5p5 (−4p2)2

�74. 2x2c2 (4xc2)2
�75.

−3y5t4 (−2yt5)4
�76. (−5t3)(−4t4) + (t4)(−5t3) �77. (3a5)(−3a5) − (4a4)(2a6) �78.

(−2c5)
(
−2c4)3 − (c)(4c8) �79. (3p4)

(
p5)4 − (2p2)(p7) �80. (4q4)

(
−2q4)2

+
(
q2)5 (5q2) �81.

(3m5)
(
2m4)4

+
(
m2)2 (3m17) �82.

(
3p3)2

n9
+ 3

(
p2n3)3

�83.
(
3x4)3

c12
+ 4

(
x3c3)4

�84.
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Use the distributive property
towrite an equivalent expres-
sion to −9y

(
7y + 2

)
that has

no grouping symbols.

85. Use the distributive property
towrite an equivalent expres-
sion to −4t(4t − 10) that has
no grouping symbols.

86. Use the distributive property
towrite an equivalent expres-
sion to −7a2(a − 1) that has
no grouping symbols.

87.

Use the distributive property
towrite an equivalent expres-
sion to −10c4(c + 8) that has
no grouping symbols.

88. Use the distributive property
to simplify 4 + 6m(2 + 3m) com-
pletely.

89. Use the distributive property
to simplify 8 + 3b(10 + 7b) com-
pletely.

90.

Use the distributive property
to simplify 2m − 9m

(
8 + 10m2)

completely.

91. Use the distributive property
to simplify 8p − 6p

(
3 + 10p3)

completely.

92. Use the distributive property
to simplify 5x3 − 2x3 (−3 + 9x2)
completely.

93.

Use the distributive property
to simplify 10y3 − 7y3 (−9 + 9y3)
completely.

94.

Fully simplify 3(7x − 8) + 6(3x − 7).95. Fully simplify 4(3x + 2) − 6(7x − 1).96.

Fully simplify −4(9x − 6) + 7(−x − 4).97. Fully simplify 5(6x + 1) − 8(4x − 6).98.

Challenge

Fill in the blanks with algebraic expressions that make the equation true. You may not use 0 or 1 in
any of the blank spaces.Here is an example: ? + ? � 8x.

One possible answer is: 3x + 5x � 8x.

There are infinitely many correct answers to this problem. I encourage you to be creative. After
finding a correct answer, see if you can come up with a different answer that is also correct.

a. + � −13x

b. + � −13x30

c. · · � 2x80

99.
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2.11 Variables, Expressions, and Equations Chapter Review

2.11.1 Variables and Evaluating Expressions

In Section 2.1 we covered the definitions of variables and expressions, and how to evaluate an expression
with a particular number. We learned the formulas for perimeter and area of rectangles, triangles, and
circles.

Evaluating Expressions Whenwe evaluate an expression’s value, we substitute each variablewith its given
value.

Example 2.11.1 Evaluate the value of 5
9 (F − 32) if F � 212.

5
9 (F − 32) � 5

9 (212 − 32)

�
5
9 (180)

� 100

Substituting a Negative Number When we substitute a variable with a negative number, it’s important
to use parentheses around the number.

Example 2.11.2 Evaluate the following expressions if x � −3.

a. x2
� (−3)2

� 9
b. x3

� (−3)3

� (−3)(−3)(−3)
� −27

c. −x2
� −(−3)2

� −9
d. −x3

� −(−3)3

� −(−27)
� 27

2.11.2 Geometry Formulas

In Section 2.2 we established the following formulas.

Perimeter of a Rectangle P � 2(ℓ + w)
Area of a Rectangle A � ℓw

Area of a Triangle A �
1
2 bh

Circumference of a Circle c � 2πr

Area of a Circle A � πr2

Volume of a Rectangular Prism V � wdh

Volume of a Cylinder V � πr2h

Volume of a Rectangular Prism or Cylinder V � Bh

2.11.3 Combining Like Terms

In Section 2.3 we covered the definitions of a term and how to combine like terms.
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Example 2.11.3 List the terms in the expression 5x − 3y +
2w
3 .

Explanation. The expression has three terms that are being added, 5x, −3y and 2w
3 .

Example 2.11.4 Simplify the expression 5x − 3x2 + 2x + 5x2, if possible, by combining like terms.

Explanation. This expression has four terms: 5x, −3x2, 2x, and 5x2. Both 5x and 2x are like terms; also
−3x2 and 5x2 are like terms. When we combine like terms, we get:

5x − 3x2
+ 2x + 5x2

� 7x + 2x2

Note that we cannot combine 7x and 2x2 because x and x2 represent different quantities.

2.11.4 Equations and Inequalities as True/False Statements

In Section 2.4 we covered the definitions of an equation and an inequality, as well as how to verify if a
particular number is a solution to them.

Checking Possible Solutions Given an equation or an inequality (with one variable), checking if some
particular number is a solution is just a matter of replacing the value of the variable with the specified
number anddetermining if the resulting equation/inequality is true or false. Thismay involve some amount
of arithmetic simplification.

Example 2.11.5 Is −5 a solution to 2(x + 3) − 2 � 4 − x?

Explanation. To find out, substitute in −5 for x and see what happens.

2(x + 3) − 2 � 4 − x

2((−5) + 3) − 2 ?
� 4 − (−5)

2(−2) − 2 ?
� 9

−4 − 2 ?
� 9

−6 no
� 9

So no, −5 is not a solution to 2(x + 3) − 2 � 4 − x.

2.11.5 Solving One-Step Equations

In Section 2.5 we covered to to add, subtract, multiply, or divide on both sides of an equation to isolate
the variable, summarized in Fact 2.5.12. We also learned how to state our answer, either as a solution or a
solution set. Last we discussed how to solve equations with fractions.

Solving One-Step Equations When we solve linear equations, we use Properties of Equivalent Equations
and follow an algorithm to solve a linear equation.
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Example 2.11.6 Solve for 1 in 1
2 �

2
3 + 1.

Explanation. We will subtract 2
3 on both sides of the equation:

1
2 �

2
3 + 1

1
2 −

2
3 �

2
3 + 1 − 2

3
3
6 −

4
6 � 1

−1
6 � 1

We will check the solution by substituting 1 in the original equation with − 1
6 :

1
2 �

2
3 + 1

1
2

?
�

2
3 +

(
−1

6

)
1
2

?
�

4
6 +

(
−1

6

)
1
2

?
�

3
6

1
2
✓
�

1
2

The solution − 1
6 is checked and the solution set is

{
− 1

6
}
.

2.11.6 Solving One-Step Inequalities

In Section 2.6 we covered how solving inequalities is very much like how we solve equations, except that if
we multiply or divide by a negative we switch the inequality sign.

Solving One-Step Inequalities When we solve linear inequalities, we also use Properties of Equivalent
Equations with one small complication: When we multiply or divide by the same negative number on both
sides of an inequality, the direction reverses!

Example 2.11.7 Solve the inequality −2x ≥ 12. State the solution set with both interval notation and
set-builder notation.

Explanation. To solve this inequality, we will divide each side by −2:

−2x ≥ 12
−2x
−2 ≤

12
−2 Note the change in direction.

x ≤ −6

• The inequality’s solution set in interval notation is (−∞,−6].
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• The inequality’s solution set in set-builder notation is {x | x ≤ −6}.

2.11.7 Percentages

In Section 2.7 we covered how to translate sentences with percentages into equations that we can solve.

Solving One-Step Equations Involving Percentages An important skill for solving percent-related prob-
lems is to boil down a complicated word problem into a simple form like “2 is 50% of 4.”

Example 2.11.8 What percent of 2346.19 is 1995.98?

Using P to represent the unknown quantity, we write and solve the equation:

what percent︷︸︸︷
P

of︷︸︸︷
·

$2346.19︷  ︸︸  ︷
2346.19

is︷︸︸︷
�

$1995.98︷  ︸︸  ︷
1995.98

P · 2346.19
2346.19 �

1995.98
2346.19

P � 0.85073 . . .
P ≈ 85.07%

In summary, 1995.98 is approximately 85.07% of 2346.19.

2.11.8 Modeling with Equations and Inequalities

In Section 2.8 we covered how to translate phrases into mathematics, and how to set up equations and
inequalities for application models.

Modeling with Equations and Inequalities To set up an equation modeling a real world scenario, the
first thing we need to do is identify what variable we will use. The variable we use will be determined by
whatever is unknown in our problem statement. Once we’ve identified and defined our variable, we’ll use
the numerical information provided in the equation to set up our equation.

Example 2.11.9 A bathtub contains 2.5 ft3 of water. More water is being poured in at a rate of 1.75 ft3

per minute. When will the amount of water in the bathtub reach 6.25 ft3?

Explanation. Since the question being asked in this problem startswith “when,”we immediately know
that the unknown is time. As the volume of water in the tub is measured in ft3 per minute, we know
that time needs to be measured in minutes. We’ll defined t to be the number of minutes that water is
poured into the tub. Since each minute there are 1.75 ft3 of water added, we will add the expression
1.75t to 2.5 to obtain the total amount of water. Thus the equation we set up is:

2.5 + 1.75t � 6.25

2.11.9 Introduction to Exponent Rules

In Section 2.9 we covered the rules of exponents for multiplication.
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Example 2.11.10 Simplify the following expressions using the rules of exponents:

a. −2t3 · 4t5 b. 5
(
v4)2 c. −(3u)2 d. (−3z)2

Explanation.

a. −2t3 · 4t5 � −8t8 b. 5
(
v4)2

� 5v8 c. −(3u)2 � −9u4 d. (−3z)2 � 9z4

2.11.10 Simplifying Expressions

In Section 2.10we covered the definitions of the identities and inverses, and the various algebraic properties.
We then learned about the order of operations.

Example 2.11.11 Use the associative, commutative, and distributive properties to simplify the expres-
sion 5x + 9(−2x + 3) as much as possible.

Explanation. We will remove parentheses by the distributive property, and then combine like terms:

5x + 9(−2x + 3) � 5x + 9(−2x + 3)
� 5x + 9(−2x) + 9(3)
� 5x − 18x + 27
� −13x + 27

Exercises

A trapezoid’s area can be calculated by the formula A �
1
2 (b1 + b2)h, where A stands for area, b1 for the first

base’s length, b2 for the second base’s length, and h for height.

Find the area of the trapezoid below.1. Find the area of the trapezoid below.2.
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To convert a temperature measured in degrees Fahrenheit to degrees Celsius, there is a formula:

C �
5
9 (F − 32)

where C represents the temperature in degrees Celsius and F represents the temperature in degrees Fahren-
heit.

If a temperature is 122◦F, what is that temper-
ature measured in Celsius?

3. If a temperature is 14◦F, what is that temper-
ature measured in Celsius?

4.

Evaluate the expression x2:

a. When x � 6, x2
�

b. When x � −6, x2
�

5. Evaluate the expression y2:

a. When y � 3, y2
�

b. When y � −9, y2
�

6.

Evaluate the expression y3:

a. When y � 5, y3
�

b. When y � −3, y3
�

7. Evaluate the expression r3:

a. When r � 3, r3
�

b. When r � −5, r3
�

8.

List the terms in each expression.

a. 4t + 2z + 6

b. 7z2

c. 9t + y

d. 2t + 7t

9. List the terms in each expression.

a. 8t2 + 6 + 2x2 − t2

b. 5x2 − 6y2 + 7y

c. −5z2 + 3t2 − 7y2

d. −2y2 + 4 − 3s + 2t

10.

Simplify each expression, if possible, by com-
bining like terms.

a. 8t − t + 3t + 9t

b. −8z2 + 5z2 + 6z2

c. 3z − 3z

d. −3x2 − 2 − 7x

11. Simplify each expression, if possible, by com-
bining like terms.

a. 5t2 − 8y2 + 4 + 2t

b. 7t − 2t2

c. −7z2 − 2z2 + 8x2

d. −6s + x

12.
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Simplify each expression, if possible, by com-
bining like terms.

a. 4
3 t + 4

9

b. − 1
7 y2 + y2 − 4

3 y2 + 2
7 s2

c. − 3
8 y +

3
2 z2 − 3z2 + 2x

d. − 2
3 t − s

13. Simplify each expression, if possible, by com-
bining like terms.

a. − 1
6 t − 9

4 t

b. − 3
8 s − z − 2

5 s

c. 1
3 y2 − 9

5 y2

d. − 2
9 y − 1

3 y2 + 1
4 y2 + 9y

14.

Is −2 a solution for x in the equation 2x + 2 �

2 − (5 + x)? Evaluating the left and right sides
gives:

2x + 2 � 2 − (5 + x)
?
�

So−2 (□ is □ is not) a solution to 2x + 2 �

2 − (5 + x).

15. Is −1 a solution for x in the equation 4x − 4 �

−3 − (4 + x)? Evaluating the left and right sides
gives:

4x − 4 � −3 − (4 + x)
?
�

So−1 (□ is □ is not) a solution to 4x − 4 �

−3 − (4 + x).

16.

Is 1 a solution for x in the inequality−4x2 + 5x ≤
2x − 7? Evaluating the left and right sides gives:

−4x2 + 5x ≤ 2x − 7
?
≤

So 1 (□ is □ is not) a solution to−4x2 + 5x ≤
2x − 7.

17. Is 2 a solution for x in the inequality−2x2 + 5x ≤
2x − 12? Evaluating the left and right sides gives:

−2x2 + 5x ≤ 2x − 12
?
≤

So 2 (□ is □ is not) a solution to−2x2 + 5x ≤
2x − 12.

18.

Solve the equation.

t + 7 � 219. t + 4 � 120. −10 � t − 621. −9 � x − 722.

96 � −8x23. 24 � −3y24. 5
13 c � 2525. 4

7A � 1226.
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The pie chart represents a collector’s collec-
tion of signatures from various artists.

If the collector has a total of 1450 signatures,
there are signatures by Sting.

27. The pie chart represents a collector’s collec-
tion of signatures from various artists.

If the collector has a total of 1650 signatures,
there are signatures by Sting.

28.

Acommunity college conducted a survey about
the number of students riding each bus line
available. The following bar graph is the re-
sult of the survey.

What percent of students ride Bus #1?

Approximately of students
ride Bus #1.

29. Acommunity college conducted a survey about
the number of students riding each bus line
available. The following bar graph is the re-
sult of the survey.

What percent of students ride Bus #1?

Approximately of students
ride Bus #1.

30.
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The following is a nutrition fact label from a
certain macaroni and cheese box.

The highlighted rowmeans each serving ofmac-
aroni and cheese in this box contains 7 g of fat,
which is 14% of an average person’s daily in-
take of fat. What’s the recommended daily in-
take of fat for an average person?

The recommendeddaily intake of fat for an av-
erage person is .

31. The following is a nutrition fact label from a
certain macaroni and cheese box.

The highlighted rowmeans each serving ofmac-
aroni and cheese in this box contains 5.5 g of
fat, which is 10% of an average person’s daily
intake of fat. What’s the recommended daily
intake of fat for an average person?

The recommendeddaily intake of fat for an av-
erage person is .

32.

Jerry used to make 13 dollars per hour. After
he earned his Bachelor’s degree, his pay rate
increased to 48 dollars per hour. What is the
percentage increase in Jerry’s salary?

The percentage increase is .

33. Eileen used tomake 14 dollars per hour. After
she earned her Bachelor’s degree, her pay rate
increased to 49 dollars per hour. What is the
percentage increase in Eileen’s salary?

The percentage increase is .

34.

After a 10% increase, a town has 550 people.
What was the population before the increase?

Before the increase, the town’s populationwas
.

35. After a 70% increase, a town has 1020 people.
What was the population before the increase?

Before the increase, the town’s populationwas
.

36.
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Abicycle for sale costs $254.88, which includes
6.2% sales tax. What was the cost before sales
tax?

Assume the bicycle’s price before sales tax is
p dollars. Write an equation to model this sce-
nario. There is no need to solve it.

37. Abicycle for sale costs $283.77, which includes
5.1% sales tax. What was the cost before sales
tax?

Assume the bicycle’s price before sales tax is
p dollars. Write an equation to model this sce-
nario. There is no need to solve it.

38.

Theproperty taxes on a 2100-square-foot house
are $4,179.00 per year. Assuming these taxes
are proportional, what are the property taxes
on a 1700-square-foot house?

Assume property taxes on a 1700-square-foot
house is t dollars. Write an equation to model
this scenario. There is no need to solve it.

39. Theproperty taxes on a 1600-square-foot house
are $1,600.00 per year. Assuming these taxes
are proportional, what are the property taxes
on a 2000-square-foot house?

Assume property taxes on a 2000-square-foot
house is t dollars. Write an equation to model
this scenario. There is no need to solve it.

40.

A swimming pool is being filled with water
from a garden hose at a rate of 5 gallons per
minute. If the pool already contains 30 gallons
of water and can hold 135 gallons, after how
long will the pool overflow?

Assume m minutes later, the pool would over-
flow. Write an equation tomodel this scenario.
There is no need to solve it.

41. A swimming pool is being filled with water
from a garden hose at a rate of 8 gallons per
minute. If the pool already contains 40 gallons
of water and can hold 280 gallons, after how
long will the pool overflow?

Assume m minutes later, the pool would over-
flow. Write an equation tomodel this scenario.
There is no need to solve it.

42.

Use the commutative prop-
erty of addition to write an
equivalent expression to 5b + 31.

43. Use the commutative prop-
erty of addition to write an
equivalent expression to 6q + 79.

44. Use the associative property
of multiplication to write an
equivalent expression to 3(4r).

45.

Use the associative property
of multiplication to write an
equivalent expression to 4(7m).

46. Use the distributive property
towrite an equivalent expres-
sion to 10

(
p + 2

)
that has no

grouping symbols.

47. Use the distributive property
towrite an equivalent expres-
sion to 7

(
q + 6

)
that has no

grouping symbols.

48.

Use the distributive property
to simplify 4 + 9

(
2 + 4y

)
com-

pletely.

49. Use the distributive property
to simplify 9 + 4(9 + 3r) com-
pletely.

50. Use the distributive property
to simplify 6 − 4(1 − 6a) com-
pletely.

51.

Use the distributive property
to simplify 3 − 9(−5 − 6b) com-
pletely.

52. Use the properties of expo-
nents to simplify the expres-
sion.

r12 · r17

53. Use the properties of expo-
nents to simplify the expres-
sion.

t14 · t11

54.
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Use the properties of expo-
nents to simplify the expres-
sion.(
y10)3

55. Use the properties of expo-
nents to simplify the expres-
sion.(
t11)10

56. Use the properties of expo-
nents to simplify the expres-
sion.

(3x)4

57.

Use the properties of expo-
nents to simplify the expres-
sion.

(2r)2

58. Use the properties of expo-
nents to simplify the expres-
sion.

(−2t5) · (4t16)

59. Use the properties of expo-
nents to simplify the expres-
sion.

(−5y7) · (3y9)

60.

Use the properties of expo-
nents to simplify the expres-
sion.

a.
(
−2b3)6

�

b. −
(
2b3)6

�

61. Use the properties of expo-
nents to simplify the expres-
sion.

a.
(
−2a3)2

�

b. −
(
2a3)2

�

62. Simplify the following ex-
pression.(
3r3)4 (r2)2=

63.

Simplify the following ex-
pression.(
5t2)2 (t5)2=

64. Simplify the following ex-
pressions if possible.

a. p2
+ 2p2

�

b. (p2)(2p2) �

c. p2 − 4p3
�

d. (p2)(−4p3) �

65. Simplify the following ex-
pressions if possible.

a. −2q + 4q �

b. (−2q)(4q) �

c. −2q − q4
�

d. (−2q)(−q4) �

66.

Multiply the polynomials.

−10x2 (
3x2 + 5x

)
�67. 7x2 (

9x2 + 10x
)
�68.
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CHAPTER 3
Linear Equations and Inequalities

3.1 Solving Multistep Linear Equations

We have learned how to solve one-step equations in Section. In this section, we will learn how to solve
multistep equations.

3.1.1 Solving Two-Step Equations

Example 3.1.2 A water tank can hold 140 gallons of water, but it has only 5 gallons of water. A tap was
turned on, pouring 15 gallons of water into the tank every minute. After how many minutes will the
tank be full? Let’s find a pattern first.

Minutes since Tap Amount of Water in
Was Turned on the Tank (in Gallons)

0 5
1 15 · 1 + 5 � 20
2 15 · 2 + 5 � 35
3 15 · 3 + 5 � 50
4 15 · 4 + 5 � 65
...

...
m 15m + 5

We can see that after m minutes, the tank has
15m + 5 gallons of water. This makes sense since
the tap pours 15m gallons of water into the tank
in m minutes and it had 5 gallons to startwith. To
find when the tank will be full (with 140 gallons
of water), we can write the equation

15m + 5 � 140

Table 3.1.3: Amount of Water in the Tank

First, we need to isolate the variable term, 15m, in the equation. In other words, we need to remove 5
from the left side of the equals sign. We can do this by subtracting 5 from both sides of the equation.
Once the variable term is isolated, we can eliminate the coefficient and solve for m. The full process is:

15m + 5 � 140
15m + 5 − 5 � 140 − 5

15m � 135
15m
15 �

135
15

m � 9
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Next, we need to substitute m with 9 in the equation 15m + 5 � 140 to check the solution:

15m + 5 � 140

15(9) + 5 ?
� 140

135 + 5 ✓� 140

The solution 9 is checked. In summary, the tank will be full after 9 minutes.

In solving the two-step equation in Example 3.1.2, we first isolated the variable expression 15m and then
eliminated the coefficient of 15 by dividing each side of the equation by 15. These two steps will be at the
heart of our approach to solving linear equations. Formore complicated equations, wemay need to simplify
some of the expressions first. Below is a general approach to solving linear equations that we will use as we
solve more and more complicated equations.

Simplify Simplify the expressions on each side of the equation by distributing and combining
like terms.

Isolate Use addition or subtraction to separate the variable terms and constant terms (num-
bers) so that they are on different sides of the equation.

Eliminate Use multiplication or division to eliminate the variable term’s coefficient.

Check Check the solution. Substitute values into the original equation and use the order of
operations to simplify both sides. It’s important to use the order of operations alone
rather than properties like the distributive law. Otherwise you might repeat the same
arithmetic errors made while solving and fail to catch an incorrect solution.

Summarize State the solution set or (in the case of an application problem) summarize the
result in a complete sentence using appropriate units.

List 3.1.4: Steps to Solve Linear Equations

Let’s look at some more examples.

Example 3.1.5 Solve for y in the equation 7 − 3y � −8.

Explanation. To solve, we will first separate the variable terms and constant terms into different sides
of the equation. Then we will eliminate the variable term’s coefficient.

7 − 3y � −8
7 − 3y − 7 � −8 − 7

−3y � −15
−3y
−3 �

−15
−3

y � 5
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3.1 Solving Multistep Linear Equations

Checking the solution y � 5:

7 − 3y � −8

7 − 3(5) ?
� −8

7 − 15 ✓� −8

Therefore the solution to the equation 7 − 3y � −8 is 5 and the solution set is {5}.

3.1.2 Solving Multistep Linear Equations

Example 3.1.6 Ahmed has saved $2,500.00 in his savings account and is going to start saving $550.00 per
month. Julia has saved $4,600.00 in her savings account and is going to start saving $250.00 per month.
If this situation continues, how many months later would Ahmed catch up with Julia in savings?

Ahmed saves $550.00 permonth, so he can save 550m dollars in m months. With the $2,500.00 he started
with, after m months he has 550m+2500 dollars. Similarly, after m months, Julia has 250m+4600 dollars.
To find when those two accounts will have the same amount of money, we write the equation

550m + 2500 � 250m + 4600.

550m + 2500 � 250m + 4600
550m + 2500 − 2500 � 250m + 4600 − 2500

550m � 250m + 2100
550m − 250m � 250m + 2100 − 250m

300m � 2100
300m
300 �

2100
300

m � 7

Checking the solution 7:

550m + 2500 � 250m + 4600

550(7) + 2500 ?
� 250(7) + 4600

3850 + 2500 ?
� 1750 + 4600

6350 ✓� 6350

In summary, Ahmed will catch up with Julia’s savings in 7 months.

Example 3.1.7 Solve for x in 5 − 2x � 5x − 9.

Explanation.

5 − 2x � 5x − 9
5 − 2x − 5 � 5m − 9 − 5

−2x � 5x − 14
−2x − 5x � 5x − 14 − 5x

−7x � −14
−7x
−7 �

−14
−7

x � 2
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Checking the solution 2:

5 − 2x � 5x − 9

5 − 2(2) ?
� 5(2) − 9

5 − 4 ?
� 10 − 9

1 ✓� 1

Therefore the solution is 2 and the solution set is {2}.

In Example 3.1.7, we could have moved variable
terms to the right side of the equals sign, and num-
ber terms to the left side. We chose not to. There’s
no reason we couldn’t have moved variable terms
to the right side though. Let’s compare:

5 − 2x � 5x − 9
5 − 2x + 9 � 5x − 9 + 9

14 − 2x � 5x
14 − 2x + 2x � 5x + 2x

14 � 7x
14
7 �

7x
7

2 � x

Lastly, we could save a step by moving variable
terms and number terms in one step: 5 − 2x � 5x − 9

5 − 2x + 2x + 9 5x − 9 + 2x + 9
14 � 7x
14
7 �

7x
7

2 � x

Remark 3.1.8. This textbook will move variable terms and number terms separately throughout this chap-
ter. Check with your instructor for their expectations.

Checkpoint 3.1.9. Solve the equation.

7a + 3 � a + 45

Explanation. The first step is to subtract terms in order to separate the variable and non-variable terms.

7a + 3 � a + 45
7a + 3 − a − 3 � a + 45 − a − 3

6a � 42
6a
6 �

42
6

a � 7

The solution to this equation is 7. To stress that this is a value assigned to a, some report a � 7. We can
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also say that the solution set is {7}, or that a ∈ {7}. If we substitute 7 in for a in the original equation
7a + 3 � a + 45, the equation will be true. Please check this on your own; it is an important habit.

The next example requires combining like terms.

Example 3.1.10 Solve for n in n − 9 + 3n � n − 3n.

Explanation.

To start solving this equation, we’ll need to com-
bine like terms. After this, we can put all terms
containing n on one side of the equation and fin-
ish solving for n.

n − 9 + 3n � n − 3n
4n − 9 � −2n

4n − 9 − 4n � −2n − 4n
−9 � −6n
−9
−6 �

−6n
−6

n �
3
2

Checking the solution 3
2 :

n − 9 + 3n � n − 3n

3
2 − 9 + 3

(
3
2

)
?
�

3
2 − 3

(
3
2

)
3
2 − 9 +

9
2

?
�

3
2 −

9
2

12
2 − 9 ?

� −6
2

6 − 9 ?
� −3

−3 ?
� −3

The solution to the equation n − 9 + 3n � n − 3n is 3
2 and the solution set is

{ 3
2
}
.

Checkpoint 3.1.11. Solve the equation.

−1 + 7 � −8b − b − 3

Explanation. The first step is simply to combine like terms.

−1 + 7 � −8b − b − 3
6 � −9b − 3

6 + 3 � −9b − 3 + 3
9 � −9b

9
−9 �

−9b
−9

−1 � b
b � −1

The solution to this equation is −1. To stress that this is a value assigned to b, some report b � −1. We can
also say that the solution set is {−1}, or that b ∈ {−1}. If we substitute −1 in for b in the original equation
−1 + 7 � −8b − b − 3, the equation will be true. Please check this on your own; it is an important habit.

Example 3.1.12 Azul is designing a rectangular garden and they have 40 meters of wood for the border.
Their garden’s length must be 4 meters less than three times the width, and its perimeter must be 40
meters. Find the garden’s length and width.

Explanation. Reminder: A rectangle’s perimeter formula is P � 2(L+W), where P stands for perimeter,

189



Chapter 3 Linear Equations and Inequalities

L stands for length and W stands for width.

Let Azul’s garden width be W meters. We can then represent the length as 3W − 4 meters since we
are told that it is 4 meters less than three times the width. It’s given that the perimeter is 40 meters.
Substituting those values into the formula, we have:

P � 2(L + W)
40 � 2(3W − 4 + W)
40 � 2(4W − 4) Like terms were combined.

The next step to solve this equation is to remove
the parentheses by distribution.

40 � 2(4W − 4)
40 � 8W − 8

40 + 8 � 8W − 8 + 8
48 � 8W
48
8 �

8W
8

6 � W .

Checking the solution W � 6:

40 � 2(4W − 4)

40 ?
� 2(4(6) − 4)

40 ✓� 2(20).

To determine the length, recall that this was represented by 3W − 4, which is:

3W − 4 � 3(6) − 4
� 14.

Thus, the width of Azul’s garden is 6 meters and the length is 14 meters.

Checkpoint 3.1.13. A rectangle’s perimeter is 52 m. Its width is 10 m. Use an equation to solve for the
rectangle’s length.

Its length is .

Explanation. When we deal with a geometric figure, it’s always a good idea to sketch it to help us think.
Let the length be x meters.
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The perimeter is given as 52 m. Adding up the rectangle’s 4 sides gives the perimeter. The equation is:

x + x + 10 + 10 � 52
2x + 20 � 52

2x + 20 − 20 � 52 − 20
2x � 32
2x
2 �

32
2

x � 16

So the rectangle’s length is 16 m. Don’t forget the unit m.

We should be careful when we distribute a negative sign into the parentheses, like in the next example.

Example 3.1.14 Solve for a in 4 − (3 − a) � −2 − 2(2a + 1).

Explanation. To solve this equation, we will simplify each side of the equation, manipulate it so that
all variable terms are on one side and all constant terms are on the other, and then solve for a:

4 − (3 − a) � −2 − 2(2a + 1)
4 − 3 + a � −2 − 4a − 2

1 + a � −4 − 4a
1 + a + 4a � −4 − 4a + 4a

1 + 5a � −4
1 + 5a − 1 � −4 − 1

5a � −5
5a
5 �

−5
5

a � −1

Checking the solution −1:

4 − (3 − a) � −2 − 2(2a + 1)

4 − (3 − (−1)) ?
� −2 − 2(2(−1) + 1)

4 − (4) ?
� −2 − 2(−1)

0 ✓� 0

Therefore the solution to the equation is −1 and the solution set is {−1}.

3.1.3 Differentiating between Simplifying Expressions, Evaluating Expressions and
Solving Equations

Let’s look at the following similar, yet different examples.

Example 3.1.15 Simplify the expression 10 − 3(x + 2).

Explanation.

10 − 3(x + 2) � 10 − 3x − 6
� −3x + 4
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An equivalent result is 4 − 3x. Note that our final result is an expression.

Example 3.1.16 Evaluate the expression 10 − 3(x + 2)when x � 2 and when x � 3.

Explanation. We will substitute x � 2 into the expression:

10 − 3(x + 2) � 10 − 3(2 + 2)
� 10 − 3(4)
� 10 − 12
� −2

When x � 2, 10 − 3(x + 2) � −2.

Similarly, we will substitute x � 3 into the expression:

10 − 3(x + 2) � 10 − 3(3 + 2)
� 10 − 3(5)
� 10 − 15 � −5

When x � 3, 10 − 3(x + 2) � −5.

Note that the final results here are values of the original expression.

Example 3.1.17 Solve the equation 10 − 3(x + 2) � x − 16.

Explanation.

10 − 3(x + 2) � x − 16
10 − 3x − 6 � x − 16
−3x + 4 � x − 16

−3x + 4 − 4 � x − 16 − 4
−3x � x − 20

−3x − x � x − 20 − x
−4x � −20
−4x
−4 �

−20
−4

x � 5

Checking the solution x � 5:

10 − 3(x + 2) � x − 16

10 − 3(5 + 2) ?
� 5 − 16

10 − 3(7) ?
� −11

10 − 21 ✓� −11

We have checked that x � 5 is a solution of the
equation 10 − 3(x + 2) � x − 16.

Note that the final results here are solutions to the equations.
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• An expression like 10 − 3(x + 2) can be simplified to −3x + 4 (as in Example 3.1.15), but
we cannot solve for x in an expression.

• As x takes different values, an expression has different values. In Example 3.1.16, when
x � 2, 10 − 3(x + 2) � −2; but when x � 3, 10 − 3(x + 2) � −5.

• An equation connects two expressions with an equals sign. In Example 3.1.17, 10− 3(x +

2) � x−16 has the expression 10−3(x+2) on the left side of equals sign, and the expression
x − 16 on the right side.

• When we solve the equation 10 − 3(x + 2) � x − 16, we are looking for a number which
makes those two expressions have the same value. In Example 3.1.17, we found the so-
lution to be x � 5, which makes both 10 − 3(x + 2) � −11 and x − 16 � −11, as shown in
the checking part.

List 3.1.18: A summary the differences among simplifying expressions, evaluating expressions and solving
equations:

Exercises

Warmup and Review Solve the equation.

r + 3 � −31. r + 9 � 62. t − 6 � −23. t − 2 � 64.

44 � −4x5. 42 � −7x6. 10
3 a � 27. 5

9 b � 98.

Solving Two-Step Equations Solve the equation.

6A + 4 � 589. 2B + 2 � 810. 8m − 6 � 1811. 5n − 5 � −5012.

−9 � 2q + 313. −23 � 8y + 114. −26 � 5r − 615. 6 � 2a − 416.

−5b + 3 � 4817. −8A + 1 � 4918. −2B − 8 � −2819. −5m − 5 � 520.

17 � −n + 921. 5 � −q + 322. 7y + 35 � 023. 4r + 40 � 024.
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Application Problems for Solving Two-Step Equations

A gym charges members $25 for a registration fee, and then $38 per month. You became a member
some time ago, and now you have paid a total of $557 to the gym. How many months have passed
since you joined the gym?

months have passed since you joined the gym.

25.

Your cell phone company charges a $18 monthly fee, plus $0.15 per minute of talk time. One month
your cell phone bill was $90. How many minutes did you spend talking on the phone that month?

You spent talking on the phone that month.

26.

A school purchased a batch of T-shirts from a company. The company charged $7 per T-shirt, and
gave the school a $60 rebate. If the school had a net expense of $2,460 from the purchase, howmany
T-shirts did the school buy?

The school purchased T-shirts.

27.

Joshua hired a face-painter for a birthday party. The painter charged a flat fee of $80, and then
charged $5.50 per person. In the end, Joshua paid a total of $217.50. How many people used the
face-painter’s service?

people used the face-painter’s service.

28.

A certain country has 676.8 million acres of forest. Every year, the country loses 7.52 million acres
of forest mainly due to deforestation for farming purposes. If this situation continues at this pace,
howmany years later will the country have only 368.48 million acres of forest left? (Use an equation
to solve this problem.)

After years, this country would have 368.48 million acres of forest left.

29.

Heather has $87 in her piggy bank. She plans to purchase some Pokemon cards, which costs $1.55
each. She plans to save $62.20 to purchase another toy. At most how many Pokemon cards can he
purchase?

Write an equation to solve this problem.

Heather can purchase at most Pokemon cards.

30.

Solving Equations with Variable Terms on Both Sides Solve the equation.

9q + 10 � q + 5031. 8x + 5 � x + 2632. −6r + 9 � −r − 133.
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−8a + 3 � −a − 3934. 5 − 7b � 6b + 9635. 2 − 2A � 6A + 8236.

5B + 7 � 9B + 1037. 4m + 4 � 2m + 338. a. 7n + 3 � 3n + 39

b. 3x + 3 � 7x − 29

39.

a. 9q + 10 � 3q + 34

b. 3C + 10 � 9C − 44

40.

Application Problems for Solving Equations with Variable Terms on Both Sides Use a linear equation
to solve the word problem.

Two trees are 6 feet and 11.5 feet tall. The shorter tree grows 2.5 feet per year; the taller tree grows
2 feet per year. How many years later would the shorter tree catch up with the taller tree?

It would take the shorter tree years to catch up with the taller tree.

41.

MassageHeaven andMassage You are competitors. MassageHeaven has 3400 registered customers,
and it gets approximately 900 newly registered customers every month. Massage You has 10600
registered customers, and it gets approximately 450 newly registered customers every month. How
many months would it take Massage Heaven to catch up with Massage You in the number of regis-
tered customers?

These two companies would have approximately the same number of registered customers
months later.

42.

Two truck rental companies have different rates. V-Haul has a base charge of $60.00, plus $0.60 per
mile. W-Haul has a base charge of $52.60, plus $0.65 per mile. For howmanymiles would these two
companies charge the same amount?

If a driver drives miles, those two companies would charge the same amount of money.

43.

MassageHeaven andMassage You are competitors. MassageHeaven has 9200 registered customers,
but it is losing approximately 400 registered customers every month. Massage You has 1200 regis-
tered customers, and it gets approximately 400 newly registered customers everymonth. Howmany
months would it take Massage Heaven to catch up with Massage You in the number of registered
customers?

These two companies would have approximately the same number of registered customers
months later.

44.
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Tammy has $85.00 in her piggy bank, and she spends $4.00 every day.

Laurie has $8.00 in her piggy bank, and she saves $1.50 every day.

If they continue to spend and save money this way, how many days later would they have the same
amount of money in their piggy banks?

days later, Tammy and Laurie will have the same amount of money in their piggy
banks.

45.

Lindsay has $95.00 in her piggy bank, and she spends $4.00 every day.

Derick has $18.00 in his piggy bank, and he saves $3.00 every day.

If they continue to spend and save money this way, how many days later would they have the same
amount of money in their piggy banks?

days later, Lindsay and Derick will have the same amount of money in their piggy
banks.

46.

Solving Linear Equations with Like Terms Solve the equation.

4m + 7m + 2 � 11247. 9n + 2n + 2 � 9048. 6q + 6 + 4 � 4049.

3x + 10 + 3 � 2250. −2 + 4 � −3r − r − 3051. −6 + 8 � −5t − t − 4652.

2y + 3 − 7y � 3853. 5r + 7 − 7r � 2754. −6r + 10 + r � −2055.

−3r + 5 + r � 556. 45 � −8n − 9 − n57. −58 � −5q − 4 − q58.

2 − x − x � −7 + 359. 8 − r − r � −2 + 1460. 3 − 2t − 8 � −561.

2 − 9b − 10 � −862. A − 8 − 5A � −6 − 8A + 2663. B − 4 − 8B � −4 − 2B + 2564.

−10m + 2m � 10 − 2m − 4065. −9n + 4n � 8 − 2n − 1166. 4q + 10 � −5q + 10 − 2q67.

10x + 5 � −3x + 5 − 2x68. −8 + 9 � 7r − 6 − 10r + 4 + 2r69.

−2 + (−1) � 4t − 6 − 7t + 2 + 2t70.
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Application Problems for Solving Linear Equations with Like Terms

A 138-meter rope is cut into two segments. The longer segment is 28 meters longer than the shorter
segment. Write and solve a linear equation to find the length of each segment. Include units.

The segments are and long.

71.

In a doctor’s office, the receptionist’s annual salary is $142,000 less than that of the doctor. Together,
the doctor and the receptionist make $208,000 per year. Find each person’s annual income.

The receptionist’s annual income is . The doctor’s annual income is .

72.

Phil and Penelope went picking strawberries. Phil picked 116 fewer strawberries than Penelope did.
Together, they picked 214 strawberries. How many strawberries did Penelope pick?

Penelope picked strawberries.

73.

Virginia and Ross collect stamps. Ross collected 27 fewer than five times the number of Virginia’s
stamps. Altogether, they collected 1005 stamps. How many stamps did Virginia and Ross collect?

Virginia collected stamps. Ross collected stamps.

74.

Diane and Tracei sold girl scout cookies. Diane’s sales were $37 more than three times of Tracei’s.
Altogether, their sales were $437. How much did each girl sell?

Diane’s sales were . Tracei’s sales were .

75.

A hockey team played a total of 191 games last season. The number of games they wonwas 11 more
than five times of the number of games they lost.

Write and solve an equation to answer the following questions.

The team lost games. The team won games.

76.

After a 55% increase, a town has 155 people. What was the population before the increase?

Before the increase, the town’s population was .

77.

After a 35% increase, a town has 270 people. What was the population before the increase?

Before the increase, the town’s population was .

78.
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Solving Linear Equations Involving Distribution Solve the equation.

2(t + 2) � 2479. 8(b + 9) � 11280. 5(c − 6) � 581.

2(B − 3) � −1882. 24 � −8(m + 7)83. −30 � −5(n + 1)84.

12 � −2
(
q − 5

)
85. 128 � −8(x − 9)86. − (r − 4) � 887.

− (t − 8) � −288. −14 � − (7 − b)89. −2 � − (3 − c)90.

10(10B − 8) � 52091. 7(5C − 8) � −5692. 2 � −2(9 − 2n)93.

110 � −5
(
3 − 5q

)
94. 3 + 9(x + 8) � 11195. 1 + 6(r + 7) � 3196.

5 − 8(t + 7) � 1397. 3 − 10(b + 7) � −13798. 22 � 2 − 4(c − 7)99.

97 � 9 − 8(B − 7)100. 3 − 6(C − 7) � 105101. 1 − 8(n − 7) � 17102.

3 � 9 −
(
5 − q

)
103. −1 � 8 − (3 − x)104. 1 − (r + 10) � −18105.

4 − (t + 7) � −6106. a. 5 + (b + 4) � 12

b. 5 − (b + 4) � 12

107. a. 2 + (c + 1) � −6

b. 2 − (c + 1) � −6

108.

Solve the equation.

4(B + 5) − 10(B − 7) � 90109. 3(C + 10) − 8(C − 2) � 46110.

5 + 8(n − 5) � −28 − (7 − 2n)111. 4 + 9
(
p − 10

)
� −84 −

(
2 − 2p

)
112.

7(x − 2) − x � 67 − 3(7 + 3x)113. 10(r − 6) − r � −90 − 3(2 + 3r)114.

7(−10t + 10) � 14(−2 − 6t)115. 3(−10b + 6) � 6(−9 − 6b)116.

23 + 6(6 − 4c) � −4(c − 13) + 7117. 12 + 4(3 − 3B) � −4(B − 4) + 8118.
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Application Problems for Solving Linear Equations Involving Distribution

A rectangle’s perimeter is 78 cm. Its base is
27 cm.

Its height is .

119. A rectangle’s perimeter is 58 m. Its width is
12 m. Use an equation to solve for the rectan-
gle’s length.

Its length is .

120.

A rectangle’s perimeter is 116 in. Its length is
8 in longer than its width. Use an equation to
find the rectangle’s length and width.

Its width is .

Its length is .

121. A rectangle’s perimeter is 120 cm. Its length
is 2 times as long as its width. Use an equation
to find the rectangle’s length and width.

It’s width is .

Its length is .

122.

A rectangle’s perimeter is 106 ft. Its length
is 2 ft shorter than four times its width. Use
an equation to find the rectangle’s length and
width.

Its width is .

Its length is .

123. A rectangle’s perimeter is 184 ft. Its length
is 4 ft longer than three times its width. Use
an equation to find the rectangle’s length and
width.

Its width is .

Its length is .

124.

Comparisons

Solve the equation.

a. −b + 7 � 7

b. −y + 7 � −7

c. −r − 7 � 7

d. −a − 7 � −7

125. Solve the equation.

a. −c + 4 � 4

b. −m + 4 � −4

c. −B − 4 � 4

d. −y − 4 � −4

126.

a. Solve the following linear equation:

r − 2 � 8

b. Evaluate the following expression when
r � 10:

r − 2 �

127. a. Solve the following linear equation:

r − 8 � −3

b. Evaluate the following expression when
r � 5:

r − 8 �

128.
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a. Solve the following linear equation:

4(t + 6) − 4 � 36

b. Evaluate the following expression when
t � 4:

4(t + 6) − 4 �

c. Simplify the following expression:

4(t + 6) − 4 �

129. a. Solve the following linear equation:

3(t − 5) + 9 � 6

b. Evaluate the following expression when
t � 4:

3(t − 5) + 9 �

c. Simplify the following expression:

3(t − 5) + 9 �

130.

Choose True or False for the following ques-
tions about the difference between expressions
and equations.

a. We can evaluate −10x − 10 when x � 1 (□True
□ False)

b. −10x−10 � −10x−10 is an equation. (□True
□ False)

c. We can evaluate −10x − 10 � −10x−10 when x �

1 (□ True □ False)

d. We can check whether x � 1 is a solution of −10x − 10.
(□ True □ False)

e. −10x−10 is an expression. (□True □ False)

f. We can check whether x � 1 is a solution of −10x − 10 �

−10x − 10. (□ True □ False)

g. −10x − 10 � −10x − 10 is an expression.
(□ True □ False)

h. −10x−10 is an equation. (□True □ False)

131. Choose True or False for the following ques-
tions about the difference between expressions
and equations.

a. −7x+4 is an expression. (□True □ False)

b. 4x−7 is an equation. (□ True □ False)

c. −7x+4 � 4x−7 is an equation. (□ True
□ False)

d. We can check whether x � 1 is a solution of −7x + 4.
(□ True □ False)

e. −7x+4 � 4x−7 is an expression. (□True
□ False)

f. We can evaluate −7x + 4 � 4x−7 when x �

1 (□ True □ False)

g. We can evaluate −7x + 4 when x � 1 (□True
□ False)

h. We can check whether x � 1 is a solution of −7x + 4 �

4x − 7. (□ True □ False)

132.

Challenge

Think of a number. Add four to your number. Nowdouble that. Then add six. Then halve it. Finally,
subtract 7. What is the result? Do you always get the same result, regardless of what number you
start with? How does this work? Explain using algebra.

133.

Write a linear equation whose solution is x � −9.

Note that you may not write an equation whose left side is just “x” or whose right side is just “x.”

There are infinitely many correct answers to this problem. Be creative. After finding an equation
that works, see if you can come up with a different one that also works.

134.
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3.2 Solving Multistep Linear Inequalities

We have learned how to solve one-step inequalities in Section. In this section, we will learn how to solve
multistep inequalities.

3.2.1 Solving Multistep Inequalities

When solving a linear inequality, we follow the same steps in List 3.1.4. The only difference in our steps to
solving is that whenwemultiply or divide by a negative number on both sides of an inequality, the direction
of the inequality symbol must switch. We will look at some examples.

Simplify Simplify the expressions on each side of the inequality by distributing and combining
like terms.

Isolate Use addition or subtraction to isolate the variable terms and constant terms (numbers)
so that they are on different sides of the inequality symbol.

Eliminate Use multiplication or division to eliminate the variable term’s coefficient. If each
side of the inequality is multiplied or divided by a negative number, switch the direction
of the inequality symbol.

Check When specified, verify the infinite solution set by checking multiple solutions.

Summarize State the solution set or (in the case of an application problem) summarize the
result in a complete sentence using appropriate units.

List 3.2.2: Steps to Solve Linear Inequalities

Example 3.2.3 Solve for t in the inequality −3t + 5 ≥ 11. Write the solution set in both set-builder
notation and interval notation.

Explanation.

−3t + 5 ≥ 11
−3t + 5 − 5 ≥ 11 − 5

−3t ≥ 6
−3t
−3 ≤

6
−3

t ≤ −2

Note that when we divided both sides of the inequality by −3, we had to switch the direction of the
inequality symbol.

The solution set in set-builder notation is {t | t ≤ −2}.
The solution set in interval notation is (−∞,−2].

Remark 3.2.4. Since the inequality solved in Example 3.2.3 has infinitely many solutions, it’s difficult to
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check. We found that all values of t for which t ≤ −2 are solutions, so one approach is to check if −2 is a
solution and additionally if one other number less than −2 is a solution.

Here, we’ll check that −2 satisfies this inequality:

−3t + 5 ≥ 11

−3(−2) + 5
?
≥ 11

6 + 5
?
≥ 11

11
✓
≥ 11

Next, we can check another number smaller than
−2, such as −5:

−3t + 5 ≥ 11

−3(−5) + 5
?
≥ 11

15 + 5
?
≥ 11

20
✓
≥ 11

Thus both −2 and −5 are solutions. It’s important to note that this doesn’t directly verify that all solutions
to this inequality check. It’s valuable though in that it would likely help us catch an error if we had made
one. Consult your instructor to see if you’re expected to check your answer in this manner.

Example 3.2.5 Solve for z in the inequality (6z + 5) − (2z − 3) < −12. Write the solution set in both
set-builder notation and interval notation.

Explanation.

(6z + 5) − (2z − 3) < −12
6z + 5 − 2z + 3 < −12

4z + 8 < −12
4z + 8 − 8 < −12 − 8

4z < −20
4z
4 <

−20
4

z < −5

Note that we divided both sides of the inequality by 4 and since this is a positive number we did not need
to switch the direction of the inequality symbol.

The solution set in set-builder notation is {z | z < −5}.
The solution set in interval notation is (−∞,−5).

Example 3.2.6 Solve for x in−2−2(2x+1) > 4−(3−x). Write the solution set in both set-builder notation
and interval notation.

Explanation.

−2 − 2(2x + 1) > 4 − (3 − x)
−2 − 4x − 2 > 4 − 3 + x
−4x − 4 > x + 1

−4x − 4 − x > x + 1 − x
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−5x − 4 > 1
−5x − 4 + 4 > 1 + 4

−5x > 5
−5x
−5 <

5
−5

x < −1

Note that when we divided both sides of the inequality by −5, we had to switch the direction of the
inequality symbol.

The solution set in set-builder notation is {x | x < −1}.
The solution set in interval notation is (−∞,−1).

Example 3.2.7 When a stopwatch started, the pressure inside a gas container was 4.2 atm (standard
atmospheric pressure). As the container was heated, the pressure increased by 0.7 atm per minute. The
maximum pressure the container can handle was 21.7 atm. Heating must be stopped once the pressure
reaches 21.7 atm. In what time interval was the container safe?

Explanation. The pressure increases by 0.7 atm per minute, so it increases by 0.7m after m minutes.
Counting in the original pressure of 4.2 atm, pressure in the container can be modeled by 0.7m + 4.2,
where m is the number of minutes since the stop watch started.

The container is safe when the pressure is 21.7 atm or lower. We can write and solve this inequality:

0.7m + 4.2 ≤ 21.7
0.7m + 4.2 − 4.2 ≤ 21.7 − 4.2

0.7m ≤ 17.5
0.7m
0.7 ≤

17.5
0.7

m ≤ 25

In summary, the container was safe as long as m ≤ 25. Assuming that m also must be greater than or
equal to zero, this means 0 ≤ m ≤ 25. We canwrite this as the time interval as [0, 25]. Thus the container
was safe between 0 minutes and 25 minutes.

Exercises

Review and Warmup

Solve this inequality.

x + 3 > 9

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

1. Solve this inequality.

x + 3 > 7

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

2. Solve this inequality.

4 > x − 10

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

3.
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Solve this inequality.

5 > x − 8

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

4. Solve this inequality.

5x ≤ 10

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

5. Solve this inequality.

2x ≤ 8

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

6.

Solve this inequality.

6 ≥ −2x

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

7. Solve this inequality.

6 ≥ −3x

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

8. Solve this inequality.

4
9 x > 12

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

9.

Solve this inequality.

5
6 x > 5

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

10. A swimming pool is being
filled with water from a gar-
den hose at a rate of 5 gal-
lons per minute. If the pool
already contains 60 gallons
ofwater and canhold 160gal-
lons, after how long will the
pool overflow?

Assume m minutes later, the
pool would overflow. Write
an equation tomodel this sce-
nario. There is no need to
solve it.

11. An engineer is designing a
cylindrical springform pan.
The pan needs to be able to
hold a volume of 305 cubic
inches and have a diameter
of 12 inches. What’s themin-
imumheight it can have? (Hint:
The formula for the volume
of a cylinder is V � πr2h).

Assume the pan’sminimum
height is h inches. Write an
equation to model this sce-
nario. There is no need to
solve it.

12.

Solving Multistep Linear Inequalities Solve this inequality.

9x + 6 > 42

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

13. 10x + 3 > 83

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

14. 4 ≥ 3x − 5

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

15.
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25 ≥ 4x − 3

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

16. 41 ≤ 1 − 4x

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

17. 33 ≤ 8 − 5x

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

18.

−6x − 4 < −58

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

19. −7x − 1 < −29

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

20. 4 ≥ −8x + 4

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

21.

3 ≥ −9x + 3

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

22. −5 > 5 − x

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

23. −8 > 1 − x

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

24.

3(x + 4) ≥ 24

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

25. 4(x + 8) ≥ 72

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

26. 7t + 7 < 1t + 37

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

27.

8t + 4 < 3t + 19

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

28. −9z + 6 ≤ −z − 58

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

29. −8z + 7 ≤ −z − 28

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

30.

a − 9 − 3a > −9 − 4a + 12

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

31. a − 9 − 9a > −10 − 10a + 7

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

32. −8p + 6 − 8p ≥ 2p + 6

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

33.
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−2p + 3 − 6p ≥ 3p + 3

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

34. 64 < −4
(
p − 9

)
In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

35. −20 < −5
(
p − 5

)
In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

36.

− (x − 2) ≥ 8

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

37. − (x − 8) ≥ 13

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

38. 47 ≤ 7 − 5(z − 1)
In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

39.

20 ≤ 8 − 2(z − 8)
In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

40. 5 −
(
y + 9

)
< 6

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

41. 1 −
(
y + 7

)
< −4

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

42.

1 + 7(x − 9) < −15 − (7 − 3x)
In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

43. 2 + 9(x − 5) < −20 − (7 − 5x)
In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

44.

Applications

You are riding in a taxi and can only pay with cash. You have to pay a flat fee of $25, and then pay
$2.80 per mile. You have a total of $193 in your pocket.

Let x be the number of miles the taxi will drive you. You want to know how many miles you can
afford. Write an inequality to represent this situation in terms of how many miles you can afford:

Solve this inequality. At most how many miles can you afford?

You can afford at most miles.

Use interval notation to express the number of miles you can afford.

45.
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You are riding in a taxi and can only pay with cash. You have to pay a flat fee of $30, and then pay
$3.50 per mile. You have a total of $135 in your pocket.

Let x be the number of miles the taxi will drive you. You want to know how many miles you can
afford. Write an inequality to represent this situation in terms of how many miles you can afford:

Solve this inequality. At most how many miles can you afford?

You can afford at most miles.

Use interval notation to express the number of miles you can afford.

46.

A car rental company offers the following two plans for renting a car:

Plan A: $31 per day and 16 cents per mile

Plan B: $49 per day with free unlimited mileage

How many miles must one drive in order to justify choosing Plan B?

One must drive more than miles to justify choosing Plan B. In other words, it’s more

economical to use plan B if your number of miles driven will be in the interval
(answer with interval notation).

47.

A car rental company offers the following two plans for renting a car:

Plan A: $29 per day and 17 cents per mile

Plan B: $52 per day with free unlimited mileage

How many miles must one drive in order to justify choosing Plan B?

One must drive more than miles to justify choosing Plan B. In other words, it’s more

economical to use plan B if your number of miles driven will be in the interval
(answer with interval notation).

48.

You are offered two different sales jobs. The first company offers a straight commission of 9% of the
sales. The second company offers a salary of $300 per week plus 4% of the sales. How much would
you have to sell in a week in order for the straight commission offer to be at least as good?

You’d have to sell more than worth of goods for the straight commission to be better for

you. In other words, the dollar amount of goods sold would have to be in the interval
(answer using interval notation).

49.
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You are offered two different sales jobs. The first company offers a straight commission of 8% of the
sales. The second company offers a salary of $430 per week plus 4% of the sales. How much would
you have to sell in a week in order for the straight commission offer to be at least as good?

You’d have to sell more than worth of goods for the straight commission to be better for

you. In other words, the dollar amount of goods sold would have to be in the interval
(answer using interval notation).

50.
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3.3 Linear Equations and Inequalities with Fractions

In this section, we will learn how to solve linear equations and inequalities with fractions.

3.3.1 Introduction

So far, in our last step of solving for a variable we
have divided each side of the equation by a con-
stant, as in:

2x � 10
2x
2 �

10
2

x � 5

If we have a coefficient that is a fraction, we could
proceed in exactly the same manner:

1
2 x � 10
1
2 x
1
2

�
10
1
2

x � 10 · 21 � 20

What if our equation or inequality was more complicated though, for example 1
4 x +

2
3 �

1
6? We would

have to first do a lot of fraction arithmetic in order to then divide each side by the coefficient of x. An
alternate approach is to instead multiply each side of the equation by a chosen constant that eliminates the
denominator. In the equation 1

2 x � 10, we could simply multiply each side of the equation by 2, which
would eliminate the denominator of 2:

1
2 x � 10

2 ·
(
1
2 x

)
� 2 · 10

x � 20

For more complicated equations, we will multiply each side of the equation by the least common denomi-
nator (LCD) of all fractions contained in the equation.

3.3.2 Eliminating Denominators

Deshawn planted a sapling in his yard that was
4-feet tall. The tree will grow 2

3 of a foot every
year. How many years will it take for his tree to
be 10 feet tall?

Since the tree grows 2
3 of a foot every year, we can

use a table to help write a formula modeling the
tree’s growth:

Years Passed Tree’s Height (ft)
0 4
1 4 +

2
3

2 4 +
2
3 · 2

...
...

y 4 +
2
3 y

Example 3.3.2 From this, we’ve determined that y years since the tree was planted, the tree’s height will
be 4 +

2
3 y feet.
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To find when Deshawn’s tree will be 10 feet tall,
we write and solve this equation:

4 +
2
3 y � 10

3 ·
(
4 +

2
3 y

)
� 3 · 10

3 · 4 + 3 · 23 y � 30

12 + 2y � 30
2y � 18

y � 9

Nowwewill check the solution 9 in the equation
4 +

2
3 y � 10:

4 +
2
3 y � 10

4 +
2
3 (9)

?
� 10

4 + 6 ✓� 10

In summary, it will take 9 years for Deshawn’s tree to reach 10 feet tall.

Let’s look at a few more examples.

Example 3.3.3 Solve for x in 1
4 x +

2
3 �

1
6 .

Explanation. To solve this equation, we first need to identify the LCD of all fractions in the equation.
On the left side we have 1

4 and 2
3 . On the right side we have 1

6 . The LCD of 3, 4, and 6 is 12, so we will
multiply each side of the equation by 12 in order to eliminate all of the denominators:

1
4 x +

2
3 �

1
6

12 ·
(
1
4 x +

2
3

)
� 12 · 16

12 ·
(
1
4 x

)
+ 12 ·

(
2
3

)
� 12 · 16

3x + 8 � 2
3x � −6
3x
3 �

−6
3

x � −2

Checking the solution −2:

1
4 x +

2
3 �

1
6

1
4 (−2) + 2

3
?
�

1
6

−2
4 +

2
3

?
�

1
6

− 6
12 +

8
12

?
�

1
6

2
12
✓
�

1
6

The solution is therefore −2 and the solution set is {−2}.

Example 3.3.4 Solve for z in − 2
5 z − 3

2 � − 1
2 z +

4
5 .
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Explanation.

The first thing we need to do is identify the LCD
of all denominators in this equation. Since the
denominators are 2 and 5, the LCD is 10. So as
our first step, we will multiply each side of the
equation by 10 in order to eliminate all denomi-
nators:

−2
5 z − 3

2 � −1
2 z +

4
5

10 ·
(
−2

5 z − 3
2

)
� 10 ·

(
−1

2 z +
4
5

)
10

(
−2

5 z
)
− 10

(
3
2

)
� 10

(
−1

2 z
)
+ 10

(
4
5

)
−4z − 15 � −5z + 8

z − 15 � 8
z � 23

Checking the solution 23:

−2
5 z − 3

2 � −1
2 z +

4
5

−2
5 (23) − 3

2
?
� −1

2 (23) + 4
5

−46
5 −

3
2

?
� −23

2 +
4
5

−46
5 ·

2
2 −

3
2 ·

5
5

?
� −23

2 ·
5
5 +

4
5 ·

2
2

−92
10 −

15
10

?
� −115

10 +
8
10

−107
10

✓
� −107

10

Thus the solution is 23 and so the solution set is {23}.

Example 3.3.5 Solve for a in the equation 2
3 (a + 1) + 5 �

1
3 .

Explanation.

2
3 (a + 1) + 5 �

1
3

3 ·
(
2
3 (a + 1) + 5

)
� 3 · 13

3 · 23 (a + 1) + 3 · 5 � 1

2(a + 1) + 15 � 1
2a + 2 + 15 � 1

2a + 17 � 1
2a � −16

a � −8

Check the solution −8 in the equation 2
3 (a + 1) +

5 �
1
3 , we find that:

2
3 (a + 1) + 5 �

1
3

2
3 (−8 + 1) + 5 ?

�
1
3

2
3 (−7) + 5 ?

�
1
3

−14
3 +

15
3
✓
�

1
3

The solution is therefore −8 and the solution set is {−8}.

Example 3.3.6 Solve for b in the equation 2b+1
3 �

2
5 .
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Explanation.

2b + 1
3 �

2
5

15 · 2b + 1
3 � 15 · 25

5(2b + 1) � 6
10b + 5 � 6

10b � 1

b �
1
10

Checking the solution 1
10 :

2b + 1
3 �

2
5

2
( 1

10
)
+ 1

3
?
�

2
5

1
5 + 1

3
?
�

2
5

1
5 +

5
5

3
?
�

2
5

6
5
3

?
�

2
5

6
5 ·

1
3
✓
�

2
5

The solution is 1
10 and the solution set is

{ 1
10

}
.

Remark 3.3.7. You might know about solving Example 3.3.6 with a technique called cross-multiplication.
Cross-multiplication is a specialized application of the process of clearing the denominators from an equa-
tion. This process will be discussed in Section 3.5.

Example 3.3.8 In a science lab, a container had 21 ounces of water at 9:00 A.M.. Water has been evapo-
rating at the rate of 3 ounces every 5 minutes. When will there be 8 ounces of water left?

Explanation. Since the container has been losing 3 oz of water every 5 minutes, it loses 3
5 oz every

minute. In m minutes since 9:00 A.M., the container would lose 3
5 m oz of water. Since the container had

21 oz of water at the beginning, the amount of water in the container can be modeled by 21− 3
5 m (in oz).

To find when there would be 8 oz of water left,
we write and solve this equation:

21 − 3
5 m � 8

5 ·
(
21 − 3

5 x
)
� 5 · 8

5 · 21 − 5 · 35 x � 40

105 − 3m � 40
105 − 3m − 105 � 40 − 105

−3m � −65
−3m
−3 �

−65
−3

m �
65
3

Checking the solution 65
3 :

21 − 3
5 m � 8

21 − 3
5

(
65
3

)
?
� 8

21 − 13 ✓� 8

212



3.3 Linear Equations and Inequalities with Fractions

Therefore the solution is 65
3 . As a mixed number, this is 21 2

3 . In context, this means that 21 minutes and
40 seconds after 9:00 A.M., at 9:21:40 A.M., the container will have 8 ounces of water left.

Checkpoint 3.3.9. Solve the equation.

21 �
x
5 +

x
2

Explanation. To clear fractions in an equation, wemultiply each term by a common denominator. For this
problem, a common denominator is 10.

21 �
x
5 +

x
2

10 · 21 � 10 · x
5 + 10 · x

2
210 � 2x + 5x
210 � 7x
210
7 �

7x
7

30 � x
x � 30

The solution to this equation is 30. To stress that this is a value assigned to x, some report x � 30. We can
also say that the solution set is {30}, or that x ∈ {30}. If we substitute 30 in for x in the original equation
21 �

x
5 +

x
2 , the equation will be true. Please check this on your own; it is an important habit.

3.3.3 Solving Inequalities with Fractions

We can also solve linear inequalities involving fractions by multiplying each side of the inequality by the
LCD of all fractions within the inequality. Remember that with inequalities, everything works exactly the
same except that the inequality sign reverses direction whenever we multiply each side of the inequality by
a negative number.

Example 3.3.10 Solve for x in the inequality 3
4 x − 2 > 4

5 x. Write the solution set in both set-builder
notation and interval notation.

Explanation.

3
4 x − 2 > 4

5 x

20 ·
(
3
4 x − 2

)
> 20 · 45 x

20 · 34 x − 20 · 2 > 16x

15x − 40 > 16x
15x − 40 − 15x > 16x − 15x

−40 > x
x < −40

The solution set in set-builder notation is {x | x < −40}. Note that it’s equivalent to write {x | −40 > x},
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but it’s easier to understand if we write x first in an inequality.

The solution set in interval notation is (−∞,−40).

Example 3.3.11 Solve for y in the inequality 4
7 − 4

3 y ≤ 2
3 . Write the solution set in both set-builder

notation and interval notation.

Explanation.

4
7 −

4
3 y ≤ 2

3

21 ·
(
4
7 −

4
3 y

)
≤ 21 ·

(
2
3

)
21

(
4
7

)
− 21

(
4
3 y

)
≤ 21

(
2
3

)
12 − 28y ≤ 14
−28y ≤ 2
−28y
−28 ≥

2
−28

y ≥ − 1
14

Note that when we divided each side of the inequality by −28, the inequality symbol reversed direction.

The solution set in set-builder notation is
{

y | y ≥ − 1
14

}
.

The solution set in interval notation is
[
− 1

14 ,∞
)
.

Example 3.3.12 In a certain class, a student’s grade is calculated by the average of their scores on 3 tests.
Aidan scored 78% and 54% on the first two tests. If he wants to earn at least a grade of C (70%), what’s
the lowest score he needs to earn on the third exam?

Explanation. Assume Aidan will score x% on the third test. To make his average test score greater
than or equal to 70%, we write and solve this inequality:

78 + 54 + x
3 ≥ 70

132 + x
3 ≥ 70

3 · 132 + x
3 ≥ 3 · 70

132 + x ≥ 210
x ≥ 78

To earn at least a C grade, Aidan needs to score at least 78% on the third test.
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Exercises

Review and Warmup

Multiply: 7 · 1
101. Multiply: 2 · 272. Multiply: 9 ·

(
−4

3

)
3.

Multiply: 45 ·
(
−5

9

)
4. Do the following multipli-

cations:

a. 14 · 47 �

b. 21 · 47 �

c. 28 · 47 �

5. Do the following multipli-
cations:

a. 20 · 45 �

b. 25 · 45 �

c. 30 · 45 �

6.

Solving Linear Equations with Fractions Solve the equation.
n
9 + 88 � 5n7.

p
6 + 92 � 4p8. x

3 + 3 � 99.
y
9 + 10 � 1310.

5 − t
8 � 011. 1 − a

3 � −312. 2 � 8 − 2c
713. −26 � 4 − 10A

314.

3C �
5C
2 + 415. 3m �

9m
8 + 4516. 51 �

2
5 p + 3p17. 150 �

8
7 x + 6x18.

81 − 3
8 y � 3y19. 45 − 7

4 t � 2t20. 6a �
10
9 a + 1021. 3c �

8
5 c + 722.

9
4 − 5A � 423. 3

10 − 2C � 324. 7
6 −

1
6 m � 925. 3

4 −
1
4 p � 626.

4x
9 − 5 � −73

927.
8y
7 − 10 � −102

728. 4
5 +

8
5 t � 3t29. 8

9 +
2
3 a � 3a30.

3c
5 −

8
5 � −1

5 c31. 2A
7 −

25
7 � −3

7A32. 8C
9 +

1
8 � C33. 2m

5 +
1
4 � m34.

2p
3 − 57 � −5

2 p35.
2q
7 − 19 � −1

6 q36. −9
8 y + 81 �

9y
1637. −1

2 t + 5 �
3t
438.
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5a
8 − 5a �

9
1639. 9c

4 − 5c �
7
840. 5A

2 +
8
5 �

3
8A41. 9C

4 +
8
3 �

5
6 C42.

4
3 m �

3
2 +

3m
743. 4

7 p �
4
5 +

5p
344. 9

8 �
q
2445. 5

4 �
y
2446.

− t
45 �

8
947. − a

28 �
2
748. − c

8 � −7
449. − A

60 � − 3
1050.

−7
6 �

8C
951. −8

3 �
8m
552. 3

10 �
p + 9

5053. 7
6 �

q + 8
3654.

3
2 �

y − 9
755. 7

8 �
r − 9

356. a − 10
4 �

a + 10
657. c − 4

2 �
c + 7

458.

A + 8
6 − A − 4

12 �
13
659. C + 2

4 − C − 2
8 �

11
860. m

3 − 15 �
m
861.

p
7 − 4 �

p
962.

q
4 − 3 �

q
7 + 663.

y
2 − 4 �

y
9 + 364. 4

5 r +
3
5 �

2
5 r +

1
265. 3

5 a +
7
5 �

8
5 a +

8
566.

Solve the equation.
3c + 9

4 − 4 − c
8 �

2
367. 10A + 9

4 − 2 − A
8 �

5
768. 6 �

C
5 +

C
1069.

26 �
m
9 +

m
470. p +

2
7 � −4

5 p − 171. −2q +
9
4 � − 3

10 q − 3
772.

Solve the equation.
9
7 y +

3
5 � −8

9 y + 173. −3r +
2
3 � −1

3 r − 274.

a. − a
6 + 4 � −1

b. −r
6 + 4 � −1

c. c
−6 + 4 � −1

d.
−q
−6 + 4 � −1

75. a. − b
3 + 8 � 4

b. −n
3 + 8 � 4

c. C
−3 + 8 � 4

d. −A
−3 + 8 � 4

76.
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Applications

Nina is jogging in a straight line. She got a head start of 4 meters from the starting line, and she ran
4 meters every 7 seconds. After how many seconds will Nina be 16 meters away from the starting
line?

Nina will be 16 meters away from the starting line seconds since she started running.

77.

Charlotte is jogging in a straight line. She started at a place 44 meters from the starting line, and
ran toward the starting line at the speed of 4 meters every 5 seconds. After how many seconds will
Charlotte be 36 meters away from the starting line?

Charlotte will be 36 meters away from the starting line seconds since she started running.

78.

Nina had only $5.00 in her piggy bank, and she decided to start saving more. She saves $5.00 every
9 days. After how many days will she have $30.00 in the piggy bank?

Nina will save $30.00 in her piggy bank after days.

79.

Cody has saved $45.00 in his piggy bank, and he decided to start spending them. He spends $5.00
every 8 days. After how many days will he have $25.00 left in the piggy bank?

Cody will have $25.00 left in his piggy bank after days.

80.

Solving Inequalities with Fractions Solve this inequality.
x
10 + 98 ≥ 5x

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

81. x
2 + 25 ≥ 3x

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

82. 3
2 − 5y < 5

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

83.

3
2 − 2y < 4

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

84. −1
4 t >

6
5 t − 58

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

85. −5
2 t >

4
5 t − 66

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

86.
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3
8 ≥

x
32

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

87. 7
8 ≥

x
48

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

88. − z
30 < −

3
10

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

89.

− z
50 < −

9
10

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

90. x
8 − 5 ≤ x

3
In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

91. x
6 − 2 ≤ x

3
In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

92.

y − 10
4 ≥ y + 10

2
In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

93.
y − 6

6 ≥ y + 4
4

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

94.

Solve this inequality.
3
2 <

x + 3
4 − x − 8

8

In set-builder notation, the solution set is .

In interval notation, the solution set is .

95. 13
8 <

x + 9
4 − x − 2

8

In set-builder notation, the solution set is .

In interval notation, the solution set is .

96.

Applications

Your grade in a class is determined by the average of three test scores. You scored 74 and 88 on the
first two tests. To earn at least 83 for this course, how much do you have to score on the third test?

Let x be the score you will earn on the third test. Write an inequality to represent this situation.

Solve this inequality. What is the minimum that you have to earn on the third test in order to earn a
83 for the course?

You cannot score over 100 on the third test. Use interval notation to represent the range of scores
you can earn on the third test in order to earn at least 83 for this course.

97.
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Your grade in a class is determined by the average of three test scores. You scored 75 and 86 on the
first two tests. To earn at least 76 for this course, how much do you have to score on the third test?

Let x be the score you will earn on the third test. Write an inequality to represent this situation.

Solve this inequality. What is the minimum that you have to earn on the third test in order to earn a
76 for the course?

You cannot score over 100 on the third test. Use interval notation to represent the range of scores
you can earn on the third test in order to earn at least 76 for this course.

98.
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3.4 Isolating a Linear Variable

In this section, we will learn how to solve linear equations and inequalities with more than one variable.

3.4.1 Solving for a Variable

The formula of calculating a rectangle’s area is A � ℓw, where ℓ stands for the rectangle’s length, and w
stands for width. When a rectangle’s length and width are given, we can easily calculate its area.

What if a rectangle’s area and length are given, and we need to calculate its width?

If a rectangle’s area is given as 12 m2, and its length
is given as 4 m, we could find its width this way:

A � ℓw
12 � 4w
12
4 �

4w
4

3 � w
w � 3

If we need to do this many times, we would love
to have an easier way, without solving an equation
each time. We will solve for w in the formula A �

ℓw:

A � ℓw
A
ℓ

�
ℓw
ℓ

A
ℓ

� w

w �
A
ℓ

Now if we want to find the width when ℓ � 4 is given, we can simply replace ℓ with 4 and simplify.

We solved for w in the formula A � ℓw once, and we could use the new formula w �
A
ℓ again and again

saving us a lot of time down the road. Let’s look at a few examples.

Remark 3.4.2. Note that in solving for A, we divided each side of the equation by ℓ. The operations that we
apply, and the order in which we do them, are determined by the operations in the original equation. In the
original equation A � ℓw, we saw that w was multiplied by ℓ, and so we knew that in order to “undo” that
operation, we would need to divide each side by ℓ. We will see this process of “un-doing” the operations
throughout this section.

Example 3.4.3 Solve for R in P � R − C. (This is the relationship between profit, revenue, and cost.)

To solve for R, we first want to note that C is subtracted from R. To “undo” this, we will need to add C to
each side of the equation:

P �

↓
R − C

P + C �

↓
R − C + C

P + C �

↓
R

R � P + C
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Example 3.4.4 Solve for x in y � mx + b. (This is a line’s equation in slope-intercept form.)

In the equation y � mx + b, we see that x is multiplied by m and then b is added to that. Our first step
will be to isolate mx, which we’ll do by subtracting b from each side of the equation:

y � m
↓
x + b

y − b � m
↓
x + b − b

y − b � m
↓
x

Now that we have mx on its own, we’ll note that x is multiplied by m. To “undo” this, we’ll need to
divide each side of the equation by m:

y − b
m

�
m
↓
x

m
y − b

m
�
↓
x

x �
y − b

m

Warning 3.4.5. It’s important to note in Example 3.4.4 that each side was divided by m. We can’t simply
divide y by m, as the equation would no longer be equivalent.

Example 3.4.6 Solve for b in A �
1
2 bh. (This is the area formula for a triangle.)

To solve for b, we need to determine what operations need to be “undone.” The expression 1
2 bh has

multiplication between 1
2 and b and h. As a first step, we will multiply each side of the equation by 2 in

order to eliminate the denominator of 2:

A �
1
2
↓
bh

2 · A � 2 · 12
↓
bh

2A �

↓
bh

As a last step, we will “undo” the multiplication between b and h by dividing each side by h:

2A
h

�

↓
bh
h

2A
h

�

↓
b

b �
2A
h

Example 3.4.7 Solve for y in 2x + 5y � 10. (This is a linear equation in standard form.)

To solve for y, we will first have to solve for 5y by subtracting 2x from each side of the equation. After
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that, we’ll be able to divide each side by 5 to finish solving for y:

2x + 5
↓
y � 10

2x + 5
↓
y − 2x � 10 − 2x

5
↓
y � 10 − 2x

5
↓
y
5 �

10 − 2x
5

y �
10 − 2x

5

Remark 3.4.8. Aswewill learn in later sections, the result in Example 3.4.7 can also bewritten as y �
10
5 − 2x

5
which can then be written as y � 2 − 2

5 x.

Example 3.4.9 Solve for F in C �
5
9 (F − 32). (This represents the relationship between temperature in

degrees Celsius and degrees Fahrenheit.)

To solve for F, we first need to see that it is contained inside a set of parentheses. To get the expression
F − 32 on its own, we’ll need to eliminate the 5

9 outside those parentheses. One way we can “undo” this
multiplication is by dividing each side by 5

9 . As we learned in Section 3.3 though, a better approach is
to instead multiply each side by the reciprocal of 9

5 :

C �
5
9 (
↓
F − 32)

9
5 · C �

9
5 ·

5
9 (
↓
F − 32)

9
5 C �

↓
F − 32

Now that we have F − 32, we simply need to add 32 to each side to finish solving for F:

9
5 C + 32 �

↓
F − 32 + 32

9
5 C + 32 �

↓
F

F �
9
5 C + 32

Exercises

Review and Warmup Solve the equation.

9q + 2 � 561. 6y + 1 � 552. −9r − 8 � 373. −3a − 5 � −174.

−6b + 3 � −b − 125. −2A + 6 � −A − 46. 56 � −8(B − 10)7. 35 � −5(m − 4)8.
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Solving for a Variable

a. Solve this linear equation for t.

t + 1 � 9

b. Solve this linear equation for x.

x + m � y

9. a. Solve this linear equation for t.

t + 1 � 5

b. Solve this linear equation for r.

r + n � y

10.

a. Solve this linear equation for x.

x − 5 � −3

b. Solve this linear equation for y.

y − B � −3

11. a. Solve this linear equation for x.

x − 5 � −3

b. Solve this linear equation for y.

y − c � −3

12.

a. Solve this linear equation for y.

−y + 1 � −5

b. Solve this linear equation for r.

−r + c � q

13. a. Solve this linear equation for y.

−y + 7 � 3

b. Solve this linear equation for t.

−t + C � b

14.

a. Solve this linear equation for r.

7r � 56

b. Solve this linear equation for t.

ct � x

15. a. Solve this linear equation for r.

3r � 12

b. Solve this linear equation for x.

yx � n

16.

a. Solve this linear equation for r.
r
7 � 10

b. Solve this linear equation for y.
y
p � x

17. a. Solve this linear equation for t.
t
3 � 2

b. Solve this linear equation for r.
r
B � x

18.

a. Solve this linear equation for t.

7t + 5 � 12

b. Solve this linear equation for r.

qr + a � x

19. a. Solve this linear equation for x.

6x + 4 � 64

b. Solve this linear equation for y.

q y + r � n

20.
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a. Solve this linear equation for x.

xt � m

b. Solve this linear equation for t.

xt � m

21. a. Solve this linear equation for y.

yr � c

b. Solve this linear equation for r.

yr � c

22.

a. Solve this linear equation for y.

y + x � B

b. Solve this linear equation for x.

y + x � B

23. a. Solve this linear equation for r.

r + t � x

b. Solve this linear equation for t.

r + t � x

24.

a. Solve this linear equation for B.

c y + B � C

b. Solve this linear equation for c.

c y + B � C

25. a. Solve this linear equation for m.

rt + m � b

b. Solve this linear equation for r.

rt + m � b

26.

a. Solve this linear equation for n.

x � tn + p

b. Solve this linear equation for t.

x � tn + p

27. a. Solve this linear equation for q.

r � cq + n

b. Solve this linear equation for c.

r � cq + n

28.

Solve this linear equation for x.

y � mx − b

29. Solve this linear equation for x.

y � −mx + b

30.

a. Solve this equation for b:

12 �
1
2 b · 4

b. Solve this equation for b:

A �
1
2 b · h

31. a. Solve this equation for b:

9 �
1
2 b · 6

b. Solve this equation for b:

A �
1
2 b · h

32.

Solve this linear equation for r.

C � 2πr

33. Solve this linear equation for h.

V � πr2h

34.
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Solve these linear equations for r.

a. r
5 + 9 � 12

b. r
x + 9 � B

35. Solve these linear equations for t.

a. t
5 + 7 � 8

b. t
r + 7 � x

36.

Solve this linear equation for t.

t
y
+ c � a

37. Solve this linear equation for x.

x
t
+ p � m

38.

Solve this linear equation for x.

x
9 + r � a

39. Solve this linear equation for y.

y
8 + r � A

40.

Solve this linear equation for b.

t � y − 8b
q

41. Solve this linear equation for A.

C � q − 2A
B

42.

Solve this linear equation for x.

Ax + By � C

43. Solve this linear equation for y.

Ax + By � C

44.

Solve the linear equation for y.

25x + 5y � −75

45.

30x − 5y � −65

46.

4x + 2y � 6

47.

18x − 2y � 16

48.

4x − y � 14

49.

2x − y � −12

50.

−4x − 6y � −24

51.

−7x − 6y � −18

52.

2x + 7y � 2

53.

6x − 8y � 2

54.

−87x − 87y � 38

55.

24y − 46x � 25

56.
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3.5 Ratios and Proportions

3.5.1 Introduction

A ratio is a means of comparing two quantities using division. One common example is a unit price. For
example, if a box of cereal costs $3.99 and weighs 21 ounces then we can write this ratio as:

$3.99
21 oz

If we want to know the unit price (that is, how much each individual ounce costs), then we can divide $3.99
by 21 ounces and obtain $0.19 per ounce. These two ratios, $3.99

21 oz and 0.19 $
oz are equivalent, and the equation

showing that they are equal is a proportion. In this case, we could write the following proportion:

$3.99
21 oz �

$0.19
1 oz

In this section, we will extend this concept and write proportions where one quantity is unknown and solve
for that unknown.

Remark 3.5.2. Sometimes ratios are stated using a colon instead of a fraction. For example, the ratio 2
1 can

be written as 2 : 1.

Example 3.5.3 Suppose we want to know the total cost for a box of cereal that weighs 18 ounces, as-
suming it costs the same per ounce as the 21-ounce box. Letting C be this unknown cost (in dollars), we
could set up the following proportion:

cost in dollars
weight in oz �

cost in dollars
weight in oz

$3.99
21 oz �

$C
18 oz

To solve this proportion, we will first note that it will be easier to solve without units:

3.99
21 �

C
18

Next we want to recognize that each side contains a fraction. Our usual approach for solving this type
of equation is to multiply each side by the least common denominator (LCD). In this case, the LCD of
21 and 18 is 126. As with many other proportions we solve, it is often easier to just multiply each side
by the common denominator of 18 · 21, which we know will make each denominator cancel:

3.99
21 �

C
18

18 · 21 · 3.99
21 �

C
18 · 18 · 21

18 ·��213.99
��21

�
C
��18
·��18 · 21

71.82 � 21C
71.82

21 �
21C
21

C � 3.42
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So assuming the cost is proportional to the cost of the 21-ounce box, the cost for an 18-ounce box of cereal
would be $3.42.

3.5.2 Solving Proportions

Solving proportions uses the process of clearing denominators that we covered in Section 3.3. Because a
proportion is exactly one fraction equal to another, we can simplify the process of clearing the denominators
simply bymultiplying both sides of the equation by both denominators. In otherwords, wedon’t specifically
need the LCD to clear the denominators.

Example 3.5.4 Solve x
8 �

15
12 for x.

Instead of finding the LCD of the two fractions,
we’ll simply multiply both sides of the equation
by 8 and by 12. This will still have the effect of
canceling the denominators on both sides of the
equation.

x
8 �

15
12

12 · 8· x8 �
15
12 ·12 · 8

12 · �8 ·
x

�8
�

15
��12
·��12 · 8

12 · x � 15 · 8
12x � 120
12x
12 �

120
12

x � 10

Our work indicates 10 is the solution. We can
check this as we would for any equation, by sub-
stituting 10 for x and verifying we obtain a true
statement:

10
8

?
�

15
12

5
4
✓
�

5
4

Since both fractions reduce to 5
4 , we know the so-

lution to the equation x
8 �

15
12 is 10 and the solu-

tion set is {10}.

When solving proportions, we can use the name cross-multiplication to describe the process of what just
occurred. Say we have a proportion

a
b
�

c
d

To remove fractions, we multiply both sides with the common denominator, bd, and we have:

a
b
�

c
d

bd · a
b
�

c
d
· bd

�bd · a

�b
�

c

�d
· b�d

ad � bc

Since a and d are diagonally across the equals sign from each other in a
b �

c
d , as are b and c, we call this

approach cross-multiplication.
If a

b
�

c
d
, then ad � bc.

If we understand cross-multiplication, we are able to rewrite a proportion a
b �

c
d in an equivalent form that

does not have any fractions, ad � bc, as our first step of work. If we had used this skill in Example 3.5.4, we
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would have had:

x
8 �

15
12

12 · x � 15 · 8
12x � 120

Notice this is the same equationwe had in the fifth line of ourwork in solving Example 3.5.4, butwe obtained
it without having to contemplate what we need to multiply by to clear the fractions.

We are able to use cross-multiplication when solving proportions, but it is extremely important to note that
cross-multiplication only works whenwe are solving a proportion, an equation that has one ratio or fraction
equal to another ratio or fraction. If an equation has anything more than one ratio or fraction on a single
side of an equation, we cannot use cross-multiplication. For example, we cannot use cross-multiplication to
solve 3

4 x − 2
5 �

9
4 , unless we first manipulate the equation to have exactly one fraction and nothing else on

each side of the equation.

It is also important to be aware of the fact that cross-multiplication is a special version of our general process
of clearing fractions: multiplying both sides of an equation by a common denominator of all the fractions
in an equation.

Example 3.5.5 Solve t
5 �

t+2
3 for t.

Explanation. Again this equation is a proportion, so we are able to multiply both sides of the equation
by both denominators to clear the fractions:

t
5 �

t + 2
3

5 · 3· t5 �
t + 2

3 ·5 · 3

�5 · 3 ·
t

�5
�

t + 2
�3
· 5 · �3

3 · t � 5 · (t + 2)

It is critical that we include the parentheses
around t+2, so that we are multiplying 5 against
the entire numerator.

3t � 5(t + 2)
3t � 5t + 10

3t−5t � 5t + 10−5t
−2t � 10
−2t
−2 �

10
−2

t � −5

We should check that this value−5 is actually the
solution of the equation:

−5
5

?
�
−5 + 2

3

−1 ?
�
−3
3

−1 ✓� −1

Since we have verified that −5 is the solution for
t
5 �

t+2
3 , we know that the solution set is {−5}.

Example 3.5.6 Solve r+7
8 � − 9

4 for r.

Explanation. This proportion is a bit different in the fact that one fraction is negative. The key to
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working with a negative fraction is to attach the negative sign to either the numerator or denominator,
but not both:

−9
4 � −9

4 and 9
−4 � −9

4 , but −9
−4 � +

9
4

Sincewe’re trying to eliminate the fractions, it will likelymake thework a bit easier to attach the negative
to the numerator.

We’ll work with the equation in the form r+7
8 �

−9
4

r + 7
8 �

−9
4

8 · 4· r + 7
8 �

−9
4 ·8 · 4

�8 · 4 ·
r + 7
�8

�
−9
�4
· 8 · �4

4 · (r + 7) � 8 · (−9)
4r + 28 � −72

4r + 28−28 � −72−28
4r � −100
4r
4 �

−100
4

r � −25

We should check that this value −25 is actually the solution of the equation:

−25 + 7
8

?
� −9

4
−18

8
?
� −9

4

−9
4
✓
� −9

4

Since we have verified that −25 is the solution for r+7
8 � − 9

4 , we know that the solution set is {−25}.

Example 3.5.7 Solve x
15 �

40
25 for x.

Explanation. To solve this proportion, begin by multiplying both sides by both denominators.

x
15 �

40
25

15 · 25 · x
15 �

40
25 · 15 · 25

��15 · 25 · x
��15

�
40
��25
· 15 ·��25

25 · x � 40 · 15
25x � 600
25x
25 �

600
25

x � 24
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You can easily verify that this value 24 is actually the solution of the equation:

24
15

?
�

40
25

8
5
✓
�

8
5

Since we have verified that 24 is the solution for x
15 �

40
25 , we know that the solution set is {24}.

Example 3.5.8 Solve x−4
6 �

x+3
4 for x.

Explanation. To solve this proportion, begin by multiplying both sides by both denominators.

x − 4
6 �

x + 3
4

6 · 4 · x − 4
6 �

x + 3
4 · 6 · 4

�6 · 4 ·
x − 4
�6

�
x + 3
�4
· 6 · �4

4 · (x − 4) � (x + 3) · 6
4x − 16 � 6x + 18

4x − 16 + 16 � 6x + 18 + 16
4x � 6x + 34

4x − 6x � 6x + 34 − 6x
−2x � 34
−2x
−2 �

34
−2

x � −17

We can check that this value is correct by substituting it back into the original equation:

x − 4
6 �

x + 3
4

−17 − 4
6

?
�
−17 + 3

4
−21

6
?
�
−14

4
−7
2
✓
�
−7
2

Since we have verified that −17 is the solution for x−4
6 �

x+3
4 , we know that the solution set is {−17}.

3.5.3 Proportionality in Similar Triangles

One really useful example of ratios and proportions involves similar triangles. Two triangles are considered
similar if they have the same angles and their side lengths are proportional, as shown in Figure 3.5.9:
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1
cm

√
3 cm

2 cm
60◦ 3

cm

3
√

3 cm

6 cm

60◦

Figure 3.5.9: Similar Triangles

In the first triangle in Figure 3.5.9, the ratio of the left side length to the hypotenuse length is 1 cm
2 cm ; in the

second triangle, the ratio of the left side length to the hypotenuse length is 3 cm
6 cm . Since both reduce to 1

2 , we
can write the following proportion:

1 cm
2 cm �

3 cm
6 cm

If we extend this concept, we can use it to solve for an unknown side length. Consider the two similar
triangles in the next example.

Example 3.5.10

3
cm

4 cm
53.13◦

x
cm

6 cm
53.13◦

Figure 3.5.11: Similar Triangles

Since the two triangles are similar, we know that their side length should be proportional. To determine
the unknown length, we can set up a proportion and solve for x:

bigger triangle’s left side length in cm
bigger triangle’s bottom side length in cm �

smaller triangle’s left side length in cm
smaller triangle’s bottom side length in cm

x cm
6 cm �

3 cm
4 cm

x
6 �

3
4

12 · x
6 � 12 · 34 (12 is the least common denominator)

2x � 9
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2x
2 �

9
2

x �
9
2 or 4.5

The unknown side length is then 4.5 cm.

Remark 3.5.12. Looking at the triangles in Figure 3.5.9, you may notice that there are many different pro-
portions you could set up, such as:

2 cm
1 cm �

6 cm
3 cm

2 cm
6 cm �

1 cm
3 cm

6 cm
2 cm �

3 cm
1 cm

3
√

3 cm√
3 cm

�
3 cm
1 cm

This is often the case when we set up ratios and proportions.

If we take a second look at Figure 3.5.11, there are also several other proportions we could have used to find
the value of x.

bigger triangle’s left side length
smaller triangle’s left side length �

bigger triangle’s bottom side length
smaller triangle’s bottom side length

smaller triangle’s bottom side length
bigger triangle’s bottom side length �

smaller triangle’s left side length
bigger triangle’s left side length

bigger triangle’s bottom side length
smaller triangle’s bottom side length �

bigger triangle’s left side length
smaller triangle’s left side length

Written as algebraic proportions, these three equations would, respectively, be

x cm
3 cm �

6 cm
4 cm ,

4 cm
6 cm �

3 cm
x cm ,

6 cm
4 cm �

x cm
3 cm

While these are only a few of the possibilities, if we clear the denominators from any properly designed
proportion, every one is equivalent to x � 4.5.

3.5.4 Creating and Solving Proportions

Proportions can be used to solve many real-life applications. The key to using proportions to solve such
applications is to first set up a ratio where all values are known. We then set up a second ratio that will be
proportional to the first, but has one value in the ratio unknown. Let’s look at a few examples.

Example 3.5.13 Property taxes for a residential property are proportional to the assessed value of the
property. Assume that a certain property in a given neighborhood is assessed at $234,100 and its annual
property taxes are $2,518.92. What are the annual property taxes for a house that is assessed at $287,500?

Explanation. Let T be the annual property taxes (in dollars) for a property assessed at $287,500. We
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can write and solve this proportion:

tax
property value �

tax
property value

2518.92
234100 �

T
287500

The least common denominator of this proportion is rather large, so we will instead multiply each side
by 234100 and 287500 and simplify from there:

2518.92
234100 �

T
287500

234100 · 287500 · 2518.92
234100 �

T
287500 · 234100 · 287500

287500 · 2518.92 � T · 234100
287500 · 2518.92

234100 �
234100T
234100

T ≈ 3093.50

The property taxes for a property assessed at $287, 500 are $3, 093.50.

Example 3.5.14 Tagging fish is ameans of estimating the size of the population of fish in a body of water
(such as a lake). A sample of fish is taken, tagged, and then redistributed into the lake. When another
sample is taken, the proportion of fish that are tagged out of that sample are assumed to be proportional
to the total number of fish tagged out of the entire population of fish in the lake.

number of tagged fish in sample
number of fish in sample �

number of tagged fish total
number of fish total

Assume that 90 fish are caught and tagged. Once they are redistributed, a sample of 200 fish is taken.
Of these, 7 are tagged. Estimate how many fish total are in the lake.

Explanation. Let n be the number of fish in the lake. We can set up a proportion for this scenario:

7
200 �

90
n

To solve for n, which is in a denominator, we’ll need to multiply each side by both 200 and n:

7
200 �

90
n

200 · n · 7
200 �

90
n
· 200 · n

��200 · n · 7
��200

�
90
�n
· 200 ·�n

7n � 1800
7n
7 �

1800
7

n ≈ 2471.4286

According to this sample, we can estimate that there are about 2, 471 fish in the lake.
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Example 3.5.15 Infant Tylenol contains 160 mg of acetaminophen in each 5 mL of liquid medicine. If
Bao’s baby is prescribed 60 mg of acetaminophen, how many milliliters of liquid medicine should he
give them?

Explanation. Assume Bao should give q milliliters of liquid medicine, and we can set up the following
proportion:

amount of liquid medicine in mL
amount of acetaminophen in mg �

amount of liquid medicine in mL
amount of acetaminophen in mg

5mL
160mg �

q mL
60mg

5
160 �

q
60

160 · 60 · 5
160 �

q
60 · 160 · 60

60 · 5 � q · 160
300 � 160q
300
160 �

160q
160

q � 1.875

So to give 60 mg of acetaminophen to his baby, Bao should give 1.875 mL of liquid medicine.

Example 3.5.16 Sarah is an architect and she’s making a scale model of a building. The actual building
will be 30 ft tall. In the model, the height of the building will be 2 in. How tall should she make the
model of a person who is 5 ft 6 in tall so that the model is to scale?

Explanation. Let h be the height of the person in Sarah’s model, which we’ll measure in inches. We’ll
create a proportion that compares the building and person’s heights in the model to their heights in real
life:

height of model building in inches
height of actual building in feet �

height of model person in inches
height of actual person in feet

2 in
30 ft �

h in
5 ft 6in

Before we can just eliminate the units, we’ll need to convert 5 ft 6 in to feet:

2 in
30 ft �

h in
5.5 ft

Now we can remove the units and continue solving:

2
30 �

h
5.5

30 · 5.5 · 2
30 �

h
5.5 · 30 · 5.5

5.5 · 2 � h · 30
11 � 30h
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11
30 �

30h
30

11
30 � h

h ≈ 0.3667

Sarah should make the model of a person who is 5 ft 6 in tall be 11
30 inches (about 0.3667 inches) tall.

Exercises

Review and Warmup

Reduce the fraction
3
15 .

1. Reduce the fraction
2
10 .

2. Reduce the fraction
9
21 .

3. Reduce the fraction
8
14 .

4.

Reduce the fraction
60
105 .

5. Reduce the fraction
84
147 .

6. Reduce the fraction
252
105 .

7. Reduce the fraction
420
245 .

8.

Setting Up Ratios and Proportions

Ibuprofen for infants comes in a liquid form and contains 30 milligrams of ibuprofen for each 0.75
milliliters of liquid. If a child is to receive a dose of 50 milligrams of ibuprofen, howmanymilliliters
of liquid should they be given?

Assume l milliliters of liquid should be given. Write an equation to model this scenario. There is no
need to solve it.

9.

Ibuprofen for infants comes in a liquid form and contains 35 milligrams of ibuprofen for each 0.875
milliliters of liquid. If a child is to receive a dose of 45 milligrams of ibuprofen, howmanymilliliters
of liquid should they be given?

Assume l milliliters of liquid should be given. Write an equation to model this scenario. There is no
need to solve it.

10.

The property taxes on a 2400-square-foot house are $2,904.00 per year. Assuming these taxes are
proportional, what are the property taxes on a 1200-square-foot house?

Assume property taxes on a 1200-square-foot house is t dollars. Write an equation to model this
scenario. There is no need to solve it.

11.

The property taxes on a 1900-square-foot house are $2,527.00 per year. Assuming these taxes are
proportional, what are the property taxes on a 2500-square-foot house?

Assume property taxes on a 2500-square-foot house is t dollars. Write an equation to model this
scenario. There is no need to solve it.

12.
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Solving Proportions

Solve x
48 �

15
40 for x.13. Solve x

63 �
10
35 for x.14. Solve 10

x �
35
63 for x.15.

Solve 12
x �

16
24 for x.16. Solve x

6 �
x−15

9 for x.17. Solve x
5 �

x+24
9 for x.18.

Solve x
7 �

x−3
6 for x.19. Solve x

7 �
x−20

11 for x.20. Solve x+3
5 �

x−5
9 for x.21.

Solve x−10
5 �

x+16
7 for x.22. Solve x−16

6 �
x−12

14 for x.23. Solve x−8
7 �

x−8
11 for x.24.

Solve x
24 � − 45

27 for x.25. Solve x
21 � − 18

14 for x.26. Solve x+2
42 � − 24

18 for x.27.

Solve x−2
6 � − 45

10 for x.28.

Applications

The following two triangles are similar to each
other. Find the length of the missing side.

The missing side’s length is

29. The following two triangles are similar to each
other. Find the length of the missing side.

The missing side’s length is

30.

The following two triangles are similar to each
other. Find the length of the missing side.

The missing side’s length is

31. The following two triangles are similar to each
other. Find the length of the missing side.

The missing side’s length is

32.
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According to a salad recipe, each serving re-
quires 2 teaspoons of vegetable oil and 12 tea-
spoons of vinegar. If 12 teaspoons of vegetable
oil were used, howmany teaspoons of vinegar
should be used?

If 12 teaspoons of vegetable oil were used,
teaspoons of vinegar should be used.

33. According to a salad recipe, each serving re-
quires 5 teaspoons of vegetable oil and 35 tea-
spoons of vinegar. If 119 teaspoons of vinegar
were used, how many teaspoons of vegetable
oil should be used?

If 119 teaspoons of vinegarwere used,
teaspoons of vegetable oil should be used.

34.

Laurie makes $105 every six hours she works.
Howmuchwill she make if she works twenty-
two hours this week?

If Laurie works twenty-two hours this week,
she will make .

35. Corey makes $81 every six hours he works.
How much will he make if he works twenty-
six hours this week?

If Corey works twenty-six hours this week, he
will make .

36.

A mutual fund consists of 23% stock and 77%
bond. In other words, for each 23 dollars of
stock, there are 77 dollars of bond. For a mu-
tual fund with $2,850.00 of stock, how many
dollars of bond are there?

For amutual fundwith $2,850.00 of stock, there
are approximately of bond.

37. A mutual fund consists of 32% stock and 68%
bond. In other words, for each 32 dollars of
stock, there are 68 dollars of bond. For a mu-
tual fund with $2,510.00 of bond, how many
dollars of stock are there?

For amutual fundwith $2,510.00 of bond, there
are approximately of stock.

38.

Farshad jogs every day. Lastmonth, he jogged
14.5hours for a total of 17.4miles. At this speed,
if Farshad runs 35 hours, how far can he run?

At this speed, Farshad can run
in 35 hours.

39. Scot jogs every day. Last month, he jogged
5.5 hours for a total of 9.9 miles. At this speed,
how long would it take Scot to run 90 miles?

At this speed, Scot can run 90 mi in .

40.

Blake purchased 3.7 pounds of apples at the
total cost of $16.28. If he purchases 9.4 pounds
of apples at this store, howmuchwould it cost?

It would cost to purchase
9.4 pounds of apples.

41. Jay purchased 5.4pounds of apples at the total
cost of $22.14. If the price doesn’t change, how
many pounds of apples can Jay purchase with
$40.18?

With $40.18, Jay can purchase
of apples.

42.

Timothy collected a total of 2261 stamps over
the past 17years. At this rate, howmany stamps
would he collect in 23 years?

At this rate, Timothy would collect
stamps in 23 years.

43. Tiffany collected a total of 2016 stamps over
the past 14 years. At this rate, howmany years
would it take she to collect 3888 stamps?

At this rate, Tiffany can collect 3888 stamps in
years.

44.
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In a city, the owner of a house valued at 380
thousanddollars needs to pay $425.60 in prop-
erty tax. At this tax rate, how much property
tax should the owner pay if a house is valued
at 890 thousand dollars?

The owner of a 890-thousand-dollar house should
pay in property tax.

45. In a city, the owner of a house valued at 300
thousanddollars needs to pay $525.00 in prop-
erty tax. At this tax rate, if the owner of a house
paid $1,540.00 of property tax, how much is
the house worth?

If the owner of a house paid $1,540.00 of prop-
erty tax, the house is worth
thousand dollars.

46.

To try to determine the health of the Rocky
Mountain elk population in theWenahaWildlife
Area, theOregonDepartment of Fish andWildlife
caught, tagged, and released 39 Rocky Moun-
tain elk. A week later, they returned and ob-
served 42 RockyMountain elk, 9 of which had
tags. Approximately howmany RockyMoun-
tain elk are in the Wenaha Wildlife Area?

There are approximately
elk in the wildlife area.

47. To try to determine the health of the black-
tailed deer population in the Jewell Meadow
Wildlife Area, the Oregon Department of Fish
and Wildlife caught, tagged, and released 28
black-tailed deer. A week later, they returned
and observed 63 black-tailed deer, 18 of which
had tags. Approximately howmanyblack-tailed
deer are in the Jewell Meadow Wildlife Area?

There are approximately
deer in the wildlife area.

48.

A restaurant used 1105.2 lb of vegetable oil
in 36 days. At this rate, how many pounds of
vegetable oil will be used in 50 days?

The restaurant will use of
vegetable oil in 50 days.

49. A restaurant used 777.6 lb of vegetable oil in
24days. At this rate, 1458 lb of oil will last how
many days?

The restaurant will use 1458 lb of vegetable oil
in days.

50.

Challenge

The ratio of girls to boys in a preschool is 6 to 7. If there are 104 kids in the school, how many girls
are there in the preschool?

51.
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3.6 Special Solution Sets

Most of the time, a linear equation’s final equivalent equation looks like x � 3, and the solution set is written
to show that there is only one solution: {3}. Similarly, a linear inequality’s final equivalent equation looks
like x < 5, and the solution set is represented with either (−∞, 5) in interval notation or {x |x < 5} in set-
builder notation. It’s possible that both linear equations and inequalities have all real numbers as possible
solutions, and it’s possible that no real numbers are solutions to each. In this section, we will explore these
special solution sets.

3.6.1 Special Solution Sets

Recall that for the equation x + 2 � 5, there is only one number which will make the equation true: 3. This
means that our solution is 3, and we write the solution set as {3}. We say the equation’s solution set has
one element, 3.

We’ll now explore equations that have all real numbers as possible solutions or no real numbers as possible
solutions.

Example 3.6.2 Solve for x in 3x � 3x + 4.

To solve this equation, we need to move all terms containing x to one side of the equals sign:

3x � 3x + 4
3x − 3x � 3x + 4 − 3x

0 � 4

Notice that x is no longer present in the equation. What value can we substitute into x to make 0 � 4
true? Nothing! We say this equation has no solution. Or, the equation has an empty solution set. We
can write this as ∅, which is the symbol for the empty set.

The equation 0 � 4 is known a false statement since it is false no matter what x is. It indicates there is
no solution to the original equation.

Example 3.6.3 Solve for x in 2x + 1 � 2x + 1.

We will move all terms containing x to one side of the equals sign:

2x + 1 � 2x + 1
2x + 1 − 2x � 2x + 1 − 2x

1 � 1

At this point, x is no longer contained in the equation. What value can we substitute into x to make
1 � 1 true? Any number! This means that all real numbers are possible solutions to the equation
2x + 1 � 2x + 1. We say this equation’s solution set contains all real numbers. We can write this set using
set-builder notation as {x | x is a real number} or using interval notation as (−∞,∞).
The equation 1 � 1 is known as an identity since it is true no matter what x is. It indicates that all real
numbers are solutions to the original linear equation.

Remark 3.6.4. What would have happened if we had continued solving after we obtained 1 � 1 in Exam-
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ple 3.6.3?

1 � 1
1 − 1 � 1 − 1

0 � 0

As we can see, all we found was another identity — a different equation that is true for all values of x.

Warning 3.6.5. Note that there is a very important difference between ending with an equivalent equation
of 0 � 0 and x � 0. The first holds true for all real numbers, and the solution set is {x | x is a real number}.
The second has only one solution: 0. We write that solution set to show that only the number zero is the
solution: {0}.

Example 3.6.6 Solve for t in the inequality 4t + 5 > 4t + 2.

To solve for t, we will first subtract 4t from each side to get all terms containing t on one side:

4t + 5 > 4t + 2
4t + 5 − 4t > 4t + 2 − 4t

5 > 2

Notice that again, the variable t is no longer contained in the inequality. We then need to consider which
values of t make the inequality true. The answer is all values, so our solution set is all real numbers, which
we can write as {t | t is a real number}.

Example 3.6.7 Solve for x in the inequality −5x + 1 ≤ −5x.

To solve for x, we will first add 5x to each side to get all terms containing x on one side:

−5x + 1 ≤ −5x
−5x + 1 + 5x ≤ −5x + 5x

1 ≤ 0

Once more, the variable x is absent. So we can ask ourselves, “For which values of x is 1 ≤ 0 true?” The
answer is none, and so there is no solution to this inequality. We can write the solution set using ∅.

Remark 3.6.8. Again consider what would have happened if we had continued solving after we obtained
1 ≤ 0 in Example 3.6.7.

1 ≤ 0
1 − 1 ≤ 0 − 1

0 ≤ −1

As we can see, all we found was another false statement—a different equation that is not true for any real
number.

Let’s summarize the two special cases when solving linear equations and inequalities:
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All Real Numbers When the equivalent equation or inequality is an identity such as 2 � 2 or
0 < 2, all real numbers are solutions. We write this solution set as either (−∞,∞) or
{x | x is a real number}.

No Solution When the equivalent equation or inequality is a false statement such as 0 � 2 or
0 > 2, no real number is a solution. We write this solution set as either { } or ∅ or write
the words “no solution exists.”

List 3.6.9: Special Solution Sets for Equations and Inequalities

3.6.2 Solving Equations and Inequalities with Special Solution Sets

Example 3.6.10 Solve for a in 2
3 (a + 1) − 5

6 �
2
3 a.

To solve this equation for a, we’ll want to recall the technique of multiplying each side of the equation
by the LCD of all fractions. Here, this means that we will multiply each side by 6 as our first step. After
that, we’ll be able to simplify each side of the equation and continue solving for a:

2
3 (a + 1) − 5

6 �
2
3 a

6 ·
(
2
3 (a + 1) − 5

6

)
� 6 · 23 a

6 · 23 (a + 1) − 6 · 56 � 6 · 23 a

4(a + 1) − 5 � 4a
4a + 4 − 5 � 4a

4a − 1 � 4a
4a − 1 − 4a � 4a − 4a

−1 � 0

The statement −1 � 0 is false, so the equation has no solution. We can write the empty set as: ∅.

Example 3.6.11 Solve for x in the equation 3(x + 2) − 8 � (5x + 4) − 2(x + 1).
To solve for x, wewill first need to simplify the left side and right side of the equation asmuch as possible
by distributing and combining like terms:

3(x + 2) − 8 � (5x + 4) − 2(x + 1)
3x + 6 − 8 � 5x + 4 − 2x − 2

3x − 2 � 3x + 2

From here, we’ll want to subtract 3x from each side:

3x − 2 − 3x � 3x + 2 − 3x
−2 � 2
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As the equation −2 � 2 is not true for any value of x, there is no solution to this equation. We write the
solution set as: ∅.

Example 3.6.12 Solve for z in the inequality 3z
5 +

1
2 ≤

( z
10 +

3
4
)
+

( z
2 − 1

4
)
.

To solve for z, we will first need to multiply each side of the inequality by the LCD, which is 40. After
that, we’ll finish solving by putting all terms containing a variable on one side of the inequality:

3z
5 +

1
2 ≤

(
z
10 +

3
4

)
+

(
z
2 −

1
4

)
40 ·

(
3z
5 +

1
2

)
≤ 40 ·

((
z
10 +

3
4

)
+

(
z
2 −

1
4

))
40 ·

(
3z
5

)
+ 40 ·

(
1
2

)
≤ 40 ·

(
z
10 +

3
4

)
+ 40 ·

(
z
2 −

1
4

)
40 ·

(
3z
5

)
+ 40 ·

(
1
2

)
≤ 40 ·

( z
10

)
+ 40 ·

(
3
4

)
+ 40 ·

( z
2

)
− 40 ·

(
1
4

)
24z + 20 ≤ 4z + 30 + 20z − 10
24z + 20 ≤ 24z + 20

24z + 20 − 24z ≤ 24z + 20 − 24z
20 ≤ 20

As the equation 20 ≤ 20 is true for all values of z, all real numbers are solutions to this inequality. Thus
the solution set is {z | z is a real number}.

Exercises

Review and Warmup Solve the equation.

7n + 4 � 181. 4q + 3 � 272. −2x − 2 � −183. −5r − 9 � 114.

−4t + 8 � −t − 105. −10b + 3 � −b − 246. 96 � −6(c − 6)7. 15 � −3(B − 10)8.

Solving Equations with Special Solution Sets Solve the equation.

10C � 10C + 49. 6n � 6n + 810. 2p + 2 � 2p + 211.

10x + 6 � 10x + 612. 6r − 2 − 7r � −4 − r + 213. 3t − 6 − 4t � −7 − t + 114.

−9 − 10b + 8 � −b + 13 − 9b15. −7 − 6c + 4 � −c + 12 − 5c16. 2(B − 9) � 2(B − 1)17.
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8(C − 5) � 8(C − 4)18. a. 7n + 7 � 4n + 7

b. 7n + 7 � 7n + 7

c. 7n + 7 � 7n + 11

19. a. 5p + 10 � 2p + 10

b. 5p + 10 � 5p + 10

c. 5p + 10 � 5p + 13

20.

Solve the equation.

4(4 − 2x) − (6x − 8) � 23 − 2(8 + 7x)21. 3(8 − 10r) − (6r − 3) � 19 − 2(9 + 18r)22.

19 − 6(4 + 5t) � −31t − (5 − t)23. 30 − 5(7 + 4b) � −21b − (5 − b)24.

Solving Inequalities with Special Solution Sets Solve this inequality. Answer using interval notation.

6x > 6x + 325. 6x > 6x + 926. −8x ≤ −8x − 527.

−10x ≤ −10x − 828. −8 + 10x + 18 ≥ 10x + 1029. −2 + 2x + 8 ≥ 2x + 630.

−6 + 2x + 9 < 2x + 331. −10 + 4x + 19 < 4x + 932. −7 − 8z + 3 > −z + 16 − 7z33.

−7 − 5z + 6 > −z + 10 − 4z34. 6(k − 9) ≤ 6(k − 1)35. 8(k − 7) ≤ 8(k − 3)36.

10x ≤ 10x + 237. 10x ≤ 10x + 738.

Solve this inequality. Answer using interval notation.

2(4 − 10m) − (2m − 4) > 8 − 2(8 + 11m)39. 2(1 − 4m) − (10m − 4) > 10 − 2(3 + 9m)40.

Challenge

Fill in the right side of the equation to create a linear equation with the properties listed.

a. Create a linear equation with infinitely many solutions.

6(x + 4) �
b. Create a linear equation with the solution x � 2.

6(x + 4) �

41.
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3.7 Linear Equations and Inequalities Chapter Review

3.7.1 Solving Multistep Linear Equations

In Section 3.1 we covered the steps to solve a linear equation and the differences among simplifying expres-
sions, evaluating expressions and solving equations.

Example 3.7.1 Solve for a in 4 − (3 − a) � −2 − 2(2a + 1).

Explanation. To solve this equation, we will simplify each side of the equation, manipulate it so that
all variable terms are on one side and all constant terms are on the other, and then solve for a:

4 − (3 − a) � −2 − 2(2a + 1)
4 − 3 + a � −2 − 4a − 2

1 + a � −4 − 4a
1 + a + 4a � −4 − 4a + 4a

1 + 5a � −4
1 + 5a − 1 � −4 − 1

5a � −5
5a
5 �

−5
5

a � −1

Checking the solution −1 in the original equation, we get:

4 − (3 − a) � −2 − 2(2a + 1)

4 − (3 − (−1)) ?
� −2 − 2(2(−1) + 1)

4 − (4) ?
� −2 − 2(−1)

0 ✓� 0

Therefore the solution to the equation is −1 and the solution set is {−1}.

3.7.2 Solving Multistep Linear Inequalities

In Section 3.2 we covered how solving inequalities is very much like how we solve equations, except that if
we multiply or divide by a negative we switch the inequality sign.

Example 3.7.2 Solve for x in−2−2(2x+1) > 4−(3−x). Write the solution set in both set-builder notation
and interval notation.

Explanation.

−2 − 2(2x + 1) > 4 − (3 − x)
−2 − 4x − 2 > 4 − 3 + x
−4x − 4 > x + 1
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−4x − 4 − x > x + 1 − x
−5x − 4 > 1

−5x − 4 + 4 > 1 + 4
−5x > 5
−5x
−5 <

5
−5

x < −1

Note that when we divided both sides of the inequality by −5, we had to switch the direction of the
inequality symbol.

The solution set in set-builder notation is {x | x < −1}. The solution set in interval notation is (−∞,−1).

3.7.3 Linear Equations and Inequalities with Fractions

In Section 3.3 we covered how to eliminate denominators in an equation with the LCD to help solve the
equation.

Example 3.7.3 Solve for x in 1
4 x +

2
3 �

1
6 .

Explanation.

We’ll solve by multiplying each side of the equa-
tion by 12:

1
4 x +

2
3 �

1
6

12 ·
(
1
4 x +

2
3

)
� 12 · 16

12 ·
(
1
4 x

)
+ 12 ·

(
2
3

)
� 12 · 16

3x + 8 � 2
3x � −6
3x
3 �

−6
3

x � −2

Checking the solution:

1
4 x +

2
3 �

1
6

1
4 (−2) + 2

3
?
�

1
6

−2
4 +

2
3

?
�

1
6

− 6
12 +

8
12

?
�

1
6

2
12

?
�

1
6

1
6
✓
�

1
6

The solution is therefore −2. We write the solu-
tion set s {−2}.

3.7.4 Isolating a Linear Variable

In Section 3.4we covered how to solve an equationwhen there aremultiple variables in the equation.

Example 3.7.4 Solve for x in y � mx + b.
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Explanation.

y � mx + b
y − b � mx + b − b
y − b � mx
y − b

m
�

mx
m

y − b
m

� x

3.7.5 Ratios and Proportions

In Section 3.5 we covered the definitions of a ratio and a proportion and how to solve a proportion. We
learned about cross multiplication, did problems about similar triangles, and used proportions to solve
word problems.

Example 3.7.5 Solve 6−x
5 �

x
4 for x.

Explanation. To solve this proportion, begin by multiplying both sides by both denominators.

6 − x
5 �

x
4

5 · 4 · 6 − x
5 �

x
4 · 5 · 4

�5 · 4 ·
6 − x

�5
�

x

�4
· 5 · �4

4 · (6 − x) � x · 5
24 − 4x � 5x

24 − 4x + 4x � 5x + 4x
24 � 9x
24
9 �

9x
9

24
9 � x

So, the solution set is
{ 24

9
}
.

Example 3.7.6 Property taxes for a residential property are proportional to the assessed value of the
property. Assume that a certain property in a given neighborhood is assessed at $234,100 and its annual
property taxes are $2,518.92. What are the annual property taxes for a house that is assessed at $287,500?

Explanation. Let T be the annual property taxes (in dollars) for a property assessed at $287,500. We
can write and solve this proportion:

tax
property value �

tax
property value

2518.92
234100 �

T
287500
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234100 · 287500 · 2518.92
234100 �

T
287500 · 234100 · 287500

287500 · 2518.92 � T · 234100
287500 · 2518.92

234100 �
234100T
234100

T ≈ 3093.50

The property taxes for a property assessed at $287,500 are $3,093.50.

Example 3.7.7

3
cm

4 cm
53.13◦

x
cm

6 cm
53.13◦

Figure 3.7.8: Similar Triangles

Since the two triangles are similar, we know that their side length should be proportional. To determine
the unknown length, we can set up a proportion and solve for x:

bigger triangle’s left side length in cm
bigger triangle’s bottom side length in cm �

smaller triangle’s left side length in cm
smaller triangle’s bottom side length in cm

x cm
6 cm �

3 cm
4 cm

x
6 �

3
4

12 · x
6 � 12 · 34 (12 is the least common denominator)

2x � 9
2x
2 �

9
2

x �
9
2 or 4.5

The unknown side length is then 4.5 cm.

3.7.6 Special Solution Sets

In Section 3.6we covered linear equations that have no solutions and also linear equations that have infinitely
many solutions. When solving linear inequalities, it’s also possible that no solution exists or that all real
numbers are solutions.
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Example 3.7.9

a. Solve for x in the equation 3x � 3x + 4.

b. Solve for t in the inequality 4t + 5 > 4t + 2.

Explanation.

a. To solve this equation, we need to move all terms containing x to one side of the equals sign:

3x � 3x + 4
3x − 3x � 3x + 4 − 3x

0 � 4

This equation has no solution. We write the solution set as ∅, which is the symbol for the empty
set.

b. To solve for t, we will first subtract 4t from each side to get all terms containing t on one side:

4t + 5 > 4t + 2
4t + 5 − 4t > 4t + 2 − 4t

5 > 2

All values of the variable t make the inequality true. The solution set is all real numbers, which
we can write as {t | t is a real number} in set notation, or (−∞,∞) in interval notation.

Exercises

a. Solve the following linear equation:

3
(
y − 7

)
− 4 � −13

b. Evaluate the following expression when
y � 4:

3
(
y − 7

)
− 4 �

c. Simplify the following expression:

3
(
y − 7

)
− 4 �

1. a. Solve the following linear equation:

2
(
y + 1

)
− 9 � 1

b. Evaluate the following expression when
y � 4:

2
(
y + 1

)
− 9 �

c. Simplify the following expression:

2
(
y + 1

)
− 9 �

2.

Solve the equation.

−55 � −8B − 10 − B

3. Solve the equation.

1 � −5C − 5 − C

4. Solve the equation.

5 + 10(n − 4) � −73 − (2 − 2n)
5.

Solve the equation.

4 + 7
(
p − 10

)
� −84 −

(
7 − 2p

)6. Solve the equation.

−6 − 8x + 4 � −x + 4 − 7x

7. Solve the equation.

−10 − 5y + 4 � −y + 0 − 4y

8.
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Solve the equation.

13 �
t
7 +

t
6

9. Solve the equation.

9 �
a
5 +

a
10

10. Solve the equation.

c − 4
6 �

c + 6
8

11.

Solve the equation.

B − 8
4 �

B + 3
6

12. Solve this inequality.

4 −
(
y + 7

)
< 4

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

13. Solve this inequality.

4 −
(
y + 10

)
< −7

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

14.

Solve this inequality. An-
swer using interval notation.

10(k − 8) ≤ 10(k − 4)

15. Solve this inequality. An-
swer using interval notation.

2(k − 6) ≤ 2(k − 2)

16. Solve this inequality.

1 + 10(x − 9) < −23 − (2 − 2x)
In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

17.

Solve this inequality.

2 + 8(x − 4) < −21 − (1 − 4x)
In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

18. Solve this inequality.

−1
4 t >

2
5 t − 13

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

19. Solve this inequality.

−1
2 t >

6
5 t − 17

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

20.

Solve this linear equation for
x.

Ax + By � C

21. Solve this linear equation for
y.

Ax + By � C

22. Solve this linear equation for
n.

r � a − 2n
m

23.

Solve this linear equation for
p.

q � m − 2p
b

24.
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25. Carly has $70 in her piggy bank. She plans to purchase some Pokemon cards, which costs $1.15 each.
She plans to save $52.75 to purchase another toy. At most how many Pokemon cards can he purchase?

Write an equation to solve this problem.

Carly can purchase at most Pokemon cards.

26. Maygen has $72 in her piggy bank. She plans to purchase some Pokemon cards, which costs $2.55
each. She plans to save $43.95 to purchase another toy. At most howmany Pokemon cards can he purchase?

Write an equation to solve this problem.

Maygen can purchase at most Pokemon cards.

27. Use a linear equation to solve the word problem.

Evan has $85.00 in his piggy bank, and he spends $2.50 every day.

Bobbi has $31.00 in her piggy bank, and she saves $2.00 every day.

If they continue to spend and save money this way, howmany days later would they have the same amount
of money in their piggy banks?

days later, Evan and Bobbi will have the same amount of money in their piggy banks.

28. Use a linear equation to solve the word problem.

Will has $100.00 in his piggy bank, and he spends $4.00 every day.

Ross has $34.00 in his piggy bank, and he saves $2.00 every day.

If they continue to spend and save money this way, howmany days later would they have the same amount
of money in their piggy banks?

days later, Will and Ross will have the same amount of money in their piggy banks.

29. A hockey team played a total of 167 games last season. The number of games they won was 17 more
than five times of the number of games they lost.

Write and solve an equation to answer the following questions.

The team lost games. The team won games.

30. A hockey team played a total of 117 games last season. The number of games they won was 13 more
than three times of the number of games they lost.

Write and solve an equation to answer the following questions.

The team lost games. The team won games.

31. A rectangle’s perimeter is 278 ft. Its length is 4 ft longer than four times its width. Use an equation to
find the rectangle’s length and width.

Its width is .

Its length is .

32. A rectangle’s perimeter is 226 ft. Its length is 1 ft longer than three times its width. Use an equation

250



3.7 Linear Equations and Inequalities Chapter Review

to find the rectangle’s length and width.

Its width is .

Its length is .

33. Briana has saved $45.00 in her piggy bank, and she decided to start spending them. She spends $5.00
every 7 days. After how many days will she have $30.00 left in the piggy bank?

Briana will have $30.00 left in her piggy bank after days.

34. Maygen has saved $49.00 in her piggy bank, and she decided to start spending them. She spends
$5.00 every 6 days. After how many days will she have $29.00 left in the piggy bank?

Maygen will have $29.00 left in her piggy bank after days.

35. The following two triangles are similar to each other. Find the length of the missing side.

The length of the side labeled x is and the length of the side labeled y is .

36. The following two triangles are similar to each other. Find the length of the missing side.

The length of the side labeled x is and the length of the side labeled y is .

37. A restaurant used 639.4 lb of vegetable oil in 23 days. At this rate, 1306.6 lb of oil will last how many
days?

The restaurant will use 1306.6 lb of vegetable oil in days.

38. A restaurant used 914.5 lb of vegetable oil in 31 days. At this rate, 1209.5 lb of oil will last how many
days?

The restaurant will use 1209.5 lb of vegetable oil in days.
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39. Use a linear equation to solve the word problem.

Massage Heaven and Massage You are competitors. Massage Heaven has 6500 registered customers, and
it gets approximately 550 newly registered customers every month. Massage You has 8500 registered cus-
tomers, and it gets approximately 450 newly registered customers every month. How many months would
it take Massage Heaven to catch up with Massage You in the number of registered customers?

These two companies would have approximately the same number of registered customers
months later.

40. Use a linear equation to solve the word problem.

Two truck rental companies have different rates. V-Haul has a base charge of $70.00, plus $0.70 per mile.
W-Haul has a base charge of $60.40, plus $0.80 per mile. For how many miles would these two companies
charge the same amount?

If a driver drives miles, those two companies would charge the same amount of money.

41. A rectangle’s perimeter is 134 ft. Its length is 5 ft shorter than three times its width. Use an equation
to find the rectangle’s length and width.

Its width is .

Its length is .

42. A rectangle’s perimeter is 178 ft. Its length is 2 ft longer than two times its width. Use an equation to
find the rectangle’s length and width.

Its width is .

Its length is .
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CHAPTER 4
Graphing Lines

4.1 Cartesian Coordinates

When we model relationships with graphs, we use the Cartesian coordinate system. This section covers
the basic vocabulary and ideas that come with the Cartesian coordinate system.

René Descartes. Several conventions
used in mathematics are attributed to
(or at least named after) René Descartesa.
The Cartesian coordinate system is one of
these.

aen.wikipedia.org/wiki/René_Descartes

The Cartesian coordinate system identifies the location of every point
in a plane. Basically, the system gives every point in a plane its own
“address” in relation to a starting point. We’ll use a street grid as an
analogy. Here is a map with Carl’s home at the center. The map also
shows some nearby businesses. Assume each unit in the grid represents
one city block.

−4 4

−4

4

Carl’s house

restaurant

pet shop

gas station

bar

eastwest

north

south

Figure 4.1.2: Carl’s neighborhood

If Carl has an out-of-town guest who asks him how to get to the restaurant, Carl could say:

“First go 2 blocks east, then go 3 blocks north.”
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Carl uses two numbers to locate the restaurant. In
the Cartesian coordinate system, these numbers
are called coordinates and they are written as the
ordered pair (2, 3). The first coordinate, 2, rep-
resents distance traveled from Carl’s house to the
east (or to the right horizontally on the graph). The
second coordinate, 3, represents distance to the
north (up vertically on the graph). −4 4

−4

4

Carl’s house

restaurant
(2, 3)

gas station

eastwest

north

south

right 2

up
3

Figure 4.1.3: Carl’s path to the restaurant

Alternatively, to travel fromCarl’s home to the pet shop, he would go 3 blocks west, and then 2 blocks north.

In the Cartesian coordinate system, the positive di-
rections are to the right horizontally and up verti-
cally. The negative directions are to the left horizon-
tally and down vertically. So the pet shop’s Carte-
sian coordinates are (−3, 2).

−4 4

−4

4

Carl’s house

pet shop

(−3, 2)

gas station

restaurant

eastwest

north

south

left 3

up
2

Figure 4.1.4: Carl’s path to the pet shop

Remark 4.1.5. It’s important to know that the order of Cartesian coordinates is (horizontal, vertical). This
idea of communicating horizontal information before vertical information is consistent throughout most of
mathematics.

Checkpoint 4.1.6. Use Figure 4.1.2 to answer the following questions.

a. What are the coordinates of the bar?

b. What are the coordinates of the gas station?

c. What are the coordinates of Carl’s house?
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Notation Issue: Coordinates or Interval?.
Unfortunately, the notation for an ordered
pair looks exactly like interval notation for
an open interval. Contextwill help you un-
derstand if (2, 3) indicates the point 2 units
right of the origin and 3 units up, or if (2, 3)
indicates the interval of all real numbers
between 2 and 3.

Traditionally, the variable x represents numbers on the horizontal axis,
so it is called the x-axis. The variable y represents numbers on the verti-
cal axis, so it is called the y-axis. The axes meet at the point (0, 0), which
is called the origin. Every point in the plane is represented by an ordered
pair, (x , y).
In a Cartesian coordinate system, themap of Carl’s neighborhoodwould
look like this:

−4 4

−4

4

(0,0)

(2,3)

(-3,2)

(-2,-4)

(3,-3)

x

y

Figure 4.1.7: Carl’s Neighborhood in a Cartesian Coordinate System

Definition 4.1.8 Cartesian Coordinate System. A Cartesian coordinate system¹ is a coordinate system that
specifies each point uniquely in a plane by a pair of numerical coordinates, which are the signed (posi-
tive/negative) distances to the point from two fixed perpendicular directed lines, measured in the same
unit of length. Those two reference lines are called the horizontal axis and vertical axis, and the point
where they meet is the origin. The horizontal and vertical axes are often called the x-axis and y-axis.

The plane based on the x-axis and y-axis is called a coordinate plane. The ordered pair used to locate a
point is called the point’s coordinates, which consists of an x-coordinate and a y-coordinate. For example,
for the point (1, 2), its x-coordinate is 1, and its y-coordinate is 2. The origin has coordinates (0, 0).
A Cartesian coordinate system is divided into four quadrants, as shown in Figure 4.1.9. The quadrants are
traditionally labeled with Roman numerals.

¹en.wikipedia.org/wiki/Cartesian_coordinate_system
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−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

Quadrant IQuadrant II

Quadrant III Quadrant IV

x

y

Figure 4.1.9: A Cartesian grid with four quadrants marked

Example 4.1.10 On paper, sketch a Cartesian coordinate system with units, and then plot the following
points: (3, 2), (−5,−1), (0,−3), (4, 0).

Explanation.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(3, 2)

(−5,−1)

(0,−3)

(4, 0) x

y
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4.1 Cartesian Coordinates

Exercises

Identifying Coordinates Locate each point in the graph:

Write each point’s position as an ordered pair,
like (1, 2).

A � B �

C � D �

1.

Write each point’s position as an ordered pair,
like (1, 2).

A � B �

C � D �

2.

Creating Sketches of Graphs

Sketch the points (8, 2), (5, 5), (−3, 0), and (2,−6)
on a Cartesian plane.

3. Sketch the points (1,−4), (−3, 5), (0, 4), and
(−2,−6) on a Cartesian plane.

4.

Sketch the points (208,−50), (97, 112), (−29, 103),
and (−80,−172) on a Cartesian plane.

5. Sketch the points (110, 38), (−205, 52), (−52, 125),
and (−172,−80) on a Cartesian plane.

6.

Sketch the points (5.5, 2.7), (−7.3, 2.75),
(
− 10

3 ,
1
2
)
,

and
(
− 28

5 ,− 29
4
)
on a Cartesian plane.

7. Sketch the points (1.9,−3.3), (−5.2,−8.11),
( 7

11 ,
15
2
)
,

and
(
− 16

3 ,
19
5
)
on a Cartesian plane.

8.

Sketch a Cartesian plane and shade the quad-
rants where the x-coordinate is negative.

9. Sketch a Cartesian plane and shade the quad-
rants where the y-coordinate is positive.

10.

Sketch a Cartesian plane and shade the quad-
rantswhere the x-coordinate has the same sign
as the y-coordinate.

11. Sketch a Cartesian plane and shade the quad-
rantswhere the x-coordinate and the y-coordinate
have opposite signs.

12.
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Chapter 4 Graphing Lines

Cartesian Plots in Context

This graph gives the minimum estimates of
the wolf population in Washington from 2008
through 2015.
(Source: http://wdfw.wa.gov/publications/01793/
wdfw01793.pdf)

What are theCartesian coordinates for the point
representing the year 2010?

Between 2010 and 2011, the wolf population
grew by wolves.

List at least three ordered pairs in the graph.

13. Here is a graph of the foreign-born US popu-
lation (in millions) during Census years 1960
to 2010.
(Source: http://www.pewhispanic.org/2015/09/28/
chapter-5-u-s-foreign-born-population-trends/.)

What are theCartesian coordinates for the point
representing the year 1970?

Between 1970 and 1990, theUSpopulation that
is foreign-born increased by million people.

List at least three ordered pairs in the graph.

14.

Regions in the Cartesian Plane

The point (1,−10) is in Quadrant (□ I □ II □ III □ IV) .

The point (4, 2) is in Quadrant (□ I □ II □ III □ IV) .

The point (−6, 8) is in Quadrant (□ I □ II □ III □ IV) .

The point (−10,−2) is in Quadrant (□ I □ II □ III □ IV) .

15.

The point (4, 4) is in Quadrant (□ I □ II □ III □ IV) .

The point (−7,−10) is in Quadrant (□ I □ II □ III □ IV) .

The point (4,−9) is in Quadrant (□ I □ II □ III □ IV) .

The point (−9, 10) is in Quadrant (□ I □ II □ III □ IV) .

16.

Assume the point (x , y) if in Quadrant II, locate the following points:

The point (−x , y) is in Quadrant (□ I □ II □ III □ IV) .

The point (x ,−y) is in Quadrant (□ I □ II □ III □ IV) .

The point (−x ,−y) is in Quadrant (□ I □ II □ III □ IV) .

17.
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4.1 Cartesian Coordinates

Assume the point (x , y) if in Quadrant IV, locate the following points:

The point (−x , y) is in Quadrant (□ I □ II □ III □ IV) .

The point (x ,−y) is in Quadrant (□ I □ II □ III □ IV) .

The point (−x ,−y) is in Quadrant (□ I □ II □ III □ IV) .

18.

Answer the following questions on the coordinate system:

For the point (x , y), if x > 0 and y > 0, then the point is in/on (□ Quadrant I □ Quadrant II
□ Quadrant III □ Quadrant IV □ the x-axis □ the y-axis) .

For the point (x , y), if x > 0 and y < 0, then the point is in/on (□ Quadrant I □ Quadrant II
□ Quadrant III □ Quadrant IV □ the x-axis □ the y-axis) .

For the point (x , y), if x < 0 and y < 0, then the point is in/on (□ Quadrant I □ Quadrant II
□ Quadrant III □ Quadrant IV □ the x-axis □ the y-axis) .

For the point (x , y), if x < 0 and y > 0, then the point is in/on (□ Quadrant I □ Quadrant II
□ Quadrant III □ Quadrant IV □ the x-axis □ the y-axis) .

For the point (x , y), if y � 0, then the point is in/on (□ Quadrant I □ Quadrant II □ Quadrant
III □ Quadrant IV □ the x-axis □ the y-axis) .

For the point (x , y), if x � 0, then the point is in/on (□ Quadrant I □ Quadrant II □ Quadrant
III □ Quadrant IV □ the x-axis □ the y-axis) .

19.

Plotting Points and Choosing a Scale

What would be the difficulty with trying to plot (12, 4), (13, 5), and (310, 208) all on the same graph?20.

The points (3, 5), (5, 6), (7, 7), and (9, 8) all lie on a straight line. What can go wrong if you make a
plot of a Cartesion plane with these points marked, and you don’t have tick marks that are evenly
spaced apart?

21.
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4.2 Graphing Equations

We have graphed points in a coordinate system, and now we will graph lines and curves.

A graph of an equation is a picture of that equation’s solution set. For example, the graph of y � −2x + 3
is shown in Figure 4.1c. The graph plots the ordered pairs whose coordinates make y � −2x + 3 true.
Table 4.2.2 shows a few points that make the equation true.

y � −2x + 3 (x , y)
5 ✓� −2(−1) + 3 (−1, 5)
3 ✓� −2(0) + 3 (0, 3)
1 ✓� −2(1) + 3 (1, 1)
−1 ✓� −2(2) + 3 (2,−1)
−3 ✓� −2(3) + 3 (3,−3)
−5 ✓� −2(4) + 3 (4,−5)

Table 4.2.2 tells us that the points (−1, 5), (0, 3), (1, 1), (2,−1),
(3,−3), and (4,−5) are all solutions to the equation y �

−2x + 3, and so they should all be shaded as part of that
equation’s graph. You can see them in Figure 4.1a. But there
are many more points that make the equation true. More
points are plotted in Figure 4.1b. Even more points are plot-
ted in Figure 4.1c — so many, that together the points look
like a straight line.

Table 4.2.2

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(−1
, 5)

(0, 3
)

(1, 1
)

(2,−
1)

(3,−
3)

(4,−
5)

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

(a) A few points… (b) More points… (c) So many points it looks like a
straight line

Figure 4.2.2: Graphs of the Equation y � −2x + 3

Remark 4.2.3. The graph of an equation shades all the points (x , y) that make the equation true once the x-
and y-values are substituted in. Typically, there are so many points shaded, that the final graph appears to
be a continuous line or curve that you could draw with one stroke of a pen.

Checkpoint 4.2.4. The point (4,−5) is on the graph in Figure 4.2.3.(c). What happens when you substi-
tute these values into the equation y � −2x + 3?

y � −2x + 3
�

This equation is (□ true □ false) .
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4.2 Graphing Equations

Checkpoint 4.2.5. Decide whether (5,−2) and (−10,−7) are on the graph of the equation y � − 3
5 x + 1.

At (5,−2):

y � − 3
5 x + 1

�

This equation is (□ true □ false) and (5,−2) is (□ part of □ not part of) the graph of y � − 3
5 x + 1.

At (−10,−7):

y � − 3
5 x + 1

�

This equation is (□ true □ false) and (−10,−7) is (□ part of □ not part of) the graph of y � − 3
5 x+1.

Explanation. If the point (5,−2) is on y � − 3
5 x + 1, once we substitute x � 5 and y � −2 into the line’s

equation, the equation should be true. Let’s try:

y � −3
5 x + 1

−2 ?
� −3

5 (5) + 1

−2 ✓� −3 + 1

Because this last equation is true, we can definitively say that (5,−2) is on the graph of y � − 3
5 x + 1.

However if we substitute x � −10 and y � −7 into the equation, it leads to −7 � 7, which is false. This
definitively tells us that (−10,−7) is not on the graph.

So to make our own graph of an equation with two variables x and y, we can choose some reasonable
x-values, then calculate the corresponding y-values, and then plot the (x , y)-pairs as points. For many (not-
so-complicated) algebraic equations, connecting those points with a smooth curve will produce an excellent
graph.

Example 4.2.6 Let’s plot a graph for the equation y � −2x + 5. We use a table to organize our work:

x y � −2x + 5 Point
−2
−1

0
1
2

x y � −2x + 5 Point
−2 −2(−2) + 5 � 9 (−2, 9)
−1 −2(−1) + 5 � 7 (−1, 7)

0 −2(0) + 5 � 5 (0, 5)
1 −2(1) + 5 � 3 (1, 3)
2 −2(2) + 5 � 1 (2, 1)

(a) Set up the table (b) Complete the table

Figure 4.2.6: Making a table for y � −2x + 5
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Chapter 4 Graphing Lines

We use points from the table to graph the equation. First, plot each point carefully. Then, connect the
points with a smooth curve. Here, the curve is a straight line. Lastly, we can communicate that the graph
extends further by sketching arrows on both ends of the line.

−6 −4 −2 2 4 6

2

4

6

8

10

(−2
, 9)

(−1
, 7)

(0, 5
)

(1, 3
)

(2, 1
)

x

y

−6 −4 −2 2 4 6

2

4

6

8

10

(−2
, 9)

(−1
, 7)

(0, 5
)

(1, 3
)

(2, 1
)

x

y

(a) Use points from the table (b) Connect the points in whatever pattern is
apparent

Figure 4.2.6: Graphing the Equation y � −2x + 5

Remark 4.2.7. Note that our choice of x-values is arbitrary. As long as we determine the coordinates of
enough points to indicate the behavior of the graph, wemay choosewhichever x-valueswe like. For simpler
calculations, people often start with the integers from −2 to 2. However sometimes the equation has context
that suggests using other x-values, as in the next examples.

Example 4.2.8 The gas tank in Sofia’s car holds 14 gal of fuel. Over the course of a long road trip, her
car uses fuel at an average rate of 0.032 gal

mi . If Sofia fills the tank at the beginning of a long trip, then the
amount of fuel remaining in the tank, y, after driving x miles is given by the equation y � 14 − 0.032x.
Make a suitable table of values and graph this equation.

Explanation. Choosing x-values from −2 to 2, as in our previous example, wouldn’t make sense here.
Sofia cannot drive a negative number of miles, and any long road trip is longer than 2 miles. So in this
context, choose x-values that reflect the number of miles Sofia might drive in a day.
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4.2 Graphing Equations

x y � 14 − 0.032x Point
20 13.36 (20, 13.36)
50 12.4 (50, 12.4)
80 11.44 (80, 11.44)

100 10.8 (100, 10.8)
200 7.6 (200, 7.6)

50 100 150 200 250

5

10

15

20

(20, 1
3.36)

(50, 1
2.4)

(80, 1
1.44)

(100, 1
0.8)

(200, 7
.6)

x (miles)

y (gallons)

Table 4.2.9: Make the table Figure 4.2.10: Make the graph

In the graph from Example 4.2.8, notice how both axes indicate units that help describe the meaning of each
variable. Whenever a graph has real-world context, be sure to label both axes clearly with both variable
name (like x) and units.

Example 4.2.11 Plot a graph for the equation y �
4
3 x − 4.

Explanation. This equation doesn’t have any context to help us choose x-values for a table. We could
use x-values like −2, −1, and so on. But note the fraction in the equation. If we use an x-value like −2,
we will have to multiply by the fraction 4

3 which will leave us still holding a fraction. And then we will
have to subtract 4 from that fraction. Since we know that everyone can make mistakes with that kind of
arithmetic, maybe we can avoid it with a more wise selection of x-values.

If we use onnlymultiples of 3 for the x-values, thenmultiplying by 4
3 will leave us with an integer, which

will be easy to subtract 4 from. So we decide to use −6, −3, 0, 3, and 6 for x.

x y �
4
3 x − 4 Point

−6
−3

0
3
6

x y �
4
3 x − 4 Point

−6 4
3 (−6) − 2 � −12 (−6,−12)

−3 4
3 (−3) − 2 � −8 (−3,−8)

0 4
3 (0) − 2 � −4 (0,−4)

3 4
3 (3) − 2 � 0 (3, 0)

6 4
3 (6) − 2 � 4 (6, 4)

(a) Set up the table (b) Complete the table

Figure 4.2.11: Making a table for y �
4
3 x − 4

We use points from the table to graph the equation. First, plot each point carefully. Then, connect the
points with a smooth curve. Here, the curve is a straight line. Lastly, we can communicate that the graph
extends further by sketching arrows on both ends of the line.
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−6 −3 3 6

−15

−10

−5

5

10

(−3,−8)

(0,−4)

(3, 0)

(6, 4)

x

y

−6 −3 3 6

−15

−10

−5

5

10

(−3,−8)

(0,−4)

(3, 0)

(6, 4)

x

y

(a) Use points from the table (b) Connect the points in whatever pattern is
apparent

Figure 4.2.11: Graphing the Equation y �
4
3 x − 4

Not all equations make a straight line once they are plotted.

Example 4.2.12 Build a table and graph the equation y � x2. Use x-values from −3 to 3.

Explanation.

x y � x2 Point
−3 (−3)2 � 9 (−3, 9)
−2 (−2)2 � 4 (−2, 4)
−1 (−1)2 � 1 (−1, 1)

0 (0)2 � 0 (0, 0)
1 (1)2 � 1 (0, 1)
2 (2)2 � 4 (2, 4)
3 (3)2 � 9 (3, 9)

−6 −4 −2 2 4 6

−2

2

4

6

8

10

(−3, 9)

(−2, 4)

(−1, 1)

(0, 0)

(1, 1)

(2, 4)

(3, 9)

x

y

In this example, the points do not fall on a straight line. Many algebraic equations have graphs that are
non-linear, where the points do not fall on a straight line. Since each x-value corresponds to a single
y-value (the square of x) we connected the points with a smooth curve, sketching from left to right.
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Exercises

Testing Points as Solutions Consider the equation

y � 8x + 7

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (10, 90) □ (−4,−25)
□ (0, 10) □ (−5,−33)

1. y � 9x + 3

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (0, 4) □ (−5,−42)
□ (−3,−24) □ (4, 41)

2. y � −2x − 2

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (8,−18) □ (−6, 13)
□ (−2, 2) □ (0,−2)

3.

y � −10x − 5

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (3,−35) □ (0,−5)
□ (−6, 56) □ (−4, 35)

4. y �
2
3 x − 3

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (−15,−13) □ (0, 0)
□ (6, 1) □ (−9,−6)

5. y �
2
3 x − 5

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (3,−3) □ (−15,−15)
□ (0, 0) □ (−9,−10)

6.

y � − 3
4 x − 3

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (−12, 6) □ (20,−15)
□ (0,−3) □ (−16, 14)

7. y � − 3
4 x − 5

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (12,−11) □ (0,−5)
□ (−20, 10) □ (−16, 9)

8.

Tables for Equations Make a table for the equation.

The first row is an example.

x y � −x + 6 Points
−3 9 (−3, 9)
−2
−1
0
1
2

9. The first row is an example.

x y � −x + 7 Points
−3 10 (−3, 10)
−2
−1
0
1
2

10.
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The first row is an example.

x y � 5x + 1 Points
−3 −14 (−3,−14)
−2
−1
0
1
2

11. The first row is an example.

x y � 6x + 8 Points
−3 −10 (−3,−10)
−2
−1
0
1
2

12.

The first row is an example.

x y � −5x + 4 Points
−3 19 (−3, 19)
−2
−1
0
1
2

13. The first row is an example.

x y � −5x + 1 Points
−3 16 (−3, 16)
−2
−1
0
1
2

14.

The first row is an example.

x y �
3
8 x + 5 Points

−24 −4 (−24,−4)
−16
−8
0
8
16

15. The first row is an example.

x y �
3
4 x − 7 Points

−12 −16 (−12,−16)
−8
−4
0
4
8

16.

The first row is an example.

x y � − 5
2 x + 2 Points

−6 17 (−6, 17)
−4
−2
0
2
4

17. The first row is an example.

x y � − 5
8 x + 10 Points

−24 25 (−24, 25)
−16
−8
0
8
16

18.
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x y � 8x19. x y � 12x20.

x y � 8x + 221. x y � 10x − 422.

x y �
19
2 x − 823. x y �

3
4 x − 624.

x y � − 11
19 x − 425. x y �

15
8 x − 126.

Cartesian Plots in Context

A certain water heater will cost you $900 to buy and have installed. This water heater claims that
its operating expense (money spent on electricity or gas) will be about $31 per month. According to
this information, the equation y � 900+31x models the total cost of the water heater after x months,
where y is in dollars. Make a table of at least five values and plot a graph of this equation.

27.
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You bought a new Toyota Corolla for $18,600 with a zero interest loan over a five-year period. That
means you’ll have to pay $310 each month for the next five years (sixty months) to pay it off. Ac-
cording to this information, the equation y � 18600 − 310x models the loan balance after x months,
where y is in dollars. Make a table of at least five values and plot a graph of this equation. Make
sure to include a data point representing when you will have paid off the loan.

28.

The pressure inside a full propane tank will rise and fall if the ambient temperature rises and falls.
The equation P � 0.1963(T +459.67)models this relationship, where the temperature T is measured
in °F and the pressure and the pressure P is measured in lb

in2 . Make a table of at least five values and
plot a graph of this equation. Make sure to use T-values that make sense in context.

29.

A beloved coworker is retiring and you want to give her a gift of week-long vacation rental at the
coast that costs $1400 for the week. You might end up paying for it yourself, but you ask around to
see if the other 29 office coworkers want to split the cost evenly. The equation y �

1400
x models this

situation, where x people contribute to the gift, and y is the dollar amount everyone contributes.
Make a table of at least five values and plot a graph of this equation. Make sure to use x-values that
make sense in context.

30.

Graphs of Equations

Create a table of ordered pairs and thenmake
a plot of the equation y � 2x + 3.

31. Create a table of ordered pairs and thenmake
a plot of the equation y � 3x + 5.

32.

Create a table of ordered pairs and thenmake
a plot of the equation y � −4x + 1.

33. Create a table of ordered pairs and thenmake
a plot of the equation y � −x − 4.

34.

Create a table of ordered pairs and thenmake
a plot of the equation y �

5
2 x.

35. Create a table of ordered pairs and thenmake
a plot of the equation y �

4
3 x.

36.

Create a table of ordered pairs and thenmake
a plot of the equation y � − 2

5 x − 3.
37. Create a table of ordered pairs and thenmake

a plot of the equation y � − 3
4 x + 2.

38.

Create a table of ordered pairs and thenmake
a plot of the equation y � x2 + 1.

39. Create a table of ordered pairs and thenmake
aplot of the equation y � (x−2)2. Use x-values
from 0 to 4.

40.

Create a table of ordered pairs and thenmake
a plot of the equation y � −3x2.

41. Create a table of ordered pairs and thenmake
a plot of the equation y � −x2 − 2x − 3.

42.
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4.3 Exploring Two-Variable Data and Rate of Change

This section is about examining data that has been plotted on a Cartesian coordinate system, and then
making observations. In some cases, we’ll be able to turn those observations into useful mathematical
calculations.

4.3.1 Modeling data with two variables

Using mathematics, we can analyze real data from the world around us. We can use what we discover
to better understand the world, and sometimes to make predictions. Here’s an example of data about the
economic situation in the US:

1990
1995

2000
2005

2010
2015

2020
2025

2030
2035

5

10

15

20

25

30

year

percentage

Figure 4.3.2: Share of all income held by the top 1 %, United States, 1990–2013 (www.epi.org)

If this trend continues, what percentage of all income will the top 1 % have in the year 2030? If we model
data in the chart with the trend line, we can estimate the value to be 28.6 %. This is one way math is used
in real life.

Does that trend line have an equation like those we looked at in Section 4.2? Is it even correct to look at
this data set and decide that a straight line is a good model? These are some of the questions we want to
consider as we begin this section. The answers will evolve through the next several sections.

4.3.2 Patterns in Tables
Example 4.3.3 Find a pattern in each table. What is the missing entry in each table? Can you describe
each pattern in words and/or mathematics?
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black white
big small
short tall
few

USA Washington
UK London
France Paris
Mexico

1 2
2 4
3 6
5

Figure 4.3.4: Patterns in 3 tables

Explanation.

black white
big small
short tall
few many

USA Washington
UK London
France Paris
Mexico Mexico City

1 2
2 4
3 6
5 10

Figure 4.3.5: Patterns in 3 tables

First table Each word on the right has the opposite meaning of the word to its left.

Second table Each city on the right is the capital of the country to its left.

Third table Each number on the right is double the number to its left.

We can view each table as assigning each input in the left column a corresponding output in the right
column. In the first table, for example, when the input “big” is on the left, the output “small” is on the right.
The first table’s function is to output a word with the opposite meaning of each input word. (This is not a
numerical example.)

The third table is numerical. And its function is to
take a number as input, and give twice that num-
ber as its output. Mathematically, we can describe
the pattern as “y � 2x,” where x represents the
input, and y represents the output. Labeling the
table mathematically, we have Table 4.3.6.

x
(input)

y
(output)

1 2
2 4
3 6
5 10
10 20
Pattern: y � 2x

Table 4.3.6: Table with a mathematical pattern

The equation y � 2x summarizes the pattern in the table. For each of the following tables, find an equation
that describes the pattern you see. Numerical pattern recognition may or may not come naturally for you.
Either way, pattern recognition is an important mathematical skill that anyone can develop. Solutions for
these exercises provide some ideas for recognizing patterns.
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Checkpoint 4.3.7. Write an equation in the form y � . . . suggested by the pattern in the table.

x y
0 10
1 11
2 12
3 13

Explanation. Looking for a similar relationship in each row is one approach to pattern recognition. Here,
the y-value in each row is 10 greater than its corresponding x-value. So the equation y � x + 10 describes
the pattern. Of course, there are more complicated patterns to explore, as we’ll see in the next exercise.

Checkpoint 4.3.8. Write an equation in the form y � . . . suggested by the pattern in the table.

x y
0 −1
1 2
2 5
3 8

Explanation. The relationship between x and y in each row is not as clear here. Another popular approach
for finding patterns: in each column, consider how the values change from one row to the next. From row
to row, the x-value increases by 1. Also, the y-value increases by 3 from row to row.

x y
0 −1

+ 1→ 1 2 ← + 3
+ 1→ 2 5 ← + 3
+ 1→ 3 8 ← + 3

Since row-to-row change is always 1 for x and is always 3 for y, the rate of change from one row to another
row is always the same: 3 units of y for every 1 unit of x.

We know that the output for x � 0 is y � −1. And our observation about the constant rate of change tells us

that if we increase the input by x units from 0, the output should increase by

x times︷           ︸︸           ︷
3 + 3 + · · · + 3 , which is 3x. So

the output would be −1 + 3x. So the equation is y � 3x − 1.

Checkpoint 4.3.9. Write an equation in the form y � . . . suggested by the pattern in the table.

x y
0 0
1 1
2 4
3 9
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Explanation. Looking for a relationship in each row here, we see that each y-value is the square of the
corresponding x-value. So the equation is y � x2.

What if we had tried the approach we used in the previous exercise, comparing change from row to row in
each column?

x y
0 0

+ 1→ 1 1 ← + 1
+ 1→ 2 4 ← + 3
+ 1→ 3 9 ← + 5

Here, the rate of change is not constant from one row to the next. While the x-values are increasing by 1
from row to row, the y-values increase more and more from row to row. Notice that there is a pattern there
as well? Mathematicians are fascinated by relationships that produce more complicated patterns. (We’ll
study more complicated patterns later.)

4.3.3 Rate of Change

For an hourly wage-earner, the amount of money they earn depends on how many hours they work. If
a worker earns $15 per hour, then 10 hours of work corresponds to $150 of pay. Working one additional
hour will change 10 hours to 11 hours; and this will cause the $150 in pay to rise by fifteen dollars to $165 in
pay. Any time we compare how one amount changes (dollars earned) as a consequence of another amount
changing (hours worked), we are talking about a rate of change.

Given a table of two-variable data, between any two rows we can compute a rate of change.

Example 4.3.10 The following data, given in both table and graphed form, gives the counts of invasive
cancer diagnoses in Oregon over a period of time. (wonder.cdc.gov)

Year Invasive Cancer
Incidents

1999 17,599
2000 17,446
2001 17,847
2002 17,887
2003 17,559
2004 18,499
2005 18,682
2006 19,112
2007 19,376
2008 20,370
2009 19,909
2010 19,727
2011 20,636
2012 20,035
2013 20,458

2000
2005

2010
2015

16,000

17,000

18,000

19,000

20,000

21,000

year

count
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What is the rate of change in Oregon invasive cancer diagnoses between 2000 and 2010? The total (net)
change in diagnoses over that timespan is

19727 − 17446 � 2281.

Since 10 years passed (which you can calculate as 2010 − 2000), the rate of change is 2281 diagnoses per
10 years, or

2281diagnoses
10year � 228.1

diagnoses
year .

We read that last quantity as “228.1 diagnoses per year.” This rate of change means that between the
years 2000 and 2010, there were 228.1 more diagnoses each year, on average. (Notice that there was no
single year in that span when diagnoses increased by 228.1.)

Let’s practice calculating rates of change over different timespans:

Checkpoint 4.3.11. Use the data in Example 4.3.10 to find the rate of change in Oregon invasive cancer
diagnoses between 1999 and 2002. Just give the numerical value; the units are provided.

diagnoses
year

And what was the rate of change between 2003 and 2011?
diagnoses

year

Explanation. To find the rate of change between 1999 and 2002, calculate

17887 − 17599
2002 − 1999 � 96.

To find the rate of change between 2003 and 2011, calculate

20636 − 17559
2011 − 2003 � 384.625.

We are ready to give a formal definition for rate of change. Considering our work from Example 4.3.10 and
Checkpoint 4.3.11, we settle on:

Definition 4.3.12 Rate of Change. If
(
x1 , y1

)
and

(
x2 , y2

)
are two data points from a set of two-variable

data, then the rate of change between them is

change in y
change in x

�
∆y
∆x

�
y2 − y1

x2 − x1
.

(The Greek letter delta, ∆, is used to represent “change in” since it is the first letter of the Greek word for
“difference.”)
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In Example 4.3.10 and Checkpoint 4.3.11 we
found three rates of change. Figure 4.3.13 high-
lights the three pairs of points that were used to
make these calculations.

2000
2005

2010
2015

16,000

17,000

18,000

19,000

20,000

21,000

rate 228.1

rate 96

rate 384.6

year

count

Figure 4.3.13

Note how the larger the numerical rate of change between two points, the steeper the line is that connects
them. This is such an important observation, we’ll put it in an official remark.

Remark 4.3.14. The rate of change between two data points is intimately related to the steepness of the line
segment that connects those points.

1. The steeper the line, the larger the rate of change, and vice versa.

2. If one rate of change between two data points equals another rate of change between two different
data points, then the corresponding line segments will have the same steepness.

3. When a line segment between twodata points slants down from left to right, the rate of change between
those points will be negative.

In the solution to Checkpoint 4.3.8, the key observation was that the rate of change from one row to
the next was constant: 3 units of increase in y for every 1 unit of increase in x. Graphing this pattern in
Figure 4.3.15, we see that every line segment here has the same steepness, so the entire graph is a line.
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−6 −4 −2 2 4 6

−4

2

8

x

y

Figure 4.3.15

Whenever the rate of change is constant no matter which two (x , y)-pairs (or data pairs) are chosen from a
data set, then you can conclude the graph will be a straight line even without making the graph. We call this
kind of relationship a linear relationship. We’ll study linear relationships in more detail throughout this
chapter. Right now in this section, we feel it is important to simply identify if data has a linear relationship
or not.

Checkpoint 4.3.16. Is there a linear relationship in the table?

x y
−8 3.1
−5 2.1
−2 1.1
1 0.1

(□ The relationship is linear □ The relationship is not linear)

Explanation. From one x-value to the next, the change is always 3. From one y-value to the next, the
change is alwasy −1. So the rate of change is always −1

3 � − 1
3 . Since the rate of change is constant, the data

have a linear relationship.

Checkpoint 4.3.17. Is there a linear relationship in the table?

x y
11 208
13 210
15 214
17 220

(□ The relationship is linear □ The relationship is not linear)
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Explanation. The rate of change between the first two points is 210−208
13−11 � 1. The rate of change between

the last two points is 220−214
17−15 � 3. This is one way to demonstrate that the rate of change differs for different

pairs of points, so this pattern is not linear.

Checkpoint 4.3.18. Is there a linear relationship in the table?

x y
3 −2
6 −8
8 −12
12 −20

(□ The relationship is linear □ The relationship is not linear)

Explanation. The changes in x from one row to the next are +3,+2, and +8. That’s not a consistent pattern,
but we need to consider rates of change between points. The rate of change between the first two points
is −8−(−2)

6−3 � −2. The rate of change between the next two points is −12−(−8)
8−6 � −2. And the rate of change

between the last two points is −20−(−12)
12−8 � −2. So the rate of change, −2, is constant regardless of which pairs

we choose. That means these pairs describe a linear relationship.

Let’s return to the data that we opened the section with, in Figure 4.3.2. Is that data linear? Well, yes and
no. To be completely honest, it’s not linear. It’s easy to pick out pairs of points where the steepness changes
from one pair to the next. In other words, the points do not all fall into a single line.

However if we stand back, there does seem to be
an overall upward trend that is captured by the
line someone has drawn over the data. Points on
this line do have a linear pattern. Let’s estimate the
rate of change between some points on this line.
We are free to use any points to do this, so let’s
make this calculation easier by choosing points we
can clearly identify on the graph: (1991, 15) and
(2020, 25).

1990
1995

2000
2005

2010
2015

2020
2025

2030
2035

5

10

15

20

25

30

year

percentage

Figure 4.3.19: Share of all income held by the
top 1 %, United States, 1990–2013 (www.epi.org)

The rate of change between those two points is

25 − 15
2020 − 1991 �

10
29 ≈ 0.3448.

So we might say that on average the rate of change expressed by this data is 0.3448 %
yr .
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Exercises

Finding Patterns Write an equation in the form y � . . . suggested by the pattern in the table.

x y
−2 −6
−1 −3
0 0
1 3
2 6

1. x y
3 12
4 16
5 20
6 24
7 28

2. x y
5 11
6 12
7 13
8 14
9 15

3. x y
6 10
7 11
8 12
9 13
10 14

4. x y
15 23
13 21
6 14
4 12
1 9

5. x y
17 16
6 5
14 13
19 18
1 0

6.

x y
25 5
1 1
4 2
16 4
9 3

7. x y
−5 5
−2 2
−3 3
−2 2
−4 4

8. x y
2 4
3 9
4 16
5 25
6 36

9. x y
7 49
9 81
11 121
13 169
15 225

10. x y
43 1

43
62 1

62
84 1

84
58 1

58
1 1

11. x y
54 1

54
27 1

27
25 1

25
33 1

33
99 1

99

12.

Linear Relationships Does the following table show that x and y have a linear relationship? (□ yes
□ no)

x y
0 93
1 100
2 107
3 114
4 121
5 128

13. x y
0 62
1 70
2 78
3 86
4 94
5 102

14. x y
5 51
6 49
7 47
8 45
9 43
10 41

15. x y
10 74
11 72
12 70
13 68
14 66
15 64

16. x y
3 19
4 27
5 43
6 75
7 139
8 267

17. x y
8 260
9 516
10 1028
11 2052
12 4100
13 8196

18.

x y
0 17
1 18
2 25
3 44
4 81
5 142

19. x y
1 11
2 18
3 37
4 74
5 135
6 226

20. x y
−10 35.92
−9 36.32
−8 36.72
−7 37.12
−6 37.52
−5 37.92

21. x y
−2 82.57
−1 84.08
0 85.59
1 87.1
2 88.61
3 90.12

22. x y
5 85
10 125
12 141
16 173
17 181
18 189

23. x y
1 18
5 50
7 66
13 114
16 138
19 162

24.
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Calculating Rate of Change

This table gives population estimates for Port-
land, Oregon from 1990 through 2014.

Year Population Year Population
1990 487849 2003 539546
1991 491064 2004 533120
1992 493754 2005 534112
1993 497432 2006 538091
1994 497659 2007 546747
1995 498396 2008 556442
1996 501646 2009 566143
1997 503205 2010 585261
1998 502945 2011 593859
1999 503637 2012 602954
2000 529922 2013 609520
2001 535185 2014 619360
2002 538803

Find the rate of change in Portland population
between 2005 and 2006. Just give the numeri-
cal value; the units are provided.

people
year

Andwhatwas the rate of change between 2008
and 2014?

people
year

List all the years where there is a negative rate
of change between that year and the next year.

25. This table and graph gives population esti-
mates for Portland, Oregon from 1990 through
2014.

Year Population Year Population
1990 487849 2003 539546
1991 491064 2004 533120
1992 493754 2005 534112
1993 497432 2006 538091
1994 497659 2007 546747
1995 498396 2008 556442
1996 501646 2009 566143
1997 503205 2010 585261
1998 502945 2011 593859
1999 503637 2012 602954
2000 529922 2013 609520
2001 535185 2014 619360
2002 538803

Betweenwhat twoyears that are twoyears apart
was the rate of change highest?

What was that rate of change? Just give the
numerical value; the units are provided.

people
year

26.
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4.4 Slope

4.4 Slope

In Section 4.3, we observed that a constant rate of change between points produces a linear relationship,
whose graph is a straight line. Such a constant rate of change has a special name, slope, and we’ll explore
slope in more depth here.

4.4.1 What is slope?

When the rate of change from point to point never
changes, those points must fall on a straight line,
as in Figure 4.4.2, and there is a linear relationship
between the variables x and y.

Rather than say “constant rate of change” in every
such situation, mathematicians call that common
rate of change slope.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

rate 1
2

rate 2
4 �

1
2

rate 3
6 �

1
2

x

y

Figure 4.4.2: Between successive points, the rate
of change is always 1/2.

Definition 4.4.3 Slope. When x and y are two variables where the rate of change between any two points
is always the same, we call this common rate of change the slope. Since having a constant rate of change
means the graph will be a straight line, its also called the slope of the line.

Considering the definition for Definition 4.3.12, this means that when x and y are two variables where the
rate of change between any two points is always the same, then you can calculate slope, m, by finding two
distinct data points (x1 , y1) and (x2 , y2), and calculating

m �
change in y
change in x

�
∆y
∆x

�
y2 − y1

x2 − x1
. (4.4.1)

A slope is a rate of change. So if there are units for the horizontal and vertical variables, then there will be
units for the slope. The slope will be measured in vertical units

horizontal units .

Slope m. Why is the letter m commonly
used as the symbol for “slope?” Some be-
lieve that it comes from the French word
“monter” which means “to climb.”

If the slope is nonzero, we say that there is a linear relationship between
x and y. When the slope is 0, we say that y is constant with respect to x.

Here are some scenarios with different slopes. Note that a slope is more
meaningful with units.

• If a tree grows 2.5 feet every year, its rate of change in height is the same from year to year. So the
height and time have a linear relationship where the slope is 2.5 ft

yr .
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• If a company loses 2 million dollars every year, its rate of change in reserve funds is the same from
year to year. So the company’s reserve funds and time have a linear relationship where the slope is
−2 million dollars per year.

• If Sakura is an adult who has stopped growing, her rate of change in height is the same from year to
year—it’s zero. So the slope is 0 in

yr . Sakura’s height is constant with respect to time. In a statistics
course, you would say that height and time don’t have a relationship at all, in the sense that informa-
tion about Sakura’s height tells you nothing about her age.

Remark 4.4.4. A useful phrase for remembering the definition of slope
is “rise over run.” Here, “rise” refers to “change in y,” ∆y, and “run”
refers to “change in x,” ∆x. Be careful though. As we have learned, the horizontal direction comes first in
mathematics, followed by the vertical direction. The phrase “rise over run” reverses this. (It’s a bit awkward
to say, but the phrase “run under rise” puts the horizontal change first.)

Example 4.4.5 Yara’s Savings. On Dec. 31, Yara had only $50 in her savings account. For the the new
year, she resolved to deposit $20 into her savings account each week, without withdrawing any money
from the account.

Yara keeps her resolution, and her account balance increases steadily by $20 eachweek. That’s a constant
rate of change, so her account balance and time have a linear relationship with slope 20 dollars/wk.

We canmodel the balance, y, in Yara’s savings account after x weekswith an equation. Since Yara started
with $50 and adds $20 each week, the account balance y after x weeks is

y � 50 + 20x (4.4.2)

where y is a dollar amount. Notice that the slope, 20 dollars/wk, serves as the multiplier for x weeks.

We can also consider Yara’s savings using a table.

x, weeks since
dec. 31

y, savings account
balance (dollars)

0 50
x increases by 1−→ 1 70 ←−y increases by 20
x increases by 1−→ 2 90 ←−y increases by 20
x increases by 2−→ 4 130 ←−y increases by 40
x increases by 3−→ 7 190 ←−y increases by 60
x increases by 5−→ 12 290 ←−y increases by 100

Table 4.4.6: Yara’s savings

In first few rows of the table, we see that when the number of weeks x increases by 1, the balance y
increases by 20. The row-to-row rate of change is 20

1 � 20, the slope. In any table for a linear relationship,
whenever x increases by 1 unit, y will increase by the slope.

In further rows, notice that as row-to-row change in x increases, row-to-row change in y increases pro-
portionally to preserve the constant rate of change. Looking at the change in the last two rows of the
table, we see x increases by 5 and y increases by 100, which gives a rate of change of 100

5 � 20, the value
of the slope again.

We can “see” the rates of change between consecutive rows of the table on a graph of Yara’s savings by
including slope triangles.
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2 4 6 8 10 12 14

100

200

300

5 weeks

$1
00

weeks

savings (in dollars) The large, labeled slope triangle indicates that
when 5 weeks pass, Yara saves $100. This is the
rate of change between the last two rows of the
table, 100

5 � 20 dollars/wk.

The smaller slope triangles indicate, from left to
right, the rates of change 20

1 , 20
1 , 40

2 , and 60
3 respec-

tively. All of these rates simplify to the slope,
20 dollars/wk.

Figure 4.4.7: Yara’s savings

Every slope triangle on the graph of Yara’s savings has the same shape (geometrically, they are called
similar triangles) since the ratio of vertical change to horizontal change is always 20 dollars/wk. On any
graph of any line, we can draw a slope triangle and compute slope as “rise over run.”

Of course, we could draw a slope triangle on the other side of the line:

2 4 6 8 10 12 14

100

200

300

$1
00

5 weeks

weeks

savings (in dollars) This slope triangle works just as well for iden-
tifying “rise” and “run,” but it focuses on ver-
tical change before horizontal change. For con-
sistency with mathematical conventions, we will
generally draw slope triangles showing horizon-
tal change followed by vertical change, as in Fig-
ure 4.4.7.

Figure 4.4.8: Yara’s savings

Example 4.4.9 The following graph of a line models the amount of gas, in gallons, in Kiran’s gas tank
as they drive their car. Find the line’s slope, and interpret its meaning in this context.
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2 4 6 8 10

2

4

6

8

10

hours

gas in gallons

Figure 4.4.10: Amount of gas in Kiran’s gas tank

Explanation. To find a line’s slope using its graph, we first identify two points on it, and then draw a
slope triangle. Naturally, we would want to choose two points whose x- and y-coordinates are easy to
identify exactly based on the graph. We will pick the two points where x � 3 and x � 6, because they
are right on the grid lines:

2 4 6 8 10

2

4

6

8

10

3 hours

−2 gallon

hours

gas in gallons Notice that the change in y is negative, because
the amount of gas is decreasing. Since we chose
points with integer coordinates, we can easily
calculate the slope:

slope �
−2
3 � −2

3 .

Figure 4.4.11: A Good Slope Triangle

With units, the slope is − 2
3

gal
h . In the given context, this slope implies gas in the tank is decreasing at the

rate of 2
3

gal
h . Since this slope is written as a fraction, there is another way to understand it: the gas in

Kiran’s tank is decreasing by 2 gallons every 3 hours.
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Checkpoint 4.4.12. Below is a line’s graph.

The slope of this line is .

Explanation. To find the slope of a line from its graph, we first need to identify two points that the line
passes through. It is wise to choose points with integer coordinates. For this problem, we choose (0,−4)
and (2,−1).
Next, we sketch a slope triangle and find the rise and run. In the sketch below, the rise is 3 and the run is 2.

slope �
rise
run

�
3
2

This line’s slope is 3
2 .
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Checkpoint 4.4.13. Make a table and plot the equation y �
3
4 x + 2, which makes a straight line. Use the

plot to determine the slope of this line.

Explanation. First, we choose some x-values to make a table, and compute the corresponding y-values.

x y �
3
4 x + 2 Point

−2 3
4 (−2) + 2 � 0.5 (−2, 0.5)

−1 3
4 (−1) + 2 � 1.25 (−1, 1.25)

0 3
4 (0) + 2 � 2 (0, 2)

1 3
4 (1) + 2 � 2.75 (1, 2.75)

2 3
4 (2) + 2 � 3.5 (1, 3.5)

3 3
4 (3) + 2 � 4.25 (1, 4.25)

4 3
4 (4) + 2 � 5 (1, 5)

5 3
4 (5) + 2 � 5.75 (2, 5.75)

This table lets us plot the graph and identify a slope triangle that is easy to work with.

Since the slope triangle runs 4 units and then rises 3 units, the slope is 3
4 .

4.4.2 Comparing Slopes

It’s useful to understandwhat it means for different slopes to appear on the same coordinate system.

Example 4.4.14 Effie, Ivan andCleo are in a foot race. Figure 4.4.15models the distance each has traveled
in the first few seconds. Each runner takes a second to accelerate up to their running speed, but then
runs at a constant speed. So they are then traveling with a constant rate of change, and the straight line
portions of their graphs have a slope. Find each line’s slope, and interpret its meaning in this context.
What comparisons can you make with these runners?

284



4.4 Slope
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Figure 4.4.15: A three-way foot race

We will draw slope triangles to find each line’s slope.
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Figure 4.4.16: Find the Slope of Each Line

Using Formula (4.4.1), we have:

• Effie’s slope is 8
3 ≈ 2.666 meters per second

• Ivan’s slope is 7
2 � 3.5 meters per second

• Cleo’s slope is 8
2 � 4 meters per second

In a time-distance graph, the slope of a line represents speed. The slopes in these examples and the
running speeds of these runners are both measured in m

s . Another important relationship we can see is
that, the more sharply a line is slanted, the bigger the slope is. This should make sense because for each
passing second, the faster person travels longer, making a slope triangle’s height taller. This means that,
numerically, we can tell that Cleo is the fastest runner (and Effie is the slowest) just by comparing the
slopes 4 > 3.5 > 2.666.
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Checkpoint 4.4.17 Jogging on Mt. Hood. Kato is training for a race up the slope of Mt. Hood, from
Sandy to Government Camp, and then back. The graph below models his elevation from his starting point
as time passes. Find the slopes of the three line segments, and interpret their meanings in this context.

a. The first segment has slope
.

b. The second segment has
slope .

c. The third segment has slope
.

Explanation. The first segment started at (0, 0) and stopped at (7, 3500). This implies, Kato started at the
starting point, traveled 7 hours and reached a point 3500 feet higher in elevation from the starting point.
The slope of the line is

∆y
∆x

�
3500

7 � 500

and with units, that is 500 ft/hr. In context, Kato was running, gaining 500 feet in elevation per hour.

The third segment started from (19, 3500) and stopped at (23, 0). This implies, Kato started this part of his
trip from a spot 3500 feet higher in elevation from the starting point, traveled for 4 hours and returned to
the starting elevation. The slope of the line is

∆y
∆x

�
−3500

4 � −875

and with units, that is −875 ft/hr. In context, Kato was running, dropping in elevation by 875 feet per hour.

What happened in the second segment, which started at (7, 3500) and ended at (19, 3500)? This implies he
started this portion 3500 feet higher in elevation from the starting point, and didn’t change elevation for 19
hours. The slope of the line is

∆y
∆x

�
0
19 � 0

and with units, that is 0 ft/hr. In context, Kato was running but neither gaining nor losing elevation.

Some important properties are demonstrated in Exercise 4.4.17.

Fact 4.4.18 The Relationship Between Slope and Increase/Decrease. In a linear relationship, as the x-value
increases (in other words as you read its graph from left to right):

• if the y-values increase (in other words, the line goes upward), its slope is positive.

• if the y-values decrease (in other words, the line goes downward), its slope is negative.

• if the y-values don’t change (in other words, the line is flat, or horizontal), its slope is 0.

286



4.4 Slope

These properties are summarized graphically in Figure 4.4.18.
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(a) A line with positive slope (b) A line with negative slope (c) A line with a slope of zero

Figure 4.4.18

4.4.3 Finding Slope by Two Given Points

Several times in this section we computed a slope by drawing a slope triangle. That’s not really necessary if
you have coordinates for two points that a line passes through. In fact, sometimes it’s impractical to draw a
slope triangle.¹ Here we will stress how to find a line’s slope without drawing a slope triangle.

Example 4.4.19 Your neighbor planted a sapling from PortlandNursery in his front yard. Ever since, for
several years now, it has been growing at a constant rate. By the end of the third year, the tree was 15 ft
tall; by the end of the sixth year, the tree was 27 ft tall. What’s the tree’s rate of growth (i.e.the slope)?

We could sketch a graph for this scenario, and include a slope triangle. If we did that, it would look like:

1 2 3 4 5 6 7 8

3

6

9

12

15

18

21

24

27

(3, 15)

(6, 27)

3 years

12
ft

years since planting

height (ft) By the slope triangle and Equation (4.4.1) we have:

slope � m �
∆y
∆x

�
12
3

� 4

So the tree is growing at a rate of 4 ft
yr .

Figure 4.4.20: Height of a Tree

¹For instance if you only have specific information about two points that are too close together to draw a triangle, or if you cannot
clearly see precise coordinates where you might start and stop your slope triangle.
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Chapter 4 Graphing Lines

But hold on. Did we really need this picture? The “rise” of 12 came from a subtraction of two y-values:
27 − 15. And the “run” of 3 came from a subtraction of two x-values: 6 − 3.

Here is a picture-free approach. We know that after 3 yr, the height is 15 ft. As an ordered pair, that in-

formation gives us the point (3, 15)which we can label as (
x1
3 ,

y1
15). Similarly, the background information

tells us to consider (6, 27), which we label as (
x2
6 ,

y2
27). Here, x1 and y1 represent the first point’s x-value

and y-value, and x2 and y2 represent the second point’s x-value and y-value.

Now we can write an alternative to Equation (4.4.1):

slope � m �
∆y
∆x

�
y2 − y1

x2 − x1
(4.4.3)

This is known as the slope formula. The following graph will help you understand why this formula
works. Basically, we are still using a slope triangle to calculate the slope.

2 4 6 8

5

10

15

20

25

30

(3, 15)

(6, 27)

6 − 3
� 3 years

27
−

15
�

12
ft

years since planting

height (ft)

2 4 6 8

5

10

15

20

25

30

(x1 , y1)

(x2 , y2)

x2 − x1

y 2
−

y 1

x

y

Figure 4.4.21: Understanding the slope formula

It’s important to use subscript instead of superscript in the slope equation, because y2 means to take the
number y and square it. Whereas y2 tells you that there are at least two y-values in the conversation, and
y2 is the second of them.

The beauty of the slope formula (4.4.3) is that to find a line’s slope, we don’t need to draw a slope triangle
any more. Let’s look at an example.

Example 4.4.22 A line passes the points (−5, 25) and (4,−2). Find this line’s slope.

Explanation. If you are new to this formula, it’s important to label each number before using the for-
mula. The two given points are:

(
x1
−5,

y1
25) and (

x2
4 ,

y2
−2)
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Now apply the slope formula (4.4.3):

slope �
y2 − y1

x2 − x1

�
−2 − 25
4 − (−5)

�
−27

9
� −3

Note that we used parentheses when substituting in x1 and y1. This is a good habit to protect yourself
from making errors with subtraction and double negatives.

Checkpoint 4.4.23. A line passes through the points (−6, 26) and (6,−16). Find this line’s slope.

Explanation. To find a line’s slope, we can use the slope formula:

slope �
y2 − y1

x2 − x1

First, we mark which number corresponds to which variable in the formula:

(−6, 26) −→ (x1 , y1)

(6,−16) −→ (x2 , y2)

Now we substitute these numbers into the corresponding variables in the slope formula:

slope �
y2 − y1

x2 − x1

�
−16 − 26
6 − (−6)

�
−42
12

� −7
2

So the line’s slope is −7
2 .

Exercises

Review and Warmup

Reduce the fraction 5
40 .1. Reduce the fraction 3

27 .2. Reduce the fraction 15
18 .3.

Reduce the fraction 15
27 .4. Reduce the fraction 35

210 .5. Reduce the fraction 42
189 .6.
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Reduce the fraction 135
75 .7. Reduce the fraction 100

30 .8. Reduce the fraction 245
35 .9.

Reduce the fraction 280
35 .10.

Slope and Points

A line passes through the points (2, 1) and
(7, 21). Find this line’s slope.

11. A line passes through the points (4, 27) and
(6, 37). Find this line’s slope.

12.

A line passes through the points (1,−1) and
(9,−9). Find this line’s slope.

13. A line passes through the points (3,−22) and
(8,−47). Find this line’s slope.

14.

A line passes through the points (−4, 2) and
(−8,−2). Find this line’s slope.

15. A line passes through the points (−3,−7) and
(−5,−11). Find this line’s slope.

16.

A line passes through the points (−1,−7) and
(3,−11). Find this line’s slope.

17. A line passes through the points (−3,−14) and
(3, 4). Find this line’s slope.

18.

A line passes through the points (−2, 2) and
(−8, 14). Find this line’s slope.

19. A line passes through the points (−4,−1) and
(−5, 1). Find this line’s slope.

20.

A line passes through the points (14, 16) and
(−7,−8). Find this line’s slope.

21. A line passes through the points (5, 17) and
(−10,−7). Find this line’s slope.

22.

A line passes through the points (−2, 0) and
(4,−9). Find this line’s slope.

23. A line passes through the points (−16, 10) and
(8, 1). Find this line’s slope.

24.

A line passes through the points (2,−4) and
(−5,−4). Find this line’s slope.

25. A line passes through the points (5,−2) and
(−3,−2). Find this line’s slope.

26.

A line passes through the points (1,−2) and
(1, 1). Find this line’s slope.

27. A line passes through the points (3,−4) and
(3, 3). Find this line’s slope.

28.
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Slope and Graphs

Below is a line’s graph.

The slope of this line is .

29. Below is a line’s graph.

The slope of this line is .

30. Below is a line’s graph.

The slope of this line is .

31.

Below is a line’s graph.

The slope of this line is .

32. Below is a line’s graph.

The slope of this line is .

33. Below is a line’s graph.

The slope of this line is .

34.

Below is a line’s graph.

The slope of this line is .

35. Below is a line’s graph.

The slope of this line is .

36. Below is a line’s graph.

The slope of this line is .

37.
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Below is a line’s graph.

The slope of this line is .

38. Below is a line’s graph.

The slope of this line is .

39. Below is a line’s graph.

The slope of this line is .

40.

A line’s graph is shown be-
low.

The slope is .

41. A line’s graph is shown be-
low.

The slope is .

42. A line’s graph is shown be-
low.

The slope is .

43.

A line’s graph is shown be-
low.

The slope is .

44.
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Slope in Context

By your cell phone contract, you pay a monthly fee plus some money for each minute you use the
phone during the month. In one month, you spent 260 minutes on the phone, and paid $25.70. In
another month, you spent 390 minutes on the phone, and paid $31.55. What is the rate (in dollars
per minute) that the phone company is charging you? That is, what is the slope of the line if you
plotted the bill versus the number of minutes spent on the phone?

The rate is per minute.

45.

By your cell phone contract, you pay a monthly fee plus some money for each minute you use the
phone during the month. In one month, you spent 300 minutes on the phone, and paid $24.50. In
another month, you spent 360 minutes on the phone, and paid $27.20. What is the rate (in dollars
per minute) that the phone company is charging you? That is, what is the slope of the line if you
plotted the bill versus the number of minutes spent on the phone?

The rate is per minute.

46.

A company set aside a certain amount of money in the year 2000. The company spent exactly the
same amount from that fund each year on perks for its employees. In 2003, there was still $743,000
left in the fund. In 2005, there was $659,000 left. What is the rate (in dollars per year) at which this
company is spending from this fund?

The company is spending per year on perks for its employees.

47.

A company set aside a certain amount of money in the year 2000. The company spent exactly the
same amount from that fund each year on perks for its employees. In 2004, there was still $546,000
left in the fund. In 2005, there was $500,000 left. What is the rate (in dollars per year) at which this
company is spending from this fund?

The company is spending per year on perks for its employees.

48.

A biologist has been observing a tree’s height. Elevenmonths into the observation, the tree was 22.2
feet tall. Eleven months into the observation, the tree was 24.6 feet tall. What is the rate at which the
tree is growing? In other words, what is the slope if you plotted heigth versus time?

49.

A biologist has been observing a tree’s height. Thirteen months into the observation, the tree was
17.53 feet tall. Thirteen months into the observation, the tree was 18.08 feet tall. What is the rate at
which the tree is growing? In other words, what is the slope if you plotted heigth versus time?

50.

Scientists are conducting an experiment with a gas in a sealed container. The mass of the gas is
measured, and the scientists realize that the gas is leaking over time in a linear way. Five minutes
since the experiment started, the gas had amass of 133.2 grams. Twelveminutes since the experiment
started, the gas had a mass of 108 grams. At what rate is the gas leaking?

51.
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Scientists are conducting an experiment with a gas in a sealed container. Themass of the gas is mea-
sured, and the scientists realize that the gas is leaking over time in a linear way. Seven minutes since
the experiment started, the gas had a mass of 338.4 grams. Nineteen minutes since the experiment
started, the gas had a mass of 225.6 grams. At what rate is the gas leaking?

52.

A liquid solution is slowly leaking from a con-
tainer. This graph shows the

milliters of solution y remaining in the con-
tainer after x minutes.

a. The y coordinate of the line is .

b. The slope of the line is .

c. Use the graph and your answer to part b to
predict the number of minutes it will take for
the container to empty if the solution contin-
ues leaking at the same rate. That time is
minutes.

53. The graph plots the number of invasive cancer
diagnoses in Oregon over time, and a trend-
line has been drawn.

Estimate the slope of the trend-line. Just give
the numerical value; the units are provided.

diagnoses
year

54.

Challenge

True or False: A slope of 2
5 is steeper than a slope of 1

4 . (□ true □ false)55.

True or False: A slope of 1
8 is steeper than a slope of 2

5 . (□ true □ false)56.
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4.5 Slope-Intercept Form

4.5 Slope-Intercept Form

In this section, we will explore one of the “standard” ways to write the equation of a line. It’s known as
slope-intercept form.

4.5.1 Slope-Intercept Definition

Recall Example 4.4.5, where Yara had $50 in her savings account when the year began, and decided to
deposit $20 each week without withdrawing any money. In that example, we model using x to represent
how many weeks have passed. After x weeks, Yara has added 20x dollars. And since she started with $50,
she has

y � 20x + 50

in her account after x weeks. In this example, there is a constant rate of change of 20 dollars per week, so
we call that the slope as discussed in Section 4.4. We also saw in Figure 4.4.7 that plotting Yara’s balance
over time gives us a straight-line graph.

The graph of Yara’s savings has some things in
common with almost every straight-line graph.
There is a slope, and there is a place where the line
crosses the y-axis. Figure 4.5.2 illustrates this in
the abstract.

slop
e

y-intercept

x

y

Figure 4.5.2: Generic line with slope and y-
intercept

What else is there?. Can you think of
a type of straight line that does not have a
notion of slope? Or that does not cross the
y-axis somewhere?

We already have an accepted symbol, m, for the slope of a line. The y-
intercept is a point on the y-axis where the line crosses. Since it’s on
the y-axis, the x-coordinate of this point is 0. It is standard to call the y-
intercept (0, b) where b represents the position of the y-intercept on the
y-axis.

Checkpoint 4.5.3. Use Figure 4.4.7 to answer this question.

What was the value of b in the plot of Yara’s savings?

What is the y-intercept?

Explanation. The line crosses the y-axis at (0, 50), so the value of b is 50. And the y-intercept is (0, 50)
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One way to write the equation for Yara’s savings was

y � 20x + 50,

where both m � 20 and b � 50 are immediately visible in the equation. Now we are ready to generalize
this.

Definition 4.5.4 Slope-Intercept Form. When x and y have a linear relationship where m is the slope and
(0, b) is the y-intercept, one equation for this relationship is

y � mx + b (4.5.1)

and this equation is called the slope-intercept form of the line. It is called this because the slope and y-
intercept are immediately discernible from the numbers in the equation.

Checkpoint 4.5.5. What are the slope and y-intercept for each of the following line equations?

Equation Slope y-intercept
y � 3.1x + 1.78
y � −17x + 112
y �

3
7 x − 2

3
y � 13 − 8x
y � 1 − 2x

3
y � 2x
y � 3

Explanation. In the first three equations, simply read the slope m according to slope-intercept form. The
slopes are 3.1, −17, and 3

7 .

The fourth equation was written with the terms not in the slope-intercept form order. It could be written
y � −8x + 13, and then it is clear that its slope is −8. In any case, the slope is the coefficient of x.

The fifth equation is also written with the terms not in the slope-intercept form order. Changing the order
of the terms, it could be written y � − 2x

3 + 1, but this still does not match the pattern of slope-intercept
form. Considering how fraction multiplication works, 2x

3 �
2
3 · x

1 �
2
3 x. So we can write this equation as

y � − 2
3 x + 1, and we see the slope is − 2

3 .

The last two equations could be written y � 2x + 0 and y � 0x + 3, allowing us to read their slopes as 2 and
0.

For the y-intercepts, remember that we are expected to answer using an ordered pair (0, b), not just a single
number b. We can simply read that the first two y-intercepts are (0, 1.78) and (0, 112).
The third equation does not exactly match the slope-intercept form, until you view it as y �

3
7 x +

(
− 2

3
)
, and

then you can see that its y-intercept is − 2
3 .

With the fourth equation, after rewriting it as y � −8x + 13, we can see that its y-intercept is (0, 13).
We already explored rewriting the fifth equation as y � − 2

3 x + 1, where we can see that its y-intercept is
(0, 1).
The last two equations could be written y � 2x + 0 and y � 0x + 3, allowing us to read their y-intercepts as
(0, 0) and (0, 3).
Alternatively, we know that y-intercepts happen where x � 0, and substituting x � 0 into each equation
gives you the y-value of the y-intercept.
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Remark 4.5.6. The number b is the y-value when x � 0. Therefore it is common to refer to b as the initial
value or starting value of a linear relationship.

Example 4.5.7 With a simple equation like y � 2x + 3, we can see that this is a line whose slope is 2 and
which has initial value 3. So starting at y � 3 when x � 0 (that is, on the y-axis), each time we increase
the x-value by 1, the y-value increases by 2. With these basic observations, we can quickly produce a
table and/or a graph.

x y
start on
y-axis −→ 0 3

initial
←− value

increase
by 1 −→ 1 5

increase
←− by 2

increase
by 1 −→ 2 7

increase
←− by 2

increase
by 1 −→ 3 9

increase
←− by 2

increase
by 1 −→ 4 11

increase
←− by 2

−6 −4 −2 2 4 6

−2

2

4

6

8

10

x

y

Example 4.5.8 Decide whether data in the table has a linear relationship. If so, write the linear equation
in slope-intercept form (4.5.1).

x-values y-values
0 −4
2 2
5 11
9 23

Explanation. To assess whether the relationship is linear, we have to recall from Section 4.3 that we
should examine rates of change between data points. Note that the changes in y-values are not consis-
tent. However, the rates of change are calculated as follows:

• When x increases by 2, y increases by 6. The first rate of change is 6
2 � 3.

• When x increases by 3, y increases by 9. The second rate of change is 9
3 � 3.

• When x increases by 4, y increases by 12. The third rate of change is 12
4 � 3.

Since the rates of change are all the same, 3, the relationship is linear and the slope m is 3.

According to the table, when x � 0, y � −4. So the starting value, b, is −4.

So in slope-intercept form, the line’s equation is y � 3x − 4.

Checkpoint 4.5.9. Decide whether data in the table has a linear relationship. If so, write the linear
equation in slope-intercept form. This may not be as easy as the previous example. Read the solution for a
full explanation.
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x-values y-values
3 −2
6 −8
8 −12
11 −18

The data (□ does □ does not) have a linear relationship, because: (□ changes in x are not constant
□ rates of change between data points are constant □ rates of change between data points are not constant)

The slope-intercept form of the equation for this line is .

Explanation. To assess whether the relationship is linear, we examine rates of change between data points.

• The first rate of change is −6
3 � −2.

• The second rate of change is −4
2 � −2.

• The third rate of change is −6
3 � −2.

Since the rates of change are all the same, −2, the relationship is linear and the slope m is −2.

So we know that the slope-intercept equation is y � −2x + b, but what number is b? The table does not
directly tell us what the initial y-value is.

One approach is to use any point that we know the line passes through, and use algebra to solve for b. We
know the line passes through (3,−2), so

y � −2x + b
−2 � −2(3) + b
−2 � −6 + b

4 � b

So the equation is y � −2x + 4.

4.5.2 Graphing Slope-Intercept Equations

Example 4.5.10 The conversion formula for a Celsius temperature into Fahrenheit is F �
9
5 C + 32. This

appears to be in slope-intercept form, except that x and y are replaced with C and F. Suppose you are
asked to graph this equation. How will you proceed? You could make a table of values as we do in
Section 4.2 but that takes time and effort. Since the equation here is in slope-intercept form, there is a
nicer way.

Since this equation is for starting with a Celsius temperature and obtaining a Fahrenheit temperature, it
makes sense to let C be the horizontal axis variable and F be the vertical axis variable. Note the slope is
9
5 and the vertical intercept (here, the F-intercept) is (0, 32).

1. Set up the axes using an appropriate window and labels. Considering the freezing and boiling
temperatures of water, it’s reasonable to let C run through at least 0 to 100. Similarly it’s reasonable
to let F run through at least 32 to 212.
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2. Plot the F-intercept, which is at (0, 32).
3. Starting at the F-intercept, use slope triangles to reach the next point. Since our slope is 9

5 , that
suggests a “run” of 5 and a “rise” of 9 might work. But as Figure 4.5.11 indicates, such slope
triangles are too tiny. Since 9

5 �
90
50 , we can try a “run” of 50 and a rise of 90.

4. Connect your points with a straight line, use arrowheads, and label the equation.

25 50 75 100

50

100

150

200

250

(0, 32)

C

F

25 50 75 100

50

100

150

200

250

(50, 122)

(100, 212)

C

F

25 50 75 100

50

100

150

200

250

F �
9

5
C +

32

C

F

Figure 4.5.11: Graphing F �
9
5 C + 32

Example 4.5.12 Graph y � − 2
3 x + 10.

−6 −4 −2 2 4 6

5

10

15

20

(0, 10)

x

y

−6 −4 −2 2 4 6

5

10

15

20

(3, 8)

(6, 6)

(−3, 12)

(−6, 14)

x

y

−6 −4 −2 2 4 6

5

10

15

20

y � − 2
3 x + 10

x

y

(a) Setting up the axes in an ap-
propriate window and making
sure that the y-intercept will be
visible, and that any “run” and
“rise” amounts we wish to use
will not make triangles that are
too big or too small.

(b) The slope is − 2
3 �

−2
3 �

2
−3 .

So we can try using a “run” of 3
and a “rise” of −2 or a “run” of
−3 and a “rise” of 2.

(c) Connecting the points with a
straight line and adding labels.

Figure 4.5.12: Graphing y � − 2
3 x + 10
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Example 4.5.13 Graph y � 3x + 5.

−6 −4 −2 2 4 6

−10

−5

5

10

15

20

(0, 5)

x

y

−6 −4 −2 2 4 6

−10

−5

5

10

15

20

(1, 8)

(2, 11)

(3, 14)

(4, 17)

(−1, 2)

(−2,−1)

(−3,−4)

(−4,−7)

x

y

−6 −4 −2 2 4 6

−10

−5

5

10

15

20

y
�

3x
+

5

x

y

(a) Setting up the axes to make
sure that the y-intercept will be
visible, and that any “run” and
“rise” amounts we wish to use
will not make triangles that are
too big or too small.

(b) The slope is a whole number
3. Every 1 unit forward causes
a change of positive 3 in the
y-values.

(c) Connecting the points with a
straight line and adding labels.

Figure 4.5.13: Graphing y � 3x + 5

4.5.3 Writing a Slope-Intercept Equation Given a Graph

We can write a linear equation in slope-intercept form based on its graph. We need to be able to calculate
the line’s slope and see its y-intercept.

Checkpoint 4.5.14. Use the graph to write an equation of the line in slope-intercept form.

Explanation. On the line, pick two points with easy-to-read integer coordinates so that we can calculate
slope. It doesn’t matter which two points we use; the slope will be the same.
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Using the slope triangle, we can calculate the line’s slope:

slope �
∆y
∆x

�
−2
4 � −1

2 .

From the graph, we can see the y-intercept is (0, 6).
With the slope and y-intercept found, we can write the line’s equation:

y � −1
2 x + 6.

Checkpoint 4.5.15. There are seven public four-year colleges in Oregon. The graph plots the annual
in-state tuition for each school on the x-axis, and the median income of former students ten years after first
enrolling on the y-axis.

Write an equation for this line in slope-intercept form.
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Explanation. Do your best to identify two points on the line. We go with (0, 27500) and (8000, 41000).

∆y
∆x

�
41000 − 27500

8000 − 0 �
13500
8000 � 1.6875

So the slope is about 1.6875 dollars of median income per dollar of tuition. This is only an estimate since
we are not all certain the two points we chose are actually on the line.

Estimating the y-intercept to be at (0, 27500), we have y � 1.6875x + 27500.

4.5.4 Writing a Slope-Intercept Equation Given Two Points

The idea that any two points uniquely determine a line has been understood for thousands of years in many
cultures around the world. Once you have two specific points, there is a straightforward process to find the
slope-intercept form of the equation of the line that connects them.

Example 4.5.16 Find the slope-intercept form of the equation of the line that passes through the points
(0, 5) and (8,−5).

Explanation. We are trying to write down y � mx + b, but with specific numbers for m and b. So the
first step is to find the slope, m. To do this, recall the slope formula (4.4.3) from Section 4.4. It says that if
a line passes through the points (x1 , y1) and (x2 , y2), then the slope is found by the formula m �

y2−y1
x2−x1

.

Applying this to our two points (
x1
0 ,

y1
5 ) and

(
x2
8 ,

y2
−5), we see that the slope is:

m �
y2 − y1

x2 − x1

�
−5 − 5
8 − 0

�
−10

8

� −5
4

We are trying to write y � mx + b. Since we al-
ready found the slope, we know that we want to
write y � − 5

4 x + b but we need a specific num-
ber for b. We happen to know that one point on
this line is (0, 5), which is on the y-axis because
its x-value is 0. So (0, 5) is this line’s y-intercept,
and therefore b � 5. (We’re only able to make
this conclusion because this point has 0 for its x-
coordinate.) So, our equation is

y � −5
4 x + 5.
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Example 4.5.17 Find the slope-intercept form of the equation of the line that passes through the points
(3,−8) and (−6, 1).

Explanation. The first step is always to find the slope between our two points: (
x1
3 ,

y1
−8) and (

x2
−6,

y2
1 ).

Using the slope formula (4.4.3) again, we have:

m �
y2 − y1

x2 − x1

�
1 − (−8)
−6 − 3

�
9
−9

� −1

Now that we have the slope, we can write y � −1x + b, which simplifies to y � −x + b. Unlike in
Example 4.5.16, we are not given the value of b because neither of our two given points have an x-value
of 0. The trick to finding b is to remember that we have two points that we know make the equation
true! This means all we have to do is substitute either point into the equation for x and y and solve for
b. Let’s arbitrarily choose (3,−8) to plug in.

y � −x + b
−8 � −(3) + b (Now solve for b.)
−8 � −3 + b

−8 + 3 � −3 + b + 3
−5 � b

In conclusion, the equation for which we were searching is y � −x − 5.

Don’t be tempted to plug in values for x and y at this point. The general equation of a line in any form
should have (at least one, and in this case two) variables in the final answer.

Checkpoint 4.5.18. Find the slope-intercept form of the equation of the line that passes through the
points (−3, 150) and (0, 30).

Explanation. The first step is always to find the slope between our points: (
x1
−3,

y1
150) and (

x2
0 ,

y2
30). Using the

slope formula, we have:

m �
y2 − y1

x2 − x1

�
30 − 150
0 − (−3)

�
−120

3
� −40

Now we can write y � −40x + b and to find b we need look no further than one of the given points: (0, 30).
Since the x-value is 0, the value of b must be 30. So, the slope-intercept form of the line is

y � −40x + 30
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Checkpoint 4.5.19. Find the slope-intercept form of the equation of the line that passes through the
points

(
−3, 3

4
)
and

(
−6,− 17

4
)
.

Explanation. First find the slope through our points:
(
−3, 3

4
)
and

(
−6,− 17

4
)
. For this problem, we choose

to do all of our algebra with improper fractions as it often simplifies the process.

m �
y2 − y1

x2 − x1

�
− 17

4 − 3
4

−6 − (−3)

�

−20
4
−3

�
−5
−3

�
5
3

So far we have y �
5
3 x + b. Now we need to solve for b since neither of the points given were the vertical

intercept. Recall that to do this, we will choose one of the two points and plug it into our equation. We
choose

(
−3, 3

4
)
.

y �
5
3 x + b

3
4 �

5
3 (−3) + b

3
4 � −5 + b

3
4 + 5 � −5 + b + 5

3
4 +

20
4 � b

23
4 � b

Lastly, we write our equation.

y �
5
3 x +

23
4

4.5.5 Modeling with Slope-Intercept Form

We canmodel many relatively simple relationships using slope-intercept form, and then solve related ques-
tions using algebra. Here are a few examples.

Example 4.5.20 Uber is a ride-sharing company. Its pricing in Portland factors in how much time and
how many miles a trip takes. But if you assume that rides average out at a speed of 30 mph, then their
pricing scheme boils down to a base of $7.35 for the trip, plus $3.85 per mile. Use a slope-intercept
equation and algebra to answer these questions.

a. How much is the fare if a trip is 5.3 miles long?
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b. With $100 available to you, how long of a trip can you afford?

Explanation. The rate of change (slope) is $3.85 per mile, and the starting value is $7.35. So the slope-
intercept equation is

y � 3.85x + 7.35.

In this equation, x stands for the number of miles in a trip, and y stands for the amount of money to be
charged.

If a trip is 5 miles long, we substitute x � 5 into the equation and we have:

y � 3.85x + 7.35
� 3.85(5) + 7.35
� 19.25 + 7.35
� 26.60

And the 5-mile ride will cost you about $26.60. (We say “about,” because this was all assuming you
average 30 mph.)

Next, to find how long of a trip would cost $100, we substitute y � 100 into the equation and solve for x:

y � 3.85x + 7.35
100 � 3.85x + 7.35

100 − 7.35 � 3.85x
92.65 � 3.85x
92.65
3.85 � x

24.06 ≈ x

So with $100 you could afford a little more than a 24-mile trip.

Checkpoint 4.5.21. In a certain wildlife reservation in Africa, there are approximately 2400 elephants.
Unfortunately, the population has been decreasing by 30 elephants per year. Use a slope-intercept equation
and algebra to answer these questions.

a. If the trend continues, what would the elephant population be 15 years from now?

elephants

b. If the trend continues, how many years will it be until the elephant population dwindles to 1200?

years

Explanation. The rate of change (slope) is−30 elephants per year. Notice that sincewe are losing elephants,
the slope is a negative number. The starting value is 2400 elephants. So the slope-intercept equation is

y � −30x + 2400.
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In this equation, x stands for a number of years into the future, and y stands for the elephant population.

To estimate the elephant population 15 years later, we substitute x in the equation with 15, and we have:

y � −30x + 2400
� −30(15) + 2400
� −450 + 2400
� 1950

So if the trend continues, there would be 1950 elephants on this reservation 15 years later.

Next, to find when the elephant population would decrease to 1200, we substitute y in the equation with
1200, and solve for x:

y � −30x + 2400
1200 � −30x + 2400

1200 − 2400 � −30x
−1200 � −30x
−1200
−30 � x

40 � x

So if the trend continues, 40 years later, the elephant population would dwindle to 1,200.

Exercises

Review and Warmup

Evaluate 10B + 2c for B � 7 and c � −4.1. Evaluate −9C − a for C � −5 and a � −10.2.

Evaluate

y2 − y1

x2 − x1

for x1 � 19, x2 � 9, y1 � 8, and y2 � 11:

3. Evaluate

y2 − y1

x2 − x1

for x1 � −18, x2 � −5, y1 � −16, and y2 � −1:

4.

Identifying Slope and y-Intercept Find the line’s slope and y-intercept.

A line has equation y � 3x + 1.

This line’s slope is .

This line’s y-intercept is .

5. A line has equation y � 4x + 7.

This line’s slope is .

This line’s y-intercept is .

6.
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A line has equation y � −7x − 7.

This line’s slope is .

This line’s y-intercept is .

7. A line has equation y � −6x − 1.

This line’s slope is .

This line’s y-intercept is .

8.

A line has equation y � x + 3.

This line’s slope is .

This line’s y-intercept is .

9. A line has equation y � x + 5.

This line’s slope is .

This line’s y-intercept is .

10.

A line has equation y � −x + 7.

This line’s slope is .

This line’s y-intercept is .

11. A line has equation y � −x + 9.

This line’s slope is .

This line’s y-intercept is .

12.

A line has equation y � −2
3 x + 8.

This line’s slope is .

This line’s y-intercept is .

13. A line has equation y � −2
9 x − 5.

This line’s slope is .

This line’s y-intercept is .

14.

A line has equation y �
1
2 x + 8.

This line’s slope is .

This line’s y-intercept is .

15. A line has equation y �
1
4 x − 7.

This line’s slope is .

This line’s y-intercept is .

16.

A line has equation y � 7 + 6x.

This line’s slope is .

This line’s y-intercept is .

17. A line has equation y � 9 + 7x.

This line’s slope is .

This line’s y-intercept is .

18.

A line has equation y � 8 − x.

This line’s slope is .

This line’s y-intercept is .

19. A line has equation y � 9 − x.

This line’s slope is .

This line’s y-intercept is .

20.
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Graphs and Slope-Intercept Form

Graph the equation y � 4x.21. Graph the equation y � 5x.22. Graph the equation y � −3x.23.

Graph the equation y � −2x.24. Graph the equation y �
5
2 x.25. Graph the equation y �

1
4 x.26.

Graph the equation y � − 1
3 x.27. Graph the equation y � − 5

4 x.28.

Graph the equation y � 5x + 2.29. Graph the equation y � 3x + 6.30.

Graph the equation y � −4x + 3.31. Graph the equation y � −2x + 5.32.

Graph the equation y � x − 4.33. Graph the equation y � x + 2.34.

Graph the equation y � −x + 3.35. Graph the equation y � −x − 5.36.

Graph the equation y �
2
3 x + 4.37. Graph the equation y �

3
2 x − 5.38.

Graph the equation y � − 3
5 x − 1.39. Graph the equation y � − 1

5 x + 1.40.

A line’s graph is given.

This line’s slope-intercept equa-
tion is

41.

This line’s slope-intercept equa-
tion is

42.

This line’s slope-intercept equa-
tion is

43.
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This line’s slope-intercept equa-
tion is

44.

This line’s slope-intercept equa-
tion is

45.

This line’s slope-intercept equa-
tion is

46.

This line’s slope-intercept equa-
tion is

47.

This line’s slope-intercept equa-
tion is

48.

Writing a Slope-Intercept Equation Given Two Points

A line passes through the points (3, 22) and
(4, 27). Find this line’s equation in slope-intercept
form.

This line’s slope-intercept equation is .

49. A line passes through the points (5, 29) and
(2, 14). Find this line’s equation in slope-intercept
form.

This line’s slope-intercept equation is .

50.

A line passes through the points (−2, 20) and
(−5, 35). Find this line’s equation in slope-intercept
form.

This line’s slope-intercept equation is .

51. A line passes through the points (3,−12) and
(2,−7). Find this line’s equation in slope-intercept
form.

This line’s slope-intercept equation is .

52.

A line passes through the points (−2,−3) and
(−3,−2). Find this line’s equation in slope-intercept
form.

This line’s slope-intercept equation is .

53. A line passes through the points (5,−7) and
(1,−3). Find this line’s equation in slope-intercept
form.

This line’s slope-intercept equation is .

54.

309



Chapter 4 Graphing Lines

A line passes through the points (18, 16) and
(0, 1). Find this line’s equation in slope-intercept
form.

This line’s slope-intercept equation is .

55. A line passes through the points (0, 7) and
(−15,−11). Find this line’s equation in slope-
intercept form.

This line’s slope-intercept equation is .

56.

A line passes through the points (−9, 16) and
(0, 9). Find this line’s equation in slope-intercept
form.

This line’s slope-intercept equation is .

57. A line passes through the points (−5, 9) and
(−15, 25). Find this line’s equation in slope-
intercept form.

This line’s slope-intercept equation is .

58.

Applications

A gym charges members $40 for a registra-
tion fee, and then $24 per month. You became
a member some time ago, and now you have
paid a total of $448 to the gym. How many
months have passed since you joined the gym?

months have passed since you joined
the gym.

59. Your cell phone company charges a $11monthly
fee, plus $0.18 per minute of talk time. One
month your cell phone bill was $68.60. How
many minutes did you spend talking on the
phone that month?

You spent talking on the
phone that month.

60.

A school purchased a batch of T-shirts from
a company. The company charged $4 per T-
shirt, and gave the school a $75 rebate. If the
school had a net expense of $1,565 from the
purchase, how many T-shirts did the school
buy?

The school purchased T-shirts.

61. Izabelle hired a face-painter for a birthdayparty.
The painter charged a flat fee of $65, and then
charged $2.50 per person. In the end, Izabelle
paid a total of $137.50. Howmanypeople used
the face-painter’s service?

people used the face-painter’s
service.

62.

A certain country has 406.56 million acres of
forest. Every year, the country loses 4.84 mil-
lion acres of forest mainly due to deforestation
for farming purposes. If this situation contin-
ues at this pace, how many years later will the
country have only 227.48 million acres of for-
est left? (Use an equation to solve this prob-
lem.)

After years, this country
would have 227.48 million acres of forest left.

63. Anthony has $80 in his piggy bank. He plans
to purchase some Pokemon cards, which costs
$1.75 each. He plans to save $60.75 to pur-
chase another toy. At most how many Poke-
mon cards can he purchase?

Write an equation to solve this problem.

Anthony can purchase at most
Pokemon cards.

64.
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Byyour cell phone contract, youpay amonthly
fee plus $0.06 for each minute you spend on
the phone. In one month, you spent 220 min-
utes over the phone, and had a bill totaling
$25.20.

Let x be the number of minutes you spend on
the phone in a month, and let y be your total
cell phone bill for that month, in dollars. Use
a linear equation to model your monthly bill
based on the number of minutes you spend on
the phone.

a. This line’s slope-intercept equation is .

b. If you spend 140 minutes on the phone in
amonth, youwould be billed .

c. If your bill was $39.60 one month, you
must have spent
minutes on the phone in that month.

65. Acompany set aside a certain amount ofmoney
in the year 2000. The company spent exactly
$42,000 from that fund each year on perks for
its employees. In 2003, there was still $782,000
left in the fund.

Let x be the number of years since 2000, and
let y be the amount of money, in dollars, left
in the fund that year. Use a linear equation to
model the amount of money left in the fund
after so many years.

a. The linear model’s slope-intercept equa-
tion is .

b. In the year 2009, there was
left in the fund.

c. In the year , the
fund will be empty.

66.

A biologist has been observing a tree’s height.
This type of tree typically grows by 0.27 feet
each month. Ten months into the observation,
the tree was 17.1 feet tall.

Let x be the number of months passed since
the observations started, and let y be the tree’s
height at that time, in feet. Use a linear equa-
tion to model the tree’s height as the number
of months pass.

a. This line’s slope-intercept equation is .

b. 26 months after the observations started,
the tree would be
feet in height.

c. months after the observation
started, the tree would be 29.52 feet tall.

67. Scientists are conducting an experiment with
a gas in a sealed container. The mass of the
gas is measured, and the scientists realize that
the gas is leaking over time in a linear way.
Each minute, they lose 1.7 grams. Seven min-
utes since the experiment started, the remain-
ing gas had a mass of 73.1 grams.

Let x be the number ofminutes that havepassed
since the experiment started, and let y be the
mass of the gas in grams at that moment. Use
a linear equation to model the weight of the
gas over time.

a. This line’s slope-intercept equation is .

b. 33 minutes after the experiment started,
there would be
grams of gas left.

c. If a linearmodel continues to be accurate,
minutes since the experiment started,

all gas in the container will be gone.

68.
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Acompany set aside a certain amount ofmoney
in the year 2000. The company spent exactly
the same amount from that fund each year on
perks for its employees. In 2004, there was still
$807,000 left in the fund. In 2005, there was
$786,000 left.

Let x be the number of years since 2000, and
let y be the amount of money, in dollars, left
in the fund that year. Use a linear equation to
model the amount of money left in the fund
after so many years.

a. The linear model’s slope-intercept equa-
tion is .

b. In the year 2009, there was
left in the fund.

c. In the year , the
fund will be empty.

69. Byyour cell phone contract, youpay amonthly
fee plus some money for each minute you use
the phone during the month. In one month,
you spent 230 minutes on the phone, and paid
$17.45. In another month, you spent 380 min-
utes on the phone, and paid $19.70.

Let x be the number of minutes you talk over
the phone in a month, and let y be your cell
phone bill, in dollars, for that month. Use a
linear equation tomodel yourmonthly bill based
on the number of minutes you talk over the
phone.

a. This linear model’s slope-intercept equa-
tion is .

b. If you spent 130 minutes over the phone
in a month, youwould pay .

c. If in amonth, youpaid $20.15 of cell phone
bill, you must have spent
minutes on the phone in that month.

70.

Scientists are conducting an experiment with
a gas in a sealed container. Themass of the gas
is measured, and the scientists realize that the
gas is leaking over time in a linear way.

Nineminutes since the experiment started, the
gas had a mass of 42.9 grams.

Fifteen minutes since the experiment started,
the gas had a mass of 35.1 grams.

Let x be the number ofminutes that havepassed
since the experiment started, and let y be the
mass of the gas in grams at that moment. Use
a linear equation to model the weight of the
gas over time.

a. This line’s slope-intercept equation is .

b. 32 minutes after the experiment started,
there would be
grams of gas left.

c. If a linearmodel continues to be accurate,
minutes since the experiment started,

all gas in the container will be gone.

71. A biologist has been observing a tree’s height.
10 months into the observation, the tree was
18.2 feet tall. 16 months into the observation,
the tree was 19.22 feet tall.

Let x be the number of months passed since
the observations started, and let y be the tree’s
height at that time, in feet. Use a linear equa-
tion to model the tree’s height as the number
of months pass.

a. This line’s slope-intercept equation is .

b. 26 months after the observations started,
the tree would be
feet in height.

c. months after the
observation started, the tree would be 25
feet tall.

72.
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Challenge

Line S has the equation y � ax+b andLine T has the equation y � cx+d. Suppose a > b > c > d > 0.

a. What can you say about Line S and Line T, given that a > c? Give as much information about
Line S and Line T as possible.

b. What can you say about Line S and Line T, given that b > d? Give as much information about
Line S and Line T as possible.

73.
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4.6 Point-Slope Form

In Section 4.5, we learned that a linear equation can be written in slope-intercept form, y � mx + b. This
section covers an alternative that can often be more useful depending on the application: point-slope form.

4.6.1 Point-Slope Motivation and Definition

Starting in 1990, the population of the United States has been growing by about 2.865 million per year. Also,
back in 1990, the population was 253 million. Since the rate of growth has been roughly constant, a linear
model is appropriate. Let’s try to write an equation to model this.

We consider using slope-intercept form (4.5.1), but we would need to know the y-intercept, and nothing in
the background tells us that. We’d need to know the population of the United States in the year 0, before
there even was a United States.

We could do some side work to calculate the y-intercept, but let’s try something else. Here are some things
we know:

1. The slope equation is m �
y2−y1
x2−x1

.

2. The slope is m � 2.865 (million per year).

3. One point on the line is (1990, 253), because in 1990, the population was 253 million.

If we use the generic (x , y) to represent a point somewhere on this line, then the rate of change between
(1990, 253) and (x , y) has to be 2.865. So

y − 253
x − 1990 � 2.865.

There is good reason¹ to want to isolate y in this equation:

y − 253
x − 1990 � 2.865

y − 253 � 2.865 · (x − 1990) (could distribute, but not going to)
y � 2.865(x − 1990) + 253

This is a good place to stop. We have isolated y, and threemeaningful numbers appear in the population: the
rate of growth, a certain year, and the population in that year. This is a specific example of point-slope form.
Before we look deeper at point-slope form, let’s continue reducing the line equation into slope-intercept
form.

y � 2.865(x − 1990) + 253
y � 2.865x − 5701.35 + 253
y � 2.865x − 5448.35

One concern with slope-intercept form (4.5.1) is that it uses the y-intercept, which might be somewhat
meaningless in the context of an application. For example, here we have found that the y-intercept is at
(0,−5448.35), but what practical use is that? It’s nonsense to say that in the year 0, the population of the
United States was −5448.35 million. It doesn’t make sense to have a negative population. It doesn’t make
sense to talk about the United States population before there even was a United States. And it doesn’t make

¹It will help us to see that y (population) depends on x (whatever year it is).
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sense to use this model for years earlier than 1990 because the background information says clearly that the
rate of change we have applies to years 1990 and later.

For all these reasons, we prefer the equation when it was in the form

y � 2.865(x − 1990) + 253

Definition 4.6.2 Point-Slope Form. When x and y have a linear relationship where m is the slope and
(x0 , y0) is some specific point that the line passes through, one equation for this relationship is

y � m (x − x0) + y0 (4.6.1)

and this equation is called the point-slope form of the line. It is called this because the slope and one point
on the line are immediately discernible from the numbers in the equation.

y � m (x − x0) + y0

(
x0 , y0

)

x

y

Figure 4.6.3

Remark 4.6.4 Alternative Point-Slope Form. It is also common to define point-slope form as

y − y0 � m (x − x0) (4.6.2)

by subtracting y0 from each side. Some exercises may appear using this form.
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Checkpoint 4.6.5. Consider the line in this graph:

a. Identify a point visible on this line that has integer coordinates.

b. What is the slope of the line?

c. Use point-slope form towrite an equation for this line, making use of a point with integer coordinates.

Explanation.

a. The visible points with integer coordinates are (2,−1), (3, 2), (4, 5), and (5, 8).
b. Several slope triangles are visible where the “run” is 1 and the “rise” is 3. So the slope is 3

1 � 3.

c. Using (3, 2), the point-slope equation is y � 3(x − 3) + 2. (You could use other points, like (2,−1), and
get a different-looking equation like y � 3(x − 2) + (−1)which simplifies to y � 3(x − 2) − 1.)

In Checkpoint 4.6.5, the solution explains that each of the following are acceptable equations for the
same line:

y � 3(x − 3) + 2 y � 3(x − 2) − 1

The first uses (3, 2) as a point on the line, and the second uses (2,−1). Are those two equations really
equivalent? Let’s distribute and simplify each of them to get slope-intercept form (4.5.1).

y � 3(x − 3) + 2 y � 3(x − 2) − 1
y � 3x − 9 + 2 y � 3x − 6 − 1
y � 3x − 7 y � 3x − 7

So, yes. It didn’t matter which point we used to write a point-slope equation. We get different-looking
equations that still represent the same line.

Point-slope form is preferable when we know a line’s slope and a point on it, but we don’t know the y-
intercept.
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Example 4.6.6 A spa chain has been losing customers at a roughly constant rate since the year 2010. In
2013, it had 2,975 customers; in 2016, it had 2,585 customers. Management estimated that the company
will go out of business once its customer base decreases to 1,800. If this trend continues, when will the
company close?

The given information tells us two points on the line: (2013, 2975) and (2016, 2585). The slope for-

mula (4.4.3) will give us the slope. After labeling those two points as (
x1

2013,
y1

2975) and (
x2

2016,
y2

2585),
we have:

slope �
y2 − y1

x2 − x1

�
2585 − 2975
2016 − 2013

�
−390

3
� −130

And considering units, this means they are losing 130 customers per year.

Let’s note that we could try to make an equation for this line in slope-intercept form, but then we would
need to calculate the y-intercept, which in context would correspond to the number of customers in year
0. We could do it, but we’d be working with numbers that have no real-world meaning in this context.

For point-slope form, since we calculated the slope, we know at least this much:

y � −130(x − x0) + y0.

Now we can pick one of those two given points, say (2013, 2975), and get the equation

y � −130(x − 2013) + 2975.

Note that all three numbers in this equation have meaning in the context of the spa chain.

We’re ready to answer the question about when the chain might go out of business. Substitute y in the
equation with 1800 and solve for x, and we will get the answer we seek.

y � −130(x − 2013) + 2975
1800 � −130(x − 2013) + 2975

1800 − 2975 � −130(x − 2013)
−1175 � −130(x − 2013)
−1175
−130 �

−130(x − 2013)
−130

9.038 ≈ x − 2013
9.038 + 2013 ≈ x

2022 ≈ x

And so we find that at this rate, the company is headed toward a collapse in 2022.
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Shown is a graph that represents the scenario.
Note that tomake a graph of y � −130(x−2013)+
2975, wemust first find the point (2013, 2975) and
from there use the slope of −130 to draw the line.

2010 2020 2030

1,000

2,000

3,000

4,000

y � 1800

(2013, 2975)

(2022, 1800)

x

y

Figure 4.6.7: A Graph of y � −130(x − 2013) +
2975

Checkpoint 4.6.8. If we go state by state and compare the Republican candidate’s 2012 vote share (x)
to the Republican candidate’s 2016 vote share (y), we get the following graph where a trendline has been
superimposed.

Find a point-slope equation for this line. (Note that a slope-intercept equation would use the y-intercept
cooridnate b, and that would not be meaningful in context, since no state had anywhere near zero percent
Republican vote.)

Explanation. We need to calculate slope first. And for that, we need to identify two points on the line.
conveniently, the line appears to pass right through (50, 50). We have to take a second point somewhere,
and (75, 72) seems like a reasonable roughly accurate choice. The slope equation gives us that

m �
72 − 50
75 − 50 �

22
25 � 0.88.
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Using (50, 50) as the point, the point-slope equation would then be

y � 0.88(x − 50) + 50.

4.6.2 Using Two Points to Build a Linear Equation

Since two points can determine a line’s location, we can calculate a line’s equation using just the coordinates
from any two points it passes through.

Example 4.6.9 A line passes through (−6, 0) and (9,−10). Find this line’s equation in both point-slope
and slope-intercept form.

Explanation. We will use the slope formula (4.4.3) to find the slope first. After labeling those two

points as (
x1
−6,

y1
0 ) and (

x2
9 ,

y2
−10), we have:

slope �
y2 − y1

x2 − x1

�
−10 − 0
9 − (−6)

�
−10
15

� −2
3

The point-slope equation is y � − 2
3 (x − x0) + y0.

Next, we will use (9,−10) and substitute x0 with
9 and y0 with −10, and we have:

y � −2
3 (x − x0) + y0

y � −2
3 (x − 9) + (−10)

y � −2
3 (x − 9) − 10

Next, we will change the point-slope equation
into slope-intercept form:

y � −2
3 (x − 9) − 10

y � −2
3 x + 6 − 10

y � −2
3 x − 4

Remark 4.6.10. Note that many other resources use the alternate point-slope form (4.6.2) to write their
equations. Those equations will always be equivalent to those created using our point-slope form. In Exam-
ple 4.6.9, we found the point-slope form y � − 2

3 (x − 9) − 10. The alternate point-slope form equation²would
have given us y+10 � − 2

3 (x−9). If you solve this equation for y and simplify, you should still get y � − 2
3 x−4,

as we did earlier.

Checkpoint 4.6.11. A line passes through (13,−108) and (−42, 23). Find equations for this line using
both point-slope and slope-intercept form.

A point-slope equation:

A slope-intercept equation:

²khanacademy.org/math/algebra/two-var-linear-equations/point-slope/a/point-slope-form-review
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Explanation. First, use the slope formula to find the slope of this line:

m �
y2 − y1

x2 − x1
�

23 − (−108)
−42 − 13

�
131
−55

� −131
55 .

The generic point-slope equation is y � m(x − x0) + y0. We have found the slope, m, and we may use
(13,−108) for (x0 , y0). So an equation in point-slope form is y �

−131
55 (x − 13) − 108.

To find a slope-intercept form equation, we can take the generic y � mx + b and substitute in the value of
m we found. Also, we know that (x , y) � (13,−108) should make the equation true. So we have

y � mx + b

−108 � −131
55 (13) + b Now we may solve for b.

−108 · 55 �

(
−131

55 (13) + b
)
· 55

−5940 � −131(13) + 55b
−5940 � −1703 + 55b

−5940 + 1703 � −1703 + 55b + 1703
−4237 � 55b
−4237

55 �
55b
55

b � −4237
55 .

So the slope-intercept equation is y �
−131

55 x − 4237
55 .

4.6.3 More on Point-Slope Form

We can tell a lot about a linear equation now that we have learned both slope-intercept form (4.5.1) and
point-slope form (4.6.1). For example, we can know that y � 4x + 2 is in slope-intercept form because it
looks like y � mx + b. It will graph as a line with slope 4 and vertical intercept (0, 2). Likewise, we know
that the equation y � −5(x − 3) + 2 is in point-slope form because it looks like y � m(x − x0) + y0. It will
graph as a line that has slope −5 and will pass through the point (3, 2).

Example 4.6.12 For the equations below, state whether they are in slope-intercept form or point-slope
form. Then identify the slope of the line and at least one point that the line will pass through.

a. y � −3x + 2

b. y � 9(x + 1) − 6

c. y � 5 − x

d. y � − 12
5 (x − 9) + 1
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Explanation.

a. The equation y � −3x + 2 is in slope-intercept form. The slope is −3 and the vertical intercept is
(0, 2).

b. The equation y � 9(x + 1) − 6 is in point-slope form. The slope is 9 and the line passes through the
point (−1,−6).

c. The equation y � 5− x is almost in slope-intercept form. If we rearrange the right hand side to be
y � −x + 5, we can see that the slope is −1 and the vertical intercept is (0, 5).

d. The equation y � − 12
5 (x−9)+1 is in point-slope form. The slope is − 12

5 and the line passes through
the point (9, 1).

Remark 4.6.13. Again, we should note that the alternate point-slope form (4.6.2) can be used to identify
equations. For example, the equation y + 10 � − 2

3 (x − 9)matches the alternate point-slope form equation³
with slope − 2

3 and the line passes through the point (9,−10). Note that both coordinates are the opposite of
what they appear to be in the equation with this form.

Consider the graph in Figure 4.6.15.

Example 4.6.14 a. Find three equations that
describe the line shown written in point-
slope form. Three integer-valued points
are shown for convenience.

b. Determine the slope-intercept form of the
equation of this line.

−15 −10 −5 5 10 15 20

−30

−20

−10

10

20

30

40(−5, 42)
(0, 30)

(20,−18)

x

y

Figure 4.6.15

Explanation.

a. Towrite any of the equations representing this line in point-slope form, wemust first find the slope
of the line and we can use the slope formula (4.4.3) to do so. We will arbitrarily choose (0, 30) and
(−5, 42) as the two points. Inputting these points into the slope formula yields:

m �
y2 − y1

x2 − x1

�
42 − 30
−5 − 0

�
12
−5

³en.wikipedia.org/wiki/Linear_equation#Point–slope_form
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� −12
5

Thus the slope of the line is − 12
5 .

Next, we need to write an equation in point-slope form based on each point shown. Using the
point (0, 30), we have:

y � −12
5 (x − 0) + 30

(This simplifies to y � − 12
5 x + 30.)

The next point is (20,−18). Using this point, we can write an equation for this line as:

y � −12
5 (x − 20) − 18

Finally, we can also use the point (−5, 42) to write an equation for this line:

y � −12
5 (x − (−5)) + 42

which can also be written as:
y � −12

5 (x + 5) + 42

b. As (0, 30) is the vertical intercept, we can write the equation of this line in slope-intercept form as
y � − 12

5 x + 30. It’s important to note that each of the equations that were written in point-slope
form simplify to this, making all four equations equivalent.

Exercises

Review and Warmup

Evaluate −5C − 7b for C � 6 and b � −7.1. Evaluate −a + 3A for a � 2 and A � −7.2.

Evaluate

y2 − y1

x2 − x1

for x1 � −14, x2 � −10, y1 � −19, and y2 �

−10:

3. Evaluate

y2 − y1

x2 − x1

for x1 � −10, x2 � 17, y1 � −2, and y2 � 19:

4.
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Point-Slope Form

A line’s equation is given in point-slope form:

y � 5(x − 5) + 28

This line’s slope is .

A point on this line that is apparent from the
given equation is .

5. A line’s equation is given in point-slope form:

y � 2(x − 1) + 5

This line’s slope is .

A point on this line that is apparent from the
given equation is .

6.

A line’s equation is given in point-slope form:

y � −2(x + 2) + 5

This line’s slope is .

A point on this line that is apparent from the
given equation is .

7. A line’s equation is given in point-slope form:

y � −3(x + 4) + 7

This line’s slope is .

A point on this line that is apparent from the
given equation is .

8.

A line’s equation is given in point-slope form:

y �
8
3 (x + 9) − 23

This line’s slope is .

A point on this line that is apparent from the
given equation is .

9. A line’s equation is given in point-slope form:

y �
9
8 (x + 24) − 29

This line’s slope is .

A point on this line that is apparent from the
given equation is .

10.

A line passes through the points (2, 9) and
(1, 7). Find this line’s equation in point-slope
form.

Using the point (2, 9), this line’s point-slope
form equation is .

Using the point (1, 7), this line’s point-slope
form equation is .

11. A line passes through the points (4, 10) and
(1, 4). Find this line’s equation in point-slope
form.

Using the point (4, 10), this line’s point-slope
form equation is .

Using the point (1, 4), this line’s point-slope
form equation is .

12.

A line passes through the points (−3, 17) and
(0, 8). Find this line’s equation in point-slope
form.

Using the point (−3, 17), this line’s point-slope
form equation is .

Using the point (0, 8), this line’s point-slope
form equation is .

13. A line passes through the points (1, 2) and
(−3, 14). Find this line’s equation in point-slope
form.

Using the point (1, 2), this line’s point-slope
form equation is .

Using the point (−3, 14), this line’s point-slope
form equation is .

14.
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A line passes through the points (6, 5) and
(−6,−25). Find this line’s equation in point-
slope form.

Using the point (6, 5), this line’s point-slope
form equation is .

Using the point (−6,−25), this line’s point-slope
form equation is .

15. A line passes through the points (7, 5) and
(21, 17). Find this line’s equation in point-slope
form.

Using the point (7, 5), this line’s point-slope
form equation is .

Using the point (21, 17), this line’s point-slope
form equation is .

16.

A line’s slope is 4. The line passes through the
point (5, 22). Find an equation for this line in
both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

17. A line’s slope is 5. The line passes through the
point (2, 11). Find an equation for this line in
both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

18.

A line’s slope is −2. The line passes through
the point (2,−2). Find an equation for this line
in both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

19. A line’s slope is −5. The line passes through
the point (−4, 18). Find an equation for this
line in both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

20.

A line’s slope is 1. The line passes through
the point (5, 1). Find an equation for this line
in both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

21. A line’s slope is 1. The line passes through the
point (2,−1). Find an equation for this line in
both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

22.
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A line’s slope is −1. The line passes through
the point (−2, 1). Find an equation for this line
in both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

23. A line’s slope is −1. The line passes through
the point (3, 2). Find an equation for this line
in both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

24.

A line’s slope is 6
5 . The line passes through

the point (10, 8). Find an equation for this line
in both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

25. A line’s slope is 7
4 . The line passes through the

point (12, 22). Find an equation for this line in
both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

26.

A line’s slope is − 8
9 . The line passes through

the point (9,−13). Find an equation for this
line in both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

27. A line’s slope is − 9
5 . The line passes through

the point (10,−20). Find an equation for this
line in both point-slope and slope-intercept form.

An equation for this line in point-slope form
is: .

An equation for this line in slope-intercept form
is: .

28.

Point-Slope and Slope-Intercept Change this equation from point-slope form to slope-intercept form.

y � 2(x − 4) + 5

In slope-intercept form:

29. y � 2(x + 2)

In slope-intercept form:

30.

y � −4(x − 3) − 10

In slope-intercept form:

31. y � −4(x + 4) + 12

In slope-intercept form:

32.

y �
5
8 (x − 16) + 15

In slope-intercept form:

33. y �
6
5 (x − 5) + 11

In slope-intercept form:

34.
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y � −7
3 (x + 3) + 6

In slope-intercept form:

35. y � −8
7 (x + 21) + 29

In slope-intercept form:

36.

Point-Slope Form and Graphs Determine the point-slope form of the linear equation from its graph.

37. 38. 39.

40. 41. 42.

43. 44. 45.
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46. 47. 48.

Graph the linear equation y � − 8
3 (x − 4) − 5

by identifying the slope and one point on this
line.

49. Graph the linear equation y �
5
7 (x + 3) + 2

by identifying the slope and one point on this
line.

50.

Graph the linear equation y �
3
4 (x + 2) + 1

by identifying the slope and one point on this
line.

51. Graph the linear equation y � − 5
2 (x − 1) − 5

by identifying the slope and one point on this
line.

52.

Graph the linear equation y � −3(x − 9) + 4
by identifying the slope and one point on this
line.

53. Graph the linear equation y � 7(x + 3) − 10
by identifying the slope and one point on this
line.

54.

Graph the linear equation y � 8(x + 12) − 20
by identifying the slope and one point on this
line.

55. Graph the linear equation y � −5(x − 20) − 70
by identifying the slope and one point on this
line.

56.

Applications

By your cell phone contract, you pay a monthly fee plus $0.04 for each minute you spend on the
phone. In one month, you spent 230 minutes over the phone, and had a bill totaling $22.20.

Let x be the number of minutes you spend on the phone in a month, and let y be your total cell
phone bill for that month, in dollars. Use a linear equation to model your monthly bill based on the
number of minutes you spend on the phone.

a. A point-slope equation to model this is .

b. If you spend 160 minutes on the phone in a month, you would be billed .

c. If your bill was $30.60 one month, you must have spent minutes on the
phone in that month.

57.
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Acompany set aside a certain amount ofmoney in the year 2000. The company spent exactly $31,000
from that fund each year on perks for its employees. In 2003, there was still $872,000 left in the fund.

Let x be the number of years since 2000, and let y be the amount of money, in dollars, left in the fund
that year. Use a linear equation to model the amount of money left in the fund after so many years.

a. A point-slope equation to model this is .

b. In the year 2010, there was left in the fund.

c. In the year , the fund will be empty.

58.

A biologist has been observing a tree’s height. This type of tree typically grows by 0.19 feet each
month. Ten months into the observation, the tree was 17.4 feet tall.

Let x be the number of months passed since the observations started, and let y be the tree’s height
at that time, in feet. Use a linear equation to model the tree’s height as the number of months pass.

a. A point-slope equation to model this is .

b. 28 months after the observations started, the tree would be feet in height.

c. months after the observation started, the tree would be 25.76 feet tall.

59.

Scientists are conducting an experiment with a gas in a sealed container. The mass of the gas is
measured, and the scientists realize that the gas is leaking over time in a linear way. Each minute,
they lose 3 grams. Seven minutes since the experiment started, the remaining gas had a mass of 117
grams.

Let x be the number of minutes that have passed since the experiment started, and let y be the mass
of the gas in grams at that moment. Use a linear equation to model the weight of the gas over time.

a. A point-slope equation to model this is .

b. 35 minutes after the experiment started, there would be grams of gas left.

c. If a linear model continues to be accurate, minutes since the experiment
started, all gas in the container will be gone.

60.
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A company set aside a certain amount of money in the year 2000. The company spent exactly the
same amount from that fund each year on perks for its employees. In 2004, there was still $783,000
left in the fund. In 2006, there was $701,000 left.

Let x be the number of years since 2000, and let y be the amount of money, in dollars, left in the fund
that year. Use a linear equation to model the amount of money left in the fund after so many years.

a. A point-slope equation to model this is .

b. In the year 2010, there was left in the fund.

c. In the year , the fund will be empty.

61.

By your cell phone contract, you pay a monthly fee plus some money for each minute you use the
phone during the month. In one month, you spent 230 minutes on the phone, and paid $27.65. In
another month, you spent 320 minutes on the phone, and paid $32.60.

Let x be the number of minutes you talk over the phone in a month, and let y be your cell phone bill,
in dollars, for that month. Use a linear equation to model your monthly bill based on the number of
minutes you talk over the phone.

a. A point-slope equation to model this is .

b. If you spent 150 minutes over the phone in a month, you would pay .

c. If in a month, you paid $41.95 of cell phone bill, you must have spent
minutes on the phone in that month.

62.

Scientists are conducting an experiment with a gas in a sealed container. The mass of the gas is
measured, and the scientists realize that the gas is leaking over time in a linear way.

Nine minutes since the experiment started, the gas had a mass of 106.6 grams.

Eighteen minutes since the experiment started, the gas had a mass of 83.2 grams.

Let x be the number of minutes that have passed since the experiment started, and let y be the mass
of the gas in grams at that moment. Use a linear equation to model the weight of the gas over time.

a. A point-slope equation to model this is .

b. 35 minutes after the experiment started, there would be grams of gas left.

c. If a linear model continues to be accurate, minutes since the experiment
started, all gas in the container will be gone.

63.
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A biologist has been observing a tree’s height. 10 months into the observation, the tree was 18.6 feet
tall. 18 months into the observation, the tree was 19.4 feet tall.

Let x be the number of months passed since the observations started, and let y be the tree’s height
at that time, in feet. Use a linear equation to model the tree’s height as the number of months pass.

a. A point-slope equation to model this is .

b. 27 months after the observations started, the tree would be feet in height.

c. months after the observation started, the tree would be 23.5 feet tall.

64.
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4.7 Standard Form

We’ve seen that a linear relationship can be expressed with an equation in slope-intercept form (4.5.1) or
with an equation in point-slope-form (4.6.1). There is a third standard form that you can use to write line
equations. It’s so “standard” that it’s actually known as standard form.

4.7.1 Standard Form Definition

Imagine trying to gather donations to pay for a $10,000 medical procedure you cannot afford. Oversimpli-
fying the mathematics a bit, suppose that there were only two types of donors in the world: those who will
donate $20 and those who will donate $100. Howmany of each, or what combination, do you need to reach
the funding goal? As in, if x people donate $20 and y people donate $100, what numbers could x and y be?
The donors of the first type have collectively donated 20x dollars, and the donors of the second type have
collectively donated 100y. So altogether you’d need

20x + 100y � 10000.

This is an example of a line equation in standard form.

Definition 4.7.2 Standard Form. It is always possible to write an equation for a line in the form

Ax + By � C (4.7.1)

where A, B, and C are three numbers (each of which might be 0, although at least one of A and B must be
nonzero). This form of a line equation is called standard form. In the context of an application, themeaning
of A, B, and C depends on that context. This equation is called standard form perhaps because any line can
be written this way, even vertical lines which cannot be written using the two previous forms we’ve studied.

Checkpoint 4.7.3. For each of the following equations, identify what form they are in.

2.7x + 3.4y � −82 (□ slope-intercept □ point-slope □ standard □ other linear □ not linear)
y �

2
7 (x − 3) + 1

10 (□ slope-intercept □ point-slope □ standard □ other linear □ not linear)
12x − 3 � y + 2 (□ slope-intercept □ point-slope □ standard □ other linear □ not linear)
y � x2 + 5 (□ slope-intercept □ point-slope □ standard □ other linear □ not linear)
x − y � 10 (□ slope-intercept □ point-slope □ standard □ other linear □ not linear)
y � 4x + 1 (□ slope-intercept □ point-slope □ standard □ other linear □ not linear)

Explanation. 2.7x + 3.4y � −82 is in standard form, with A � 2.7, B � 3.4, and C � −82.

y �
2
7 (x − 3) + 1

10 is in point-slope form, with slope 2
7 , and passing through

(
3, 1

10
)
.

12x − 3 � y + 2 is linear, but not in any of the forms we have studied. Using algebra, you can rearrange it to
read y � 12x − 5.

y � x2 + 5 is not linear. The exponent on x is a dead giveaway.

x − y � 10 is in standard form, with A � 1, B � −1, and C � 10.

y � 4x + 1 is in slope-intercept form, with slope 4 and y-intercept at (0, 1).

Returning to the example with donations for the medical procedure, let’s examine the equation

20x + 100y � 10000.
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What units are attached to all of the parts of this equation? Both x and y are numbers of people. The 10000
is in dollars. Both the 20 and the 100 are in dollars per person. Note how both sides of the equation are in
dollars. On the right, that fact is clear. On the left, 20x is in dollars since 20 is in dollars per person, and x
is in people. The same is true for 100y, and the two dollar amounts 20x and 100y add to a dollar amount.

What is the slope of the linear relationship? It’s not immediately visible since m is not part of the standard
form equation. But we can use algebra to isolate y:

20x + 100y � 10000
100y � −20x + 10000

y �
−20x + 10000

100

y �
−20x
100 +

10000
100

y � −1
5 x + 100.

And we see that the slope is − 1
5 . OK, what units are on that slope? As always, the units on slope are y-unit

x-unit .
In this case that’s person

person , which sounds a little weird and seems like it should be simplified away to unitless.
But this slope of − 1

5
person
person is saying that for every one extra person who donates $20, you only need 1

5 fewer
people donating $100 to still reach your goal.

What is the y-intercept? Since we’ve already converted the equation into slope-intercept form, we can see
that it is at (0, 100). This tells us that if 0 people donate $20, then you will need 100 people to each donate
$100.

What does a graph for this line look like? We’ve already converted into slope-intercept form, and we could
use that to make the graph. But when given a line in standard form, there is another approach that is often
used. Returning to

20x + 100y � 10000,

let’s calculate the y-intercept and the x-intercept. Recall that these are points where the line crosses the y-
axis and x-axis. To be on the y-axis means that x � 0, and to be on the x-axis means that y � 0. All these
zeros make the resulting algebra easy to solve:

20x + 100y � 10000 20x + 100y � 10000
20(0) + 100y � 10000 20x + 100(0) � 10000

100y � 10000 20x � 10000

y �
10000
100 x �

10000
20

y � 100 x � 500
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So we have a y-intercept at (0, 100) and an x-
intercept at (500, 0). Ifweplot these, we get tomark
especially relevant points given the context, and
then drawing a straight line between them gives
us Figure 4.7.4.
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Figure 4.7.4

4.7.2 The x- and y-Intercepts

With a linear relationship (and other types of equations), we are often interested in the x-intercept and y-
intercept because they are important in the context. For example, in Figure 4.7.4, the x-intercept implies that
if no one donates $100, you need 500 people to donate $20 to get us to $10,000. And the y-intercept implies
if no one donates $20, you need 100 people to donate $100. Let’s look at another example.

Example 4.7.5 James owns a restaurant that uses about 32 lb of flour every day. He just purchased 1200 lb
of flour. Model the amount of flour that remains x days later with a linear equation, and interpret the
meaning of its x-intercept and y-intercept.

Since the rate of change is constant (−32 lb every day), and we know the initial value, we can model the
amount of flour at the restaurant with a slope-intercept equation (4.5.1):

y � −32x + 1200

where x represents the number of days passed since the initial purchase, and y represents the amount
of flour left (in lb.)

A line’s x-intercept is in the form of (x , 0), since to be on the x-axis, the y-coordinate must be 0. To find
this line’s x-intercept, we substitute y in the equation with 0, and solve for x:

y � −32x + 1200
0 � −32x + 1200

0 − 1200 � −32x
−1200 � −32x
−1200
−32 � x

37.5 � x
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So the line’s x-intercept is at (37.5, 0). In context this means the flour would last for 37.5 days.

A line’s y-intercept is in the form of (0, y). This line equation is already in slope-intercept form, so we
can just see that its y-intercept is at (0, 1200). In general though, we would substitute x in the equation
with 0, and we have:

y � −32x + 1200
y � −32(0) + 1200
y � 1200

So yes, the line’s y-intercept is at (0, 1200). This means that when the flour was purchased, there was
1200 lb of it. In other words, the y-intercept tells us one of the original pieces of information: in the
beginning, James purchased 1200 lb of flour.

If a line is in standard form, it’s often easiest to graph it using its two intercepts.

Example 4.7.6 Graph 2x − 3y � −6 using its intercepts. And then use the intercepts to calculate the
line’s slope.

Explanation. To graph a line by its x-intercept and y-intercept, it might help to first set up a table like
Table 4.7.7:

x-value y-value Intercepts
x-intercept 0
y-intercept 0

Table 4.7.7: Intercepts of 2x − 3y � −6

A table like this might help you stay focused on the fact that we are searching for two points. As we’ve
noted earlier, an x-intercept is on the x-axis, and so its y-coordinate must be 0. This is worth taking
special note of: to find an x-intercept, y must be 0. This is why we put 0 in the y-value cell of the
x-intercept. Similarly, a line’s y-intercept has x � 0, and we put 0 into the x-value cell of the y-intercept.

Next, we calculate the line’s x-intercept by sub-
stituting y � 0 into the equation

2x − 3y � −6
2x − 3(0) � −6

2x � −6
x � −3

So the line’s x-intercept is (−3, 0).

Similarly, we substitute x � 0 into the equation
to calculate the y-intercept:

2x − 3y � −6
2(0) − 3y � −6
−3y � −6

y � 2

So the line’s y-intercept is (0, 2).

Now we can complete the table:
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x-value y-value Intercepts
x-intercept −3 0 (−3, 0)
y-intercept 0 2 (0, 2)

Table 4.7.8: Intercepts of 2x − 3y � −6

With both intercepts’ coordinates, we can graph the line:

−4 −3 −2 −1 1

1

2

3

(0, 2)

(−3, 0) x

y There is a slope triangle from the x-intercept to
the origin up to the y-intercept. It tells us that
the slope is

m �
∆y
∆x

�
2
3 .

Figure 4.7.9: Graph of 2x − 3y � −6

This last example generalizes to a fact worth noting.

Fact 4.7.10. If a line’s x-intercept is at (r, 0) and its y-intercept is at (0, b), then the slope of the line is − b
r . (Unless

the line passes through the origin. Then both r and b equal 0, and then this fraction is undefined. And the slope of the
line could be anything.)

Checkpoint 4.7.11. Consider the line with equation 2x + 4.3y �
1000
99 .

a. What is its x-intercept?

b. What is its y-intercept?

c. What is its slope?

Explanation.

a. To find the x-intercept:

2x + 4.3y �
1000
99

2x + 4.3(0) � 1000
99

2x �
1000
99

x �
500
99
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So the x-intercept is at
( 500

99 , 0
)
.

b. To find the y-intercept:

2x + 4.3y �
1000
99

2(0) + 4.3y �
1000
99

4.3y �
1000
99

y �
1

4.3 ·
1000
99

y ≈ 2.349 . . .

So the y-intercept is at about (0, 2.349).
c. Since we have the x- and y-intercepts, we can calulate the slope:

m ≈ −2.349
500
99

� −2.349 · 99
500 ≈ −0.4561.

4.7.3 Transforming between Standard Form and Slope-Intercept Form

Sometimes a linear equation arises in standard form (4.7.1), but it would be useful to see that equation in
slope-intercept form (4.5.1). Or perhaps, vice versa.

A linear equation in slope-intercept form (4.5.1) tells us important information about the line: its slope m
and y-intercept (0, b). However, a line’s standard form does not show those two important values. As a
result, we often need to change a line’s equation from standard form to slope-intercept form. Let’s look at
some examples.

Example 4.7.12 Change 2x − 3y � −6 to slope-intercept form, and then graph it.

Explanation. Since a line in slope-intercept form looks like y � . . ., we will solve for y in 2x − 3y � −6:

2x − 3y � −6
−3y � −6 − 2x
−3y � −2x − 6

y �
−2x − 6
−3

y �
−2x
−3 −

6
−3

y �
2
3 x + 2

In the third line, we wrote −2x − 6 on the right
side, instead of −6 − 2x. The only reason we did
this is because we are headed to slope-intercept
form, where the x-term is traditionally written
first.
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Now we can see that the slope is 2
3 and the y-

intercept is at (0, 2). With these things found, we
can graph the line using slope triangles.

Compare this graphing method with the Graph-
ing by Intercepts method in Example 4.7.6. We
have more points in this graph, thus we can
graph the line more accurately. −6 −4 −2 2 4 6

−6

−4

−2

2

4

6

3

2

x

y

Figure 4.7.13: Graphing 2x − 3y � −6 with
Slope Triangles

Example 4.7.14 Graph 2x − 3y � 0.

Explanation. First, we will try (and fail) to graph this line using its x- and y-intercepts.

Trying to find the x-intercept:

2x − 3y � 0
2x − 3(0) � 0

2x � 0
x � 0

So the line’s x-intercept is at (0, 0), at the origin.

Huh, that is also on the y-axis…

Trying to find the y-intercept:

2x − 3y � 0
2(0) − 3y � 0
−3y � 0

y � 0

So the line’s y-intercept is also at (0, 0).
Since both intercepts are the same point, there is no way to use the intercepts alone to graph this line.
So what can be done?
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Several approaches are out there, but one is
to convert the line equation into slope-intercept
form:

2x − 3y � 0
−3y � 0 − 2x
−3y � −2x

y �
−2x
−3

y �
2
3 x

So the line’s slope is 2
3 , and we can graph the line

using slope triangles and the intercept at (0, 0),
as in Figure 4.7.15.
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Figure 4.7.15: Graphing 2x − 3y � 0 with Slope
Triangles

In summary, if C � 0 in a standard form equation (4.7.1), it’s convenient to graph it by first converting
the equation to slope-intercept form (4.5.1).

Example 4.7.16 Write the equation y �
2
3 x + 2 in standard form.

Explanation. Once we subtract 2
3 x on both sides of the equation, we have

−2
3 x + y � 2

Technically, this equation is already in standard form Ax + By � C. However, you might like to end up
with an equation that has no fractions, and so you can take some extra steps.

y �
2
3 x + 2

y − 2
3 x � 2

−2
3 x + y � 2

This is in standard form, but we keep going to clear away the fraction.

3 ·
(
−2

3 x + y
)
� 3 · 2

−2x + 3y � 6
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Exercises

Review and Warmup Solve the linear equation for y.

3y − 6x � 27
1.

−18x − 3y � 6
2.

−x − y � 16
3.

−4x − y � −9
4.

2x − 8y � −5
5.

−5x − 9y � −5
6.

Slope and y-intercept Find the line’s slope and y-intercept.

A line has equation −2x + y � 4.

This line’s slope is .

This line’s y-intercept is .

7. A line has equation −x − y � −8.

This line’s slope is .

This line’s y-intercept is .

8.

A line has equation 2x + 2y � 4.

This line’s slope is .

This line’s y-intercept is .

9. A line has equation 12x − 3y � −9.

This line’s slope is .

This line’s y-intercept is .

10.

A line has equation x + 3y � −6.

This line’s slope is .

This line’s y-intercept is .

11. A line has equation 7x + 6y � −24.

This line’s slope is .

This line’s y-intercept is .

12.

A line has equation 7x − 6y � 24.

This line’s slope is .

This line’s y-intercept is .

13. A line has equation 20x + 12y � −36.

This line’s slope is .

This line’s y-intercept is .

14.

A line has equation 12x − 10y � 0.

This line’s slope is .

This line’s y-intercept is .

15. A line has equation 3x − 12y � 0.

This line’s slope is .

This line’s y-intercept is .

16.
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A line has equation 2x + 6y � 5.

This line’s slope is .

This line’s y-intercept is .

17. A line has equation 8x + 12y � 5.

This line’s slope is .

This line’s y-intercept is .

18.

Converting to Standard Form

Rewrite y � 4x + 7 in standard form.19. Rewrite y � 5x − 6 in standard form.20.

Rewrite y �
6
7 x − 6 in standard form.21. Rewrite y � − 7

5 x − 7 in standard form.22.

Graphs and Standard Form

Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

7x + 2y � 28

x-value y-value Location
y-intercept
x-intercept

23.

Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

8x + 7y � −168

x-value y-value Location
y-intercept
x-intercept

24.
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Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

2x − 5y � −20

x-value y-value Location
y-intercept
x-intercept

25.

Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

x − 3y � −3

x-value y-value Location
y-intercept
x-intercept

26.

Find the x- and y-intercepts of the line with
equation 4x + 6y � 24. Then find one other
point on the line. Use your results to graph
the line.

27. Find the x- and y-intercepts of the line with
equation 4x + 5y � −40. Then find one other
point on the line. Use your results to graph the
line.

28.

Find the x- and y-intercepts of the line with
equation 5x − 2y � 10. Then find one other
point on the line. Use your results to graph
the line.

29. Find the x- and y-intercepts of the line with
equation 5x − 6y � −90. Then find one other
point on the line. Use your results to graph the
line.

30.

Find the x- and y-intercepts of the line with
equation x + 5y � −15. Then find one other
point on the line. Use your results to graph
the line.

31. Find the x- and y-intercepts of the line with
equation 6x + y � −18. Then find one other
point on the line. Use your results to graph
the line.

32.

Make a graph of the line x + y � 2.33. Make a graph of the line −5x − y � −3.34.

Make a graph of the line x + 5y � 5.35. Make a graph of the line x − 2y � 2.36.
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Make a graph of the line 20x − 4y � 8.37. Make a graph of the line 3x + 5y � 10.38.

Make a graph of the line −3x + 2y � 6.39. Make a graph of the line −4x − 5y � 10.40.

Make a graph of the line 4x − 5y � 0.41. Make a graph of the line 5x + 7y � 0.42.

Interpreting Intercepts in Context

Scot is buying some tea bags and some sugar bags. Each tea bag costs 6 cents, and each sugar bag
costs 2 cents. He can spend a total of $1.80.

Assume Scot will purchase x tea bags and y sugar bags. Use a linear equation to model the number
of tea bags and sugar bags he can purchase.

Find this line’s x-intercept, and interpret its meaning in this context.

⊙ A. The x-intercept is (0, 90). It implies Scot can purchase 90 sugar bags with no tea bags.

⊙ B. The x-intercept is (30,0). It implies Scot can purchase 30 tea bags with no sugar bags.

⊙ C. The x-intercept is (90,0). It implies Scot can purchase 90 tea bags with no sugar bags.

⊙ D. The x-intercept is (0,30). It implies Scot can purchase 30 sugar bags with no tea bags.

43.

Douglas is buying some tea bags and some sugar bags. Each tea bag costs 2 cents, and each sugar
bag costs 9 cents. He can spend a total of $0.90.

Assume Douglas will purchase x tea bags and y sugar bags. Use a linear equation to model the
number of tea bags and sugar bags he can purchase.

Find this line’s y-intercept, and interpret its meaning in this context.

⊙ A. The y-intercept is (0,45). It implies Douglas can purchase 45 sugar bags with no tea bags.

⊙ B. The y-intercept is (45,0). It implies Douglas can purchase 45 tea bags with no sugar bags.

⊙ C. The y-intercept is (10,0). It implies Douglas can purchase 10 tea bags with no sugar bags.

⊙ D. The y-intercept is (0, 10). It implies Douglas can purchase 10 sugar bags with no tea bags.

44.
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An engine’s tank can hold 70 gallons of gasoline. It was refilled with a full tank, and has been
running without breaks, consuming 3.5 gallons of gas per hour.

Assume the engine has been running for x hours since its tank was refilled, and assume there are y
gallons of gas left in the tank. Use a linear equation to model the amount of gas in the tank as time
passes.

Find this line’s x-intercept, and interpret its meaning in this context.

⊙ A. The x-intercept is (20,0). It implies the engine will run out of gas 20 hours after its tank
was refilled.

⊙ B. The x-intercept is (0,70). It implies the engine started with 70 gallons of gas in its tank.

⊙ C. The x-intercept is (0,20). It implies the engine started with 20 gallons of gas in its tank.

⊙ D. The x-intercept is (70,0). It implies the engine will run out of gas 70 hours after its tank
was refilled.

45.

An engine’s tank can hold 120 gallons of gasoline. It was refilled with a full tank, and has been
running without breaks, consuming 3 gallons of gas per hour.

Assume the engine has been running for x hours since its tank was refilled, and assume there are y
gallons of gas left in the tank. Use a linear equation to model the amount of gas in the tank as time
passes.

Find this line’s y-intercept, and interpret its meaning in this context.

⊙ A. The y-intercept is (40,0). It implies the engine will run out of gas 40 hours after its tank
was refilled.

⊙ B. The y-intercept is (120,0). It implies the engine will run out of gas 120 hours after its tank
was refilled.

⊙ C. The y-intercept is (0,120). It implies the engine started with 120 gallons of gas in its tank.

⊙ D. The y-intercept is (0,40). It implies the engine started with 40 gallons of gas in its tank.

46.

A new car of a certain model costs $43,200.00. According to Blue Book, its value decreases by
$2,400.00 every year.

Assume x years since its purchase, the car’s value is y dollars. Use a linear equation to model the
car’s value.

Find this line’s x-intercept, and interpret its meaning in this context.

⊙ A. The x-intercept is (0,43200). It implies the car’s initial value was 43200.

⊙ B. The x-intercept is (0,18). It implies the car would have no more value 18 years since its
purchase.

⊙ C. The x-intercept is (18,0). It implies the car would have no more value 18 years since its
purchase.

⊙ D. The x-intercept is (43200,0). It implies the car’s initial value was 43200.

47.
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A new car of a certain model costs $39,000.00. According to Blue Book, its value decreases by
$2,600.00 every year.

Assume x years since its purchase, the car’s value is y dollars. Use a linear equation to model the
car’s value.

Find this line’s y-intercept, and interpret its meaning in this context.

⊙ A. The y-intercept is (15,0). It implies the car would have no more value 15 years since its
purchase.

⊙ B. The y-intercept is (0,39000). It implies the car’s initial value was 39000.

⊙ C. The y-intercept is (0,15). It implies the car would have no more value 15 years since its
purchase.

⊙ D. The y-intercept is (39000,0). It implies the car’s initial value was 39000.

48.

Challenge

Fill in the variables A, B, and C in Ax + By � C with the numbers 10, 11 and 14. You may only use
each number once.

a. To make a line with the steepest slope possible, A must equal , B must equal

, and C must equal .

b. To make a line with the shallowest slope possible, A must equal , B must

equal , and C must equal .

49.

344



4.8 Horizontal, Vertical, Parallel, and Perpendicular Lines

4.8 Horizontal, Vertical, Parallel, and Perpendicular Lines

Horizontal and vertical lines have some special features worth our attention. Also if a pair of lines are
parallel or perpendicular to each other, we have some interesting things to say about them. This section
looks at these geometric features that lines may have.
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Figure 4.8.2: Horizontal Line Figure 4.8.3: Vertical Line
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Figure 4.8.4: Parallel Lines Figure 4.8.5: Perpendicular Lines

4.8.1 Horizontal Lines and Vertical Lines

We learned in Section 4.7 that all lines can be written in standard form (4.7.1). When either A or B equal 0,
we end up with a horizontal or vertical line, as we will soon see. Let’s take the standard form (4.7.1) line
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equation, let A � 0 and B � 0 one at a time and simplify each equation.

Ax + By � C Ax + By � C
0x + By � C Ax + 0y � C

By � C Ax � C

y �
C
B

x �
C
A

y � k x � h

At the endwe just renamed the constant numbers C
B and C

A to k and h because of tradition. What is important,
is that you view h and k (as well as A, B, and C) as constants: numbers that have some specific value and
don’t change in the context of one problem.

Think about just one of these last equations: y � k. It says that the y-value is the same no matter where you
are on the line. If you wanted to plot points on this line, you are free to move far to the left or far to the right
on the x-axis, but then you always move up (or down) to make the y-value equal k. What does such a line
look like?

Example 4.8.6 Let’s plot the line with equation y � 3. (Note that this is the same as 0x + 1y � 3.)

To plot some points, it doesn’t matter what x-
values we use. All that matters is that y is always
3.

A line like this is horizontal, parallel to the hori-
zontal axis. All lineswith an equation in the form

y � k

(or, in standard form, 0x + By � C) are horizon-
tal.
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Figure 4.8.7: y � 3

Example 4.8.8 Let’s plot the line with equation x � 5. (Note that this is the same as 1x + 0y � 5.)
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The line has x � 5, so to plot points, we are re-
quired to move over to x � 5. From there, we have
complete freedom to move however far we like
up or down.

A line like this is vertical, parallel to the vertical
axis. All lines with an equation in the form

x � h

(or, in standard form, Ax + 0y � C) are vertical.
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Figure 4.8.9: x � 5

Example 4.8.10 Zero Slope. In Checkpoint 4.4.17, we learned that a horizontal line’s slope is 0, be-
cause the distance doesn’t change as time moves on. So the numerator in the slope formula (4.4.3) is 0.
Now, if we know a line’s slope and its y-intercept, we can use slope-intercept form (4.5.1) to write its
equation:

y � mx + b
y � 0x + b
y � b

This provides uswith an alternativeway to think about equations of horizontal lines. They have a certain
y-intercept b, and they have slope 0.

We use horizontal lines tomodel scenarios where there is no change in y-values, likewhenKato stopped
for 12 hours (he deserved a rest)!

Checkpoint 4.8.11 Plotting Points. Suppose you need to plot the equation y � −4.25. Since the equation
is in “y �” form, you decide to make a table of points. Fill out some points for this table.

x y

Explanation. We can use whatever values for x that we like, as long as they are all different. The equation
tells us the y-value has to be −4.25 each time.
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x y
−2 −4.25
−1 −4.25
0 −4.25
1 −4.25
2 −4.25

The reason we made a table was to help with plotting the line.

Example 4.8.12 Undefined Slope. What is the slope of a vertical line? Figure 4.8.13 shows three lines
passing through the origin, each steeper than the last. In each graph, you can see a slope triangle that
uses a “rise” of 4 each time.

2 4 6
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4

6
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pe

�

4
4
�

1

4

4

x

y

2 4 6

2

4

6
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�
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�

2

2

4

x

y

2 4 6

2

4

6
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pe

�
4 1
�

4

1

4

x

y

Figure 4.8.13

If we continued making the line steeper and steeper until it was vertical, the slope triangle would still
have a “rise” of 4, but the “run” would become smaller and smaller, closer to 0. And then the slope
would be m �

4
very small � very large. So the slope of a vertical line can be thought of as “infinitely

348



4.8 Horizontal, Vertical, Parallel, and Perpendicular Lines

large.”

If we actually try to compute the slope using the slope triangle when the run is 0, we would have 4
0 ,

which is undefined. So we also say that the slope of a vertical line is undefined. Some people say that a
vertical line has no slope.

Remark 4.8.14. Be careful not to mix up “no slope” (which means “its slope is undefined”) with “has slope
0.” If a line has slope 0, it does have a slope.

Checkpoint 4.8.15 Plotting Points. Suppose you need to plot the equation x � 3.14. You decide to try
making a table of points. Fill out some points for this table.

x y

Explanation. Since the equation says x is always the number 3.14, we have to use this for the x value in
all the points. This is different from how we would plot a “y �” equation, where we would use several
different x-values. We can use whatever values for y that we like, as long as they are all different.

x y
3.14 −2
3.14 −1
3.14 0
3.14 1
3.14 2

The reason we made a table was to help with plotting the line.
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Example 4.8.16 Let x represent the price of a new 60-inch television at Target on Black Friday (which
was $650), and let y be the number of hours you will watch something on this TV over its lifetime. What
is the relationship between x and y?

Well, there is no getting around the fact that
x � 650. As for y, without any extra information
about your viewing habits, it could theoretically
be as low as 0 or it could be anything larger than
that. If we graph this scenario, we have to graph
the equation x � 650 whichwe now know to give
a vertical line, and we get Figure 4.8.17.

200 400 600 800

200

400

600

800

purchase price

hours watched

Figure 4.8.17: New TV: hours watched ver-
sus purchase price; negative y-values omitted
since they make no sense in context

Summary of Horizontal and Vertical Line Equations

Horizontal Lines Vertical Lines

A line is horizontal if and only if its equation can
be written

y � k

for some constant k.

A line is vertical if and only if its equation can be
written

x � h

for some constant h.

In standard form (4.7.1), any line with equation

0x + By � C

is horizontal.

In standard form (4.7.1), any line with equation

Ax + 0y � C

is vertical.

If the line with equation y � k is horizontal, it has
a y-intercept at (0, k) and has slope 0.

If the line with equation x � h is vertical, it has an
x-intercept at (h , 0) and its slope is undefined.
Some say it has no slope, and some say the slope
is infinitely large.

In slope-intercept form (4.5.1), any line with
equation

y � 0x + b

is horizontal.

It’s impossible to write the equation of a vertical
line in slope-intercept form (4.5.1), because
vertical lines do not have a defined slope.
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4.8.2 Parallel Lines

Two trees were planted in the same year, and
their growth over time is modeled by the two
lines in Figure 4.8.19. Use linear equations to
model each tree’s growth, and interpret their
meanings in this context.

−1 1 2 3 4
−1

1

2

3

4

5

6

7

8

Tree
1

Tree
2

(0, 2)

(3, 4)

3

2

(0, 5)

(3, 7)

3

2

x time in years

y height in feet

Figure 4.8.19: Two Trees’ Growth Chart

Example 4.8.18 We can see Tree 1’s equation is y �
2
3 x + 2, and Tree 2’s equation is y �

2
3 x + 5. Tree 1

was 2 feet tall when it was planted, and Tree 2 was 5 feet tall when it was planted. Both trees have been
growing at the same rate, 2

3 feet per year, or 2 feet every 3 years.

An important observation right now is that those two lines are parallel. Why? For lines with positive
slopes, the bigger a line’s slope, the steeper the line is slanted. As a result, if two lines have the same
slope, they are slanted at the same angle, thus they are parallel.

Fact 4.8.20. Any two vertical lines are parallel to each other. For two non-vertical lines, they are parallel if and only
if they have the same slope.

Checkpoint 4.8.21. A line ℓ is parallel to the line with equation y � 17.2x − 340.9, but ℓ has y-intercept
at (0, 128.2). What is an equation for ℓ?

Explanation. Parallel lines have the same slope, and the slope of y � 17.2x − 340.9 is 17.2. So ℓ has slope
17.2. And we have been given that ℓ’s y-intercept is at (0, 128.2). So we can use slope-intercept form to write
its equation as

y � 17.2x + 128.2.

Checkpoint 4.8.22. A line κ is parallel to the line with equation y � −3.5x + 17, but κ passes through
the point (−12, 23). What is an equation for κ?

Explanation. Parallel lines have the same slope, and the slope of y � −3.5x + 17 is −3.5. So κ has slope
−3.5. And we know a point that κ passes through, so we can use point-slope form to write its equation as

y � −3.5(x + 12) + 23.
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4.8.3 Perpendicular Lines

The slopes of two perpendicular lines have a special relationship too.

Figure 4.8.22 walks you through an explanation of this realationship.

slop
e m

x

y

1
m

x

y

m

−1
x

y

(a) Two generic perpendicular
lines, where one has slope m.

(b) Since the one slope is m, we
can draw a slope triangle with
“run” 1 and “rise” m.

(c) A congruent slope triangle can
be drawn for the perpendicu-
lar line. It’s legs have the same
lengths, but in different positions,
and one is negative.

Figure 4.8.22: The relationship between slopes of perpendicular lines

The second line in Figure 4.8.22 has slope

∆y
∆x

�
−1
m

� − 1
m

.

Fact 4.8.23. A vertical line and a horizontal line are perpendicular. For lines that are neither vertical nor horizontal,
they are perpendicular if and only if the slope of one is the negative reciprocal of the slope of the other. That is, if one
has slope m, the other has slope − 1

m .

Another way to say this is that the product of the slopes of two perpendicular lines is −1 (assuming both of the lines
have a slope in the first place).

Not convinced? Here are three pairs of perpendicular lines where we can see if the pattern holds.
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−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y
�

2x
−

2

y � − 1
2 x + 2

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y
�
−3x

+
4

y �
1
3x − 3

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y �
x

y
� −x

x

y

Figure 4.8.24: Graphing
y � 2x − 2 and y � − 1

2 x + 2.
Note the relationship between
their slopes: 2 � − 1

−1/2

Figure 4.8.25: Graphing
y � −3x + 4 and y �

1
3 x − 3.

Note the relationship between
their slopes: −3 � − 1

1/3

Figure 4.8.26: Graphing y � x
and y � −x. Note the relation-
ship between their slopes: 1 �

− 1
−1

Example 4.8.27 Line A passes through (−2, 10) and (3,−10). Line B passes through (−4,−4) and (8,−1).
Determine whether these two lines are parallel, perpendicular or neither.

Explanation. We will use the slope formula to find both lines’ slopes:

Line A’s slope �
y2 − y1

x2 − x1
Line B’s slope �

y2 − y1

x2 − x1

�
−10 − 10
3 − (−2) �

−1 − (−4)
8 − (−4)

�
−20

5 �
3
12

� −4 �
1
4

Their slopes are not the same, so those two lines are not parallel.

The product of their slopes is (−4) · 1
4 � −1, which means the two lines are perpendicular.

Checkpoint 4.8.28. Line A and Line B are perpendicular. Line A’s equation is 2x + 3y � 12. Line B
passes through the point (4,−3). Find an equation for Line B.

Explanation. First, we will find Line A’s slope by rewriting its equation from standard form to slope-
intercept form:

2x + 3y � 12
3y � 12 − 2x
3y � −2x + 12

y �
−2x + 12

3

y � −2
3 x + 4

So Line A’s slope is − 2
3 . Since Line B is perpendicular to Line A, its slope is − 1

− 2
3
�

3
2 . It’s also given that
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Line B passes through (4,−3), so we can write Line B’s point-slope form equation:

y � m(x − x0) + y0

y �
3
2 (x − 4) − 3

Exercises

Review and Warmup

Evaluate the following ex-
pressions. If the answer is
undefined, you may answer
with DNE (meaning “does not
exist”).

a. 6
0 �

b. 0
6 �

1. Evaluate the following ex-
pressions. If the answer is
undefined, you may answer
with DNE (meaning “does not
exist”).

a. 0
7 �

b. 7
0 �

2. A line passes through the
points (5, 6) and (−5, 6). Find
this line’s slope.

3.

A line passes through the
points (3, 8) and (−3, 8). Find
this line’s slope.

4. A line passes through the
points (−10,−5) and (−10, 5).
Find this line’s slope.

5. A line passes through the
points (−8,−1) and (−8, 2). Find
this line’s slope.

6.

Consider the equation:

y � 1

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (0, 9) □ (−6, 1) □ (1, 4)
□ (4, 1)

7. Consider the equation:

y � 1

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (−8, 1) □ (0, 7) □ (5, 1)
□ (1, 2)

8. Consider the equation:

x + 1 � 0

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (−1, 3) □ (−1, 0)
□ (1,−1) □ (0,−6)

9.

Consider the equation:

x + 1 � 0

Which of the following ordered
pairs are solutions to the given
equation? Theremaybemore
than one correct answer.

□ (−1, 3) □ (0,−8)
□ (1,−1) □ (−1, 0)

10.
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Tables for Horizontal and Vertical Lines

Fill out this table for the equation y � 7. The
first row is an example.

x y Points
−3 7 (−3, 7)
−2
−1
0
1
2

11. Fill out this table for the equation y � 8. The
first row is an example.

x y Points
−3 8 (−3, 8)
−2
−1
0
1
2

12.

Fill out this table for the equation x � −2. The
first row is an example.

x y Points
−2 −3 (−2,−3)

−2
−1
0
1
2

13. Fill out this table for the equation x � −10.
The first row is an example.

x y Points
−10 −3 (−10,−3)

−2
−1
0
1
2

14.

Line Equations

A line’s graph is given.

This line’s equation is

15. A line’s graph is given.

This line’s equation is

16.
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A line’s graph is given.

This line’s equation is

17. A line’s graph is given.

This line’s equation is

18.

A line passes through the points (−2, 1) and
(3, 1). Find an equation for this line.

An equation for this line is .

19. A line passes through the points (5, 4) and
(−4, 4). Find an equation for this line.

An equation for this line is .

20.

A line passes through the points (6, 1) and
(6, 2). Find an equation for this line.

An equation for this line is .

21. A line passes through the points (8,−3) and
(8, 5). Find an equation for this line.

An equation for this line is .

22.

Intercepts

Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

x � 10

x-value y-value Location
y-intercept
x-intercept

23.
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Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

x � −8

x-value y-value Location
y-intercept
x-intercept

24.

Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

y � −6

x-value y-value Location
y-intercept
x-intercept

25.

Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

y � −4

x-value y-value Location
y-intercept
x-intercept

26.

Graphs of Horizontal and Vertical Lines

Graph the line y � 1.27. Graph the line y + 5 � 0.28.

Graph the line x � 2.29. Graph the line x − 3 � 0.30.
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Parallel or Perpendicular?

Line m passes points (−5,−14) and (5, 16).
Line n passes points (−4,−10) and (4, 14).
Determine how the two lines are related.

These two lines are

⊙ parallel

⊙ perpendicular

⊙ neither parallel nor perpendicular

31. Line m passes points (5,−1) and (15,−13).
Line n passes points (20,−20) and (−5, 10).
Determine how the two lines are related.

These two lines are

⊙ parallel

⊙ perpendicular

⊙ neither parallel nor perpendicular

32.

Line m passes points (12, 4) and (−8, 9).
Line n passes points (−4,−26) and (−2,−18).
Determine how the two lines are related.

These two lines are

⊙ parallel

⊙ perpendicular

⊙ neither parallel nor perpendicular

33. Line m passes points (−10, 12) and (5,−12).
Line n passes points (16, 2) and (8,−3).
Determine how the two lines are related.

These two lines are

⊙ parallel

⊙ perpendicular

⊙ neither parallel nor perpendicular

34.

Line m passes points (3,−11) and (4,−12).
Line n passes points (−3,−16) and (5, 8).
Determine how the two lines are related.

These two lines are

⊙ parallel

⊙ perpendicular

⊙ neither parallel nor perpendicular

35. Line m passes points (6, 10) and (−7, 10).
Line n passes points (1, 2) and (3, 2).
Determine how the two lines are related.

These two lines are

⊙ parallel

⊙ perpendicular

⊙ neither parallel nor perpendicular

36.

Line m passes points (−8,−1) and (−8, 1).
Line n passes points (−4, 0) and (−4,−7).
Determine how the two lines are related.

These two lines are

⊙ parallel

⊙ perpendicular

⊙ neither parallel nor perpendicular

37. Line m passes points (−6,−8) and (−6, 10).
Line n passes points (−9, 0) and (−9, 3).
Determine how the two lines are related.

These two lines are

⊙ parallel

⊙ perpendicular

⊙ neither parallel nor perpendicular

38.
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Parallel and Perpendicular Line Equations

A line passes through the point (−2, 5), and
it’s parallel to the line y � −4. Find an equa-
tion for this line.

An equation for this line is .

39. A line passes through the point (7,−2), and
it’s parallel to the line y � −1. Find an equa-
tion for this line.

An equation for this line is .

40.

A line passes through the point (−9,−6), and
it’s parallel to the line x � 1. Find an equation
for this line.

An equation for this line is .

41. A line passes through the point (4, 3), and it’s
parallel to the line x � 3. Find an equation for
this line.

An equation for this line is .

42.

Line k has the equation y � 3x + 4.

Line ℓ is parallel to line k, but passes through
the point (−5,−17).
Find an equation for line ℓ in both slope-intercept
form and point-slope form.

An equation for ℓ in slope-intercept form is:
.

An equation for ℓ in point-slope form is: .

43. Line k has the equation y � 4x − 2.

Line ℓ is parallel to line k, but passes through
the point (−1,−9).
Find an equation for line ℓ in both slope-intercept
form and point-slope form.

An equation for ℓ in slope-intercept form is:
.

An equation for ℓ in point-slope form is: .

44.

Line k has the equation y � − 9
7 x − 2.

Line ℓ is parallel to line k, but passes through
the point (−21, 31).
Find an equation for line ℓ in both slope-intercept
form and point-slope form.

An equation for ℓ in slope-intercept form is:
.

An equation for ℓ in point-slope form is: .

45. Line k has the equation y � − 1
4 x + 3.

Line ℓ is parallel to line k, but passes through
the point (8,−4).
Find an equation for line ℓ in both slope-intercept
form and point-slope form.

An equation for ℓ in slope-intercept form is:
.

An equation for ℓ in point-slope form is: .

46.
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Line k has the equation y � −x + 10.

Line ℓ is perpendicular to line k, and passes
through the point (1, 4).
Find an equation for line ℓ in both slope-intercept
form and point-slope form.

An equation for ℓ in slope-intercept form is:
.

An equation for ℓ in point-slope form is: .

47. Line k has the equation y � 3x − 4.

Line ℓ is perpendicular to line k and passes
through the point (−3,−1).
Find an equation for ℓ in both slope-intercept
form and point-slope forms.

An equation for ℓ in slope-intercept form is:
.

An equation for ℓ in point-slope form is: .

48.

Line k’s equation is y �
5
4 x − 5.

Line ℓ is perpendicular to line k and passes
through the point (−15, 10).
Find an equation for line ℓ in both slope-intercept
form and point-slope forms.

An equation for ℓ in slope-intercept form is:
.

An equation for ℓ in point-slope form is: .

49. Line k has the equation x − 6y � −30.

Line ℓ is perpendicular to line k and passes
through the point (−2, 15).
Find line ℓ’s equation in both slope-intercept
form and point-slope form.

An equation for ℓ in slope-intercept form is:
.

An equation for ℓ in point-slope form is: .

50.

Challenge

Prove that a triangle with vertices at the points (1, 1), (−4, 4), and (−3, 0) is a right triangle.51.
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4.9 Summary of Graphing Lines

The previous several sections have demonstrated several methods for plotting a graph of a linear equation.
In this section, we review these methods.

We have learned three forms to
write a linear equation:

• slope-intercept form

y � mx + b

• standard form

Ax + By � C

• point-slope form

y � m (x − x0) + y0

We have studied two special
types of line:

• horizontal line: y � k

• vertical line: x � h

We have practiced three ways to
graph a line:

• building a table of x- and y-
values

• plotting one point (often the
y-intercept) and drawing
slope triangles

• plotting its x-intercept and
y-intercept

4.9.1 Graphing Lines in Slope-Intercept Form

In the following examples we will graph y � −2x + 1, which is in slope-intercept form (4.5.1), with different
methods and compare them.

Example 4.9.2 Building a Table of x- and y-values. First, we will graph y � −2x + 1 by building a table
of values. In theory this method can be used for any type of equation, linear or not. Every student must
feel comfortable with building a table of values based on an equation.

x-value y-value Point
−2 y � −2(−2) + 1 � 5 (−2, 5)
−1 y � −2(−1) + 1 � 3 (−1, 3)
0 y � −2(0) + 1 � 1 (0, 1)
1 y � −2(1) + 1 � −1 (1,−1)
2 y � −2(2) + 1 � −3 (2,−3)

−2 2

−6

−4

−2

2

4

6

y
� −2x

+ 1

x

y

Table 4.9.3: Table for y � −2x + 1 Figure 4.9.4: Graphing y � −2x+1 by Build-
ing a Table of Values

Example 4.9.5 Using Slope Triangles. Although making a table is straightforward, the slope triangle
method is both faster and reinforces the true meaning of slope. In the slope triangle method, we first
identify some point on the line. With a line in slope-intercept form (4.5.1), we know the y-intercept,
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which is (0, 1). Then, we can draw slope triangles in both directions to find more points.

−2 2

−6

−4

−2

2

4

6

(0, 1)
1

2
x

y

−2 2

−6

−4

−2

2

4

6

y
� −2x

+ 1

x

y

Figure 4.9.6: Marking a point and some slope
triangles

Figure 4.9.7: Graphing y � −2x +1 by slope tri-
angles

Compared to the table method, the slope triangle method:

• is less straightforward

• doesn’t take the time and space to make a table

• doesn’t involve lots of calculations where you might make a human error

• shows slope triangles, which reinforces the meaning of slope

Example 4.9.8 Using intercepts. If we use the x- and y-intercepts to plot y � −2x + 1, we have some
calculation to do. While it is apparent that the y-intercept is at (0, 1), where is the x-intercept? Here are
two methods to find it.

Set y � 0.

y � −2x + 1
0 � −2x + 1

0 − 1 � −2x
−1 � −2x
−1
−2 � x

1
2 � x

Factor out the coefficient of x.

y � −2x + 1

y � −2x + (−2)
(
−1

2

)
1

y � −2
(
x +

(
−1

2

)
1
)

y � −2
(
x − 1

2

)
And now it is easy to see that substituting x �

1
2

would make y � 0.
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So the x-intercept is at
( 1

2 , 0
)
. Plotting both intercepts:

−2 2

−6

−4

−2

2

4

6

(0, 1)( 1
2 , 0

)
x

y

−2 2

−6

−4

−2

2

4

6

y
� −2x

+ 1

(0, 1)
( 1

2 , 0
)

x

y

Figure 4.9.9: Marking intercepts Figure 4.9.10: Using slope triangles

This worked, but here are some observations about why this method is not the greatest.

• We had to plot a point with fractional coordinates.

• We only plotted two points and they turned out very close to each other, so even the slightest
inaccuracy in our drawing skills could result in a line that is way off.

When a line is presented in slope-intercept form (4.5.1), our opinion is that the slope triangle method is the
best choice for making its graph.

4.9.2 Graphing Lines in Standard Form

In the following examples we will graph 3x + 4y � 12, which is in standard form (4.7.1), with different
methods and compare them.

Example 4.9.11 Building a Table of x- and y-values. To make a table, we could substitute x for various
numbers and use algebra to find the corresponding y-values. Let’s start with x � −2, planning to move
on to x � −1, 0, 1, 2.

3x + 4y � 12
3(−2) + 4y � 12
−6 + 4y � 12

4y � 18

y �
18
4 �

9
2

The first point we found is
(
−2, 9

2
)
. This has been

a lot of calculation, and we ended up with a frac-
tion we will have to plot. And we have to re-
peat this process a few more times to get more
points for the table. The table method is gener-
ally not a preferred way to graph a line in stan-
dard form (4.7.1). Let’s look at other options.
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Example 4.9.12 Using intercepts. Next, we will try graphing 3x + 4y � 12 using intercepts. We set up
a small table to record the two intercepts:

x-value y-value Intercept
x-intercept 0
y-intercept 0

Wehave to calculate the line’s x-intercept by sub-
stituting y � 0 into the equation:

3x + 4y � 12
3x + 4(0) � 12

3x � 12

x �
12
3

x � 4

And similarly for the y-intercept:

3x + 4y � 12
3(0) + 4y � 12

4y � 12

y �
12
4

y � 3

So the line’s x-intercept is at (4, 0) and its y-intercept is at (0, 3). Now we can complete the table and
then graph the line:

x-value y-value Intercepts
x-intercept 4 0 (4, 0)
y-intercept 0 3 (0, 3)

2 4 6

2

4

3x
+ 4y

� 12

(0, 3)

(4, 0) x

y

Table 4.9.13: Intercepts of 3x + 4y � 12 Figure 4.9.14: Graph of 3x + 4y � 12
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We can always rearrange 3x+4y � 12 into slope-
intercept form (4.5.1), and then graph it with the
slope triangle method:

3x + 4y � 12
4y � 12 − 3x
4y � −3x + 12

y �
−3x + 12

4

y � −3
4 x + 3

Example 4.9.15With Slope Triangles. With the y-intercept at (0, 3) and slope − 3
4 , we can graph the line

using slope triangles:

−4 −2 2 4

−2

2

4

63x
+ 4y

� 12

(0, 3) 4

−3
x

y

Figure 4.9.16: Graphing 3x + 4y � 12 using slope triangles

Compared with the intercepts method, the slope triangle method takes more time, but shows more
points with slope triangles, and thus a more accurate graph. Also sometimes (as with Example 4.7.14)
when we graph a standard form equation like 2x − 3y � 0, the intercepts method doesn’t work because
both intercepts are actually at the same point, andwe have to resort to something else like slope triangles
anyway.

Here are some observations about graphing a line equation that is in standard form (4.7.1):

• The intercepts method might be the quickest approach.

• The intercepts method only tells us two intercepts of the line. When we need to know more infor-
mation, like the line’s slope, and get a more accurate graph, we should spend more time and use the
slope triangle method.

• When C � 0 in a standard form equation (4.7.1) we have to use something else like slope triangles
anyway.
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4.9.3 Graphing Lines in Point-Slope Form

When we graph a line in point-slope form (4.6.1) like y �
2
3 (x + 1) + 3, the slope triangle method is the

obvious choice. We can see a point on the line, (−1, 3), and the slope is apparent: 2
3 . Here is the graph:

−4 −2 2

2

4

6

y �
2
3
(x +

1) +
3

(−1, 3) 3

2

x

y

Figure 4.9.17: Graphing y − 3 �
2
3 (x + 1) using slope triangles

Other graphing methods would take more work and miss the purpose of point-slope form (4.6.1). To graph
a line in point-slope form (4.6.1), we recommend always using slope triangles.

4.9.4 Graphing Horizontal and Vertical Lines

We learned in Section 4.8 that equations in the form x � h and y � k make vertical and horizontal lines.
But perhaps you will one day find yourself not remembering which is which. Making a table and plotting
points can quickly remind youwhich type of equationmakes which type of line. Let’s build a table for y � 2
and another one for x � −3:

x-value y-value Point
0 2 (0, 2)
1 2 (1, 2)

x-value y-value Point
−3 0 (−3, 0)
−3 1 (−3, 1)

Table 4.9.18: Table of Data for y � 2 Table 4.9.19: Table of Data for x � −3

With two points on each line, we can graph them:
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−4 −2 2 4

−2

2
y � 2

x
�
−3

(0, 2) (1, 2)

(−3, 0)

(−3, 1)

x

y

Figure 4.9.20: Graphing y � 2 and x � −3

Exercises

Graphing by Table

Use a table to make a plot of y � 4x + 3.1. Use a table to make a plot of y � −5x − 1.2.

Use a table to make a plot of y � − 3
4 x − 1.3. Use a table to make a plot of y �

5
3 x + 3.4.

Graphing Standard Form Equations

First find the x- and y-intercepts of the line
with equation 6x + 5y � −90. Then find one
other point on the line. Use your results to
graph the line.

5. First find the x- and y-intercepts of the line
with equation 2x − 3y � −6. Then find one
other point on the line. Use your results to
graph the line.

6.

First find the x- and y-intercepts of the line
with equation 3x+y � −9. Thenfind one other
point on the line. Use your results to graph the
line.

7. First find the x- and y-intercepts of the line
with equation −15x + 3y � −3. Then find one
other point on the line. Use your results to
graph the line.

8.

First find the x- and y-intercepts of the line
with equation 4x + 3y � −3. Then find one
other point on the line. Use your results to
graph the line.

9. First find the x- and y-intercepts of the line
with equation −4x − 5y � 5. Then find one
other point on the line. Use your results to
graph the line.

10.
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First find the x- and y-intercepts of the line
with equation 5x−3y � 0. Then find one other
point on the line. Use your results to graph the
line.

11. First find the x- and y-intercepts of the line
with equation 2x+9y � 0. Then find one other
point on the line. Use your results to graph the
line.

12.

Graphing Slope-Intercept Equations

Use the slope and y-intercept from the line
y � −5x to plot the line. Use slope triangles.

13. Use the slope and y-intercept from the line
y � 3x − 6 to plot the line. Use slope triangles.

14.

Use the slope and y-intercept from the line
y � − 2

5 x + 2 to plot the line. Use slope trian-
gles.

15. Use the slope and y-intercept from the line
y �

10
3 x−3 to plot the line. Use slope triangles.

16.

Graphing Horizontal and Vertical Lines

Plot the line y � 1.17. Plot the line y � −4.18.

Plot the line x � −8.19. Plot the line x � 5.20.

Choosing the Best Method to Graph Lines

Use whatever method you think best to plot
y � 2x + 2.

21. Use whatever method you think best to plot
y � −3x + 6.

22.

Use whatever method you think best to plot
y � − 3

4 x − 1.
23. Use whatever method you think best to plot

y �
5
3 x − 3.

24.

Use whatever method you think best to plot
y � − 3

4 (x − 5) + 2.
25. Use whatever method you think best to plot

y �
2
5 (x + 1) − 3.

26.

Use whatever method you think best to plot
3x + 2y � 6.

27. Use whatever method you think best to plot
5x − 4y � 8.

28.

Use whatever method you think best to plot
3x − 4y � 0.

29. Use whatever method you think best to plot
9x + 6y � 0.

30.
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Use whatever method you think best to plot
x � −3.

31. Use whatever method you think best to plot
x � 2.

32.

Use whatever method you think best to plot
y � −7.

33. Use whatever method you think best to plot
y � 5.

34.
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4.10 Linear Inequalities in Two Variables

We have learned how to graph lines like y � 2x + 1. In this section, we will learn how to graph linear
inequalities like y > 2x + 1.

Example 4.10.2 Office Supplies. Isabel has a budget of $133.00 to purchase some staplers and markers
for the office supply closet. Each stapler costs $19.00, and each marker costs $1.75. We will define the
variables so that she will purchase x staplers and y markers. Write and plot a linear inequality to model
the relationship between the number of staplers and markers Isabel can purchase. Keep in mind that
she might not spend all of the $133.00.

The cost of buying x staplers would be 19x dollars. Similarly, the cost of buying y markers would be
1.75y dollars. Since whatever Isabel spends needs to be nomore than 133 dollars, we have the inequality

19x + 1.75y ≤ 133.

This is a standard-form inequality, similar to Equation (4.7.1). Next, let’s graph it.

The first method to graph the inequality is to graph the corresponding equation, 19x + 1.75y � 133. Its
x- and y-intercepts can be found this way:

19x + 1.75y � 133 19x + 1.75y � 133
19x + 1.75(0) � 133 19(0) + 1.75y � 133

19x � 133 1.75y � 133
19x
19 �

133
19

1.75y
1.75 �

133
1.75

x � 7 y � 76

So the intercepts are (7, 0) and (0, 76), and we can plot the line in Figure 4.10.3.

−1 1 2 3 4 5 6 7 8 9

10

20

30

40

50

60

70

80

90

number of staplers

number of markers

Figure 4.10.3: 19x + 1.75y � 133

The points on this line represent ways in which Isabel can spend exactly all of the $133. But what does a
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4.10 Linear Inequalities in Two Variables

point like (2, 40) in Figure 4.10.4, which is not on the line, mean in this context? That would mean Isabel
bought 2 staplers and 40 markers, spending 19 · 2 + 1.75 · 40 � 108 dollars. That is within her budget.

In fact, any point on the lower left side of this line represents a total purchase within Isabel’s budget.
The shading in Figure 4.10.5 captures all solutions to 19x + 1.75y ≤ 133. Some of those solutions have
negative x- and y-values, which make no sense in context. So in Figure 4.10.6, we restrict the shading to
solutions which make physical sense.

−1 1 2 3 4 5 6 7 8 9

10

20

30

40

50

60

70

80

90

number of staplers

number of markers

−1 1 2 3 4 5 6 7 8 9
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20
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70

80

90

number of staplers

number of markers

−1 1 2 3 4 5 6 7 8 9

10

20

30

40

50

60

70

80

90

number of staplers

number of markers

Figure 4.10.4: The line
19x + 1.75y � 133 with a
point identified that is within
Isabel’s budget.

Figure 4.10.5: Shading all
points that solve the inequal-
ity.

Figure 4.10.6: Shading re-
stricted to points that make
physical sense in context.

Let’s look at some more examples of graphing linear inequalities in two variables.

Example 4.10.7 Is the point (1, 2) a solution of y > 2x + 1?

In the inequality y > 2x + 1, substitute x with 1 and y with 2, and we will see whether the inequality is
true:

y > 2x + 1

2
?
> 2(2) + 1

2
no
> 5

Since 2 > 5 is not true, (1, 2) is not a solution of y > 2x + 1.

Example 4.10.8 Graph y > 2x + 1.

There are two steps to graphing this linear inequality in two variables.

1. Graph the line y � 2x + 1. Because the inequality symbol is > (instead of ≥), the line should be
dashed (instead of solid).

2. Next, we need to decide whether to shade the region above y � 2x + 1 or below it. We will choose
a point to test whether y > 2x + 1 is true. As long as the line doesn’t cross (0, 0), we will use (0, 0)
to test because the number 0 is the easiest number for calculation.

y > 2x + 1

0
?
> 2(0) + 1
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0
no
> 1

Because 0 > 1 is not true, the point (0, 0) is not a solution and should not be shaded. As a result,
we shade the region without (0, 0).

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 4.10.9: Step 1 of graphing y > 2x + 1 Figure 4.10.10: Complete graph of y > 2x + 1

Example 4.10.11 Graph y ≤ − 5
3 x + 2.

There are two steps to graphing this linear inequality in two variables.

1. Graph the line y � − 5
3 x + 2. Because the inequality symbol is ≤ (instead of <), the line should be

solid.

2. Next, we need to decide whether to shade the region above y � − 5
3 x+2 or below it. Wewill choose

a point to test whether y ≤ − 5
3 x + 2 is true there. Using (0, 0) as a test point:

y ≤ −5
3 x + 2

0
?
≤ −5

3 (0) + 2

0
✓
≤ 2

Because 0 ≤ 2 is true, the point (0, 0) is a solution. As a result, we shade the region with (0, 0).
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−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 4.10.12: Step 1 of graphing y ≤ − 5
3 x + 2 Figure 4.10.13: Complete graph of y ≤ − 5

3 x + 2

Exercises

Review and Warmup Find the line’s slope and y-intercept.

A line has equation y � 8x + 3.

This line’s slope is .

This line’s y-intercept is .

1. A line has equation y � 9x + 9.

This line’s slope is .

This line’s y-intercept is .

2.

A line has equation y � −2x − 5.

This line’s slope is .

This line’s y-intercept is .

3. A line has equation y � −10x − 9.

This line’s slope is .

This line’s y-intercept is .

4.

A line has equation y � −x − 6.

This line’s slope is .

This line’s y-intercept is .

5. A line has equation y � −x − 4.

This line’s slope is .

This line’s y-intercept is .

6.

A line has equation y � −4x
3 − 4.

This line’s slope is .

This line’s y-intercept is .

7. A line has equation y � −6x
7 − 6.

This line’s slope is .

This line’s y-intercept is .

8.
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Graphing Two-Variable Inequalities

Graph the linear inequality y ≥ −4x.9. Graph the linear inequality y ≤ − 1
2 x − 3.10.

Graph the linear inequality y < 3x + 5.11. Graph the linear inequality y > 4
3 x + 1.12.

Graph the linear inequality 2x + y ≥ 3.13. Graph the linear inequality 3x + 2y < −6.14.

Graph the linear inequality y ≥ 3.15. Graph the linear inequality x < −1.16.

Applications

You fed your grandpa’s cat while he was on vacation. When he was back, he took out a huge bank
of coins, including quarters and dimes. He said you can take as many coins as you want, but the
total value must be less than $30.00.

(a) Write an inequality to model this situation, with q representing the number of quarters you
will take, and d representing the number of dimes.

(b) Graph this linear inequality.

17.

A couple is planning their wedding. They want the cost of the reception and the ceremony to be no
more than $8,000.

(a) Write an inequality to model this situation, with r as the cost of the reception (in dollars) and c
as the cost of the ceremony (in dollars).

(b) Graph this linear inequality.

18.
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4.11 Graphing Lines Chapter Review

4.11.1 Cartesian Coordinates

In Section 4.1 we covered the definition of the Cartesian Coordinate System and how to plot points using
the x and y-axes.

Example 4.11.1 On paper, sketch a Cartesian coordinate system with units, and then plot the following
points: (3, 2), (−5,−1), (0,−3), (4, 0).

Explanation.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(3, 2)

(−5,−1)

(0,−3)

(4, 0) x

y

Figure 4.11.2: A Cartesian grid with the four points plotted.

4.11.2 Graphing Equations

In Section 4.2 we covered how to plot solutions to equations to produce a graph of the equation.

Example 4.11.3 Graph the equation y � −2x + 5.
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Explanation.

x y � −2x + 5 Point
−2
−1

0
1
2

x y � −2x + 5 Point
−2 −2(−2) + 5 � 9 (−2, 9)
−1 −2(−1) + 5 � 7 (−1, 7)

0 −2(0) + 5 � 5 (0, 5)
1 −2(1) + 5 � 3 (1, 3)
2 −2(2) + 5 � 1 (2, 1)

(a) Set up the table (b) Complete the table

Figure 4.11.3: Making a table for y � −2x + 5

We use points from the table to graph the equation. First, plot each point carefully. Then, connect the
points with a smooth curve. Here, the curve is a straight line. Lastly, we can communicate that the graph
extends further by sketching arrows on both ends of the line.

−6 −4 −2 2 4 6

2

4

6

8

10

(−2
, 9)

(−1
, 7)

(0, 5
)

(1, 3
)

(2, 1
)

x

y

−6 −4 −2 2 4 6

2

4

6

8

10

(−2
, 9)

(−1
, 7)

(0, 5
)

(1, 3
)

(2, 1
)

x

y

(a) Use points from the table (b) Connect the points in whatever pattern is
apparent

Figure 4.11.3: Graphing the Equation y � −2x + 5

4.11.3 Exploring Two-Variable Data and Rate of Change

In Section 4.3 we covered how to find patterns in tables of data and how to calculate the rate of change
between points in data.
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Exploring Two-Variable Data and Rate of Change For a linear relationship, by its data in a table, we can
see the rate of change (slope) and the line’s y-intercept, thus writing the equation.

Write an equation in the form y � . . . suggested by
the pattern in the table.

x y
0 −4
1 −6
2 −8
3 −10

Table 4.11.5: A table of linear data.

Example 4.11.4 Explanation.

We consider how the values change from one row to
the next. From row to row, the x-value increases by
1. Also, the y-value decreases by 2 from row to row.

x y
0 −4

+ 1→ 1 −6 ← − 2
+ 1→ 2 −8 ← − 2
+ 1→ 3 −10 ← − 2

Since row-to-row change is always 1 for x and is always −2 for y, the rate of change from one row to
another row is always the same: −2 units of y for every 1 unit of x.

We know that the output for x � 0 is y � −4. And our observation about the constant rate of change tells

us that if we increase the input by x units from 0, the ouput should decrease by

x times︷                        ︸︸                        ︷
(−2) + (−2) + · · · + (−2),

which is −2x. So the output would be −4 − 2x.

So the equation is y � −2x − 4.

4.11.4 Slope

In Section 4.4we covered the definition of slope 4.4.3 and how to use slope-triangles to calculate slope. There
is also the slope formula (4.4.3) which helps find the slope through any two points.

Example 4.11.6 Find the slope of the line in the following graph.
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2 4 6

5

10

15

20

25

(3, 15)

(6, 27)

x

y

Figure 4.11.7: The line with two points indicated.

Explanation.

2 4 6

5

10

15

20

25

(3, 15)

(6, 27)

6 − 3
� 3

27
−

15
�

12

x

y We picked two points on the line, and then drew
a slope triangle. Next, we will do:

slope �
12
3 � 4

The line’s slope is 4.

Figure 4.11.8: The line with a slope triangle
drawn.

Example 4.11.9 Finding a Line’s Slope by the Slope Formula. Use the slope formula (4.4.3) to find the
slope of the line that passes through the points (−5, 25) and (4,−2).

Explanation.

slope �
y2 − y1

x2 − x1

378



4.11 Graphing Lines Chapter Review

�
−2 − (25)
4 − (−5)

�
−27

9
� −3

The line’s slope is −3.

4.11.5 Slope-Intercept Form

In Section 4.5 we covered the definition of slope intercept-form and both wrote equations in slope-intercept
form and graphed lines given in slope-intercept form.

Example 4.11.10 Graph the line y � − 5
2 x + 4.

Explanation.

−6 −4 −2 2 4 6

−8

−6

−4

−2

2

4

6

8

(0, 4)

x

y

−6 −4 −2 2 4 6

−8

−6

−4

−2

2

4

6

8(2,−9)

(2,−1)

(4,−6)

x

y

−6 −4 −2 2 4 6

−8

−6

−4

−2

2

4

6

8

y
�
− 52 x

+
4

x

y

(a) First, plot the line’s y-intercept,
(0, 4).

(b) The slope is − 5
2 �

−5
2 �

5
−2 .

So we can try using a “run” of 2
and a “rise” of −5 or a “run” of
−2 and a “rise” of 5.

(c) Arrowheads and labels are
encouraged.

Figure 4.11.10: Graphing y � − 5
2 x + 4

Writing a Line’s Equation in Slope-Intercept Form Based on Graph Given a line’s graph, we can identify
its y-intercept, and then find its slope by a slope triangle. With a line’s slope and y-intercept, we can write
its equation in the form of y � mx + b.
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Find the equation of the line in the graph.

−6 −4 −2 2 4 6

2

4

6

8

10

12

14

x

y

Figure 4.11.12: Graph of a line

Example 4.11.11 Explanation.

−6 −4 −2 2 4 6

2

4

6

8

10

12

14

(0, 10)

x

y

−6 −4 −2 2 4 6

5

15

20

(3, 8)

(−3, 12)

3

−23

−2

x

y

Figure 4.11.13: Identify the line’s y-intercept,
10.

Figure 4.11.14: Identify the line’s slope by a
slope triangle. Note that we can pick any two
points on the line to create a slope triangle.
We would get the same slope: − 2

3

With the line’s slope − 2
3 and y-intercept 10, we can write the line’s equation in slope-intercept form:

y � − 2
3 x + 10.
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4.11.6 Point-Slope Form

In Section 4.6 we covered the definition of point-slope form and both wrote equations in point-slope form
and graphed lines given in point-slope form.

Example 4.11.15 A line passes through (−6, 0) and (9,−10). Find this line’s equation in point-slope.

Explanation. We will use the slope formula (4.4.3) to find the slope first. After labeling those two

points as (
x1
−6,

y1
0 ) and (

x2
9 ,

y2
−10), we have:

slope �
y2 − y1

x2 − x1

�
−10 − 0
9 − (−6)

�
−10
15

� −2
3

Now the point-slope equation looks like y � − 2
3 (x − x0) + y0. Next, we will use (9,−10) and substitute

x0 with 9 and y0 with −10, and we have:

y � −2
3 (x − x0) + y0

y � −2
3 (x − 9) + (−10)

y � −2
3 (x − 9) − 10

4.11.7 Standard Form

In Section 4.7 we covered the definition of standard form of a linear equation. We converted equations from
standard form to slope-intercept form and vice versa. We also graphed lines from standard form by finding
the intercepts of the line.

Example 4.11.16

a. Convert 2x + 3y � 6 into slope-intercept form.

b. Convert y � − 4
7 x − 3 into standard form.

Explanation.

a.

2x + 3y � 6
2x + 3y − 2x � 6 − 2x

3y � −2x + 6
3y
3 �

−2x + 6
3
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y �
−2x

3 +
6
3

y � −2
3 x + 2

The line’s equation in slope-intercept form is y � − 2
3 x + 2.

b.

y � −4
7 x − 3

7 · y � 7 · (−4
7 x − 3)

7y � 7 · (−4
7 x) − 7 · 3

7y � −4x − 21
7y + 4x � −4x − 21 + 4x
4x + 7y � −21

The line’s equation in standard form is 4x + 7y � −21.

To graph a line in standard form, we could first change it to slope-intercept form, and then graph the
line by its y-intercept and slope triangles. A second method is to graph the line by its x-intercept and
y-intercept.

Example 4.11.17 Graph 2x − 3y � −6 using its intercepts. And then use the intercepts to calculate the
line’s slope.

Explanation. We calculate the line’s x-intercept by substituting y � 0 into the equation

2x − 3y � −6
2x − 3(0) � −6

2x � −6
x � −3

So the line’s x-intercept is (−3, 0).
Similarly, we substitute x � 0 into the equation to calculate the y-intercept:

2x − 3y � −6
2(0) − 3y � −6
−3y � −6

y � 2

So the line’s y-intercept is (0, 2).
With both intercepts’ coordinates, we can graph the line:
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−4 −3 −2 −1 1

1

2

3

(0, 2)

(−3, 0) x

y

Figure 4.11.18: Graph of 2x − 3y � −6

Now that we have graphed the line we can read the slope. The rise is 2 units and the run is 3 units so
the slope is 2

3 .

4.11.8 Horizontal, Vertical, Parallel, and Perpendicular Lines

In Section 4.8 we covered what equations of horizontal and vertical lines. We also covered the relationships
between the slopes of parallel and perpendicular lines.

Example 4.11.19 Line m’s equation is y � −2x + 20. Line n is parallel to m, and line n also passes the
point (4,−3). Find an equation for line n in point-slope form.

Explanation. Since parallel lines have the same slope, line n’s slope is also −2. Since line n also passes
the point (4,−3), we can write line n’s equation in point-slope form:

y � m(x − x1) + y1

y � −2(x − 4) + (−3)
y � −2(x − 4) − 3

Two lines are perpendicular if and only if the product of their slopes is −1.

Example 4.11.20 Line m’s equation is y � −2x + 20. Line n is perpendicular to m, and line q also passes
the point (4,−3). Find an equation for line q in slope-intercept form.

Explanation. Since line m and q are perpendicular, the product of their slopes is −1. Because line m’s
slope is given as −2, we can find line q’s slope is 1

2 .

Since line q also passes the point (4,−3), we can write line q’s equation in point-slope form:

y � m(x − x1) + y1
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y �
1
2 (x − 4) + (−3)

y �
1
2 (x − 4) − 3

We can now convert this equation to slope-intercept form:

y �
1
2 (x − 4) − 3

y �
1
2 x − 2 − 3

y �
1
2 x − 5

4.11.9 Linear Inequalities in Two Variables

In Section 4.10 we covered how to graph the solution set for an inequality with two variables as a region in
the plane.

Example 4.11.21 Graph y > 2x + 1.

Explanation. There are two steps to graph an inequality.

1. Graph the line y � 2x + 1. Because the inequality symbol is > , (instead of ≥) the line should be
dashed (instead of solid).

2. Next, we need to decide whether to shade the region above y � 2x + 1 or below it. We will choose
a point to test whether y > 2x + 1 is true. As long as the line doesn’t cross (0, 0), we will use (0, 0)
to test, because the number 0 is the easiest number for calculation.

y > 2x + 1

0
?
> 2(0) + 1

0
no
> 1

Because 0 > 1 is not true, the point (0, 0) is not a solution and should not be shaded. As a result,
we shade the region without (0, 0).
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−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

test point: (0, 0) x

y

Figure 4.11.22: Step 1 of graphing y > 2x + 1 Figure 4.11.23: Step 2 of graphing y > 2x + 1

Exercises

Sketch the points (8, 2), (5, 5), (−3, 0),
(
0,− 14

3
)
,

(3,−2.5), and (−5, 7) on a Cartesian plane.
1. Locate each point in the graph:

Write each point’s position as an ordered pair,
like (1, 2).

A � B �

C � D �

2.
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Consider the equation

y � − 3
8 x − 3

Which of the following ordered pairs are so-
lutions to the given equation? There may be
more than one correct answer.

□ (−24, 9) □ (32,−13) □ (0,−3)
□ (−40, 12)

3. Consider the equation

y � − 7
8 x − 5

Which of the following ordered pairs are so-
lutions to the given equation? There may be
more than one correct answer.

□ (24,−25) □ (0,−5) □ (−16, 14)
□ (−24, 16)

4.

Write an equation in the form y � . . . sug-
gested by the pattern in the table.

x y
0 −4
1 −2
2 0
3 2

5. Write an equation in the form y � . . . sug-
gested by the pattern in the table.

x y
0 3
1 −2
2 −7
3 −12

6.

Below is a line’s graph.

The slope of this line is .

7. Below is a line’s graph.

The slope of this line is .

8.
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Below is a line’s graph.

The slope of this line is .

9. Below is a line’s graph.

The slope of this line is .

10.

A line passes through the points (−8, 23) and
(4, 2). Find this line’s slope.

11. A line passes through the points (−24, 23) and
(8,−13). Find this line’s slope.

12.

A line passes through the points (4, 8) and
(−2, 8). Find this line’s slope.

13. A line passes through the points (2, 10) and
(−5, 10). Find this line’s slope.

14.

A line passes through the points (−9,−1) and
(−9, 3). Find this line’s slope.

15. A line passes through the points (−6,−3) and
(−6, 5). Find this line’s slope.

16.

A line’s graph is given.

This line’s slope-intercept equation is

17. A line’s graph is given.

This line’s slope-intercept equation is

18.
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Find the line’s slope and y-intercept.

A line has equation 3x − 5y � −15.

This line’s slope is .

This line’s y-intercept is .

19. Find the line’s slope and y-intercept.

A line has equation 5x − 6y � −30.

This line’s slope is .

This line’s y-intercept is .

20.

A line passes through the points (8,−2) and
(24, 12). Find this line’s equation in point-slope
form.

Using the point (8,−2), this line’s point-slope
form equation is .

Using the point (24, 12), this line’s point-slope
form equation is .

21. A line passes through the points (15, 22) and
(0,−2). Find this line’s equation in point-slope
form.

Using the point (15, 22), this line’s point-slope
form equation is .

Using the point (0,−2), this line’s point-slope
form equation is .

22.

Scientists are conducting an experiment with
a gas in a sealed container. Themass of the gas
is measured, and the scientists realize that the
gas is leaking over time in a linear way. Each
minute, they lose 2.4 grams. Tenminutes since
the experiment started, the remaining gas had
a mass of 96 grams.

Let x be the number ofminutes that havepassed
since the experiment started, and let y be the
mass of the gas in grams at that moment. Use
a linear equation to model the weight of the
gas over time.

a. This line’s slope-intercept equation is .

b. 40 minutes after the experiment started,
there would be
grams of gas left.

c. If a linearmodel continues to be accurate,
minutes since the experiment started,

all gas in the container will be gone.

23. Scientists are conducting an experiment with
a gas in a sealed container. Themass of the gas
is measured, and the scientists realize that the
gas is leaking over time in a linear way. Each
minute, they lose 8.2 grams. Six minutes since
the experiment started, the remaining gas had
a mass of 278.8 grams.

Let x be the number ofminutes that havepassed
since the experiment started, and let y be the
mass of the gas in grams at that moment. Use
a linear equation to model the weight of the
gas over time.

a. This line’s slope-intercept equation is .

b. 40 minutes after the experiment started,
there would be
grams of gas left.

c. If a linearmodel continues to be accurate,
minutes since the experiment started,

all gas in the container will be gone.

24.
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Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

2x + 5y � −30

x-value y-value Location
y-intercept
x-intercept

25.

Find the y-intercept and x-intercept of the line given by the equation. If a particular intercept does
not exist, enter none into all the answer blanks for that row.

4x + 3y � −12

x-value y-value Location
y-intercept
x-intercept

26.

Find the line’s slope and y-intercept.

A line has equation −5x + y � 5.

This line’s slope is .

This line’s y-intercept is .

27. Find the line’s slope and y-intercept.

A line has equation −x − y � 1.

This line’s slope is .

This line’s y-intercept is .

28.

Find the line’s slope and y-intercept.

A line has equation 8x + 10y � 1.

This line’s slope is .

This line’s y-intercept is .

29. Find the line’s slope and y-intercept.

A line has equation 10x + 12y � 5.

This line’s slope is .

This line’s y-intercept is .

30.
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Fill out this table for the equation x � −2. The
first row is an example.

x y Points
−2 −3 (−2,−3)

−2
−1
0
1
2

31. Fill out this table for the equation x � −1. The
first row is an example.

x y Points
−1 −3 (−1,−3)

−2
−1
0
1
2

32.

A line’s graph is given.

This line’s equation is

33. A line’s graph is given.

This line’s equation is

34.

Line m passes points (−4, 10) and (−4, 9).
Line n passes points (7, 6) and (7,−10).
Determine how the two lines are related.

These two lines are

⊙ parallel

⊙ perpendicular

⊙ neither parallel nor perpendicular

35. Line m passes points (−2, 3) and (−2,−4).
Line n passes points (1, 6) and (1, 0).
Determine how the two lines are related.

These two lines are

⊙ parallel

⊙ perpendicular

⊙ neither parallel nor perpendicular

36.
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Line k’s equation is y � − 6
7 x + 3.

Line ℓ is perpendicular to line k and passes
through the point (−6,−2).
Find an equation for line ℓ in both slope-intercept
form and point-slope forms.

An equation for ℓ in slope-intercept form is:
.

An equation for ℓ in point-slope form is: .

37. Line k’s equation is y � − 7
9 x + 5.

Line ℓ is perpendicular to line k and passes
through the point (7, 12).
Find an equation for line ℓ in both slope-intercept
form and point-slope forms.

An equation for ℓ in slope-intercept form is:
.

An equation for ℓ in point-slope form is: .

38.

Graph the linear inequality y > 4
3 x + 1.39. Graph the linear inequality y ≤ − 1

2 x − 3.40.

Graph the linear inequality y ≥ 3.41. Graph the linear inequality 3x + 2y < −6.42.
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CHAPTER 5
Systems of Linear Equations

5.1 Solving Systems of Linear Equations by Graphing

We have learned how to graph a line given its equation. In this section, we will learn what a system of two
linear equations is, and how to use graphing to solve such a system.

5.1.1 Solving Systems of Equations by Graphing

Example 5.1.2

Fabiana and David are running at constant
speeds in parallel lanes on a track. David starts
out ahead of Fabiana, but Fabiana is running
faster. We want to determine when Fabiana will
catch up with David. Let’s start by looking at the
graph of each runner’s distance over time, in Fig-
ure 5.1.3.

Each of the two lines has an equation, as dis-
cussed in Chapter 4. The line representing David
appears to have y-intercept (0, 4) and slope 4

3 , so
its equation is y �

4
3 t + 4. The line represent-

ing Fabiana appears to have y-intercept (0, 0) and
slope 2, so its equation is y � 2t.

1 2 3 4 5 6 7 8 9

2

4

6

8

10

12

14

Da
vid

Fa
bia

na
(6, 12)

t, time (in seconds)

y, distance (in meters)

Figure 5.1.3: David and Fabiana’s distances.

When these two equations are together as a package, we havewhat is called a systemof linear equations:{
y �

4
3 t + 4

y � 2t

The large left brace indicates that this is a collection of two distinct equations, not one equation that was
somehow algebraically manipulated into an equivalent equation.

As we can see in Figure 5.1.3, the graphs of the two equations cross at the point (6, 12). We refer to
the point (6, 12) as the solution to this system of linear equations. To denote the solution set, we write
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{(6, 12)}. But it’s much more valuable to interpret these numbers in context whenever possible: it took
6 seconds for the two runners to meet up, and when they met they were 12 meters up the track.

Remark 5.1.4. In Example 5.1.2, we stated that the solution was the point (6, 12). It makes sense to write
this as an ordered pair when we’re given a graph. In some cases when we have no graph, particularly when
our variables are not x and y, it might not be clear which variable “comes first” and we won’t be able to
write an ordered pair. Nevertheless, given the context we can write meaningful summary statements.

Example 5.1.5 Determine the solution to the system of equations graphed in Figure 5.1.6.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 5.1.6: Graph of a System of Equations

Explanation. The two lines intersect where x � −3 and y � −1, so the solution is the point (−3,−1).
We write the solution set as {(−3,−1)}.

Checkpoint 5.1.7. Determine the solution to the system of equations graphed below.
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The solution is the point .

Explanation. The two lines intersect where x � 3 and y � 2, so the solution is the point (3, 2). We write
the solution set as {(3, 2)}.

Now let’s look at an example where we need to make a graph to find the solution.

Example 5.1.8 Solve the following system of equations by graphing:{
y �

1
2 x + 4

y � −x − 5

Notice that each of these equations is written in
slope-intercept form. The first equation, y �

1
2 x+

4, is a linear equation with a slope of 1
2 and a y-

intercept of (0, 4). The second equation, y � −x−
5, is a linear equation with a slope of −1 and a y-
intercept of (0,−5). We’ll use this information to
graph both lines.

The two lines intersect where x � −6 and y �

1, so the solution of the system of equations is
the point (−6, 1). We write the solution set as
{(−6, 1)}.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y �
1
2
x + 4

y
� −x − 5

x

y

Figure 5.1.9: y �
1
2 x + 4 and y � −x − 5.

Example 5.1.10 Solve the following system of equations by graphing:{
x − 3y � −12

2x + 3y � 3

Explanation. Since both line equations are given in standard form, we’ll graph each one by finding the
intercepts. Recall that to find the x-intercept of each equation, replace y with 0 and solve for x. Similarly,
to find the y-intercept of each equation, replace x with 0 and solve for y.

For our first linear equation, we have:

x − 3(0) � −12 0 − 3y � −12
x � −12 −3y � −12

y � 4.

So the intercepts are (−12, 0) and (0, 4).

For our second linear equation, we have:

2x + 3(0) � 3 2(0) + 3y � 3
2x � 3 3y � 3

x �
3
2 y � 1.

So the intercepts are
( 3

2 , 0
)
and (0, 1).
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Now we can graph each line by plotting the intercepts and connecting these points:

−10 −5 5 10

−6

−4

−2

2

4

6

x −
3y �
−12

2x
+

3y
�

3

(−3, 3)

x

y

Figure 5.1.11: Graphs of x − 3y � −12 and 2x + 3y � 3

It appears that the solution of the system of equations is the point of intersection of those two lines,
which is (−3, 3). It’s important to check this is correct, because when making a hand-drawn graph, it
would be easy to be off by a little bit. To check, we can substitute the values of x and y from the point
(−3, 3) into each equation:

x − 3y � −12 2x + 3y � 3

−3 − 3(3) ?
� −12 2(−3) + 3(3) ?

� 3

−3 − 9 ✓� −12 −6 + 9 ✓� 3

So we have checked that (−3, 3) is indeed the solution for the system. We write the solution set as
{(−3, 3)}.

Example 5.1.12 A college has a north campus and a south campus. The north campus has 18,000 stu-
dents, and the south campus has 4,000 students. In the past five years, the north campus lost 4,000
students, and the south campus gained 3,000 students. If these trends continue, in how many years
would the two campuses have the same number of students? Write and solve a system of equations
modeling this problem.

Explanation. Since all the given student counts are in the thousands, wemake the decision to measure
student population in thousands. So for instance, the north campus starts with a student population of
18 (thousand students).

The north campus lost 4 thousand students in 5 years. So it is losing students at a rate of 4 thousand
5 year , or

4
5

thousand
year . This rate of change should be interpreted as a negative number, because the north campus is

losing students over time. So we have a linear model with starting value 18 thousand students, and a
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slope of − 4
5 thousand students per year. In other words,

y � −4
5 t + 18,

where y stands for the number of students in thousands, and t stands for the number of years into the
future.

Similarly, the number of students at the south campus can be modeled by y �
3
5 t + 4. Now we have a

system of equations: 
y � −4

5 t + 18

y �
3
5 t + 4

We will graph both lines using their slopes and y-intercepts.

1 2 3 4 5 6 7 8 9 10 11

2

4

6

8

10

12

14

16

18

20

North

South

(10, 10)

t, years

y, number of students (in thousands)

Figure 5.1.13: Number of Students at the South Campus and North Campus

According to the graph, the lines intersect at (10, 10). So if the trends continue, both campuses will have
10,000 students 10 years from now.

Example 5.1.14 Solve the following system of equations by graphing:{
y � 3(x − 2) + 1
y � − 1

2 (x + 1) − 1

Explanation. Since both line equations are given in point-slope form, we can start by graphing the
point indicated in each equation and use the slope to determine the rest of the line.
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For our first equation, y � 3(x − 2) + 1, the point
indicated in the equation is (2, 1) and the slope is
3.

For our second equation, y � − 1
2 (x + 1) − 1, the

point indicated in the equation is (−1,−1) and
the slope is − 1

2 .

Now we can graph each line by plotting the points and using their slopes.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y
�

3(
x
−

2)
+

1

y � − 1
2 (x + 1) − 1

(1,−2)

x

y

Figure 5.1.15: Graphs of y � 3(x − 2) + 1 and y � − 1
2 (x + 1) − 1

It appears that the solution of the system of equations is the point of intersection of those two lines,
which is (1,−2). It’s important to check this is correct, because when making a hand-drawn graph, it
would be easy to be off by a little bit. To check, we can substitute the values of x and y from the point
(1,−2) into each equation:

y � 3(x − 2) + 1

−2 ?
� 3(1 − 2) + 1

−2 ?
� 3(−1) + 1

−2 ✓� −3 + 1

y � −1
2 (x + 1) − 1

−2 ?
� −1

2 (1 + 1) − 1

−2 ?
� −1

2 (2) − 1

−2 ✓� −1 − 1

So we have checked that (2,−1) is indeed the solution for the system. We write the solution set as
{(2,−1)}.

398



5.1 Solving Systems of Linear Equations by Graphing

5.1.2 Special Systems of Equations

Recall that when we solved linear equations in one variable, we had two special cases. In one special case
there was no solution and in the other case, there were infinitely many solutions. When solving systems of
equations in two variables, we have two similar special cases.

Example 5.1.16 Parallel Lines. Let’s look at the graphs of two lines with the same slope, y � 2x − 4 and
y � 2x + 1:

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y
�

2x
−

4

y
�

2x
+

1

x

y

Figure 5.1.17: Graphs of y � 2x − 4 and y � 2x + 1

For this system of equations, what is the solution? Since the two lines have the same slope they are
parallel lines and will never intersect. This means that there is no solution to this system of equations.
We write the solution set as ∅.

The symbol ∅ is a special symbol that represents the empty set, a set that has no numbers in it. This symbol
is not the same thing as the number zero. The number of eggs in an empty egg carton is zero whereas the
empty carton itself could represent the empty set. The symbols for the empty set and the number zero may
look similar depending on how you write the number zero. Try to keep the concepts separate.

Example 5.1.18 Coinciding Lines. Next we’ll look at the other special case. Let’s start with this system
of equations: {

y � 2x − 4
6x − 3y � 12

To solve this system of equations, we want to graph each line. The first equation is in slope-intercept
form and can be graphed easily using its slope of 2 and its y-intercept of (0,−4).
The second equation, 6x − 3y � 12, can either be graphed by solving for y and using the slope-intercept
form or by finding the intercepts. If we use the intercept method, we’ll find that this line has an x-
intercept of (2, 0) and a y-intercept of (0,−4). When we graph both lines we get Figure 5.1.19.
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Now we can see these are actually the same line,
or coinciding lines. To determine the solution
to this system, we’ll note that they overlap ev-
erywhere. This means that we have an infinite
number of solutions: all points that fall on the
line. It may be enough to report that there are
infinitely many solutions. In order to be more
specific, all we can do is say that any ordered
pair (x , y) satisfying the line equation is a so-
lution. In set-builder notation, we would write
{(x , y) | y � 2x − 4}.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y
�

2x
−

4

6x
−

3y
�

12

x

y

Figure 5.1.19: Graphs of y � 2x − 4 and 6x −
3y � 12

Remark 5.1.20. In Example 5.1.18, what would have happened if we had decided to convert the second line
equation into slope-intercept form?

6x − 3y � 12
6x − 3y − 6x � 12 − 6x

−3y � −6x + 12

−1
3 · (−3y) � −1

3 · (−6x + 12)

y � 2x − 4

This is the literally the same as the first equation in our system. This is a different way to show that these
two equations are equivalent and represent the same line. Any time we try to solve a system where the
equations are equivalent, we’ll have an infinite number of solutions.

Warning 5.1.21. Notice that for a system of equations with infinite solutions like Example 5.1.18, we didn’t
say that every point was a solution. Rather, every point that falls on that line is a solution. It would be
incorrect to state this solution set as “all real numbers” or as “all ordered pairs.”

Intersecting Lines: If two linear equations have different slopes, the system has one solution.

Parallel Lines: If the linear equations have the same slope with different y-intercepts, the sys-
tem has no solution.

Coinciding Lines: If two linear equations have the same slope and the same y-intercept (in
other words, they are equivalent equations), the system has infinitely many solutions.
This solution set consists of all ordered pairs on that line.

List 5.1.22: A summary of the three types of systems of equations and their solution sets:
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Exercises

Warmup and Review Find the line’s slope and y-intercept.

A line has equation y � 9x + 3.

This line’s slope is .

This line’s y-intercept is .

1. A line has equation y � 10x + 9.

This line’s slope is .

This line’s y-intercept is .

2.

A line has equation y � −x − 9.

This line’s slope is .

This line’s y-intercept is .

3. A line has equation y � −x − 6.

This line’s slope is .

This line’s y-intercept is .

4.

A line has equation y � −4x
9 + 3.

This line’s slope is .

This line’s y-intercept is .

5. A line has equation y � −4x
5 − 9.

This line’s slope is .

This line’s y-intercept is .

6.

A line has equation y �
x
6 − 7.

This line’s slope is .

This line’s y-intercept is .

7. A line has equation y �
x
8 + 6.

This line’s slope is .

This line’s y-intercept is .

8.

Graph the equation y � −3x.9. Graph the equation y �
1
4 x.10.

Graph the equation y �
2
3 x + 4.11. Graph the equation y � −2x + 5.12.

Solve the linear equation for y.

12x − 4y � 44
13.

−25x − 5y � −85
14.

3x + 9y � 27
15.

−6x − 2y � −6
16.
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Checking Solutions for System of Equations

Decide whether (−3,−5) is a solution to the
system of equations:{

5x − 4y � 5
x + 4y � −25

The point (−3,−5) (□ is □ is not) a solu-
tion.

17. Decidewhether (−2, 2) is a solution to the sys-
tem of equations:{−x + 4y � 10

x + 5y � 8

The point (−2, 2) (□ is □ is not) a solu-
tion.

18.

Decide whether (−1,−1) is a solution to the
system of equations:{

4x + y � −8
y � x

The point (−1,−1) (□ is □ is not) a solu-
tion.

19. Decidewhether (0,−5) is a solution to the sys-
tem of equations:{−3x − 3y � 15

y � −5x − 6

The point (0,−5) (□ is □ is not) a solu-
tion.

20.

Decide whether
( 7

4 ,
9
4
)
is a solution to the sys-

tem of equations:{−8x − 12y � −41
8x − 12y � −13

The point
( 7

4 ,
9
4
)

(□ is □ is not) a solution.

21. Decide whether
( 7

4 ,
5
4
)
is a solution to the sys-

tem of equations:{
12x − 4y � 16
−4x − 12y � −19

The point
( 7

4 ,
5
4
)

(□ is □ is not) a solution.

22.

Using a Graph to Solve a System Use a graph to solve the system of equations.


y � −7

2 x − 8

y � 5x + 9

23. 
y �

2
3 x + 5

y � −2x − 11

24. {
y � 12x + 7

3x + y � −8

25.

{
y � −3x + 5

4x + y � 8

26. {
x + y � 0

3x − y � 8

27. {
4x − 2y � 4

x + 2y � 6

28.
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{
y � 4x − 5
y � −1

29. {
3x − 4y � 12

y � 3

30. {
x + y � −1

x � 2

31.

{
x − 2y � −4

x � −4

32. 
y � 2(x + 3) − 5

y � −4
3 (x − 4) − 1

33. 
y � −2

3 (x − 6) − 2

y � −1
2 (x − 1) + 2

34.


y � −1

2 (x − 6) + 4

y � 4(x + 1) − 6

35. 
y �

5
6 (x − 6) + 4

y � 2(x + 1) + 4

36. 
y � −4

5 x + 8

4x + 5y � −35

37.


2x − 7y � 28

y �
2
7 x − 3

38. {−10x + 15y � 60
6x − 9y � 36

39. {
6x − 8y � 32

9x − 12y � 12

40.


y � −3

5 x + 7

9x + 15y � 105

41. 
9y − 12x � 18

y �
4
3 x + 2

42.

Determining the Number of Solutions in a System of Equations

Simply by looking at this system of equations,
decide the number of solutions it has.{

y � −6x
y � −6x

The system has (□ no solution □ one solu-
tion □ infinitely many solutions) .

43. Simply by looking at this system of equations,
decide the number of solutions it has.

y �
2
5 x − 4

y �
2
5 x − 4

The system has (□ no solution □ one solu-
tion □ infinitely many solutions) .

44.
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Without graphing this system of equations,
decide the number of solutions it has.

y �
3
2 x + 4

9x − 6y � 0

The system has (□ no solution □ one solu-
tion □ infinitely many solutions) .

45. Without graphing this system of equations,
decide the number of solutions it has.{

y � 2x + 1
8x − 4y � 4

The system has (□ no solution □ one solu-
tion □ infinitely many solutions) .

46.

Without graphing this system of equations,
decide the number of solutions it has.{

3x + 12y � −24
4x + 16y � −16

The system has (□ no solution □ one solu-
tion □ infinitely many solutions) .

47. Without graphing this system of equations,
decide the number of solutions it has.{

12x + 4y � −20
8x + 2y � 10

The system has (□ no solution □ one solu-
tion □ infinitely many solutions) .

48.

Simply by looking at this system of equations,
decide the number of solutions it has.{

x � 4
y � −5

The system has (□ no solution □ one solu-
tion □ infinitely many solutions) .

49. Simply by looking at this system of equations,
decide the number of solutions it has.{

x � 1
y � −1

The system has (□ no solution □ one solu-
tion □ infinitely many solutions) .

50.
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5.2 Substitution

In Section 5.1, we focused on solving systems of equations by graphing. In addition to being time con-
suming, graphing can be an awkward method to determine the exact solution when the solution has large
numbers or fractions. There are two symbolic methods for solving systems of linear equations, and in this
section we will use one of them: substitution.

5.2.1 Solving Systems of Equations Using Substitution

Example 5.2.2 The Interview. In 2014, the NewYork Timesa posted the following about themovie, “The
Interview”:

“The Interview” generated roughly $15 million in online sales and rentals during its first
four days of availability, Sony Pictures said on Sunday.

Sony did not say how much of that total represented $6 digital rentals versus $15 sales. The
studio said there were about two million transactions overall.

A few days later, Joey Devilla cleverly pointed out in his blogb, that there is enough information given
to find the amount of sales versus rentals. Using algebra, we can write a system of equations and solve
it to find the two quantities.c

First, we will define variables. We need two variables, because there are two unknown quantities: how
many sales there were and how many rentals there were. Let r be the number of rental transactions and
let s be the number of sales transactions.

If you are unsure how to write an equation from the background information, use the units to help
you. The units of each term in an equation must match because we can only add like quantities. Both r
and s are in transactions. The article says that the total number of transactions is 2 million. So our first
equation will add the total number of rental and sales transactions and set that equal to 2 million. Our
equation is:

(r transactions) + (s transactions) � 2,000,000 transactions

Without the units:
r + s � 2,000,000

The price of each rental was $6. That means the problem has given us a rate of 6 dollars
transaction to work with.

The rate unit suggests this should be multiplied by something measured in transactions. It makes sense
to multiply by r, and then the number of dollars generated from rentals was 6r. Similarly, the price of
each sale was $15, so the revenue from sales was 15s. The total revenue was $15 million, which we can
represent with this equation:(

6 dollars
transaction

)
(r transactions) +

(
15 dollars

transaction
)
(s transactions) � $15,000,000

Without the units:
6r + 15s � 15,000,000

Here is our system of equations: {
r + s � 2,000,000

6r + 15s � 15,000,000

To solve the system, we will use the substitution method. The idea is to use one equation to find an
expression that is equal to r but, cleverly, does not use the variable “r.” Then, substitute this for r into
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the other equation. This leaves you with one equation that only has one variable.

The first equation from the system is an easy one to solve for r:

r + s � 2,000,000
r � 2,000,000 − s

This tells us that the expression 2,000,000 − s is equal to r, so we can substitute it for r in the second
equation:

6r + 15s � 15,000,000
6(2,000,000 − s) + 15s � 15,000,000

Now we have an equation with only one variable, s, which we will solve for:

6(2,000,000 − s) + 15s � 15,000,000
12,000,000 − 6s + 15s � 15,000,000

12,000,000 + 9s � 15,000,000
9s � 3,000,000
9s
9 �

3,000,000
9

s � 333,333.3

At this point, we know that s � 333,333.3. This tells us that out of the 2 million transactions, roughly
333,333 were from online sales. Recall that we solved the first equation for r, and found r � 2,000,000−s.

r � 2,000,000 − s

r � 2,000,000 − 333,333.3

r � 1,666,666.6

To check our answer, we will see if s � 333,333.3 and r � 1,666,666.6 make the original equations true:

r + s � 2,000,000

1,666,666.6 + 333,333.3 ?
� 2,000,000

2,000,000 ✓� 2,000,000

6r + 15s � 15,000,000

6
(
1,666,666.6

)
+ 15

(
333,333.3

)
?
� 15,000,000

10,000,000 + 5,000,000 ✓� 15,000,000

In summary, there were roughly 333,333 copies sold and roughly 1,666,667 copies rented.

a(nyti.ms/2pupebT)
bhttp://www.joeydevilla.com/2014/12/31/
cAlthough since the given information uses approximate values, the solutions we will find will only be approximations too.
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5.2 Substitution

Remark 5.2.3. In Example 5.2.2, we chose to solve the equation r + s � 2,000,000 for r. We could just as
easily have instead solved for s and substituted that result into the second equation instead. The summary
conclusion would have been the same.

Remark 5.2.4. In Example 5.2.2, we rounded the solution values because only whole numbers make sense
in the context of the problem. It was OK to round, because the original information we had to work with
were rounded. In fact, it would be OK to round even more to s � 330,000 and r � 1,700,000, as long as we
communicate clearly that we rounded and our values are rough.

In other exercises where there is no context and nothing suggests the given numbers are approximations, it
is not OK to round and all answers should be communicated with their exact values.

Example 5.2.5 Solve the system of equations using substitution:{
x + 2y � 8

3x − 2y � 8

Explanation. To use substitution, we need to solve for one of the variables in one of our equations.
Looking at both equations, it will be easiest to solve for x in the first equation:

x + 2y � 8
x � 8 − 2y

Next, we replace x in the second equation with 8 − 2y, giving us a linear equation in only one variable,
y, that we may solve:

3x − 2y � 8
3(8 − 2y) − 2y � 8

24 − 6y − 2y � 8
24 − 8y � 8
−8y � −16

y � 2

Now that we have the value for y, we need to find the value for x. We have already solved the first
equation for x, so that is the easiest equation to use.

x � 8 − 2y
x � 8 − 2(2)
x � 8 − 4
x � 4

To check this solution, we replace x with 4 and y with 2 in each equation:

x + 2y � 8 3x − 2y � 8

4 + 2(2) ?
� 8 3(4) − 2(2) ?

� 8
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4 + 4 ✓� 8 12 − 4 ✓� 8

We conclude then that this system of equations is true when x � 4 and y � 2. Our solution is the point
(4, 2) and we write the solution set as {(4, 2)}.

Checkpoint 5.2.6. Try a similar exercise.

Solve the following system of equations. {
5x + y � −3

0 � −1 + 4x + y

Explanation. These equations have no fractions; let’s try to keep it that way.{
5x + y � −3

0 � −1 + 4x + y

Since one of the coefficients of y is 1, it is wise to solve for y in terms of the other variable and then use
substitution to complete the problem.

y � −5x − 3 (from the first equation)

which we can substitute in for y into the second equation:

0 � 4x − 1 + (−5x) − 3 (from the second equation)
0 � −x − 4
x � −4
x � −4

We can substitute this back for x into the first equation to find y.

y � −5 (−4) − 3 (from the first equation, after we had solved for y in terms of x)
y � 20 + (−3)
y � 17

So the solution is x � −4, y � 17.

Example 5.2.7 Solve this system of equations using substitution:{
3x − 7y � 5
−5x + 2y � 11

Explanation. We need to solve for one of the variables in one of our equations. Looking at both equa-
tions, it will be easiest to solve for y in the second equation. The coefficient of y in that equation is
smallest.

−5x + 2y � 11
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2y � 11 + 5x
2y
2 �

11 + 5x
2

y �
11
2 +

5
2 x

Note that in this example, there are fractions once we solve for y. We should take care with the steps
that follow that the fraction arithmetic is correct.

Replace y in the first equation with 11
2 +

5
2 x, giving us a linear equation in only one variable, x, that we

may solve:

3x − 7y � 5

3x − 7
(
11
2 +

5
2 x

)
� 5

3x − 7 · 11
2 − 7 · 52 x � 5

3x − 77
2 −

35
2 x � 5

6
2 x − 77

2 −
35
2 x � 5

−29
2 x − 77

2 � 5

−29
2 x �

10
2 +

77
2

−29
2 x �

87
2

− 2
29 ·

(
−29

2 x
)
� − 2

29 ·
(
87
2

)
x � −3

Now that we have the value for x, we need to find the value for y. We have already solved the second
equation for y, so that is the easiest equation to use.

y �
11
2 +

5
2 x

y �
11
2 +

5
2 (−3)

y �
11
2 −

15
2

y � −4
2

y � −2

To check this solution, we replace x with −3 and y with −2 in each equation:

3x − 7y � 5 −5x + 2y � 11

3(−3) − 7(−2) ?
� 5 −5(−3) + 2(−2) ?

� 11
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−9 + 14 ✓� 5 15 − 4 ✓� 11

We conclude then that this system of equations is true when x � −3 and y � −2. Our solution is the
point (−3,−2) and we write the solution set as {(−3,−2)}.

Example 5.2.8 Clearing Fraction Denominators Before Solving. Solve the system of equations using
the substitution method: 

x
3 −

1
2 y �

5
6

1
4 x �

y
2 + 1

Explanation. When a system of equations has fraction coefficients, it can be helpful to take steps that
replace the fractions with whole numbers. With each equation, we may multiply each side by the least
common multiple of all the denominators.

In the first equation, the least common multiple
of the denominators is 6, so:

x
3 −

1
2 y �

5
6

6 ·
(

x
3 −

1
2 y

)
� 6 · 56

6 · x
3 − 6 · 12 y � 6 · 56

2x − 3y � 5

In the second equation, the least common multi-
ple of the denominators is 4, so:

1
4 x �

y
2 + 1

4 · 14 x � 4 · y
2 + 4 · 1

4 · 14 x � 4 · y
2 + 4 · 1

x � 2y + 4

Now we have this system that is equivalent to the original system of equations, but there are no fraction
coefficients: {

2x − 3y � 5
x � 2y + 4

The second equation is already solved for x, so
wewill substitute x in the first equationwith 2y+
4, and we have:

2x − 3y � 5
2(2y + 4) − 3y � 5

4y + 8 − 3y � 5
y + 8 � 5

y � −3

And we have solved for y. To find x, we know
x � 2y + 4, so we have:

x � 2y + 4
x � 2(−3) + 4
x � −6 + 4
x � −2

The solution is (−2,−3). Checking this solution is left as an exercise.
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Checkpoint 5.2.9. Try a similar exercise.

Solve the following system of equations.


−3 � −m +

1
2 r

−m +
4
3 � −r

Explanation. If an equation involves fractions, it is helpful to clear denominators bymultiplying both sides
of the equation by a common multiple of the denominators.


2 (−3) � 2

(
−m +

1
2 r

)
3
(
−m +

4
3

)
� 3 (−r)

{ −6 � −2m + r
−3m + 4 � −3r

Since one of the coefficients of r is 1, it is wise to solve for r in terms of the other variable and then use
substitution to complete the problem.

2m − 6 � r (from the first equation)

which we can substitute in for r into the second equation:

4 − 3m � −3(2m − 6) (from the second equation)
4 − 3m � 18 − 6m

3m � 14

m �
14
3

We can substitute this back for m into the first equation to find r.

2
(
14
3

)
− 6 � r (from the first equation, after we had solved for r in terms of m)

28
3 + (−6) � r

10
3 � r

So the solution is m �
14
3 , r �

10
3 .

5.2.2 Applications of Systems of Equations

In Example 5.2.2, we set up and solved a system of linear equations for a real-world application. The quan-
tities in that problem included rate units (dollars per transaction). Here are some more scenarios that we
can model with systems of linear equations.
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Example 5.2.10 Two Different Interest Rates. Notah made some large purchases with his two credit
cards one month and took on a total of $8,400 in debt from the two cards. He didn’t make any payments
the first month, so the two credit card debts each started to accrue interest. That month, his Visa card
charged 2% interest and his Mastercard charged 2.5% interest. Because of this, Notah’s total debt grew
by $178. How much money did Notah charge to each card?

Explanation. To start, we will define two variables based on our two unknowns. Let v be the amount
charged to the Visa card (in dollars) and let m be the amount charged to the Mastercard (in dollars).

To determine our equations, notice that we are given two different totals. We will use these to form our
two equations. The total amount charged is $8,400 so we have:

(v dollars) + (m dollars) � $8400

Or without units:
v + m � 8400

The other total we were given is the total amount of interest, $178, which is also in dollars. The Visa had
v dollars charged to it and accrues 2% interest. So 0.02v is the dollar amount of interest that comes from
using this card. Similarly, 0.025m is the dollar amount of interest from using the Mastercard. Together:

0.02(v dollars) + 0.025(m dollars) � $178

Or without units:
0.02v + 0.025m � 178

As a system, we write: {
v + m � 8400

0.02v + 0.025m � 178

To solve this system by substitution, notice that it will be easier to solve for one of the variables in the
first equation. We’ll solve that equation for v:

v + m � 8400
v � 8400 − m

Now we will substitute 8400 − m for v in the second equation:

0.02v + 0.025m � 178
0.02(8400 − m) + 0.025m � 178

168 − 0.02m + 0.025m � 178
168 + 0.005m � 178

0.005m � 10
0.005m
0.005 �

10
0.005

m � 2000

Lastly, we can determine the value of v by using the earlier equation where we isolated v:

v � 8400 − m
v � 8400 − 2000
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v � 6400

In summary, Notah charged $6400 to the Visa and $2000 to the Mastercard. We should check that these
numbers work as solutions to our original system and that they make sense in context. (For instance, if
one of these numbers were negative, or was something small like $0.50, they wouldn’t make sense as
credit card debt.)

The next two examples are called mixture problems, because they involve mixing two quantities together
to form a combination and we want to find out how much of each quantity to mix.

Example 5.2.11 Mixing Solutions with Two Different Concentrations. LaVonda is a meticulous bar-
tender and she needs to serve 600 milliliters of Rob Roy, an alcoholic cocktail that is 34% alcohol by
volume. The main ingredients are scotch that is 42% alcohol and vermouth that is 18% alcohol. How
many milliliters of each ingredient should she mix together to make the concentration she needs?

Explanation. The two unknowns are the quantities of each ingredient. Let s be the amount of scotch
(in mL) and let v be the amount of vermouth (in mL).

One quantity given to us in the problem is 600 mL. Since this is the total volume of the mixed drink, we
must have:

(s mL) + (v mL) � 600mL

Or without units:
s + v � 600

To build the second equation, we have to think about the alcohol concentrations for the scotch, vermouth,
and Rob Roy. It can be tricky to think about percentages like these correctly. One strategy is to focus
on the amount (in mL) of alcohol being mixed. If we have s milliliters of scotch that is 42% alcohol, then
0.42s is the actual amount (in mL) of alcohol in that scotch. Similarly, 0.18v is the amount of alcohol in
the vermouth. And the final cocktail is 600 mL of liquid that is 34% alcohol, so it has 0.34(600) � 204
milliliters of alcohol. All this means:

0.42(s mL) + 0.18(v mL) � 204mL

Or without units:
0.42s + 0.18v � 204

So our system is: {
s + v � 600

0.42s + 0.18v � 204

To solve this system, we’ll solve for s in the first equation:

s + v � 600
s � 600 − v

And then substitute s in the second equation with 600 − v:

0.42s + 0.18v � 204
0.42(600 − v) + 0.18v � 204

252 − 0.42v + 0.18v � 204
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252 − 0.24v � 204
−0.24v � −48
−0.24v
−0.24 �

−48
−0.24

v � 200

As a last step, we will determine s using the equation where we had isolated s:

s � 600 − v
s � 600 − 200
s � 400

In summary, LaVonda needs to combine 400 mL of scotch with 200 mL of vermouth to create 600 mL of
Rob Roy that is 34% alcohol by volume.

As a check for Example 5.2.11, we will use estimation to see that our solution is reasonable. Since LaVonda
is making a 34% solution, she would need to use more of the 42% concentration than the 18% concentration,
because 34% is closer to 42% than to 18%. This agrees with our answer because we found that she needed
400 mL of the 42% solution and 200 mL of the 18% solution. This is an added check that we have found
reasonable answers.

Example 5.2.12 Mixing a Coffee Blend. Desi owns a coffee shop and they want to mix two different
types of coffee beans to make a blend that sells for $12.50 per pound. They have some coffee beans from
Columbia that sell for $9.00 per pound and some coffee beans from Honduras that sell for $14.00 per
pound. How many pounds of each should they mix to make 30 pounds of the blend?

Explanation. Before we begin, it may be helpful to try to estimate the solution. Let’s compare the three
prices. Since $12.50 is between the prices of $9.00 and $14.00, this mixture is possible. Now we need
to estimate the amount of each type needed. The price of the blend ($12.50 per pound) is closer to the
higher priced beans ($14.00 per pound) than the lower priced beans ($9.00 per pound). So we will need
to use more of that type. Keeping in mind that we need a total of 30 pounds, we roughly estimate 20
pounds of the $14.00 Honduran beans and 10 pounds of the $9.00 Columbian beans. How good is our
estimate? Next we will solve this exercise exactly.

To set up our system of equations we define variables, letting C be the amount of Columbian coffee
beans (in pounds) and H be the amount of Honduran coffee beans (in pounds).

The equations in our system will come from the total amount of beans and the total cost. The equation
for the total amount of beans can be written as:

(C lb) + (H lb) � 30 lb

Or without units:
C + H � 30

To build the second equation, we have to think about the cost of all these beans. If we have C pounds
of Columbian beans that cost $9.00 per pound, then 9C is the cost of those beans in dollars. Similarly,
14H is the cost of the Honduran beans. And the total cost is for 30 pounds of beans priced at $12.50 per
pound, totaling 12.5(30) � 37.5 dollars. All this means:(

9 dollars
lb

)
(C lb) +

(
14 dollars

lb
)
(H lb) �

(
12.50 dollars

lb
)
(30 lb)
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Or without units and carrying out the multiplication on the right:

9C + 14H � 37.5

Now our system is: {
C + H � 30

9C + 14H � 12.50(30)

To solve the system, we’ll solve the first equation for C:

C + H � 30
C � 30 − H

Next, we’ll substitute C in the second equation with 30 − H:

9C + 14H � 375
9(30 − H) + 14H � 375
270 − 9H + 14H � 375

270 + 5H � 375
5H � 105

H � 21

Since H � 21, we can conclude that C � 9.

In summary, Desi needs tomix 21 pounds of theHonduran coffee beanswith 9 pounds of the Columbian
coffee beans to create this blend. Our estimate at the beginning was pretty close, so we feel this answer
is reasonable.

5.2.3 Solving Special Systems of Equations with Substitution

Remember the two special cases we encountered when solving by graphing in Section 5.1? If the two lines
represented by a system of equations have the same slope, then they might be separate lines that never
meet, meaning the system has no solutions. Or they might coincide as the same line, in which case there
are infinitely many solutions represented by all the points on that line. Let’s see what happens when we
use the substitution method on each of the special cases.

Example 5.2.13ASystemwithNoSolution. Solve the systemof equations using the substitutionmethod:{
y � 2x − 1

4x − 2y � 3

Explanation. Since the first equation is already solved for y, wewill substitute 2x−1 for y in the second
equation, and we have:

4x − 2y � 3
4x − 2(2x − 1) � 3

4x − 4x + 2 � 3
2 � 3
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Even though we were only intending to substitute away y, we ended up with an equation where there
are no variables at all. This will happen whenever the lines have the same slope. This tells us the system
represents either parallel or coinciding lines. Since 2 � 3 is false no matter what values x and y might
be, there can be no solution to the system. So the lines are parallel and distinct. We write the solution
set using the empty set symbol: the solution set is ∅.
To verify this, re-write the second equation, 4x − 2y � 3, in slope-intercept form:

4x − 2y � 3
−2y � −4x + 3
−2y
−2 �

−4x + 3
−2

y �
−4x
−2 +

3
−2

y � 2x − 3
2

So the system is equivalent to: 
y � 2x − 1

y � 2x − 3
2

Now it is easier to see that the two lines have the same slope but different y-intercepts. They are parallel
and distinct lines, so the system has no solution.

Example 5.2.14 A System with Infinitely Many Solutions. Solve the system of equations using the
substitution method: {

y � 2x − 1
4x − 2y � 2

Explanation. Since y � 2x − 1, we will substitute 2x − 1 for y in the second equation and we have:

4x − 2y � 2
4x − 2(2x − 1) � 2

4x − 4x + 2 � 2
2 � 2

Even though we were only intending to substitute away y, we ended up with an equation where there
are no variables at all. This will happen whenever the lines have the same slope. This tells us the system
represents either parallel or coinciding lines. Since 2 � 2 is true no matter what values x and y might
be, the system equations are true no matter what x is, as long as y � 2x − 1. So the lines coincide. We
write the solution set as {(x , y) | y � 2x − 1}.
To verify this, re-write the second equation, 4x − 2y � 2, in slope-intercept form:

4x − 2y � 2
−2y � −4x + 2

416



5.2 Substitution

−2y
−2 �

−4x
−2 +

2
−2

y � 2x − 1

The system looks like: {
y � 2x − 1
y � 2x − 1

Now it is easier to see that the two equations represent the same line. Every point on the line is a solution
to the system, so the system has infinitely many solutions. The solution set is {(x , y) | y � 2x − 1}.

Exercises

Review and Warmup Solve the equation.
7
6 − 8q � 51. 3

2 − 5y � 52. 7
10 −

1
10 r � 23. 5

6 −
1
6 a � 104.

Solve the linear equation for y.

9x − 3y � −6
5.

20x + 4y � −32
6.

24x − 4y � 76
7.

−8x − 4y � −36
8.

−7x − y � −9
9.

−9x − y � 5
10.

Solving System of Equations Using Substitution Solve the following system of equations.

{
x � −5

5 + 5x � −5n

11. {
0 � −C
0 � 1 + t + 2C

12. { −2a � −8
4C − 8 � −3a

13.

{
0 � 5q + 10

−4q − 2y � −20

14. {
y � −16 − 4x
y � 4x

15. {
y � −2x + 6
y � x + 6

16.
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{
y � −5x − 8

2y + 2x � −16

17. {
y � −x − 3

4y + 5x � −1

18. {
y � −36 − 2x

2x − 5y � −24

19.

{
B � −38 − 3p

−5B + 4p � 19

20. {
a � 7 + 2y

3y − 5a � 7

21. {
r � −4b + 18

−r + 5b � 9

22.

{
2t − 6 � a
6 + 2t � 2a

23. {−10 + 4y � 3x
x + 5 � 3y

24. 
y � x − 1

4

y � x +
2
5

25.

{
y � 1 − 3x
y � −3x − 1

26. {−3x − 9 � 2y
3x − y � −9

27. {
5x + 54 � −y
−3x � 18 − 3y

28.

{
2 � 4a + 2m
0 � −1 − 3m

29. {
0 � −3 + 4m − 4b
−1 � −4m

30. {−5a − 2 � 2q
−3q + a � −2

31.

{ −3m � −3B + 5
B + 2m � 4

32. {−x + 5y � 2
2y − 4 � 4x

33. {−3x + 4y � −4
−3 � −x + 5y

34.


−4

5 � −2
5 x +

3
5 y

x +
5
4 � 0

35. 
x � −3

5

−4
5 y � −x − 1

36. 
1 � −5

4 x

3
4 −

1
2 y �

2
3 x

37.
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y − 1

5 B � −2
5

0 � −5
3 B +

1
2

38. 
1
4 a − 1 � −A

1
4A � −2

3 + a

39. 
0 �

5
4 +

5
2 q + p

−4
5 � −5

3 q + 3p

40.


5 � −B − 3a

−a � −3
2 B + 1

41. 
2
3 − x � −2y

0 � 1 − 3
5 y − x

42. {−5y + 4x � 1
−2x + 5y � −2

43.

{
x + 3y � −4

−2y + 3x � −2

44. 
−4x + 2y � −7

−4x + 3y � −13
2

45. 
4x − 2y � −37

11

x + y �
97
22

46.


−1

5 x +
1
3 y �

13
42

−1
3 x +

1
4 y �

151
840

47. 
1
5 x +

1
3 y �

41
120

1
2 x +

1
4 y �

47
96

48. {
3x + 2y � −1
5x + y � −18

49.

{
4x + 4y � −12
2x + 4y � −8

50. {
4x − 4y � 32
5x + 2y � −16

51. {
6x + 5y � 42
6x − 5y � −18

52.

{−4x − 4y � −12
−2x − 4y � −2

53. { −2x − y � −5
−2x − 2y � 4

54. {−4x + 2y � −26
2x � 18

55.

{
x − y � −7

2x � −18

56. {
x + y � 3

−2x − 2y � 3

57. {
2x + 4y � 2

6x + 12y � 2

58.
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{
2x + 2y � 2
8x + 8y � 8

59. {
3x + 5y � 2

−6x − 10y � −4

60.

Applications

A rectangle’s length is 4 feet longer than four times its width. The rectangle’s perimeter is 358 feet.
Find the rectangle’s length and width.

The rectangle’s length is feet, and its width is feet.

61.

A school fund raising event sold a total of 208 tickets and generated a total revenue of $808.80. There
are two types of tickets: adult tickets and child tickets. Each adult ticket costs $4.75, and each child
ticket costs $3.35. Write and solve a system of equations to answer the following questions.

adult tickets and child tickets were sold.

62.

Phone Company A charges a monthly fee of $38.70, and $0.05 for each minute of talk time. Phone
Company B charges a monthly fee of $30.00, and $0.08 for each minute of talk time. Write and solve
a system equation to answer the following questions.

These two companieswould charge the same amount on amonthly bill when the talk timewas
minutes.

63.

Company A’s revenue this fiscal year is $840,000, but its revenue is decreasing by $14,000 each year.
Company B’s revenue this fiscal year is $180,000, and its revenue is increasing by $19,000 each year.
Write and solve a system of equations to answer the following question.

After years, Company B will catch up with Company A in revenue.

64.

A test has 23 problems, which are worth a total of 96 points. There are two types of problems in
the test. Each multiple-choice problem is worth 2 points, and each short-answer problem is worth 7
points. Write and solve a system equation to answer the following questions.

This test has multiple-choice problems and short-answer
problems.

65.

Penelope invested a total of $5,500 in two accounts. One account pays 7% interest annually; the
other pays 6% interest annually. At the end of the year, Penelope earned a total of $365 in interest.
Write and solve a system of equations to find how much money Penelope invested in each account.

Penelope invested in the 7% account and in the 6% account.

66.
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Michael invested a total of $11,000 in two accounts. After a year, one account lost 7.2%, while the
other account gained 4.5%. In total, Michael lost $441. Write and solve a system of equations to find
how much money Michael invested in each account.

Michael invested in the account with 7.2% loss and in the
account with 4.5% gain.

67.

Town A and Town B were located close to each other, and recently merged into one city. Town A
had a population with 6% native Americans. Town B had a population with 12% native Americans.
After the merge, the new city has a total of 4800 residents, with 10.5% native Americans. Write and
solve a system of equations to find how many residents Town A and Town B used to have.

Town A used to have residents, and Town B used to have residents.

68.

You poured some 8% alcohol solution and some 6% alcohol solution into a mixing container. Now
you have 600 grams of 6.6% alcohol solution. Howmany grams of 8% solution and howmany grams
of 6% solution did you pour into the mixing container?

Write and solve a system equation to answer the following questions.

You mixed grams of 8% solution with grams of 6% solution.

69.

Neil invested a total of $8,000 in two accounts. One account pays 5% interest annually; the other
pays 4% interest annually. At the end of the year, Neil earned a total of $355 in interest. How much
money did Neil invest in each account?

Neil invested in the 5% account and in the 4% account.

70.

Hannah invested a total of $72,000 in two accounts. One account pays 3.8% interest annually; the
other pays 2.4% interest annually. At the end of the year, Hannah earned a total interest of $2,092.
How much money did Hannah invest in each account?

Hannah invested in the 3.8% account and in the 2.4% account.

71.

Charity invested a total of $5,500 in two accounts. One account pays 5% interest annually; the other
pays 6% interest annually. At the end of the year, Charity earned the same amount of interest from
both accounts. How much money did Charity invest in each account?

Charity invested in the 5% account and in the 6% account.

72.

Page invested a total of $86,000 in two accounts. One account pays 5.3% interest annually; the other
pays 4.7% interest annually. At the end of the year, Page earned the same amount of interest from
both accounts. How much money did Page invest in each account?

Page invested in the 5.3% account in the 4.7% account.

73.
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Laurie invested a total of $10,000 in two accounts. After a year, one account had earned 10.1%, while
the other account had lost 5.4%. In total, Laurie had a net gain of $855. Howmuchmoney did Laurie
invest in each account?

Laurie invested in the account that grew by 10.1% and in
the account that fell by 5.4%.

74.

You’ve poured some 6% (by mass) alcohol solution and some 12% alcohol solution into a large glass
mixing container. Now you have 680 grams of 9% alcohol solution. Howmany grams of 6% solution
and how many grams of 12% solution did you pour into the mixing container?

You poured grams of 6% solution and grams of 12%
solution into the mixing container.

75.

A store has some beans selling for $2.30 per pound, and some vegetables selling for $5.00 per pound.
The store plans to use them to produce 13 pounds of mixture and sell for $3.92 per pound. How
many pounds of beans and how many pounds of vegetables should be used?

To produce 13 pounds of mixture, the store should use pounds of beans and
pounds of vegetables.

76.

Town A and Town B were located close to each other, and recently merged into one city. Town A
had a population with 6% native Americans. Town B had a population with 10% native Americans.
After the merge, the new city has a total of 4000 residents, with 8.8% native Americans. How many
residents did Town A and Town B used to have?

Town A used to have residents, and Town B used to have residents.

77.
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5.3 Elimination

We learned how to solve a system of linear equations using substitution in Section 5.2. In this section, we
will learn a second symbolic method for solving systems of linear equations.

5.3.1 Solving Systems of Equations by Elimination

Example 5.3.2 Alicia has $1000 to give to her two grandchildren for New Year’s. She would like to
give the older grandchild $120 more than the younger grandchild, because that is the cost of the older
grandchild’s college textbooks this term. How much money should she give to each grandchild?

To answer this question, we will demonstrate a new technique. You may have a very good way for
finding how much money Alicia should give to each grandchild, but right now we will try to see this
new method.

Let A be the dollar amount she gives to her older grandchild, and B be the dollar amount she gives to
her younger grandchild. (As always, we start solving a word problem like this by defining the variables,
including their units.) Since the total she has to give is $1000, we can say that A + B � 1000. And since
she wants to give $120 more to the older grandchild, we can say that A−B � 120. So we have the system
of equations: {

A + B � 1000
A − B � 120

We could solve this system by substitution as we learned in Section 5.2, but there is an easier method. If
we add together the left sides from the two equations, it should equal the sum of the right sides:

A + B
+ A − B

�
1000
+ 120

So we have:

2A � 1120

Note that the variable B is eliminated. This happened because the “ + B” and the “ − B” were perfectly
in shape to cancel each other out. With only one variable left, it doesn’t take much to finish:

2A � 1120
A � 560

To finish solving this system of equations, we need the value of B. For now, an easy way to find B is to
substitute in our value of A into one of the original equations:

A + B � 1000
560 + B � 1000

B � 440

To check our work, substitute A � 560 and B � 440 into the original equations:

A + B � 1000 A − B � 120
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560 + 440 ?
� 1000 560 − 440 ?

� 120

1000 ✓� 1000 120 ✓� 120

This confirms that our solution is correct. In summary, Alicia should give $560 to her older grandchild,
and $440 to her younger grandchild.

This method for solving the system of equations in Example 5.3.2 worked because B and −B add to zero.
Once the B-terms were eliminated we were able to solve for A. This method is called the elimination
method. Some textbooks call it the addition method, because we added the corresponding sides from
the two equations to eliminate a variable.

If neither variable can be immediately eliminated, we can still use this method but it will require that we
first adjust one or both of the equations. Let’s look at an example where we need to adjust one of the
equations.

Example 5.3.3 Scaling One Equation. Solve the system of equations using the elimination method.{
3x − 4y � 2
5x + 8y � 18

Explanation. To start, we want to see whether it will be easier to eliminate x or y. We see that the
coefficients of x in each equation are 3 and 5, and the coefficients of y are −4 and 8. Because 8 is a
multiple of 4 and the coefficients already have opposite signs, the y variable will be easier to eliminate.

To eliminate the y terms, we will multiply each side of the first equation by 2 so that we will have −8y.
We can call this process scaling the first equation by 2.{

2 · (3x − 4y) � 2 · (2)
5x + 8y � 18{

6x − 8y � 4
5x + 8y � 18

We now have an equivalent system of equations where the y-terms can be eliminated:

6x − 8y
+ 5x + 8y

�
4

+ 18

So we have:

11x � 22
x � 2

To solve for y, we will substitute 2 for x into either of the original equations or the new one. We will use
the original first equation, 3x − 4y � 2:

3x − 4y � 2
3(2) − 4y � 2

6 − 4y � 2
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−4y � −4
y � 1

Our solution is x � 2 and y � 1. We will check this in both of the original equations:

5x + 8y � 18 3x − 4y � 2

5(2) + 8(1) ?
� 18 3(2) − 4(1) ?

� 2

10 + 8 ✓� 18 6 − 4 ✓� 2

The solution to this system is (2, 1) and the solution set is {(2, 1)}.

Checkpoint 5.3.4. Try a similar exercise.

Solve the following system of equations. {
5x + 4y � −7
5x + 2y � −1

Explanation.

1. We subtract the two equations, whichwill cancel the terms in involving x and give 4y − 2y � −7−(−1).
2. This gives y � −3.

3. Now that we have y, we find x using either equation. Let’s use the first: 5x − 12 � −7, so x � 1.

4. The solution to the system is (1,−3). It is left as an exercise to check. Please also note that you may
have solved this problem a different way.

Here’s an example where we have to scale both equations.

Example 5.3.5 Scaling Both Equations. Solve the system of equations using the elimination method.{
2x + 3y � 10
−3x + 5y � −15

Explanation. Considering the coefficients of x (2 and −3) and the coefficients of y (3 and 5) we see that
we cannot eliminate the x or the y variable by scaling a single equation. We will need to scale both.

The x-terms already have opposite signs, so we choose to eliminate x. The least common multiple of 2
and 3 is 6. We can scale the first equation by 3 and the second equation by 2 so that the equations have
terms 6x and −6x, which will cancel when added.{

3 · (2x + 3y) � 3 · (10)
2 · (−3x + 5y) � 2 · (−15){

6x + 9y � 30
−6x + 10y � −30
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At this point we can add the corresponding sides from the two equations and solve for y:

6x + 9y
− 6x + 10y

�
30
− 30

So we have:

19y � 0
y � 0

To solve for x, we’ll replace y with 0 in 2x + 3y � 10:

2x + 3y � 10
2x + 3(0) � 10

2x � 10
x � 5

We’ll check the system using x � 5 and y � 0 in each of the original equations:

2x + 3y � 10 −3x + 5y � −15

2(5) + 3(0) ?
� 10 −3(5) + 5(0) ?

� −15

10 + 0 ✓� 10 −15 + 0 ✓� −15

So the system’s solution is (5, 0) and the solution set is {(5, 0)}.

Checkpoint 5.3.6. Try a similar exercise.

Solve the following system of equations. {
3x + 4y � −26
5x + 5y � −40

Explanation.

1. Let’s multiply the first equation by 5 and the second equation by 3

15x + 20y � −130
15x + 15y � −120

2. Subtracting these two equations gives 20y − 15y � −10, so y � −2.

3. Now that we have y, we can use either equation to find x; let’s use the first one:

3x + (4) · (−2) � −26

so x � −6.

4. The solution to the system is (−6,−2). It is left as an exercise to check. Please also note that you may
have solved this problem a different way.
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Example 5.3.7 Meal Planning. Javed is on a meal plan and needs to consume 600 calories and 20 grams
of fat for breakfast. A small avocado contains 300 calories and 30 grams of fat. He has bagels that contain
400 calories and 8 grams of fat. Write and solve a system of equations to determine howmuch bagel and
avocado would combine to make his target calories and fat.

Explanation. To write this system of equations, we first need to define our variables. Let A be the
number of avocados consumed and let B be the number of bagels consumed. Both A and B might be
fractions. For our first equation, we will count calories from the avocados and bagels:(

300 calories
avocado

)
(A avocados) +

(
400 calories

bagel

)
(B bagel) � 600 calories

Or, without the units:
300A + 400B � 600

Similarly, for our second equation, we will count the grams of fat:(
30 g fat

avocado

)
(A avocados) +

(
8 g fat

bagel

)
(B bagel) � 20g fat

Or, without the units:
30A + 8B � 20

So the system of equations is: {
300A + 400B � 600
30A + 8B � 20

Since none of the coefficients are equal to 1, it will be easier to use the elimination method to solve this
system. Looking at the terms 300A and 30A, we can eliminate the A variable if we multiply the second
equation by −10 to get −300A: {

300A + 400B � 600
−10 · (30A + 8B) � −10 · (20){

300A + 400B � 600
−300A + (−80B) � −200

When we add the corresponding sides from the two equations together we have:

300A + 400B
− 300A − 80B

�
600
− 200

So we have:

320B � 400
320B
320 �

400
320

B �
5
4
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We now know that Javed should eat 5
4 bagels (or one and one-quarter bagels). To determine the number

of avocados, we will substitute B with 5
4 in either of our original equations.

300A + 400B � 600

300A + 400
(
5
4

)
� 600

300A + 500 � 600
300A � 100
300A
300 �

100
300

A �
1
3

To check this result, try using B �
5
4 and A �

1
3 in each of the original equations:

300A + 400B � 600 30A + 8B � 20

300
(
1
3

)
+ 400

(
5
4

)
?
� 600 30

(
1
3

)
+ 8

(
5
4

)
?
� 20

100 + 500 ✓� 600 10 + 10 ✓� 20

In summary, Javed can eat 5
4 of a bagel (so one and one-quarter bagel) and 1

3 of an avocado in order to
consume exactly 600 calories and 20 grams of fat.

5.3.2 Solving Special Systems of Equations with Elimination

Remember the two special cases we encountered when solving by graphing and substitution? Sometimes a
system of equations has no solutions at all, and sometimes the solution set is infinite with all of the points
on one line satisfying the equations. Let’s see what happens when we use the elimination method on each
of the special cases.

Example 5.3.8 A Systemwith InfinitelyMany Solutions. Solve the system of equations using the elim-
ination method. {

3x + 4y � 5
6x + 8y � 10

Explanation. To eliminate the x-terms, wemultiply each term in the first equation by −2, and we have:{−2 · (3x + 4y) � −2 · 5
6x + 8y � 10{−6x + −8y � −10

6x + 8y � 10

We might notice that the equations look very similar. Adding the respective sides of the equation, we
have:

0 � 0
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Both of the variables have been eliminated. Since the statement 0 � 0 is true no matter what x and y
are, the solution set is infinite. Specifically, you just need any (x , y) satisfying one of the two equations,
since the two equations represent the same line. We can write the solution set as {(x , y) | 3x + 4y � 5}.

Example 5.3.9ASystemwithNoSolution. Solve the systemof equations using the eliminationmethod.{
10x + 6y � 9
25x + 15y � 4

Explanation. To eliminate the x-terms, we will scale the first equation by −5 and the second by 2:{−5 · (10x + 6y) � −5 · (9)
2 · (25x + 15y) � 2 · (4){−50x + (−30y) � −45
50x + 30y � 8

Adding the respective sides of the equation, we have:

0 � −37

Both of the variables have been eliminated. In this case, the statement 0 � −37 is just false, no matter
what x and y are. So the system has no solution.

5.3.3 Deciding to Use Substitution versus Elimination

In every example so far from this section, both equations were in standard form, Ax + By � C. And all
of the coefficients were integers. If none of the coefficients are equal to 1 then it is usually easier to use the
eliminationmethod, because otherwise youwill probably have some fraction arithmetic to do in the middle
of the substitution method. If there is a coefficient of 1, then it is a matter of preference.

Example 5.3.10 A college used to have a north campus with 6000 students and a south campus with
15,000 students. The percentage of students at the north campus who self-identify as LGBTQ was three
times the percentage at the south campus. After the merge, 5.5% of students identify as LGBTQ. What
percentage of students on each campus identified as LGBTQ before the merge?

Explanation. We will define N as the percentage (as a decimal) of students at the north campus and
S as the percentage (as a decimal) of students at the south campus that identified as LGBTQ. Since the
percentage of students at the north campus was three times the percentage at the south campus, we
have:

N � 3S

For our second equation, we will count LGBTQ students at the various campuses. At the north campus,
multiply the population, 6000, by the percentage N to get 6000N . This must be the actual number of
LGBTQ students. Similarly, the south campus has 15000S LGBTQ students, and the combined school
has 21000(0.055) � 1155. When we combine the two campuses, we have:

6000N + 15000S � 1155
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We write the system as: {
N � 3S

6000N + 15000S � 1155

Because the first equation is already solved for N , this is a good time to not use the elimination method.
Instead we can substitute N in our second equation with 3S and solve for S:

6000N + 15000S � 1155
6000(3S) + 15000S � 1155

18000S + 15000S � 1155
33000S � 1155
33000S
33000 �

1155
33000

S � 0.035

We can determine N using the first equation:

N � 3S
N � 3(0.035)
N � 0.105

Before the merge, 10.5% of the north campus students self-identified as LGBTQ, and 3.5% of the south
campus students self-identified as LGBTQ.

If you need to solve a system, and one of the equations is not in standard form, substitution may be easier.
But you also may find it easier to convert the equations into standard form. Additionally, if the system’s
coefficients are fractions or decimals, you may take an additional step to scale the equations so that they
only have integer coefficients.

Example 5.3.11 Solve the system of equations using the method of your choice.
−1

3 y �
1
15 x +

1
5

5
2 x − y � 6

Explanation. First, we can cancel the fractions by using the least commonmultiple of the denominators
in each equation, similarly to the topic of Section 3.3. We have:

15 · −1
3 y � 15 ·

(
1
15 x +

1
5

)
2 ·

(
5
2 x − y

)
� 2 · (6){ −5y � x + 3

5x − 2y � 12

We could put convert the first equation into standard form by subtracting x from both sides, and then
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use elimination. However, the x-variable in the first equation has a coefficient of 1, so the substitution
method may be faster. Solving for x in the first equation we have:

−5y � x + 3
−5y − 3 � x + 3 − 3
−5y − 3 � x

Substituting −5y − 3 for x in the second equation we have:

5(−5y − 3) − 2y � 12
−25y − 15 − 2y � 12

−27y − 15 � 12
−27y � 27

y � −1

Using the equation where we isolated x and substituting −1 for y, we have:

−5(−1) − 3 � x
5 − 3 � x

2 � x

The solution is (2,−1). Checking the solution is left as an exercise.

Example 5.3.12 A penny is made by combining copper and zinc. A chemistry reference source says
copper has a density of 9 g

cm3 and zinc has a density of 7.1 g
cm3 . A penny’s mass is 2.5 g and its volume

is 0.35 cm3. How many cm3 each of copper and zinc go into one penny?

Explanation. Let c be the volume of copper and z be the volume of zinc in one penny, both measured
in cm3. Since the total volume is 0.35 cm3, one equation is:(

c cm3)
+

(
z cm3)

� 0.35 cm3

Or without units:
c + z � 0.35.

For the second equation, we will examine the masses of copper and zinc. Since copper has a density of
9 g

cm3 and we are using c to represent the volume of copper, the mass of copper is 9c. Similarly, the mass
of zinc is 7.1. Since the total mass is 2.5 g, we have the equation:(

9 g
cm3

) (
c cm3)

+

(
7.1 g

cm3

) (
z cm3)

� 2.5g

Or without units:
9c + 7.1z � 2.5.

So we have a system of equations: {
c + z � 0.35

9c + 7.1z � 2.5
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Since the coefficient of c (or z) in the first equation is 1, we could solve for one of these variables and use
substitution to complete the problem. Some decimal arithmetic would be required. Alternatively, we
can scale the equations by the right power of 10 to make all the coefficients integers:{

100 · (c + z) � 100 · (0.35)
10 · (9c + 7.1z) � 10 · (2.5){
100c + 100z � 35
90c + 71z � 25

Now to set up elimination, scale each equation again to eliminate c:{
9 · (100c + 100z) � 9 · (35)
−10 · (90c + 71z) � −10 · (25){

900c + 900z � 315
−900c + (−710z) � −250

Adding the corresponding sides from the two equations gives

190z � 65,

from which we find z �
65
190 ≈ 0.342. So there is about 0.342 cm3 of zinc in a penny.

To solve for c, we can use one of the original equations:

c + z � 0.35
c + 0.342 ≈ 0.35

c ≈ 0.008

Therefore there is about 0.342 cm3 of zinc and 0.008 cm3 of copper in a penny.

To summarize, if a variable is already isolated or has a coefficient of 1, consider using the substitution
method. If both equations are in standard form or none of the coefficients are equal to 1, we suggest using
the elimination method. Either way, if you have fraction or decimal coefficients, it may help to scale your
equations so that only integer coefficients remain.

Exercises

Review and Warmup Solve the equation.
7
2 − 8C � 41. 3

8 − 6n � 42. 5
4 −

1
4 q � 33.

9
10 −

1
10 x � 104. 4r

7 − 8 � −76
75. 6t

5 − 6 � −72
56.
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Solving System of Equations by Elimination Solve the following system of equations.

{
x + y � 6

2x + 4y � 30

7. {
3x + 5y � 10
2x + y � 2

8. {
6x + 3y � −3
−x + 5y � −27

9.

{−2x + 3y � 19
2x + 2y � 26

10. {−2x − 5y � −19
−5x − 2y � −37

11. {−5x − 2y � −33
−5x − 5y � −15

12.

{
x − y � −18
−4x � 40

13. {−5x − 4y � 35
−4x � 28

14. {
2x + y � −8

6x + 3y � −8

15.

{
2x + 5y � −8

8x + 20y � −8

16. {
3x + 3y � −8
−6x − 6y � 16

17. {
3x + y � −8

−12x − 4y � 32

18.

{−2y � 2x + 8
−5x � −8 + y

19. {
2x � −18 + y

−5y + 4x + 18 � 0

20. {−5x − 3y � 3
−4y + x � 1

21.

{−4y + 5x � −2
2x + 3y � 3

22. {
4m � 2b + 30

30 − 3b � −m

23. {−4x + 18 − r � 0
2r + 2x − 6 � 0

24.

{
3B + C � 3
−2C � 5B + 4

25. {−5 − 3n � q
4 � −2n − 3q

26. {−y � −5 + 4x
0 � 2x + 3y + 1

27.
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{−1 � −5x + 4y
−y � −2x

28. 
−5 − 2

5 x + 4y � 0

0 �
3
5 x +

1
5 + y

29. 
0 �

5
3 − 3x +

1
2 y

y � −4
5 +

3
4 x

30.


−B � y − 1

−4
5 y − 1

5 � −5
4 B

31. 
−2t +

5
3 � 2A

−t �
3
2A + 1

32. {
0 � 4q − 2p + 12

−2p + 12 � −4q

33.

{
5 � 4b + 4A

−A − b − 2 � 0

34. 
5x + 2y �

21
2

4x − 5y � −129
20

35. 
−x − 4y � −72

11

−3x − 3y � −135
22

36.


1
5 x +

1
4 y �

127
280

1
3 x − 1

2 y � − 29
420

37. 
−1

5 x − 1
4 y � −19

24
1
4 x − 1

5 y �
11
15

38.

Applications

A test has 20 problems, which are worth a total of 130 points. There are two types of problems in
the test. Each multiple-choice problem is worth 5 points, and each short-answer problem is worth
10 points. Write and solve a system of equations to answer the following questions.

This test has multiple-choice problems and short-answer
problems.

39.

Barbara invested a total of $5,000 in two accounts. One account pays 5% interest annually; the other
pays 6% interest annually. At the end of the year, Barbara earned a total of $255 in interest. Write
and solve a system of equations to find how much money Barbara invested in each account.

Barbara invested in the 5% account and in the 6% account.

40.
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Diane invested a total of $10,000 in two accounts. After a year, one account lost 6.3%, while the
other account gained 6.8%. In total, Diane lost $499. Write and solve a system of equations to find
how much money Diane invested in each.

Diane invested in the account with 6.3% loss and in the
account with 6.8% gain.

41.

Town A and Town B were located close to each other, and recently merged into one city. Town
A had a population with 10% Hispanics. Town B had a population with 6% Hispanics. After the
merge, the new city has a total of 5000 residents, with 7.12% Hispanics. Write and solve a system of
equations to find how many residents Town A and Town B used to have.

Town A used to have residents, and Town B used to have residents.

42.

You poured some 8% alcohol solution and some 12% alcohol solution into a mixing container. Now
you have 680 grams of 10% alcohol solution. Write and solve a system of equations to find howmany
grams of 8% solution and how many grams of 12% solution you poured into the mixing container.

You mixed grams of 8% solution with grams of 12% solution.

43.

Youwill purchase some CDs andDVDs. If you purchase 13 CDs and 5 DVDs, it will cost you $85.20;
if you purchase 5 CDs and 13 DVDs, it will cost you $130.80. Write and solve a system of equations
to answer the following questions.

Each CD costs and each DVD costs .

44.

A school fund raising event sold a total of 211 tickets and generated a total revenue of $861.30. There
are two types of tickets: adult tickets and child tickets. Each adult ticket costs $6.60, and each child
ticket costs $2.75. Write and solve a system of equations to answer the following questions.

adult tickets and child tickets were sold.

45.

Phone Company A charges a monthly fee of $35.80, and $0.03 for each minute of talk time. Phone
Company B charges a monthly fee of $25.00, and $0.07 for each minute of talk time. Write and solve
a system equation to answer the following questions.

These two companieswould charge the same amount on amonthly bill when the talk timewas
minutes.

46.

Company A’s revenue this fiscal year is $805,000, but its revenue is decreasing by $5,000 each year.
Company B’s revenue this fiscal year is $409,000, and its revenue is increasing by $17,000 each year.
Write and solve a system of equations to answer the following question.

After years, Company B will catch up with Company A in revenue.

47.
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If a boat travels from Town A to Town B, it has to travel 990 mi along a river. A boat traveled from
Town A to Town B along the river’s current with its engine running at full speed. This trip took
27.5 hr. Then the boat traveled back from Town B to Town A, again with the engine at full speed,
but this time against the river’s current. This trip took 45 hr. Write and solve a system of equations
to answer the following questions.

The boat’s speed in still water with the engine running at full speed is .

The river current’s speed was .

48.

A small fair charges different admission for adults and children. It charges $3.75 for adults, and
$1 for children. On a certain day, the total revenue is $384.25 and the fair admits 200 people. How
many adults and children were admitted?

There were adults and children at the fair.

49.

Challenge

Find the value of b so that the system of equations has an infinite number of solutions.{−10x + 35y � 25
2x − b y � −5

50.
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5.4 Systems of Linear Equations Chapter Review

5.4.1 Solving Systems of Linear Equations by Graphing

In Section 5.1 we covered the definition of system of linear equations and how a solution to a system of
linear equation is a point where the graphs of the two equations cross. We also considered special systems
of equations that overlap or never touch.

Example 5.4.1 Solving Systems of Linear Equations by Graphing. Solve the following system of equa-
tions by graphing: 

y � −2
3 x − 4

y � −4x − 14

Explanation.

The first equation, y � − 2
3 x − 4, is a linear

equation in slope-intercept form with a slope
of − 2

3 and a y-intercept of (0,−4). The second
equation, y � −4x − 14, is a linear equation in
slope-intercept form with a slope of −4 and a y-
intercept of (0,−14). We’ll use this information
to graph both lines in Figure 5.4.2.

The two lines intersect where x � −3 and y �

−2, so the solution of the system of equations is
the point (−3,−2). We write the solution set as
{(−3,−2)}.

−8 −7 −6 −5 −4 −3 −2 −1

−14

−12

−10

−8

−6

−4

−2
y � − 2

3 x − 4

y
�
−4x −

14

(−3,−2)

x
y

Figure 5.4.2: Graphs of y � − 2
3 x − 4 and y �

−4x − 14.

Example 5.4.3 Special Systems of Equations. Solve the following system of equations by graphing:
y �

3
2 (x − 1) + 4

3x − 2y � 4

Explanation. The first equation, y �
3
2 (x−1)+4, is a linear equation in point-slope formwith a slope of

3
2 that passes through the point (1, 4). The second equation, 3x − 2y � 4, is a linear equation in standard
form To graph this line, we either need to find the intercepts or put the equation into slope-intercept
form. Just for practice, we will put the line in slope-intercept form.

3x − 2y � 4
−2y � −3x + 4
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−2y
−2 �

−3x
−2 +

4
−2

y �
3
2 x − 2

We’ll use this information to graph both lines:

−6 −4 −2 2 4 6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

y
�

3 2
(x
− 1
) +

4

3x
− 2

y
�

4

x

y The two lines never intersect: they are parallel.
So there are no solutions to the system of equa-
tions. We write the solution set as ∅.

Figure 5.4.4: Graphs of y �
3
2 (x−1)+4 and 3x−

2y � 4.

5.4.2 Substitution

In Section 5.2, we covered the substitutionmethod of solving systems of equations. We isolated one variable
in one equation and then substituted into the other equation to solve for one variable.

Example 5.4.5 Solving Systems of Equations Using Substitution. Solve this system of equations using
substitution: {−5x + 6y � −10

4x − 3y � −1

Explanation. We need to solve for one of the variables in one of our equations. Looking at both equa-
tions, it will be best to solve for y in the second equation. The coefficient of y in that equation is smallest.

4x − 3y � −1
−3y � −1 − 4x
−3y
−3 �

−1
−3 −

4x
−3

y �
1
3 +

4
3 x
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Replace y in the first equation with 1
3 +

4
3 x, giv-

ing us a linear equation in only one variable, x,
that we may solve:

−5x + 6y � −10

−5x + 6
(
1
3 +

4
3 x

)
� −10

−5x + 2 + 8x � −10
3x + 2 � −10

3x � −12
x � −4

Now thatwe have the value for x, we need to find
the value for y. We have already solved the sec-
ond equation for y, so that is the easiest equation
to use.

y �
1
3 +

4
3 x

y �
1
3 +

4
3 (−4)

y �
1
3 −

16
3

y � −15
3

y � −5

To check this solution, we replace x with −4 and y with −5 in each equation:

−5x + 6y � −10 4x − 3y � −1

−5(−4) + 6(−5) ?
� −10 4(−4) − 3(−4) ?

� −1

20 − 30 ✓� −10 −16 + 15 ✓� −1

We conclude then that this system of equations is true when x � −4 and y � −5. Our solution is the
point (−4,−5) and we write the solution set as {(−4,−5)}.

Example 5.4.6 Applications of Systems of Equations. The RuskRanchNature Centera in south-western
Oregon is a volunteer run nonprofit that exists to promote the wellbeing of the local communities and
conserve local nature with an emphasis on native butterflies. They sell admission tickets: $6 for adults
and $4 for children. Amanda, who was working at the front desk, counted that one day she sold a total
of 79 tickets and had $384 in the register from those ticket sales. She didn’t bother to count how many
were adult tickets and how many were child tickets because she knew she could use math to figure it
out at the end of the day. So, how many of the 79 tickets were adult and how many were child?

Explanation. Let’s let a represent the number of adult tickets sold and c represent the number of child
tickets sold. We need to build two equations to solve a system for both variables.

The first equation we will build relates to the fact that there were 79 total tickets sold. If we combine
both the number of adult tickets and child tickets, the total is 79. This fact becomes:

a + c � 79

For the second equation we need to use the per-ticket dollar amounts to generate the total cost of $384.
The amount of money that was made from adult tickets is found my multiplying the number of adult
tickets sold, a, by the price per ticket, $6. Similarly, the amount of money from child tickets is found my
multiplying the number of child tickets sold, c, by the price per ticket, $4. These two amounts will add
to be $384. This fact becomes:

6a + 4c � 384
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And so, our system is {
a + c � 79

6a + 4c � 384

To solve, we will use the substitution method and solve the first equation for the variable a.

a + c � 79
a � 79 − c

Now we will substitute 79 − c for a in the second equation.

6a + 4c � 384
6 (79 − c) + 4c � 384
474 − 6c + 4c � 384

474 − 2c � 384
−2c � −90

c � 45

Last, we will solve for a by substituting 45 in for c in the equation a � 79 − c.

a � 79 − c
a � 79 − 45
a � 34

Our conclusion is that Amanda sold 34 adult tickets and 45 child tickets.
aruskranchnaturecenter.org

Example 5.4.7 Solving Special Systems of Equations with Substitution. Solve the systems of linear
equations using substitution.

a.


3x − 5y � 9

x �
5
3 y + 3

b.
{

y + 7 � 4x
2y − 8x � 7

Explanation. To solve the systems using substitution, we first need to solve for one variable in one
equation, then substitute into the other equation.

a. In this case, x is already solved for in the second equation so we can substitute 5
3 y + 3 everywhere

we see x in the first equation. Then simplify and solve for y.

3x − 5y � 9

3
(
5
3 y + 3

)
− 5y � 9

5y + 9 − 5y � 9
9 � 9
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We will stop here since we have eliminated all of the variables in the equation and ended with a
true statement. Since 9 always equals 9, nomatter what, then any value of y mustmake the original
equation, 3

( 5
3 y + 3

)
− 5y � 9 true. If you recall from the section on substitution, this means that

both lines 3x − 5y � 9 and x �
5
3 y + 3 are in fact the same line. Since a solution to a system of

linear equations is any point where the lines touch, all points along both lines are solutions. We
can say this in English as, “The solutions are all points on the line 3x−5y � 9,” or in math as, “The
solution set is {(x , y)|3x − 5y � 9}.”

b. We will first solve the top equation for y.

y + 7 � 4x
y � 4x − 7

Now we can substitute 4x − 7 wherever we see y in the second equation.

2y − 8x � 7
2 (4x − 7) − 8x � 7

8x − 14 − 8x � 7
−14 � 7

Wewill stop here sincewehave eliminated all of the variables in the equation and endedwith a false
statement. Since −14 never equals 7, then no values of x and y can make the original system true.
If you recall from the section on substitution, this means that the lines y + 7 � 4x and 2y − 8x � 7
are parallel. Since a solution to a system of linear equations is any point where the lines touch,
and parallel lines never touch, no points are solutions. We can say this in English as, “There are no
solutions,” or in math as, “The solution set is ∅.”

5.4.3 Elimination

In Section 5.3, we explored a third way of solving systems of linear equations called elimination where we
add two equations together to cancel a variable.

Example 5.4.8 Solving Systems of Equations by Elimination. Solve the system using elimination.{
4x − 6y � 13
5x + 4y � −1

Explanation. To solve the system using elimination, we first need to scale one or both of the equations
so that one variable has equal but opposite coefficients in the system. In this case, we will choose to
make y have opposite coefficients because the signs are already opposite for that variable in the system.

We need to multiply the first equation by 2 and the second equation by 3.{
4x − 6y � 13
5x + 4y � −1{

2 · (4x − 6y) � 2 · (13)
3 · (5x + 4y) � 3 · (−1)
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8x − 12y � 26

15x + 12y � −3

We now have an equivalent system of equations where the y-terms can be eliminated:

8x − 12y
+ 15x + 12y

�
26

+ (−3)

So we have:

23x � 23
x � 1

To solve for y, we will substitute 1 for x into either of the original equations. We will use the first
equation, 4x − 6y � 13:

4x − 6y � 13
4(1) − 6y � 13

4 − 6y � 13
−6y � 9
−6y
−6 �

9
−6

y � −3
2

To verify this, we substitute the x and y values into both of the original equations.

4x − 6y � 13 5x + 4y � −1

4(1) − 6
(
−3

2

)
?
� 13 5(1) + 4

(
−3

2

)
?
� −1

4 + 9 ✓� 13 5 − 6 ✓� −1

So the solution is the point
(
− 3

2 , 1
)
and the solution set is

{(
− 3

2 , 1
)}

.

Example 5.4.9 Solving Special Systems of Equations with Elimination. Solve the system of equations
using the elimination method. {

24x + 6y � 9
8x + 2y � 2

Explanation. To eliminate the x-terms, we will scale the second equation by −3.{
24x + 6y � 9

−3 · (8x + 2y) � −3 · (2){
24x + 6y � 9
−24x − 6y � −6
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Adding the respective sides of the equation, we have:

0 � 3

Both of the variables have been eliminated. In this case, the statement 0 � 3 is just false, no matter what
x and y are. So the system has no solution. The solution set is ∅.

Example 5.4.10 Deciding to Use Substitution versus Elimination. Decide which method would be
easiest to solve the systems of linear equations: substitution or elimination.

a.
{
2x + 3y � −11
5x − 6y � 13

b.
{

x − 7y � 10
9x − 16y � −4

c.
{
6x + 30y � 15
4x + 20y � 10

d.
{

y � 3x − 2
y � 7x + 6

Explanation.

a. Elimination is probably easiest here. Multiply the first equation by 2 and eliminate the y variables.
The solution to this one is (−1,−3) if you want to solve it for practice.

b. Substitution is probably easiest here. Solve the first equation for x and substitute it into the second
equation. We could use elimination if we multiplied the first equation by −9 and eliminate the x
variable, but it’s probably a little more work than substitution. The solution to this one is (−4,−2)
if you want to solve it for practice.

c. Elimination is probably easiest here. Multiply the first equation by 2 and the second equation by
−3. Doing this will eliminate both variables and leave you with 0 � 0. This should mean that all
points on the line are solutions. So the solution set is {(x , y)|6x + 30y � 15}.

d. Substitution is definitely easiest here. Substituting y fromone equation into y in the other equation
gives you 3x − 2 � 7x + 6. Solve this and find then find y and you should get the solution to the
system to be (−2,−8) if you want to solve it for practice.

Exercises

Solving Systems of Linear Equations by Graphing Use a graph to solve the system of equations.{
x + y � 0

3x − y � 8
1.

{
4x − 2y � 4

x + 2y � 6
2.

{
x + y � −1

x � 2
3.

{
x − 2y � −4

x � −4
4.

{−10x + 15y � 60
6x − 9y � 36

5.
{

6x − 8y � 32
9x − 12y � 12

6.


y � −3

5 x + 7

9x + 15y � 105
7.


9y − 12x � 18

y �
4
3 x + 2

8.
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Substitution Solve the following system of equations.

{
c � −46 − 5C

2C + 5c � 0

9. {
p � −2a

4a + 2p � 0

10. {
2x + 2y � 18
4x + 3y � 26

11.

{
x + 3y � 8

3x + 2y � 10

12. {
2x + 5y � −17
2x − 4y � 28

13. {
4x − 4y � −12
3x + 3y � 45

14.

{
5x + 3y � 2

−20x − 12y � −8

15. {
x + 2y � 2

3x + 6y � 6

16.

A rectangle’s length is 6 feet longer than five times its width. The rectangle’s perimeter is 192 feet.
Find the rectangle’s length and width.

The rectangle’s length is feet, and its width is feet.

17.

A school fund raising event sold a total of 178 tickets and generated a total revenue of $420.90. There
are two types of tickets: adult tickets and child tickets. Each adult ticket costs $4.45, and each child
ticket costs $1.55. Write and solve a system of equations to answer the following questions.

adult tickets and child tickets were sold.

18.

A test has 21 problems, which are worth a total of 78 points. There are two types of problems in
the test. Each multiple-choice problem is worth 3 points, and each short-answer problem is worth 6
points. Write and solve a system equation to answer the following questions.

This test has multiple-choice problems and short-answer
problems.

19.

A test has 20 problems, which are worth a total of 130 points. There are two types of problems in
the test. Each multiple-choice problem is worth 3 points, and each short-answer problem is worth
10 points. Write and solve a system equation to answer the following questions.

This test has multiple-choice problems and short-answer
problems.

20.
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Kristen invested a total of $8,000 in two accounts. One account pays 5% interest annually; the other
pays 4% interest annually. At the end of the year, Kristen earned a total of $355 in interest. Write
and solve a system of equations to find how much money Kristen invested in each account.

Kristen invested in the 5% account and in the 4% account.

21.

Lily invested a total of $13,000 in two accounts. After a year, one account lost 6.8%, while the other
account gained 2.5%. In total, Lily lost $419. Write and solve a system of equations to find howmuch
money Lily invested in each account.

Lily invested in the account with 6.8% loss and in the
account with 2.5% gain.

22.

TownA and Town Bwere located close to each other, and recentlymerged into one city. TownA had
a population with 12% African Americans. Town B had a population with 6% African Americans.
After the merge, the new city has a total of 4000 residents, with 8.1% African Americans. Write and
solve a system of equations to find how many residents Town A and Town B used to have.

Town A used to have residents, and Town B used to have residents.

23.

You poured some 12% alcohol solution and some 6% alcohol solution into a mixing container. Now
you have 600 grams of 8% alcohol solution. Howmany grams of 12% solution and howmany grams
of 6% solution did you pour into the mixing container?

Write and solve a system equation to answer the following questions.

You mixed grams of 12% solution with grams of 6% solution.

24.

Elimination Solve the following system of equations.

{
x + 3y � −37

3x + 3y � −57

25. {
3x + 2y � −14
3x + 5y � 1

26. {
6x − 3y � −24
3x + 5y � −25

27.

{
3x + 4y � −45
−3x + 3y � −18

28. {
3x + 4y � −2

−12x − 16y � −2

29. {
3x + 2y � −2
−6x − 4y � −2

30.

{
4x + y � −2

12x + 3y � −6

31. {
4x + 4y � −3
8x + 8y � −6

32.
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A test has 20 problems, which are worth a total of 112 points. There are two types of problems in
the test. Each multiple-choice problem is worth 5 points, and each short-answer problem is worth 7
points. Write and solve a system of equations to answer the following questions.

This test has multiple-choice problems and short-answer
problems.

33.

Wenwu invested a total of $5,000 in two accounts. One account pays 7% interest annually; the other
pays 6% interest annually. At the end of the year, Wenwu earned a total of $345 in interest. Write
and solve a system of equations to find how much money Wenwu invested in each account.

Wenwu invested in the 7% account and in the 6% account.

34.

TownA and Town Bwere located close to each other, and recentlymerged into one city. TownA had
a population with 6% Hispanics. Town B had a population with 8% Hispanics. After the merge, the
new city has a total of 5000 residents, with 7.52% Hispanics. Write and solve a system of equations
to find how many residents Town A and Town B used to have.

Town A used to have residents, and Town B used to have residents.

35.

You poured some 6% alcohol solution and some 10% alcohol solution into a mixing container. Now
youhave 800 grams of 8.4% alcohol solution. Write and solve a systemof equations to findhowmany
grams of 6% solution and how many grams of 10% solution you poured into the mixing container.

You mixed grams of 6% solution with grams of 10% solution.

36.

If a boat travels from Town A to Town B, it has to travel 797.5 mi along a river. A boat traveled from
Town A to Town B along the river’s current with its engine running at full speed. This trip took
27.5 hr. Then the boat traveled back from Town B to Town A, again with the engine at full speed,
but this time against the river’s current. This trip took 72.5 hr. Write and solve a system of equations
to answer the following questions.

The boat’s speed in still water with the engine running at full speed is .

The river current’s speed was .

37.

A small fair charges different admission for adults and children. It charges $3.50 for adults, and $2
for children. On a certain day, the total revenue is $5,957.50 and the fair admits 2300 people. How
many adults and children were admitted?

There were adults and children at the fair.

38.
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CHAPTER 6
Exponents and Polynomials

6.1 Exponent Rules

6.1.1 Review of Exponent Rules for Products and Exponents

In Section 2.9, we introduced three basic rules involving products and exponents. We’ll begin with a brief
recap and explanation of these three exponent rules.

Product Rule When multiplying two expressions that have the same base, simplify the prod-
uct by adding the exponents.

xm · xn
� xm+n

Power to a Power Rule When a base is raised to an exponent and that expression is raised to
another exponent, multiply the exponents.

(xm)n � xm·n

Product to a Power Rule When a product is raised to an exponent, apply the exponent to
each factor in the product. (

x · y
)n

� xn · yn

List 6.1.2: Summary of Exponent Rules

Checkpoint 6.1.3.

a. Simplify r16 · r5.

b. Simplify
(
x11)10 .

c. Simplify (3r)4.

d. Simplify
(
3y2)2 (

y3)5 .

Explanation.

a. We add the exponents because this is a product of powers with the same base:

r16 · r5
� r16+5

� r21
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b. We multiply the exponents because this is a power being raised to a power:(
x11)10

� x11·10

� x110

c. We apply the power to each factor in the product:

(3r)4 � 34r4

� 81r4

d. All three exponent rules must be used, one at a time:(
3y2)2 (

y3)5
� 32 (

y2)2 (
y3)5

� 9
(
y2)2 (

y3)5

� 9y2·2 y3·5

� 9y4 y15

� 9y4+15

� 9y19

6.1.2 Quotients and Exponents

Since division is a form ofmultiplication, it should seem natural that there are some exponent rules for divi-
sion as well. Not only are there division rules, these rules for division and exponents are direct counterparts
for some of the product rules for exponents.

Quotient of Powers When we multiply the same base raised to powers, we end up adding the exponents,
as in 22 · 23 � 25 since 4 · 8 � 32. What happens when we divide the same base raised to powers?

Example 6.1.4 Simplify x5

x2 by first writing out what each power means.

Explanation. Without knowing a rule for simplifying this quotient of powers, we canwrite the expres-
sions without exponents and simplify.

x5

x2 �
x · x · x · x · x

x · x
�

�x · �x · x · x · x
�x · �x · 1

�
x · x · x

1
� x3

Notice that the difference of the exponents of the numerator and the denominator (5 and 2, respectively)
is 3, which is the exponent of the simplified expression.

When we divide as we’ve just done, we end up canceling factors from the numerator and denominator
one-for-one. These common factors cancel to give us factors of 1. The general rule for this is:
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6.1 Exponent Rules

Fact 6.1.5 Quotient of Powers Rule. For any non-zero real number a and integers m and n,

an

am � an−m

This rule says that when you’re dividing two expressions that have the same base, you can simplify the
quotient by subtracting the exponents. In Example 6.1.4, this means that we can directly compute x5

x2 :

x5

x2 � x5−2

� x3

Quotient to a Power Another rule we have learned is the product to a power rule, which applies the outer
exponent to each factor in the product inside the parentheses. We can use the rules of fractions to extend
this property to a quotient raised to a power.

Example 6.1.6 Let y be a real number, where y , 0. Find another way to write
(

7
y

)4
.

Explanation. Writing the expression without an exponent and then simplifying, we have:(
7
y

)4

�

(
7
y

) (
7
y

) (
7
y

) (
7
y

)
�

7 · 7 · 7 · 7
y · y · y · y

�
74

y4

�
2401

y4

Similar to the product to a power rule, we essentially applied the outer exponent to the “factors” inside
the parentheses—to factors of the numerator and factors of the denominator. The general rule is:

Fact 6.1.7 Quotient to a Power Rule. For real numbers a and b (with b , 0) and integer n,( a
b

)n
�

an

bn

This rule says that when you raise a fraction to a power, you may separately raise the numerator and de-

nominator to that power. In Example 6.1.6, this means that we can directly calculate
(

7
y

)4
:(

7
y

)4

�
74

y4

�
2401

y4
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Chapter 6 Exponents and Polynomials

Practice Try these exercises that use the quotient rules for exponents.

Checkpoint 6.1.8.

a. Simplify 37x9

32x4 .

b. Simplify
( p
2

)6
.

c. Simplify
(
56w7

52w4

)9

. If you end up with a large power of a specific number, leave it written that way.

d. Simplify
(
2r5)7

(22r8)3
. If you end up with a large power of a specific number, leave it written that way.

Explanation.

a. We can use the quotient of powers rule separately on the 3s and on the xs:

37x9

32x4 � 37−2x9−4

� 35x5

� 243x5

b. We can use the quotient to a power rule:

( p
2

)6
�

p6

26

�
p6

64

c. If we stick closely to the order of operations, we should first simplify inside the parentheses and then
work with the outer exponent. Going this route, we will first use the quotient rule:

(
56w7

52w4

)9

�
(
56−2w7−4)9

�
(
54w3)9

Now we can apply the outer exponent to each factor inside the parentheses using the product to a
power rule.

�
(
54)9 ·

(
w3)9

To finish, we need to use the power to a power rule.

� 54·9 · w3·9

� 536 · w27

d. According to the order of operations, we should simplify inside parentheses first, then apply expo-
nents, then divide. Since we cannot simplify inside the parentheses, we must apply the outer expo-
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nents to each factor inside the respective set of parentheses first:(
2r5)7

(22r8)3
�

27 (
r5)7

(22)3 (r8)3

At this point, we need to use the power-to-a-power rule:

�
27r5·7

22·3r8·3

�
27r35

26r24

To finish simplifying, we’ll conclude with the quotient rule:

� 27−6r35−24

� 21r11

� 2r11

6.1.3 The Zero Exponent

So far, we have beenworkingwith exponents that are natural numbers (1, 2, 3, . . .). By the end of this chapter,
we will expand our understanding to include exponents that are any integer, including 0 and negative
numbers. As a first step, wewill focus onunderstanding how 0 should behave as an exponent by considering
the pattern of decreasing powers of 2 below.

power product value
24 � 2 · 2 · 2 · 2 � 16 (divide by 2)
23 � 2 · 2 · 2 � 8 (divide by 2)
22 � 2 · 2 � 4 (divide by 2)
21 � 2 � 2 (divide by 2)
20 � ? � ?

Table 6.1.9: Descending Powers of 2

As we move down from one row to the row below it, we reduce the power by 1 and we remove a factor of
2. The question then becomes, “What happens when you remove the only remaining factor of 2, when you
have no factors of 2?” We can see that “removing a factor of 2” really means that we’re dividing the value
by 2. Following that pattern, we can see that moving from 21 to 20 means that we need to divide the value
2 by 2. Since 2 ÷ 2 � 1, we have:

20
� 1

Fact 6.1.10 The Zero Exponent Rule. For any non-zero real number a,

a0
� 1

We exclude the case where a � 0 from this rule, because our reasoning for this rule with the table had us
dividing by the base. And we cannot divide by 0.
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Checkpoint 6.1.11. Simplify the following expressions. Assume all variables represent non-zero real
numbers.

a.
(
173x4 y251)0 b. (−8)0 c. −80 d. 3x0

Explanation. To simplify any of these expressions, it is critical that we remember an exponent only applies
to what it is touching or immediately next to.

a. In the expression
(
173x4 y251)0 , the exponent 0 applies to everything inside the parentheses.

(
173x4 y251)0

� 1

b. In the expression (−8)0 the exponent applies to everything inside the parentheses, −8.

(−8)0 � 1

c. In contrast to the previous example, the exponent only applies to the 8. The exponent has a higher
priority than negation in the order of operations. We should consider that −80 � −

(
80) , and so:

−80
� −

(
80)

� −1

d. In the expression 3x0, the exponent 0 only applies to the x:

3x0
� 3 · x0

� 3 · 1
� 3

6.1.4 Negative Exponents

In Section 2.9, we developed rules for simplifying expressions with whole number exponents, like 0, 1, 2, 3,
etc. It turns out that these same rules apply even if the exponent is a negative integer, like −1, −2, −3, etc.

To consider the effects of negative integer exponents, let’s extend the pattern we examined in Table 6.1.9. In
that table, each time we move down a row, we reduce the power by 1 and we divide the value by 2. We can
continue this pattern in the power and value columns, paying particular attention to the values for negative
exponents:

Power Value
23 8 (divide by 2)
22 4 (divide by 2)
21 2 (divide by 2)
20 1 (divide by 2)
2−1 1/2 � 1/21 (divide by 2)
2−2 1/4 � 1/22 (divide by 2)
2−3 1/8 � 1/23
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Note that the choice of base 2 was arbitrary, and this pattern works for all bases except 0, since we cannot
divide by 0 in moving from one row to the next.
Fact 6.1.12 The Negative Exponent Rule. For any non-zero real number a and any integer n,

a−n
�

1
an

Note that if we take reciprocals of both sides, we have another helpful fact:
1

a−n � an .

Taken together, these facts tell us that a negative exponent power in the numerator belongs in the denomina-
tor (with a positive exponent) and a negative exponent power in the denominator belongs in the numerator
(with a positive exponent). In other words, you can see a negative exponent as telling you to move things
in and out of the numerator and denominator of an expression.
Remark 6.1.13. You may be expected to simplify expressions so that they do not have any negative expo-
nents. This can always be accomplished using the negative exponent rule.

Try these exercises that involve negative exponents.

Checkpoint 6.1.14.

a. Write 4y−6 without using
negative exponents. b. Write 3x−4

yz−2 without using

negative exponents.

c. Simplify
(
−5x−5) (

−8x4) and
write it without using nega-
tive exponents.

Explanation.

a. Always remember that an exponent only applies to what it is touching. In the expression 4y−6, only
the y has an exponent of −6.

4y−6
� 4 · 1

y6

�
4
y6

b. Negative exponents tell us to move some variables between the numerator and denominator to make
the exponents positive.

3x−4

yz−2 �
3z2

yx4

Notice that the factors of 3 and y did not move, as both of those factors had positive exponents.

c. The product of powers rule still applies, andwe can add exponents evenwhen one or both are negative:(
−5x−5) (

−8x4)
� (−5)(−8)x−5x4

� 40x−5+4

� 40x−1

�
40
x1

�
40
x
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6.1.5 Summary of Exponent Rules

Now that we have some new exponent rules beyond those from Section 2.9, let’s summarize.

If a and b are real numbers, and n and m are integers, then we have the following rules:

Product Rule an · am � an+m

Power to a Power Rule (an)m � an·m

Product to a Power Rule (ab)n � an · bn

Quotient Rule an

am � an−m , as long as a , 0

Quotient to a Power Rule
( a

b

)n
�

an

bn , as long as b , 0

Zero Exponent Rule a0 � 1 for a , 0

Negative Exponent Rule a−n �
1

an

Negative Exponent Reciprocal Rule 1
a−n � an

List 6.1.15: Summary of the Rules of Exponents for Multiplication and Division

Remark 6.1.16 Why we have “a , 0” and “b , 0” for some rules. Whenever we’re working with division,
we have to be careful to make sure the rules we state don’t ever imply that we might be dividing by zero.
Dividing by zero leads us to expressions that have no meaning. For example, both 9

0 and 0
0 are undefined,

meaning no one has defined what it means to divide a number by 0. Also, we established that a0 � 1 using
repeated division by a in table rows, so that reasoning doesn’t work if a � 0.

Warning 6.1.17 A Common Mistake. It may be tempting to apply the rules of exponents to expressions
containing addition or subtraction. However, none of the rules of exponents 6.1.15 involve addition or
subtraction in the initial expression. Because whole number exponents mean repeated multiplication, not
repeated addition or subtraction, trying to apply exponent rules in situations that do not use multiplication
simply doesn’t work.

Can we say something like an + am � an+m? How would that work out when a � 2?

23
+ 24 ?

� 23+4

8 + 16 ?
� 27

24 , 128

As we can see, that’s not even close. This attempt at a “sum rule” falls apart. In fact, without knowing
values for a, n, and m, there’s no way to simplify the expression an + am .

Checkpoint 6.1.18. Decide whether each statements is true or false.
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a. (7 + 8)3 � 73 + 83

(□ true □ false)

b. (x y)3 � x3 y3

(□ true □ false)

c. 2x3 · 4x2 · 5x6 � (2 · 4 · 5)x3+2+6

(□ true □ false)

d.
(
x3 y5)4

� x3+4 y5+4

(□ true □ false)

e. 2
(
x2 y5)3

� 8x6 y15

(□ true □ false)

f. x2 + x3 � x5

(□ true □ false)

g. x3 + x3 � 2x3

(□ true □ false)

h. x3 · x3 � 2x6

(□ true □ false)

i. 32 · 23 � 65

(□ true □ false)

j. 3−2 � − 1
9

(□ true □ false)

Explanation.

a. False, (7 + 8)3 , 73 + 83. Following the order of operations, on the left (7 + 8)3 would simplify as 153,
which is 3375. However, on the right side, we have

73
+ 83

� 343 + 512
� 855

Since 3375 , 855, the equation is false.

b. True. As the cube applies to the product of x and y, (x y)3 � x3 y3.

c. True. The coefficients do get multiplied together and the exponents added when the expressions are
multiplied, so 2x3 · 4x2 · 5x6 � (2 · 4 · 5)x3+2+6.

d. False,
(
x3 y5)4 , x3+4 y5+4. When we have a power to a power, we multiply the exponents rather than

adding them. So

(
x3 y5)4

� x3·4 y5·4

e. False, 2
(
x2 y5)3 , 8x6 y15. The exponent of 3 applies to x2 and y5, but does not apply to the 2. So

2
(
x2 y5)3

� 2x2·36y5·3

� 2x6 y15

f. False, x2 + x3 , x5. The two terms on the left hand side are not like terms and there is no way to
combine them.

g. True. The terms x3 and x3 are like terms, so x3 + x3 � 2x3.

h. False, x3 · x3 , 2x6. When x3 and x3 are multiplied, their coefficients are each 1. So the coefficient of
their product is still 1, and we have x3 · x3 � x6.

i. False, 32 · 23 , 65. Note that neither the bases nor the exponents are the same. Following the order of
operations, on the left 32 · 23 would simplify as 9 · 8, which is 72. However, on the right side, we have
65 � 7776. Since 72 , 7776, the equation is false.
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j. False, 3−2 , − 1
9 . The exponent of −2 on the number 3 does not result in a negative number. Instead,

3−2 �
1
32 , which is 1

9 .

As we mentioned before, many situations we’ll come across will require us to use more than one exponent
rule. In these situations, we’ll have to decide which rule to use first. There are often different, correct
approaches we could take. But if we rely on order of operations, we will have a straightforward approach
to simplify the expression correctly. To bring it all together, try these exercises.

Checkpoint 6.1.19.

a. Simplify 6x3

2x7 and write it without using nega-
tive exponents.

b. Simplify 4
( 1

5 tv−4)2 and write it without using
negative exponents.

c. Simplify
(
30 y4 · y5

6y2

)3

and write it without us-

ing negative exponents.

d. Simplify
(
74x−6t2)−5 (

7x−2t−7)4 and write it
without using negative exponents. Leave
larger numbers (such as 710) in exponent form.

Explanation.

a. In the expression 6x3

2x7 , the coefficients reduce using the properties of fractions. One way to simplify
the variable powers is:

6x3

2x7 �
6
2 ·

x3

x7

� 3 · x3−7

� 3 · x−4

� 3 · 1
x4

�
3
x4

b. In the expression 4
( 1

5 tv−4)2 , the exponent 2 applies to each factor inside the parentheses.

4
(
1
5 tv−4

)2

� 4
(
1
5

)2

(t)2
(
v−4)2

� 4
(

1
25

) (
t2) (

v−4·2)
� 4

(
1
25

) (
t2) (

v−8)
� 4

(
1
25

) (
t2) (

1
v8

)
�

4t2

25v8

c. To follow the order of operations in the expression
(

30 y4 ·y5

6y2

)3
, the numerator inside the parentheses

should be dealt with first. After that, we’ll simplify the quotient inside the parentheses. As a final
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step, we’ll apply the exponent to that simplified expression:

(
30 y4 · y5

6y2

)3

�

(
1 · y4+5

6y2

)3

�

(
y9

6y2

)3

�

(
y9−2

6

)3

�

(
y7

6

)3

�

(
y7)3

63

�
y7·3

216

�
y21

216

d. We’ll again rely on the order of operations, and look to simplify anything inside parentheses first
and then apply exponents. In this example, we will begin by applying the product to a power rule,
followed by the power to a power rule.

(
74x−6t2)−5 (

7x−2t−7)4
�

(
74)−5 (

x−6)−5 (
t2)−5 · (7)4

(
x−2)4 (

t−7)4

� 7−20x30t−10 · 74x−8t−28

� 7−20+4x30−8t−10−28

� 7−16x22t−38

�
x22

716t38

Exercises

Review and Warmup Evaluate the following.

a. 22
�

b. 33
�

c. (−2)2 �

d. (−5)3 �

1. a. 32
�

b. 53
�

c. (−2)2 �

d. (−3)3 �

2.

Use the properties of exponents to simplify the expression.

5 · 553. 6 · 624. 78 · 735. 85 · 866.
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Simplifying Products and Quotients Involving Exponents Use the properties of exponents to simplify
the expression.

t19 · t37. y2 · y158.
(
t3)59.

(
x4)210.

(
4x5)311.

(
2t6)212. (6x12) · (−2x20)13. (−9x14) · (3x13)14.

(
−x16

4

)
·
(
−x7

2

)
15.

(
y18

8

)
·
(

y19

3

)
16. −3

(
−9t2)317. −5

(
−6t3)218.

(−40)0 �19. (−34)0 �20. −230 �21. −290 �22.

340+(−34)0 �23. 400+(−40)0 �24. 45n0 �25. 50c0 �26.

(
−792y

)0
�27. (−571m)0 �28.

(
x5

4

)2

�29.
(

x2

5

)3

�30.

(
−7

8x10

)3

�31.
(
−7
4x5

)2

�32.
(
9x8

2

)2

�33.
(
3x9

10

)3

�34.

45y12

15y9 �35. −18t7

3t5 �36. 5r11

25r10 �37. 6r18

18r12 �38.

y10

y9 �39. r12

r7 �40. 1612

163 �41. 1819

1810 �42.

(
x6

2y10z4

)3

�43.
(

x3

2y5z2

)3

�44.
(
−7x2

4y9

)3

�45.
(
−7x3

10y6

)2

�46.

127 · 1114

124 · 115 �47. 1417 · 2014

142 · 2010 �48.
−48x16 y9z11

12x11 y4z3 �49.
28x12 y17z18

14x8 y7z7 �50.

−80x4 y8

16x3 y2 �51.
72x17 y12

18x10 y7 �52.
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Rewrite the expression simplified and using only positive exponents.(
1
10

)−2

�53.
(
1
2

)−3

�54. 3−2

4−3 �55. 4−3

2−2 �56.

5−1−8−1 �57. 6−1−4−1 �58. 20x−9
�59. 15x−10

�60.

9
x−11 �61. 19

x−12 �62. 14x−3

x
�63. 8x−5

x
�64.

7x−8

x−26 �65. 13x−10

x−17 �66. 20x−18

21x−9 �67. 11x−21

12x−35 �68.

t−17

y−3 �69. t−6

x−17 �70. t−12

r7 �71. x−3

y7 �72.

1
7x−10 �73. 1

39y−18 �74.
y8

y22 �75. r4

r6 �76.

−27r6

9r37 �77. 21t12

7t20 �78. −7t3

5t4 �79. −3t14

13t35 �80.

x5

(x6)9
�81. x4

(x12)6
�82.

y−6(
y9

)4 �83.
y−2(
y5

)10 �84.

r−19 ·r10 �85. r−13 ·r11 �86. (−3t−7)·(3t3) �87. (−9t−19) · (8t14) �88.

(
7
2

)−2

�89.
(
10
7

)−2

�90. (−3)−3
�91. (−4)−3

�92.

1
(−5)−2 �93. 1

(−6)−3 �94. 6
(−3)−3 �95. −3

(−4)−3 �96.

9−3 �97. 10−2 �98. 2−1+4−1 �99. 3−1+8−1 �100.
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1
4−2 �101. 1

5−2 �102. −6−3 �103. −7−2 �104.

(
6r12)3

r37 �105.
(
6t9)2

t37 �106.
(
6t5)3

t−10 �107.
(
6x12)2

x−6 �108.

(
x13

x7

)−2

�109.
(

y7

y6

)−4

�110.
(
10y19

5y7

)−3

�111.
(
25r12

5r9

)−2

�112.

(
−2r−6)−2113.

(
−3r−18)−3114.

(
3t−12)−3115.

(
2t−5)−2116.

9x9 · 5x9

2x14 �117. 8x6 · 7x4

5x6 �118.
(
y4)4 ·y−5 �119.

(
y12)2 ·y−23 �120.

(
3r8)3 ·r−17 �121.

(
3r3)4 ·r−6 �122.

(
r8)2

(r4)5
�123.

(
t6)4

(t14)4
�124.

(
t3)−2

�125.
(
x15)−4

�126.
(
x15 y3)−4

�127.
(
y8t12)−4

�128.

(
y−13r9)−4

�129.
(
r−6 y5)−4

�130.
(

r15

4

)−3

�131.
(

r10

3

)−2

�132.

(
t9

x7

)−3

�133.
(

t9

x10

)−5

�134.
(
x4r−7)−3

(x−3r8)−3 �135.
(
x6r−5)−3

(x−8r7)−3 �136.

Rewrite the expression simplified and using only positive exponents.

7x−4 y5z−2 (
2x2)−4

�137. 5x−5 y5z−3 (
3x5)−4

�138.

(
x7 y4z2

x−3 y−8z−4

)−4

�139.
(

x5 y4z5

x−4 y−4z−6

)−2

�140.
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Challenge

Consider the exponential expression xa · xb

xc where a > 0, b < 0, and c > 0.

a. Are there values for a, b, and c so that the expression equals x6? If so, fill in the blanks below
with possible values for a, b, and c. If not, fill in the blanks below with the word none.

a = , b = , and c =

b. Are there values for a, b, and c so that the exponential expression equals 1
x13 ? If so, fill in the

blanks below with possible values for a, b, and c. If not, fill in the blanks below with the word
none.

a = , b = , and c =

141.

Consider the exponential expression xa · xb

xc where a < 0, b < 0, and c > 0.

a. Are there values for a, b, and c so that the expression equals x7? If so, fill in the blanks below
with possible values for a, b, and c. If not, fill in the blanks below with the word none.

a = , b = , and c =

b. Are there values for a, b, and c so that the expression equals 1
x9 ? If so, fill in the blanks below

with possible values for a, b, and c. If not, fill in the blanks below with the word none.

a = , b = , and c =

142.

Consider the exponential expression xa · xb

xc where a > 0, b > 0, and c < 0.

a. Are there values for a, b, and c so that the expression equals x6? If so, fill in the blanks below
with possible values for a, b, and c. If not, fill in the blanks below with the word none.

a = , b = , and c =

b. Are there values for a, b, and c so that the expression equals 1
x14 ? If so, fill in the blanks below

with possible values for a, b, and c. If not, fill in the blanks below with the word none.

a = , b = , and c =

143.
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6.2 Scientific Notation

Having just learned more about exponents, including negative exponents, we can discuss a format used for
very large and very small numbers called scientific notation.

6.2.1 The Basics of Scientific Notation

An October 3, 2016 CBS News headline¹ read:

Federal Debt in FY 2016 Jumped $1,422,827,047,452.46—that’s $12,036 Per Household.

The article also later states:

By the close of business on Sept. 30, 2016, the last day of fiscal 2016, it had climbed to $19,573,444,713,936.79.

When presented in this format, trying to comprehend the value of these numbers can be overwhelming.
More commonly, such numbers would be presented in a descriptive manner:

• The federal debt climbed by 1.42 trillion dollars in 2016.

• The federal debt was 19.6 trillion dollars at the close of business on Sept. 30, 2016.

Unless we’re presented with such news items, most of us deal with numbers no larger than the thousands
in our daily life. In science, government, business, and many other disciplines, it’s not uncommon to deal
with much larger numbers. When numbers get this large, it can be hard to distinguish between a number
that has nine or twelve digits. On the other hand, we have descriptive language that allows us grasp the
value and not be lost in the sheer size of the number.

We have descriptive language for all numbers, based on the place value of the different digits: ones, tens,
thousands, ten thousands, etc. We tend to rely upon this language more when we start dealing with larger
numbers. Here’s a chart for some of the most common numbers we see and use in the world around us:

Number US English Name Power of 10
1 one 100

10 ten 101

100 hundred 102

1,000 one thousand 103

10,000 ten thousand 104

100,000 one hundred thousand 105

1,000,000 one million 106

1,000,000,000 one billion 109

Table 6.2.2: Whole Number Powers of 10

Each number above has a corresponding power of ten and this power of ten will be important as we start to
work with the content in this section.

This descriptive language also covers even larger numbers: trillion, quadrillion, quintillion, sextillion, sep-
tillion, and so on. There’s also corresponding language to describe very small numbers, such as thousandth,
millionth, billionth, trillionth, etc.

Through centuries of scientific progress, humanity became increasingly aware of very large numbers and
very small measurements. As one example, the star that is nearest to our sun is Proxima Centauri². Proxima
¹http://www.cnsnews.com/news/article/terence-p-jeffrey/federal-debt-fy-2016-jumped-142282704745246
²imagine.gsfc.nasa.gov/features/cosmic/nearest_star_info.html
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Centauri is about 25,000,000,000,000 miles from our sun. Again, many will find the descriptive language
easier to digest: Proxima Centauri is about 25 trillion miles from our sun.

To make computations involving such numbers more manageable, a standardized notation called scientific
notation was established. The foundation of scientific notation is the fact that multiplying or dividing by a
power of 10 will move the decimal point of a number so many places to the right or left, respectively.

Checkpoint 6.2.3. Perform the following operations:

a. Multiply 5.7 by 10. b. Multiply 3.1 by 10,000.

Explanation.

a. 5.7 × 10 � 57

10 � 101and multiplying by 101 moved the decimal point one place to the right.

b. 3.1 × 10000 � 31,000

10,000 � 104 and multiplying by 104 moved the decimal point four places to the right.

Multiplying a number by 10n where n is a positive integer had the effect of moving the decimal point n
places to the right.

Every number can be written as a product of a number between 1 and 10 and a power of 10. For example,
650 � 6.5 × 100. Since 100 � 102, we can also write

650 � 6.5 × 102

and this is our first example of writing a number in scientific notation.

Definition 6.2.4. A positive number is written in scientific notation when it has the form a × 10n where n
is an integer and 1 ≤ a < 10. In other words, a has precisely one digit to the left of the decimal place. The
exponent n used here is called the number’s order of magnitude. The number a is sometimes called the
significand or the mantissa.

Some conventions do not require a to be between 1 and 10, excluding both values, but that is the convention
used in this book.

6.2.2 Scientific Notation for Large Numbers

To write a numbers larger than 10 in scientific notation, we write a decimal point after the first non-zero
digit of the number and then count the number of places between where the decimal point originally was
and where it now is. Scientific notation communicates the size of a number and the order of magnitude just
as quickly, but with no need to write long strings of zeros or to try to decipher the language of quintillions,
sextillions, etc.

Example 6.2.5 To get a sense of how scientific notation works, let’s consider familiar lengths of time
converted to seconds.
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Length of Time Length in Seconds Scientific Notation
one second 1 second 1 × 100 second
one minute 60 seconds 6 × 101 seconds
one hour 3600 seconds 3.6 × 103 seconds
one month 2,628,000 seconds 2.628 × 106 seconds
ten years 315,400,000 seconds 3.154 × 108 seconds
79 years (about a lifetime) 2,491,000,000 seconds 2.491 × 109 seconds

Checkpoint 6.2.6. Write each of the following in scientific notation.

a. The federal debt at the close of business on Sept. 30, 2016: about 19,600,000,000,000 dollars.

b. The world’s population in 2016: about 7,418,000,000 people.

Explanation.

a. To convert the federal debt to scientific notation, we will count the number of digits after the first non-
zero digit (which happens to be a 1 here). Since there are 13 places after the first non-zero digit, we
write:

1

13 places︷                 ︸︸                 ︷
9,600,000,000,000 dollars � 1.96 × 1013 dollars

b. Since there are nine places after the first non-zero digit of 7, the world’s population in 2016 was about

7,

9 places︷        ︸︸        ︷
418,000,000 people � 7.418 × 109 people

Checkpoint 6.2.7. Convert each of the following from scientific notation to decimal notation (without
any exponents).

a. The earth’s diameter: about 1.27 × 107 meters.

b. As of 2013, known digits of π: 1.21 × 1013.

Explanation.

a. To convert this number to decimal notation we will move the decimal point after the digit 1 seven
places to the right, including zeros where necessary. The earth’s diameter is:

1.27 × 107 meters � 1

7 places︷     ︸︸     ︷
2,700,000 meters.

b. As of 2013 there are

1.21 × 1013
� 1

13 places︷                 ︸︸                 ︷
2,100,000,000,000

known digits of π.
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6.2.3 Scientific Notation for Small Numbers

Scientific notation can also be useful when working with numbers smaller than 1. As we saw in Table 6.2.2,
we can denote thousands, millions, billions, trillions, etc., with positive integer exponents on 10. We can
similarly denote numbers smaller than 1 (which are written as tenths, hundredths, thousandths, millionths,
billionths, trillionths, etc.), with negative integer exponents on 10. This relationship is outlined in Table 6.2.8.

Number English Name Power of 10
1 one 100

0.1 one tenth 1
10 � 10−1

0.01 one hundredth 1
100 � 10−2

0.001 one thousandth 1
1,000 � 10−3

0.0001 one ten thousandth 1
10,000 � 10−4

0.00001 one hundred thousandth 1
100,000 � 10−5

0.000001 one millionth 1
1,000,000 � 10−6

0.000000001 one billionth 1
1,000,000,000 � 10−9

Table 6.2.8: Negative Integer Powers of 10

To see how this works with a digit other than 1, let’s look at 0.05. When we state 0.05 as a number, we say
“5 hundredths.” Thus 0.05 � 5× 1

100 . The fraction 1
100 can be written as 1

102 , which we know is equivalent to
10−2. Using negative exponents, we can then rewrite 0.05 as 5× 10−2. This is the scientific notation for 0.05.

In practice, wewon’t generally do that much computation. To write a small number in scientific notation we
start as we did before and place the decimal point behind the first non-zero digit. We then count the number
of decimal places between where the decimal had originally been and where it now is. Keep in mind that
negative powers of ten are used to help represent very small numbers (smaller than 1) and positive powers
of ten are used to represent very large numbers (larger than 1). So to convert 0.05 to scientific notation, we
have:

0

2 places︷︸︸︷
.05 � 5 × 10−2

Example 6.2.9 In quantum mechanics, there is an important value called the Planck Constanta. Written
as a decimal, the value of the Planck constant (rounded to 4 significant digits) is

0.0000000000000000000000000000000006626.

In scientific notation, this number will be 6.626 × 10?. To determine the exponent, we need to count the
number of places from where the decimal is when the number is written as

0.0000000000000000000000000000000006626

to where it will be when written in scientific notation:

0

34 places︷                                               ︸︸                                               ︷
.0000000000000000000000000000000006 626

As a result, in scientific notation, the Planck Constant value is 6.626 × 10−34. It will be much easier to
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use 6.626× 10−34 in a calculation, and an added benefit is that scientific notation quickly communicates
both the value and the order of magnitude of the Planck constant.

aen.wikipedia.org/wiki/Planck_constant

Checkpoint 6.2.10. Write each of the following in scientific notation.

a. The weight of a single grain of long grain rice: about 0.029 grams.

b. The gate pitch of a microprocessor: 0.000000014 meters

Explanation.

a. To convert this weight to scientific notation, we must first move the decimal behind the first non-zero
digit to obtain 2.9, which requires that we move the decimal point 2 places. Thus we have:

0

2 places︷︸︸︷
.02 9 grams � 2.9 × 10−2 grams

b. The gate pitch of a microprocessor is:

0

8 places︷      ︸︸      ︷
.00000001 4 meters � 1.4 × 10−8 meters

Checkpoint 6.2.11. Convert each of the following from scientific notation to decimal notation (without
any exponents).

a. A download speed of 7.53 × 10−3 Gigabyte per second

b. The weight of a poppy seed: about 3 × 10−7 kilograms

Explanation.

a. To convert a download speed of 7.53 × 10−3 Gigabyte per second to decimal notation, we will move
the decimal point 3 places to the left and include the appropriate number of zeros:

7.53 × 10−3 Gigabyte per second � 0

3 places︷︸︸︷
.007 53 Gigabyte per second

b. The weight of a poppy seed is:

3 × 10−7 kilograms � 0

7 places︷    ︸︸    ︷
.0000003 kilograms

Checkpoint 6.2.12. Decide if the numbers are written in scientific notation or not. Use Definition 6.2.4.

a. The number 7 × 101.9 is (□ in scientific nota-
tion □ not in scientific notation) .

b. The number 2.6 × 10−31 is (□ in scientific no-
tation □ not in scientific notation) .

c. The number 10×74 is (□ in scientific notation
□ not in scientific notation) .

d. The number 0.93 × 103 is (□ in scientific no-
tation □ not in scientific notation) .

e. The number 4.2 × 100 is (□ in scientific nota-
tion □ not in scientific notation) .

f. The number 12.5× 10−6 is (□ in scientific no-
tation □ not in scientific notation) .
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Explanation.

a. The number 7 × 101.9 is not in scientific notation. The exponent on the 10 is required to be an integer
and 1.9 is not.

b. The number 2.6 × 10−31 is in scientific notation.

c. The number 10 × 74 is not in scientific notation. The base must be 10, not 7.

d. The number 0.93×103 is not in scientific notation. The coefficient of the 10must be between 1 (inclusive)
and 10.

e. The number 4.2 × 100 is in scientific notation.

f. The number 12.5× 10−6 is not in scientific notation. The coefficient of the 10 must be between 1 (inclu-
sive) and 10.

6.2.4 Multiplying and Dividing Using Scientific Notation

One main reason for having scientific notation is to make calculations involving immensely large or small
numbers easier to perform. By having the order of magnitude separated out in scientific notation, we can
separate any calculation into two components.

Example 6.2.13 On Sept. 30th, 2016, the US federal debt was about $19,600,000,000,000 and the US
population was about 323,000,000. What was the average debt per person that day?

a. Calculate the answer using the numbers provided, which are not in scientific notation.

b. First, confirm that the given values in scientific notation are 1.96×1013 and 3.23×108. Then calculate
the answer using scientific notation.

Explanation. We’ve been asked to answer the same question, but to perform the calculation using two
different approaches. In both cases, we’ll need to divide the debt by the population.

a. We may need to be working a calculator to handle such large numbers and we have to be careful
that we type the correct number of 0s.

19600000000000
323000000 ≈ 60681.11

b. To perform this calculation using scientific notation, our work would begin by setting up the quo-
tient 1.96×1013

3.23×108 . Dividing this quotient follows the same process we did with variable expressions
of the same format, such as 1.96w13

3.23w8 . In both situations, we’ll divide the coefficients and then use
exponent rules to simplify the powers.

1.96 × 1013

3.23 × 108 �
1.96
3.23 ×

1013

108

≈ 0.6068111 × 105

≈ 60681.11

The federal debt per capita in the US on September 30th, 2016 was about $60,681.11 per person. Both
calculations give us the same answer, but the calculation relying upon scientific notation has less room
for error and allows us to perform the calculation as two smaller steps.

Whenever wemultiply or divide numbers that are written in scientific notation, wemust separate the calcu-
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lation for the coefficients from the calculation for the powers of ten, just as we simplified earlier expressions
using variables and the exponent rules.

Example 6.2.14

a. Multiply
(
2 × 105) (

3 × 104) . b. Divide 8 × 1017

4 × 102 .

Explanation. Wewill simplify the significand/mantissa parts as one step and then simplify the powers
of 10 as a separate step.

a. (
2 × 105) (

3 × 104)
� (2 × 3) ×

(
105 × 104)

� 6 × 109

b.

8 × 1017

4 × 102 �
8
4 ×

1017

102

� 2 × 1015

Often when wemultiply or divide numbers in scientific notation, the resulting value will not be in scientific
notation. Supposeweweremultiplying

(
9.3 × 1017) (

8.2 × 10−6) andneed to state our answer using scientific
notation. We would start as we have previously:(

9.3 × 1017) (
8.2 × 10−6)

� (9.3 × 8.2) ×
(
1017 × 10−6)

� 76.26 × 1011

While this is a correct value, it is not written using scientific notation. One way to covert this answer into
scientific notation is to turn just the coefficient into scientific notation and momentarily ignore the power of
ten:

� 76.26 × 1011

� 7.626 × 101 × 1011

Now that the coefficient fits into the proper format, we can combine the powers of ten and have our answer
written using scientific notation.

� 7.626 × 101 × 1011

� 7.626 × 1012

Example 6.2.15 Multiply or divide as indicated. Write your answer using scientific notation.

a.
(
8 × 1021) (

2 × 10−7)
b. 2 × 10−6

8 × 10−19

Explanation. Again, we’ll separate out the work for the significand/mantissa from the work for the
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powers of ten. If the resulting coefficient is not between 1 and 10, we’ll need to adjust that coefficient to
put it into scientific notation.

a. (
8 × 1021) (

2 × 10−7)
� (8 × 2) ×

(
1021 × 10−7)

� 16 × 1014

� 1.6 × 101 × 1014

� 1.6 × 1015

We need to remember to apply the product rule for exponents to the powers of ten.

b.

2 × 10−6

8 × 10−19 �
2
8 ×

10−6

10−19

� 0.25 × 1013

� 2.5 × 10−1 × 1013

� 2.5 × 1012

There are times where we will have to raise numbers written in scientific notation to a power. For example,
suppose we have to find the area of a square whose radius is 3 × 107 feet. To perform this calculation, we
first remember the formula for the area of a square, A � s2 and then substitute 3× 107 for s: A �

(
3 × 107)2.

To perform this calculation, we’ll need to remember to use the product to a power rule and the power to a
power rule:

A �
(
3 × 107)2

� (3)2 ×
(
107)2

� 9 × 1014

Exercises

Converting To and From Scientific Notation Write the following number in scientific notation.

7500 �1. 850000 �2. 95000 �3.

1500 �4. 0.026 �5. 0.0036 �6.

0.00046 �7. 0.055 �8.

Write the following number in decimal notation without using exponents.

6.5×104 �9. 7.5×102 �10. 8.53×105 �11.
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9.53×104 �12. 1.52×100 �13. 2.51×100 �14.

3.5×10−3 �15. 4.5×10−4 �16. 5.51×10−2 �17.

6.5×10−3 �18.

Arithmetic with Scientific Notation Multiply the following numbers, writing your answer in scientific
notation.

(7×102)(2×104) �19. (8×104)(5×103) �20. (9×103)(2×105) �21.

(2×102)(4×105) �22. (3×104)(7×104) �23. (4×103)(3×103) �24.

Divide the following numbers, writing your answer in scientific notation.

4.5 × 105

5 × 102 �25. 3.5 × 106

5 × 104 �26. 2.4 × 104

6 × 103 �27.

6.3 × 106

7 × 102 �28. 4.8 × 102

8 × 10−4 �29. 3.6 × 104

9 × 10−3 �30.

1.8 × 102

2 × 10−4 �31. 1.8 × 103

3 × 10−5 �32. 1.2 × 10−2

4 × 105 �33.

4 × 10−4

5 × 104 �34. 3 × 10−3

5 × 102 �35. 1.8 × 10−5

6 × 105 �36.

Simplify the following expression, writing your answer in scientific notation.

(4×109)3 �37. (5×106)4 �38. (5×103)3 �39.

(2×109)4 �40. (2×105)2 �41. (3×102)4 �42.
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6.3 Adding and Subtracting Polynomials

A polynomial is a particular type of algebraic expression used for things all around us.

• A company’s sales, s (in millions of dollars), can be modeled by 2.2t + 5.8, where t stands for the
number of years since 2010.

• The height of an object from the ground, h (in feet), launched upward from the top of a building can
be modeled by −16t2 +32t +300, where t represents the amount of time (in seconds) since the launch.

• The volume of an open-top boxwith a square base, V (in cubic inches), can be calculated by 30s2− 1
2 s2,

where s stands for the length of the square base, and the box sides have to be cut from a certain square
piece of metal.

All of the expressions above are polynomials. In this section, we will learn some basic vocabulary relating
to polynomials and we’ll then learn how to add and subtract polynomials.

6.3.1 Polynomial Vocabulary

Definition 6.3.2. A polynomial is an expression that consists of terms summed together. Each term must
be the product of a number and one or more variables raised to whole number powers. Since 0 is a whole
number, a term can just be a number. A polynomial may have just one term. The expression 0 is also
considered a polynomial, with zero terms.

Some examples of polynomials in one variable are:

x2 − 5x + 2 t3 − 1 7y.

The expression 3x4 y3 + 7x y2 − 12x y is an example of a polynomial in several variables.

Definition 6.3.3. A term of a polynomial is the product of a numerical coefficient and one or more variables
raised to whole number powers. Since 0 is a whole number, a term can just be a number.

For example:

• the polynomial x2 − 5x + 3 has three terms: x2, −5x, and 3;

• the polynomial 3x4 + 7x y2 − 12x y also has three terms;

• the polynomial t3 − 1 has two terms.

Definition 6.3.4. The coefficient (or numerical coefficient) of a term is the numerical factor in the term.

For example:

• the coefficient of the term 4
3 x6 is 4

3 ;

• the coefficient of the second term of the polynomial x2 − 5x + 3 is −5;

• the coefficient of the term y7

4 is 1
4 .

Remark 6.3.5. Because variables in polynomials must have whole number exponents, a polynomial will
never have a variable in the denominator of a fraction or under a square root (or any other radical).

Checkpoint 6.3.6. Identify which of the following are polynomials and which are not.

a. The expression −2x9 − 7
13 x3 − 1 (□ is □ is not) a polynomial.
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b. The expression 5x−2 − 5x2 + 3 (□ is □ is not) a polynomial.

c. The expression
√

2x − 3
5 (□ is □ is not) a polynomial.

d. The expression 5x3 − 5−5x − x4 (□ is □ is not) a polynomial.

e. The expression 25
x2 + 23 − x (□ is □ is not) a polynomial.

f. The expression 37x6 − x + 8 4
3 (□ is □ is not) a polynomial.

g. The expression
√

7x − 4x3 (□ is □ is not) a polynomial.

h. The expression 6x
3
2 + 1 (□ is □ is not) a polynomial.

i. The expression 6x − 3x6 (□ is □ is not) a polynomial.

Explanation.

a. The expression −2x9 − 7
13 x3 − 1 is a polynomial.

b. The expression 5x−2 − 5x2 + 3 is not a polynomial because it has negative exponents on a variable.

c. The expression
√

2x − 3
5 is a polynomial. Note that coefficients can have radicals even though variables

cannot, and the square root here is only applied to the 2.

d. The expression 5x3−5−5x− x4 is a polynomial. Note that coefficients can have negative exponents even
though variables cannot.

e. The expression 25
x2 + 23 − x is not a polynomial because it has a variable in a denominator.

f. The expression 37x6 − x + 8 4
3 is a polynomial. Note that coefficients can have fractional exponents even

though variables cannot.

g. The expression
√

7x − 4x3 is not a polynomial because it has a variable inside a radical.

h. The expression 6x
3
2 + 1 is not a polynomial because a variable has a fractional exponent.

i. The expression 6x − 3x6 is not a polynomial because it has a variable in an exponent.

Definition 6.3.7. When a term only has one variable, its degree is the exponent on that variable. When a
term has more than on variable, its degree is the sum of the exponents on the variables in that term. When
a term has no variables, its degree is 0.

For example:

• the degree of 5x2 is 2;

• the degree of − 4
7 y5 is 5.

• the degree of −4x2 y3 is 5.

Polynomial terms are often classified by their degree. In doing so, we would refer to 5x2 as a second-degree
term.

Definition 6.3.8. The degree of a polynomial is the greatest degree that appears amongst its terms. If the
polynomial is just 0, it has no terms, and we say its degree is −1.

Definition 6.3.9. The leading term of a polynomial is the term with the greatest degree (assuming there is
one, and there is no tie).

For example, the degree of the polynomial x2 − 5x + 3 is 2 because the terms have degrees 2, 1, and 0, and 2
is the largest. Its leading term is x2. Polynomials are often classified by their degree, and we would say that
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x2 − 5x + 3 is a second-degree polynomial.

The coefficient of a polynomial’s leading term is called the polynomial’s leading coefficient. For example,
the leading coefficient of x2 − 5x + 3 is 1 (because x2 � 1 · x2).
Definition 6.3.10. A term with no variable factor is called a constant term.

For example, the constant term of the polynomial x2 − 5x + 3 is 3.

There are some special names for polynomials with certain degrees:

• A zero-degree polynomial is called a constant polynomial or simply a constant.

An example is the polynomial 7, which has degree zero because it can be viewed as 7x0.

• A first-degree polynomial is called a linear polynomial.

An example is −2x + 7.

• A second-degree polynomial is called a quadratic polynomial.

An example is 4x2 − 2x + 7.

• A third-degree polynomial is called a cubic polynomial.

An example is x3 + 4x2 − 2x + 7.

Fourth-degree and fifth-degree polynomials are called quartic and quintic polynomials, respectively. If the
degree of the polynomial, n, is greater than five, we’ll simply call it an nth-degree polynomial. For example,
the polynomial 5x8 − 4x5 + 1 is an 8th-degree polynomial.
Remark 6.3.11. To help us recognize a polynomial’s degree, it is the standard convention to write a polyno-
mial’s terms in order from greatest-degree term to lowest-degree term. When a polynomial is written in this
order, it is written in standard form. For example, it is standard practice to write 7− 4x − x2 as −x2 − 4x + 7
since −x2 is the leading term. By writing the polynomial in standard form, we can look at the first term to
determine both the polynomial’s degree and leading term.

There are special names for polynomials with a small number of terms:
Definition 6.3.12.

• A polynomial with one term, such as 3x5 or 9, is called a monomial.

• A polynomial with two terms, such as 3x5 + 2x or −2x + 1, is called a binomial.

• A polynomial with three terms, such as x2 − 5x + 3, is called a trinomial.

6.3.2 Adding and Subtracting Polynomials

Example 6.3.13 Production Costs. Bayani started a company that is devoted to one product: ketchup.
The company’s production costs only involve two components: supplies and labor. The cost of supplies,
S (in thousands of dollars), can be modeled by S � 0.05x2 + 2x + 30, where x is number of thousands of
jars of ketchup produced. The labor cost for his employees, L (in thousands of dollars), can be modeled
by 0.1x2 + 4x, where x again represents the number of jars they produce (in thousands of jars). Find a
model for the company’s total production costs.

Since Bayani’s company only has these two costs, we can find a model for the total production costs, C
(in thousands of dollars), by adding the supply costs and the labor costs:

C �
(
0.05x2

+ 2x + 30
)
+

(
0.1x2

+ 4x
)
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To finish simplifying our total production cost model, we’ll combine the like terms:

C � 0.05x2
+ 0.1x2

+ 2x + 4x + 30
� 0.15x2

+ 6x + 30

This simplifiedmodel can now calculate Bayani’s total production costs C (in thousands of dollars) when
the company produces x thousand jars of ketchup.

In short, the process of adding two or more polynomials involves recognizing and then combining the like
terms.

Checkpoint 6.3.14. Add the polynomials.(
−6x2 − 2x

)
+

(
2x2

+ 3x
)

Explanation. We combine like terms as follows(
−6x2 − 2x

)
+

(
2x2

+ 3x
)
�

(
2x2 − 6x2)

+ (3x − 2x)
� −4x2

+ x

Example 6.3.15 Simplify the expression
( 1

2 x2 − 2
3 x − 3

2
)
+

( 3
2 x2 + 7

2 x − 1
4
)
.

Explanation. (
1
2 x2 − 2

3 x − 3
2

)
+

(
3
2 x2

+
7
2 x − 1

4

)
�

(
1
2 x2

+
3
2 x2

)
+

((
−2

3 x
)
+

7
2 x

)
+

((
−3

2

)
+

(
−1

4

))
�

(
4
2 x2

)
+

((
−4

6 x
)
+

21
6 x

)
+

((
−6

4

)
+

(
−1

4

))
�

(
2x2)

+

(
17
6 x

)
+

(
−7

4

)
� 2x2

+
17
6 x − 7

4

Example 6.3.16 Profit, Revenue, andCosts. FromExample 6.3.13, we knowBayani’s ketchup company’s
production costs, C (in thousands of dollars), for producing x thousand jars of ketchup is modeled by
C � 0.15x2 +6x +30. The revenue, R (in thousands of dollars), from selling the ketchup can be modeled
by R � 13x, where x stands for the number of thousands of jars of ketchup sold. The company’s net
profit can be calculated using the concept:

net profit � revenue − costs

Assuming all products produced will be sold, a polynomial to model the company’s net profit, P (in
thousands of dollars) is:

P � R − C

� (13x) −
(
0.15x2

+ 6x + 30
)

� 13x − 0.15x2 − 6x − 30
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� −0.15x2
+ (13x + (−6x)) − 30

� −0.15x2
+ 7x − 30

The key distinction between the addition and subtraction of polynomials is that when we subtract a poly-
nomial, we must subtract each term in that polynomial.

Remark 6.3.17. Notice that our first step in simplifying the expression in Example 6.3.16 was to subtract
every term in the second expression. We can also think of this as distributing a factor of −1 across the
second polynomial, 0.15x2 + 6x + 30, and then adding these terms as follows:

P � R − C

� (13x) −
(
0.15x2

+ 6x + 30
)

� 13x + (−1)(0.15x2) + (−1)(6x) + (−1)(30)
� 13x − 0.15x2 − 6x − 30
� −0.15x2

+ (13x + (−6x)) − 30
� −0.15x2

+ 7x − 30

Example 6.3.18 Subtract
(
5x3 + 4x2 − 6x

)
−

(
−3x2 + 9x − 2

)
.

Explanation. We must first subtract every term in
(
−3x2 + 9x − 2

)
from

(
5x3 + 4x2 − 6x

)
. Then we can

combine like terms. (
5x3

+ 4x2 − 6x
)
−

(
−3x2

+ 9x − 2
)

� 5x3
+ 4x2 − 6x + 3x2 − 9x + 2

� 5x3
+

(
4x2

+ 3x2)
+ (−6x + (−9x)) + 2

� 5x3
+ 7x2 − 15x + 2

Checkpoint 6.3.19. Subtract the polynomials.(
−3x6

+ 8x4) − (−2x + 3)

Explanation. We combine like terms as follows(
−3x6

+ 8x4) − (−2x + 3) � −3x6
+ 8x4

+ 2x − 3

Let’s look at one more example involving multiple variables. Remember that like terms must have the same
variable(s) with the same exponent.

Example 6.3.20 Subtract
(
3x2 y + 8x y2 − 17y3) − (

2x2 y + 11x y2 + 4y2) .
Explanation. Again, we’ll begin by subtracting each term in

(
2x2 y + 11x y2 + 4y2) . Once we’ve done

this, we’ll need to identify and combine like terms.(
3x2 y + 8x y2 − 17y3) − (

2x2 y + 11x y2
+ 4y2)

� 3x2 y + 8x y2 − 17y3 − 2x2 y − 11x y2 − 4y2

�
(
3x2 y +

(
−2x2 y

) )
+

(
8x y2

+
(
−11x y2) )

+
(
−17y3)

+
(
−4y2)
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� x2 y − 3x y2 − 17y3 − 4y2

6.3.3 Evaluating Polynomial Expressions

Evaluating expressions was introduced in Section 2.1, and involves replacing the variable(s) in an expres-
sion with specific numbers and calculating the result. Here, we will look at evaluating polynomial expres-
sions.

Example 6.3.21 Evaluate the expression −12y3 + 4y2 − 9y + 2 for y � −5.

Explanation. We will replace y with −5 and simplify the result:

−12y3
+ 4y2 − 9y + 2 � −12(−5)3 + 4(−5)2 − 9(−5) + 2

� −12(−125) + 4(25) + 45 + 2
� 1647

Remark 6.3.22. Recall that (−5)2 and −52 are not the same expressions. The first expression, (−5)2, repre-
sents the number−5 squared, and is (−5)(−5) � 25. The second expression, −52, is the opposite of the number
5 squared, and is −52 � −(5 · 5) � −25.

Example 6.3.23 Evaluate the expression C � 0.15x2+6x+30 from Example 6.3.13 for x � 10 and explain
what this means in context.

Explanation. We will replace x with 10:

C � 0.15x2
+ 6x + 30

� 0.15(10)2 + 6(10) + 30
� 105

In context, we can interpret this as it costing $105,000 to produce 10,000 jars of ketchup.

Checkpoint 6.3.24. Evaluate the following expressions.

a. Evaluate
(
−y

)2 when y � −2.(
−y

)2
�

b. Evaluate
(
−y

)3 when y � −2.(
−y

)3
�

Explanation.

a.
(
−y

)2
�

(
− 1(−2)

)2

� (2)2

� 4

b.
(
−y

)3
�

(
− 1(−2)

)3

� (2)3

� 8
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Exercises

Review and Warmup

List the terms in each expression.

a. −3.4t + 0.1x + 8.2t + 3.6s

b. −2.8s2 − 0.8z

c. 7.5s + 7.6 − 5.4t2

d. 2.9y + 4t2 + 5.2y + 2.5s

1. List the terms in each expression.

a. −1.7t2 + 8.3z2 + 6.2y + 2.4x

b. 3.2z2 − 2.4 + 8.9t − 8z2

c. −6.6x

d. −6.6z2 + 5.6y2 + 0.4x2

2.

List the terms in each expression.

a. −0.1t

b. −1.6s + 4.2s + 1.2x2

c. 7.2x + 4.8 + 3x

d. −7.3s2 − 7.4

3. List the terms in each expression.

a. 1.5t2 + 6.6y

b. 2.2z + 1.4x

c. −7.9t2

d. −3.7t − 1.4x + 8.1s2

4.

Simplify each expression, if possible, by combining like terms.

a. 3t − 3t2

b. −6x − 7 − 7x + 8x

c. −4z2 + 9 + s2

d. −4s − 4s2 + 8x + 7y

5. a. 5z2 + 5z2 − 2z2

b. −3y − 5 + 4z

c. −4z2 + 7y + 8y − 9

d. −4t2 − 2y2

6.

a. 7z +
1
2 x +

5
4 x

b. 9
4 y2 + 1

c. −x − 7
5 x

d. 2
7 s + 1

2 s − 9
2 s

7. a. 8
9 z2 + 4t − 6

5 t

b. −2s2 + 1
9 s + 3z − 4

3 x

c. −3s + 8s2 − 6
5 s2

d. 1
8 y2 + 2

9 s2 − 2s2 − 9
7 y

8.

Vocabulary Questions Is the following expression a monomial, binomial, or trinomial?

3r14 − 17r6 is a (□ monomial □ binomial

□ trinomial) of degree

9. −12t11 − 3t2 is a (□monomial □ binomial

□ trinomial) of degree

10.

37 is a (□monomial □ binomial □ trino-

mial) of degree

11. 2 is a (□ monomial □ binomial □ trino-

mial) of degree

12.
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−18y11 − 9y7 − 20y6 is a (□monomial □ bi-

nomial □ trinomial) of degree

13. −20r10 − 2r9 − 10r2 is a (□monomial □ bi-

nomial □ trinomial) of degree

14.

−y4
+ 4y7 − 19y2 is a (□ monomial □ bi-

nomial □ trinomial) of degree

15. −15y6 − 20y7
+ 10y4 is a (□monomial □ bi-

nomial □ trinomial) of degree

16.

12r9 is a (□ monomial □ binomial □ tri-

nomial) of degree

17. −3r17 is a (□monomial □ binomial □ tri-

nomial) of degree

18.

Find the degree of the following polynomial.

13x7 y6 − 17x4 y2 − 10x2
+ 17

The degree of this polynomial is .

19. 17x7 y9
+ 10x y4

+ 7x2
+ 6

The degree of this polynomial is .

20.

Simplifying Polynomials Add the polynomials.

(−10x − 2) + (−9x − 3)21. (−7x − 10) + (−9x − 2)22.

(
−5x2

+ 4x
)
+

(
9x2

+ 7x
)

23.
(
−3x2

+ x
)
+

(
−3x2

+ 7x
)

24.

(
−6x2 − 8x − 3

)
+

(
−4x2

+ 9x − 3
)

25.
(
7x2

+ 3x − 3
)
+

(
9x2 − 4x + 7

)
26.

(
4r3 − 8r2 − 4

)
+

(
7r3 − 6r2 − 10

)
27.

(
−10t3 − 5t2

+ 7
)
+

(
−8t3

+ 9t2
+ 4

)
28.

(
−7t6 − 3t4 − 4t2)

+
(
9t6 − 3t4 − 4t2)29.

(
4x6 − 9x4

+ 7x2)
+

(
10x6

+ 6x4
+ 9x2)30.

(
0.8x5 − 0.5x4

+ 0.2x2 − 0.4
)
+

(
−0.4x5

+ 0.9x3 − 0.3
)

31.

(
0.1y5

+ 0.3y4 − 0.3y2 − 0.5
)
+

(
0.6y5 − 0.8y3

+ 0.4
)

32.

(
−5x3 − 2x2 − 4x +

1
2

)
+

(
−5x3

+ 9x2 − 5x +
3
2

)
33.

(
6x3

+ 4x2 − 8x +
1
2

)
+

(
4x3 − 6x2

+ 6x +
3
2

)
34.
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Subtract the polynomials.

(2x + 1) − (9x − 6)35. (4x − 7) − (−3x − 6)36.

(
6x2

+ 7x
)
−

(
5x2

+ 9x
)

37.
(
9x2 − 7x

)
−

(
3x2 − 7x

)
38.

(
−2x5 − 7x4) − (

−5x2
+ 4

)
39.

(
−8x5 − 7x4) − (6x + 10)40.

(
−4x3

+ 5x2 − 8x + (−5)
)
−

(
−9x2

+ 9x + 8
)

41.
(
−5x3

+ 9x2 − 8x + 6
)
−

(
10x2 − 2x + 3

)
42.

(
6x2 − 4x − 8

)
−

(
−4x2 − 3x + 1

)
43.

(
−7x2

+ 8x − 8
)
−

(
−8x2

+ 7x + 10
)

44.

(
−2r6 − 8r4 − 5r2) − (

−4r6 − 2r4
+ r2)45.

(
8t6 − 5t4

+ 6t2) − (
−4t6

+ 4t4 − 10t2)46.

Add or subtract the given polynomials as indicated.[
4t13 − 2t7

+ 2t6 −
(
−10t13

+ 3t7 − 7t6) ] − (
−3t13 − 5t7 − 7t6)47.

[
x6 − 7x4

+ 9x3 −
(
−10x6

+ 8x4 − 6x3) ] − (
−8x6 − 2x4 − 3x3)48.

[
7x5 − 4x4

+ 7x3 −
(
−10x5

+ 3x4 − 5x3) ] − [
−5x5 − 8x4

+ 3x3
+

(
−2x5 − 6x4 − 5x3) ]49.

[
4x6

+ 4x5 −
(
−10x6 − 4x5) ] − [

−10x6
+ 8x5

+
(
−6x6 − 6x5) ]50.

(
5x8 y4 − 7x y

)
+

(
−2x8 y4 − 8x y

)
51.

(
6x3 y7

+ 2x y
)
+

(
10x3 y7

+ 9x y
)

52.

(
−5x4 y8

+ 4x y − 9
)
+

(
−8x4 y8 − 5x y − 6

)
53.

(
8x3 y6 − 9x y + 8

)
+

(
10x3 y6

+ 2x y − 2
)

54.

(
9x9 y8 + 4x2 y2 + 2x y

)
+

(
−10x9 y8 − 3x2 y2 − 8x y

)
55.

(
−10x8 y9 + 8x5 y3 − 4x y

)
+

(
−3x8 y9 − 5x5 y3 + 9x y

)
56.

(
2x8 − 2x y + 7y6) − (

−10x8 + 4x y − 10y6)57.
(
3x7 − 6x y − 10y9) − (

10x7 − 5x y − 7y9)58.

(
−4x8 y9 + 10x4 y3 + 4x y

)
−

(
−10x8 y9 + 6x4 y3 − 3x y

)
59.
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5x7 y9 + 5x2 y4 − 7x y

)
−

(
10x7 y9 − 7x2 y4 − 9x y

)
60.

(
−6x4 − 8y8) − (

−9x4 + 7x7 y8 + 9x4 y8 − 6y8)61.
(
−7x3 − 3y8) − (

9x3 + 8x4 y8 − 3x3 y8 − 2y8)62.

Subtract −8r15 − 6r14 − 5r12 from the sum of 8r15 − 5r14 + 8r12 and −3r15 + 3r14 − 3r12.63.

Subtract −4t8 − 10t7 from the sum of 5t8 + 5t7 and −3t8 − 2t7.64.

Subtract −10x3 y5 − 5x y from −9x3 y5 − 2x y65.

Subtract 2x5 y8 + 9x y from 9x5 y8 + 2x y66.

Evaluating Polynomials

Evaluate the expression x2:

a. When x � 5, x2
�

b. When x � −4, x2
�

67. Evaluate the expression x2:

a. When x � 2, x2
�

b. When x � −7, x2
�

68.

Evaluate the expression −y2:

a. When y � 4, −y2
�

b. When y � −2, −y2
�

69. Evaluate the expression −y2:

a. When y � 3, −y2
�

b. When y � −4, −y2
�

70.

Evaluate the expression r3:

a. When r � 2, r3
�

b. When r � −5, r3
�

71. Evaluate the expression r3:

a. When r � 4, r3
�

b. When r � −3, r3
�

72.

Evaluate the following expressions.

a. Evaluate (−t)2 when t � −4.

(−t)2 �

b. Evaluate (−t)3 when t � −4.

(−t)3 �

73. Evaluate the following expressions.

a. Evaluate (−t)2 when t � −4.

(−t)2 �

b. Evaluate (−t)3 when t � −4.

(−t)3 �

74.
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Evaluate the expression 1
5
(
x + 1

)2 − 6 when
x � −6.

75. Evaluate the expression 1
8
(
x + 1

)2 − 4 when
x � −9.

76.

Evaluate the expression 1
6
(
x + 1

)2 − 9 when
x � −7.

77. Evaluate the expression 1
3
(
x + 2

)2 − 6 when
x � −5.

78.

Evaluate the expression−16t2+64t+128when
t � −2.

79. Evaluate the expression−16t2+64t+128when
t � 5.

80.

Evaluate the expression−16t2+64t+128when
t � 4.

81. Evaluate the expression−16t2+64t+128when
t � 2.

82.

Applications of Simplifying Polynomials The formula

y �
1
2 a t2

+ v0 t + y0

gives the vertical position of an object, at time t, thrownwith an initial velocity v0, from an initial position y0

in a place where the acceleration of gravity is a. The acceleration of gravity on earth is −9.8 m
s2 . It is negative,

because we consider the upward direction as positive in this situation, and gravity pulls down.

What is the height of a baseball thrown with
an initial velocity of v0 � 95 m

s , from an initial
position of y0 � 92 m, and at time t � 19 s?

Nineteen seconds after the baseballwas thrown,
it was high in the air.

83. What is the height of a baseball thrown with
an initial velocity of v0 � 50 m

s , from an initial
position of y0 � 74 m, and at time t � 4 s?

Four seconds after the baseball was thrown, it
was high in the air.

84.

An auto company’s sales volume can be modeled by 4.1x2 + 7.1x + 3.3, and its cost can be modeled
by 2.3x2 + 2.7x + 3.3, where x represents the number of cars produced, and y stands for money in
thousand dollars. We can calculate the company’s net profit by subtracting cost from sales. Find the
polynomial which models the company’s sales in thousands of dollars.

The company’s profit can be modeled by dollars.

85.

An auto company’s sales volume can be modeled by 7.9x2 + 1.8x + 3.2, and its cost can be modeled
by 2.7x2 − 3.2x + 3.2, where x represents the number of cars produced, and y stands for money in
thousand dollars. We can calculate the company’s net profit by subtracting cost from sales. Find the
polynomial which models the company’s sales in thousands of dollars.

The company’s profit can be modeled by dollars.

86.
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A handyman is building two pig pens sharing the same side. Assume the length of the shared side
is x meters. The cost of building one pen would be 33.5x2 − 2x + 4 dollars, and the cost of building
the other pen would be 30.5x2 + 2x − 42 dollars. What’s the total cost of building those two pens?

A polynomial representing the total cost of building those two pens is
dollars.

87.

A handyman is building two pig pens sharing the same side. Assume the length of the shared side
is x meters. The cost of building one pen would be 23x2 + 10x + 2.5 dollars, and the cost of building
the other penwould be 33.5x2 − 10x + 30.5 dollars. What’s the total cost of building those two pens?

A polynomial representing the total cost of building those two pens is
dollars.

88.

A farmer is building fence around a triangular area. The cost of building the shortest side is 40x
dollars, where x stands for the length of the side in feet. The cost of building the other two sides can
be modeled by 8x2 − 0.5x + 40 dollars and 4x3 − 3.5x + 20 dollars, respectively. What’s the total cost
of building fence for all three sides?

The cost of building fence for all three sides would be dollars.

89.

A farmer is building fence around a triangular area. The cost of building the shortest side is 45x
dollars, where x stands for the length of the side in feet. The cost of building the other two sides can
be modeled by 5x2 + 3.5x + 35 dollars and 4x3 + 1.5x + 25 dollars, respectively. What’s the total cost
of building fence for all three sides?

The cost of building fence for all three sides would be dollars.

90.

An architect is designing a house on an empty plot. The area of the plot can be modeled by the
polynomial 5x4 + 5x2 − 4.5x, and the area of the house’s base can be modeled by 6x3 − 4.5x − 40.
The rest of the plot is the yard. What’s the yard’s area?

The area of the yard can be modeled by the polynomial .

91.

An architect is designing a house on an empty plot. The area of the plot can be modeled by the
polynomial 6x4 + 16x2 + 4x, and the area of the house’s base can be modeled by 5x3 + 4x − 5. The
rest of the plot is the yard. What’s the yard’s area?

The area of the yard can be modeled by the polynomial .

92.
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6.4 Multiplying Polynomials

Previously, we have learned to multiply monomials in Section 6.1 (such as (4x y)
(
3x2)) and to add and

subtract polynomials in Section 6.3 (such as (4x2 − 3x) + (5x2 + x − 2)). In this section, we will learn how to
multiply polynomials.

Example 6.4.2 Revenue. Avery owns a local organic jam company that currently sells about 1500 jars a
month at a price of $13 per jar. Avery has found that every time they raise the price by 25 cents a jar,
they will sell 50 fewer jars of jam each month.

In general, this company’s revenue can be calculated by multiplying the cost per jar by the total number
of jars of jam sold.

If we let x represent the number of 25-cent increases in the price, then the price per jar will be the current
price of thirteen dollars/jar plus x times 0.25 dollars/jar, or 13 + 0.25x.

Continuing with x representing the number of 25-cent increases in the price, we know the companywill
sell 50 fewer jars each time the price increases by 25 cents. The number of jars the company will sell will
be the 1500 they currently sell each month, minus 50 jars times x, the number of price increases. This
gives us the expression 1500−50x to represent howmany jars the company will sell after x 25-cent price
increases.

Combining this, we can now write a formula for our revenue model:

revenue �
(
price per item

)
(number of items sold)

R � (13 + 0.25x) (1500 − 50x)

To simplify the expression (13 + 0.25x) (1500 − 50x), we’ll need to multiply 13 + 0.25x by 1500 − 50x. In
this section, we’ll learn how to multiply these two expressions that each have multiple terms.

6.4.1 Review of the Distributive Property

The first step in almost every polynomial multiplication exercise will be a step of distribution. Let’s quickly
review the distributive property from Section 2.10, which states that a(b + c) � ab + ac where a , b, and c are
real numbers or variable expressions.

When we multiply a monomial with a binomial, we apply this property by distributing the monomial to
each term in the binomial. For example,

−4x(3x2
+ 5) � (−4x) ·

(
3x2)

+ (−4x) · (5)
� −12x3 − 20x

A visual approach to the distributive property is to treat the product as finding a rectangle’s area. Such
rectangles are referred to as generic rectangles and they can be used to model polynomial multiplication.

2x

3x 4

2x · 3x 2x · 4

Figure 6.4.3: A Generic Rectangle Modeling 2x(3x + 4)

The big rectangle consists of two smaller rectangles. The big rectangle’s area is 2x(3x + 4), and the sum of
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those two smaller rectangles is 2x · 3x + 2x · 4. Since the sum of the areas of those two smaller rectangles is
the same as the bigger rectangle’s area, we have:

2x(3x + 4) � 2x · 3x + 2x · 4
� 6x2

+ 8x

Generic rectangles are frequently used to visualize the distributive property.

Multiplying a monomial with a polynomial involves two steps: distribution and monomial multiplication.
We also need to rely on the rules of exponents 6.1.15 when simplifying.

Checkpoint 6.4.4. Simplify the expression so that the result does not have parentheses.

a. 2(x y) �

b. 2(x + y) �

Explanation.

a. 2
(
x y

)
� 2x y

b. 2
(
x + y

)
� 2x + 2y

Checkpoint 6.4.5. Multiply the polynomials.

−3x (−6x + 6) �

Explanation. We multiply the monomial by each term in the binomial, using the properties of exponents
to help us.

−3x(−6x + 6) � 18x2 − 18x

Checkpoint 6.4.6. Multiply the polynomials.

(4a4)(10a3 − 5a10b6 − 8b7) �

Explanation. We multiply the polynomials using the rule am · an � am+n to guide us.(
4a4) (

10a3 − 5a10b6 − 8b7)
� 40a4+3 − 20a4+10b6 − 32a4b7

� 40a7 − 20a14b6 − 32a4b7

Note that we are using the distributive property of multiplication in this problem: x(y + z) � x y + xz.

Remark 6.4.7. We can use the distributive property when multiplying on either the left or the right. This
means that we can state a(b + c) � ab + ac, or that (b + c)a � ba + ca, which is equivalent to ab + ac. As an
example,

(3x2
+ 5)(−4x) � (3x2) · (−4x) + (5) · (−4x)

� −12x3 − 20x

6.4.2 Approaches to Multiplying Binomials

Multiplying Binomials Using Distribution Whether we’re multiplying a monomial with a polynomial or
two larger polynomials together, the first step to carrying out the multiplication is a step of distribution.
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We’ll start with multiplying binomials and then move to working with larger polynomials.

We know we can distribute the 3 in (x + 2)3 to obtain (x + 2) · 3 � x · 3 + 2 · 3. We can actually distribute
anything across (x + 2). For example:

(x + 2)🐱 � x ·🐱 + 2 ·🐱

With this in mind, we can begin multiplying (x + 2)(x + 3) by distributing the (x + 3) across (x + 2):

(x + 2)(x + 3) � x(x + 3) + 2(x + 3)

To finish multiplying, we’ll continue by distributing again, but this time across (x + 3):

(x + 2)(x + 3) � x(x + 3) + 2(x + 3)
� x · x + x · 3 + 2 · x + 2 · 3
� x2

+ 3x + 2x + 6
� x2

+ 5x + 6

To multiply a binomial by another binomial, we simply had to repeat the step of distribution and simplify
the resulting terms. In fact, multiplying any two polynomials will rely upon these same steps.

Multiplying Binomials Using FOIL While multiplying two binomials requires two applications of the
distributive property, people often remember this distribution process using the mnemonic foil. foil refers
to the pairs of terms from each binomial that end up distributed to each other.

If we take another look at the example we just completed, (x + 2)(x + 3), we can highlight how the foil
process works. foil is the acronym for ”First, Outer, Inner, Last”.

(x + 2)(x + 3) � (

F︷︸︸︷
x · x ) + (

O︷︸︸︷
3 · x ) + (

I︷︸︸︷
2 · x ) + (

L︷︸︸︷
2 · 3 )

� x2
+ 3x + 2x + 6

� x2
+ 5x + 6

F: x2 The x2 term was the result of the product of first terms from each binomial.

O: 3x The 3x was the result of the product of the outer terms from each binomial. This was from the x in
the front of the first binomial and the 3 in the back of the second binomial.

I: 2x The 2x was the result of the product of the inner terms from each binomial. This was from the 2 in the
back of the first binomial and the x in the front of the second binomial.

L: 6 The constant term 6 was the result of the product of the last terms of each binomial.

( x+2 ) ( x+3 )

F O

I L

Figure 6.4.8: Using foil Method to multiply (x + 2)(x + 3)
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Multiplying Binomials Using Generic Rectangles We can also approach this same example using the
generic rectangle method. To use generic rectangles, we treat x + 2 as the base of a rectangle, and x + 3 as
the height. Their product, (x + 2)(x + 3), represents the rectangle’s area. The next diagram shows how to set
up generic rectangles to multiply (x + 2)(x + 3).

x 2

x

3

Figure 6.4.9: Setting up Generic Rectangles to Multiply (x + 2)(x + 3)

The big rectangle consists of four smaller rectangles. We will find each small rectangle’s area in the next
diagram by the formula area � base · height.

x 2

x

3

x2 2x

3x 6

Figure 6.4.10: Using Generic Rectangles to Multiply (x + 2)(x + 3)

To finish finding this product, we need to add the areas of the four smaller rectangles:

(x + 2)(x + 3) � x2
+ 3x + 2x + 6

� x2
+ 5x + 6

Notice that the areas of the four smaller rectangles are exactly the same as the four terms we obtained using
distribution, which are also the same four terms that came from the foil method. Both the foil method and
generic rectangles approach are different ways to represent the distribution that is occurring.

Example 6.4.11 Multiply (2x − 3y)(4x − 5y) using distribution.

Explanation. To use the distributive property tomultiply those two binomials, we’ll first distribute the
second binomial across (2x − 3y). Then we’ll distribute again, and simplify the terms that result.

(2x − 3y)(4x − 5y) � 2x(4x − 5y) − 3y(4x − 5y)
� 8x2 − 10x y − 12x y + 15y2

� 8x2 − 22x y + 15y2

Example 6.4.12 Multiply (2x − 3y)(4x − 5y) using foil.

Explanation. First, Outer, Inner, Last: Either with arrows on paper or mentally in our heads, we’ll pair
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up the four pairs of monomials and multiply those pairs together.

(2x − 3y)(4x − 5y) � (

F︷ ︸︸ ︷
2x · 4x) + (

O︷      ︸︸      ︷
2x · (−5y)) + (

I︷   ︸︸   ︷
−3y · 4x) + (

L︷       ︸︸       ︷
−3y · (−5y)

� 8x2 − 10x y − 12x y + 15y2

� 8x2 − 22x y + 15y2

Example 6.4.13 Multiply (2x − 3y)(4x − 5y) using generic rectangles.

Explanation. We begin by drawing four rectangles and marking their bases and heights with terms in
the given binomials:

2x −3y

4x

−5y

Figure 6.4.14: Setting up Generic Rectangles to Multiply (2x − 3y)(4x − 5y)

Next, we calculate each rectangle’s area by multiplying its base with its height:

2x −3y

4x

−5y

8x2 −12x y

−10x y 15y2

Figure 6.4.15: Using Generic Rectangles to Multiply (2x − 3y)(4x − 5y)

Finally, we add up all rectangles’ area to find the product:

(2x − 3y)(4x − 5y) � 8x2 − 10x y − 12x y + 15y2

� 8x2 − 22x y + 15y2

6.4.3 More Examples of Multiplying Binomials

Whenmultiplying binomials, all of the approaches shown in Subsection 6.4.2 will have the same result. The
foil method is the most direct and will be used in the examples that follow.

Checkpoint 6.4.16. Multiply the polynomials.

(5x − 4) (x + 9) �
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Explanation. We use the FOIL technique: First Outside Inside Last.

(5x − 4) (x + 9) � 5x2
+ 45x − 4x − 36

� 5x2
+ 41x − 36

Checkpoint 6.4.17. Multiply the polynomials.(
4x2 − 5

) (
6x2 − 2

)
�

Explanation. We use the FOIL technique: First Outside Inside Last.(
4x2 − 5

)
(6x2 − 2) � 24x4 − 8x2 − 30x2

+ 10
� 24x4 − 38x2

+ 10

Example 6.4.18 Multiply and simplify the formula for Avery’s jam company’s revenue, R (in dollars),
from Example 6.4.2 where R � (13 + 0.25x)(1500 − 50x) and x represents the number of 25-cent price
increases to the selling price of a jar of jam.

Explanation. To multiply this, we’ll use foil:

R � (13 + 0.25x) (1500 − 50x)
� (13 · 1500) + (13 · (−50x)) + (0.25x · 1500) + (0.25x · (−50x))
� 19500 − 650x + 375x − 12.5x2

� −12.5x2 − 275x + 19500

Example 6.4.19 Tyrone is an artist and he sells each of his paintings for $200. Currently, he can sell 100
paintings per year. Thus, his annual income from paintings is 200 ·100 � 20000 dollars. He plans to raise
the price. However, for each $20 price increase per painting, his customers would buy 5 fewer paintings
annually.

Assume Tyrone would raise the price of his paintings x times, each time by $20. Use an expanded
polynomial to represent his new income per year.

Explanation. Currently, each painting costs $200. After raising the price x times, each time by $20,
each painting’s new price would be 200 + 20x dollars.

Currently, Tyrone sells 100 paintings per year. After raising the price x times, each time selling 5 fewer
paintings, he would sell 100 − 5x paintings per year.

His annual income can be calculated by multiplying each painting’s price by the number of paintings
he would sell:

annual income � (200 + 20x)(100 − 5x)
� 200(100) + 200(−5x) + 20x(100) + 20x(−5x)
� 20000 − 1000x + 2000x − 100x2

� −100x2
+ 1000x + 20000

After raising the price x times, each time by $20, Tyrone’s annual income from paintings would be
−100x2 + 1000x + 20000 dollars.
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6.4.4 Multiplying Polynomials Larger Than Binomials

The foundation formultiplying anypair of polynomials is distribution andmonomialmultiplication. Whether
we are working with binomials, trinomials, or larger polynomials, the process is fundamentally the same.

Example 6.4.20 Multiply (x + 5)
(
x2 − 4x + 6

)
.

We can approach this product using either distribution generic rectangles. We cannot directly use the
foil method, although it can be helpful to draw arrows to the six pairs of products that will occur.

Using the distributive property, we begin by distributing across
(
x2 − 4x + 6

)
, perform a second step of

distribution, and then combine like terms.

(x + 5)
(
x2 − 4x + 6

)
� x

(
x2 − 4x + 6

)
+ 5

(
x2 − 4x + 6

)
� x · x2 − x · 4x + x · 6 + 5 · x2 − 5 · 4x + 5 · 6
� x3 − 4x2

+ 6x + 5x2 − 20x + 30
� x3

+ x2 − 14x + 30

With the foundation of monomial multiplication and understanding how distribution applies in this con-
text, we are able to find the product of any two polynomials.

Checkpoint 6.4.21. Multiply the polynomials.

(a − 3b)(a2
+ 7ab + 9b2) �

Explanation. We multiply the polynomials by using the terms from a − 3b successively.

(a − 3b)
(
a2

+ 7ab + 9b2)
� aa2

+ a · 7ab + a · 9b2 − 3ba2 − 3b · 7ab − 3b · 9b2

� a3
+ 4a2b − 12ab2 − 27b3

Exercises

Review and Warmup Use the properties of exponents to simplify the expression.

r14 · r71. x16 · x192. (−5x19) · (−4x13)3.

(9y2) · (5y6)4.
(
−8r3)35.

(
−4y4)36.

Count the number of terms
in each expression.

a. −2y − 5y

b. 7y − x

c. 7s

d. 4z − s + 3y2

7. Count the number of terms
in each expression.

a. 3y − 8t − 3s

b. s2 + 6s − 5x + 5z

c. 6s − s2

d. −4y2 − 5x + 8 + 7x

8. List the terms in each expres-
sion.

a. −5.5y2 − 0.5s + 8.2x

b. 1.1y + 3.1t

c. 2.2s2 − 0.5z − 7.3y + 8.5s

d. 8.3x2 − 5.2y − 5y2

9.
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List the terms in each expres-
sion.

a. 6y + 8.6 + 8.6x2

b. −2.5z2

c. 0.9y − 0.1t

d. −5.5x2 + 2.1s + 4.5y

10. List the terms in each expres-
sion.

a. −8.9y2 + 4.2z − 8.2 + 3.4z

b. 5.9y2 − 7y2 − 7.8y

c. −7.5z + 1.4y − 3t

d. 1.8z − 2s + 8.7z + 6.6x2

11. List the terms in each expres-
sion.

a. −8.9y + 6.9z2 + 7.3 − 3.8x

b. 7.5y + 6.5y

c. −4.6s2

d. −6.2y2 − 5.3y − 6s2

12.

Simplify each expression, if
possible, by combining like
terms.

a. −9y2 − 8y2

b. −5t2 + 4t2

c. −9s2 + 7t2 − 4t

d. −7x − z + 9z

13. Simplify each expression, if
possible, by combining like
terms.

a. −6y + 5

b. −6t2 − 2x2 − 2x2 − 7x2

c. −t2 + 2

d. −y + 4y2

14. Simplify each expression, if
possible, by combining like
terms.

a. y − 9y

b. −y2 + 9
5 z2 − 7

9 t2

c. − 4
9 t2 + 2

3 t + t

d. 1
4 x2 − 9z2 + 4x2 + 2

3 z

15.

Simplify each expression, if
possible, by combining like
terms.

a. 1
3 x − 7

9 s

b. − 2
9 z +

9
4 y

c. − 3
5 z +

5
2 y − 9

8 s − 1
4 z

d. 1
3 z2 + 1

8 z2 + 6
5 z2

16.

Multiplying Monomials with Binomials Multiply the polynomials.

−x (x − 7) �17. x (x + 5) �18. −7x (3x − 3) �19.

8x (−6x + 3) �20. 8x2 (x + 5) �21. 10x2 (x − 9) �22.

7x2 (
−7x2 + 2x

)
�23. −4x2 (

−5x2 − 6x
)
�24.

10y2 (
−2y2 + 8y − 9

)
�25.

−7y2 (
−9y2 − 6y + 2

)
�26.
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(−6x8 y15)(−2x17
+ 5y16) �27. (7x10 y19)(−9x13

+ 2y5) �28. (8a12b8)(4a19b13 − 2a4b15) �29.

(−9a13b16)(8a6b3
+ 2a15b19) �30. (10a7)(−3a6 − 10a5b8 − 8b9) �31. (−2a9)(−6a10

+ 10a10b8
+ 9b8) �32.

Applications of Multiplying Monomials with Binomials

Arectangle’s length is 3 feet shorter than twice
its width. If we use w to represent the rectan-
gle’s width, use a polynomial to represent the
rectangle’s area in expanded form.

area � square feet

33. Arectangle’s length is 4 feet shorter than 5 times
its width. If we use w to represent the rectan-
gle’s width, use a polynomial to represent the
rectangle’s area in expanded form.

area � square feet

34.

A triangle’s height is 6 feet longer than 4 times
its base. If we use b to represent the triangle’s
base, use a polynomial to represent the trian-
gle’s area in expanded form. A triangle’s area
can be calculated by A �

1
2 bh, where b stands

for base, and h stands for height.

area � square feet

35. A triangle’s height is 6 feet longer than twice
its base. If we use b to represent the triangle’s
base, use a polynomial to represent the trian-
gle’s area in expanded form. A triangle’s area
can be calculated by A �

1
2 bh, where b stands

for base, and h stands for height.

area � square feet

36.

A trapezoid’s top base is 2 feet longer than
its height, and its bottom base is 6 feet longer
than its height. If we use h to represent the
trapezoid’s height, use a polynomial to rep-
resent the trapezoid’s area in expanded form.
A trapezoid’s area can be calculated by A �
1
2 (a + b)h, where a stands for the top base, b
stands for the bottom base, and h stands for
height.

area � square feet

37. A trapezoid’s top base is 10 feet longer than
its height, and its bottom base is 6 feet longer
than its height. If we use h to represent the
trapezoid’s height, use a polynomial to rep-
resent the trapezoid’s area in expanded form.
A trapezoid’s area can be calculated by A �
1
2 (a + b)h, where a stands for the top base, b
stands for the bottom base, and h stands for
height.

area � square feet

38.

Multiplying Binomials Multiply the polynomials.

(t + 1) (t + 5) �39. (t + 8) (t + 9) �40. (5x + 3) (x + 7) �41.

(2x + 8) (x + 4) �42.
(
y + 7

) (
y − 9

)
�43.

(
y + 4

) (
y − 5

)
�44.
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(r − 1) (r − 5) �45. (r − 4) (r − 7) �46. (3t + 8) (t + 8) �47.

(6t + 3) (5t + 8) �48. (4t − 6) (5t − 1) �49. (3x − 10) (2x − 3) �50.

(10x − 6) (x − 1) �51.
(
6y − 2

) (
y − 4

)
�52.

(
3y − 8

) (
y + 4

)
�53.

(9r − 3) (r + 1) �54. (4r − 9)
(
5r2 − 4

)
�55. (2t − 5)

(
4t2 − 6

)
�56.

(
9t3 + 10

) (
t2 + 3

)
�57.

(
6t3 + 4

) (
t2 + 10

)
�58.

(
2x2 − 3

) (
5x2 − 4

)
�59.

(
5x2 − 8

) (
3x2 − 4

)
�60. (a − 4b)(a − 7b) �61. (a − 5b)(a + 2b) �62.

(a − 8b)(6a + 7b) �63. (a + 5b)(7a + 4b) �64. (8a − 4b)(2a + 6b) �65.

(9a + 8b)(8a − 6b) �66. (10ab − 3)(4ab + 6) �67. (2ab − 6)(10ab − 6) �68.

4(x + 10)(x + 9) �69. −2
(
y − 3

) (
y + 3

)
�70. y

(
y + 9

) (
y + 6

)
�71.

−3r(r − 9)(r − 1) �72. −3(4r + 3)(r − 1) �73. 4(2t − 1)(t − 1) �74.

Applications of Multiplying Binomials

Anartist sells his paintings at $19.00per piece.
Currently, he can sell 130 paintings per year.
Thus, his annual income from paintings is 19 ·
130 � 2470 dollars. He plans to raise the price.
However, for each $3.00 of price increase per
painting, his customerswould buy 6 fewer paint-
ings annually.

Assume the artist would raise the price of his
painting x times, each time by $3.00. Use an
expanded polynomial to represent his new in-
come per year.

new annual income �

75. Anartist sells his paintings at $20.00per piece.
Currently, he can sell 110 paintings per year.
Thus, his annual income from paintings is 20 ·
110 � 2200 dollars. He plans to raise the price.
However, for each $5.00 of price increase per
painting, his customers would buy 10 fewer
paintings annually.

Assume the artist would raise the price of his
painting x times, each time by $5.00. Use an
expanded polynomial to represent his new in-
come per year.

new annual income �

76.
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A rectangle’s base can be modeled by x + 2
meters, and its height can bemodeled by x + 4
meters. Use a polynomial to represent the rect-
angle’s area in expanded form.

area �

square meters

77. A rectangle’s base can be modeled by x + 3
meters, and its height can bemodeled by x − 8
meters. Use a polynomial to represent the rect-
angle’s area in expanded form.

area �

square meters

78.

Multiplying Larger Polynomials Multiply the polynomials.

(−3x − 2)
(
x2 + 3x + 5

)
�79.

(3x + 4)
(
x2 − 3x − 2

)
�80.

(−4x + 5)
(
3x3 − 2x2 − 4x + 5

)
�81. (−4x − 3)

(
2x3 + 5x2 + 3x − 2

)
�82.

(
x2 + 5x − 5

) (
x2 + 3x − 3

)
�83.

(
x2 − 5x + 2

) (
x2 − 3x + 3

)
�84.

(a − 10b)(a2 − 7ab + 4b2) �85. (a + 2b)(a2 − 2ab − 4b2) �86.

(a + b − 3)(a + b + 3) �87. (a + b − 4)(a + b + 4) �88.

Challenge

Fill in the blanks with algebraic expressions that make the equation true. You may not use 0 or 1 in
any of the blank spaces. An example is ?+ ? � 8x, where one possible answer is 3x + 5x � 8x. There
are infinitely many correct answers to this problem. Be creative. After finding a correct answer, see
if you can come up with a different answer that is also correct.

a. + � −13x y

b. + � −19x15 y9

c. · · · · � 17x50 y75

89.
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6.5 Special Cases of Multiplying Polynomials

Since we are now able to multiply polynomials together, we will look at a few special cases of polynomial
multiplication.

6.5.1 Squaring a Binomial

Example 6.5.2 To “square a binomial” is to take a binomial and multiply it by itself. We know that
exponent notationmeans that 42 � 4 ·4. Applying this to a binomial, we’ll see that (x+4)2 � (x+4)(x+4).
To expand this expression, we’ll simply distribute (x + 4) across (x + 4):

(x + 4)2 � (x + 4) (x + 4)
� x2

+ 4x + 4x + 16
� x2

+ 8x + 16

Similarly, to expand (y − 7)2, we’ll have:(
y − 7

)2
�

(
y − 7

) (
y − 7

)
� y2 − 7y − 7y + 49
� y2 − 14y + 49

These two examples might look like any other example of multiplying binomials, but looking closely we
can see that something very specific (or special) happened. Focusing on the original expression and the
simplified one, we can see that a specific pattern occurred in each:

(x + 4)2 � x2
+ 4x + 4x + 4 · 4

(x + 4)2 � x2
+ 2(4x) + 42

And: (
y − 7

)2
� y2 − 7y − 7y + 7 · 7(

y − 7
)2

� y2 − 2(7y) + 72

Notice that the twomiddle terms are not only the same, they are also exactly the product of the two terms
in the binomial. Furthermore, the last term is the square of the second term in each original binomial.

What we’re seeing is a pattern that relates to two important phrases: The process is called squaring a bi-
nomial, and the result is called a perfect square trinomial. The first phrase is a description of what we’re
doing, we are literally squaring a binomial. The second phrase is a description of what you end up with.
This second name will become important in a future chapter.

Example 6.5.3 The general way this pattern is presented is by squaring the two most general binomials
possible, (a + b) and (a− b). We will establish the pattern for (a + b)2 and (a− b)2. Once we have done so,
we will be able to substitute anything in place of a and b and rely upon the general pattern to simplify
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squared binomials.

We first must expand (a + b)2 as (a + b)(a + b) and then we can multiply those binomials:

(a + b)2 � (a + b)(a + b)
� a2

+ ab + ba + b2

� a2
+ 2ab + b2

Notice the final simplification step was to add ab + ba. Since these are like terms, we can combine them
into 2ab.

Similarly, we can find a general formula for (a − b)2:

(a − b)2 � (a − b)(a − b)
� a2 − ab − ba + b2

� a2 − 2ab + b2

Fact 6.5.4 Squaring a Binomial Formulas. If a and b are real numbers or variable expressions, then we have the
following formulas:

(a + b)2 � a2
+ 2ab + b2

(a − b)2 � a2 − 2ab + b2

These formulas will allow us to multiply this type of special product more quickly.

Remark 6.5.5. Notice that when both (a + b)2 and (a − b)2 are expanded in Example 6.5.3, the last term was
a positive b2 in both. This is because any number or expression, regardless of its sign, is positive after it is
squared.

6.5.2 Further Examples of Squaring Binomials

Example 6.5.6 Expand (2x − 3)2 using the squaring a binomial formula.

For this example we need to recognize that to apply the formula (a− b)2 � a2− 2ab + b2 in this situation,
a � 2x and b � 3. Expanding this, we have:

(a − b)2 � a2 − 2ab + b2

(2x − 3)2 � (2x)2 − 2(2x)(3) + (3)2

� 4x2 − 12x + 9

Remark 6.5.7. While we rely on the formula for squaring a binomial in Example 6.5.6, we will often omit
the step of formally writing the formula and jump to the simplification, in this way:

(2x − 3)2 � 4x2 − 12x + 9

Example 6.5.8 Multiply the following using the squaring a binomial formula:

a. (5x y + 1)2 b. 4(3x − 7)2
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Explanation.

a. (5x y + 1)2 � (5x y)2 + 2(5x y)(1) + 12

� 25x2 y2
+ 10x y + 1

b. With this expression, we will first note that the factor of 4 is outside the portion of the expression
that is squared. Using the order of operations, we will first expand (3x − 7)2 and then multiply
that expression by 4:

4(3x − 7)2 � 4
(
(3x)2 − 2(3x)(7) + 72)

� 4
(
9x2 − 42x + 49

)
� 36x2 − 168x + 196

Example 6.5.9 A circle’s area can be calculated by the formula

A � πr2

where A stands for area, and r stands for radius. If a certain circle’s radius can be modeled by x − 5 feet,
use an expanded polynomial to model the circle’s area.

Explanation. The circle’s area would be:

A � πr2

� π(x − 5)2

� π
[
(x)2 − 2(x)(5) + (5)2

]
� π

[
x2 − 10x + 25

]
� πx2 − 10πx + 25π

The circle’s area can be modeled by πx2 − 10πx + 25π square feet.

Checkpoint 6.5.10. Expand the square of a binomial.(
y3 − 12

)2
�

Explanation. We use the FOIL technique: First Outside Inside Last(
y3 − 12

)2
�

(
y3 − 12

) (
y3 − 12

)
� y6 − 12y3 − 12y3

+ 144
� y6 − 24y3

+ 144

Alternatively, we might observe that this is the square of the difference of two terms, in which case we may use
the formula

(a − b)2 � a2 − 2ab + b2

and write (
y3 − 12

) (
y3 − 12

)
�

(
y3)2 − 2 · y3 · 12 + 122

� y6 − 24y3
+ 144

which is the same result we obtained using the FOIL method.
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6.5.3 The Product of the Sum and Difference of Two Terms

To identify the next “special case” for multiplying polynomials, we’ll look at a couple of examples.

Example 6.5.11 Multiply the following binomials:

a. (x + 5)(x − 5) b. (y − 8)(y + 8)

Explanation. We can approach these as using distribution, foil, or generic rectangles, and obtain the
following:

a. (x + 5)(x − 5) � x2 − 5x + 5x − 25
� x2 − 25

b. (y + 8)(y − 8) � y2 − 8y + 8y − 4
� y2 − 64

Notice that for each of these products, we multiplied the sum of two terms by the difference of the same
two terms. Notice also in these three examples that once these expressions were multiplied, the twomiddle
terms were opposites and thus canceled to zero.

These pairs, generally written as (a + b) and (a − b), are known as conjugates. If we multiply (a + b)(a − b),
we can see this general pattern more clearly:

(a + b)(a − b) � a2 − ab + ab − b2

� a2 − b2

As with the previous special case, this one also has two names. This can be called the product of the sum
and difference of two terms, because this pattern is built on multiplying two binomials that have the same
two terms, except one binomial is a sum and the other binomial is a difference. The second name is a
difference of squares, because the end result of the multiplication is a binomial that is the difference of two
perfect squares. As before, the second name will become useful in a future chapter when using exactly the
technique described in this section will be pertinent.
Fact 6.5.12 The Product of the Sum and Difference of Two Terms Formula. If a and b are real numbers or
variable expressions, then we have the following formula:

(a + b)(a − b) � a2 − b2

Checkpoint 6.5.13. Multiply the polynomials.

(4x + 2) (4x − 2) �

Explanation. We use the FOIL technique: First Outside Inside Last

(4x + 2) (4x − 2) � 16x2 − 8x + 8x − 4
� 16x2 − 4

Alternatively, we might observe that this is the product of the sum and difference of two terms, in which case
we may use the formula

(a − b)(a + b) � a2 − b2

and write
(4x + 2) (4x − 2) � (4x)2 − 22

� 16x2 − 4
which is the same result we obtained using the FOIL method.
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Example 6.5.14 Multiply the following using Fact 6.5.12.

a. (4x − 7y)(4x + 7y) b. −2(3x + 1)(3x − 1)

Explanation. The first step to using this method is to identify the values of a and b.

a. In this instance, a � 4x and b � 7y. Using the formula,

(4x − 7y)(4x + 7y) � (4x)2 − (7y)2

� 16x2 − 49y2

b. In this instance, we have a constant factor as well as a product in the form (a + b)(a − b). We will
first expand (3x + 1)(3x − 1) by identifying a � 3x and b � 1 and using the formula. Then we will
multiply the factor of −2 through this expression. So,

−2(3x + 1)(3x − 1) � −2
(
(3x)2 − 12)

� −2
(
9x2 − 1

)
� −18x2

+ 2

Checkpoint 6.5.15. Multiply the polynomials.(
x7 − 2

) (
x7 + 2

)
�

Explanation. We use the FOIL technique: First Outside Inside Last(
x7 − 2

) (
x7

+ 2
)
� x14

+ 2x7 − 2x7 − 4
� x14 − 4

Alternatively, we might observe that this is the product of the sum and difference of two terms, in which case
we may use the formula

(a − b)(a + b) � a2 − b2

and write (
x7 − 2

) (
x7

+ 2
)
�

(
x7)2 − 22

� x14 − 4

which is the same result we obtained using the FOIL method.

If a and b are real numbers or variable expressions, then we have the following formulas:

Squaring a Binomial (Sum) (a + b)2 � a2 + 2ab + b2

Squaring a Binomial (Difference) (a − b)2 � a2 − 2ab + b2

Product of the Sum and Difference of Two Terms (a + b)(a − b) � a2 − b2

List 6.5.16: Special Cases of Multiplication Formulas
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Warning 6.5.17 Common Mistakes. We’ve found that

(a + b)(a − b) � a2 − b2

However,
(a − b)2 , a2 − b2 because (a − b)2 � a2 − 2ab + b2

Similarly,
(a + b)2 , a2

+ b2 because (a + b)2 � a2
+ 2ab + b2

6.5.4 Binomials Raised to Other Powers

Example 6.5.18 Simplify the expression (x + 5)3 into an expanded polynomial.

Before we start expanding this expression, it is important to recognize that (x + 5)3 , x3 + 53. We can
see that this doesn’t work by inputting 1 for x and applying the order of operations:

(1 + 5)3 � 63 13
+ 53

� 1 + 125
� 216 � 126

With this in mind, we will need to rely on distribution to expand this expression. The first step in
expanding (x + 5)3 is to remember that the exponent of 3 indicates that

(x + 5)3 �

3 times︷                    ︸︸                    ︷
(x + 5)(x + 5)(x + 5)

Once we rewrite this in an expanded form, we next multiply the two binomials on the left and then
finish by multiplying that result by the remaining binomial:

(x + 5)3 � [(x + 5)(x + 5)](x + 5)
�

[
x2

+ 10x + 25
]
(x + 5)

� x3
+ 5x2

+ 10x2
+ 50x + 25x + 125

� x3
+ 15x2

+ 75x + 125

Checkpoint 6.5.19. Simplify the given expression into an expanded polynomial.(
2y − 6

)3
�

Explanation. The main thing to notice on this problem is that we can write
(
2y − 6

)3 as(
2y − 6

)3
�

(
2y − 6

) (
2y − 6

)2

This means that we can use the FOIL technique on the second binomial multiplication, and then multiply
the first factor 2y − 6 by the result.(

2y − 6
)3

�
(
2y − 6

) [ (
2y − 6

) (
2y − 6

) ]
�

(
2y − 6

) [
4y2 − 12y − 12y + 36

]
�

(
2y − 6

) [
4y2 − 24y + 36

]
� 8y3 − 48y2

+ 72y − 24y2
+ 144y − 216

� 8y3 − 72y2
+ 216y − 216
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You might like to know that the formula for the cube of the difference of two terms is

(a − b)3 � a3 − 3a2b + 3ab2 − b3

If you have the time, you can verify that this formula works in this problem as an exercise.

If we wanted to expand a binomial raised to any power, we always start by rewriting the expression without
an exponent.

To multiply (x − 3)4, we’d start by rewriting (x − 3)4 in expanded form as:

(x − 3)4 �

4 times︷                             ︸︸                             ︷
(x − 3)(x − 3)(x − 3)(x − 3)

We will then multiply pairs of polynomials from the left to the right.

(x − 3)4 � [(x − 3)(x − 3)](x − 3)(x − 3)
�

[
(x2 − 6x + 9)(x − 3)

]
(x − 3)

�
[
x3 − 9x2

+ 27x − 27
]
(x − 3)

� x2 − 9x3
+ 27x2 − 27x − 3x3

+ 27x2 − 81x + 81
� x4 − 12x3

+ 54x2 − 108x + 81

Exercises

Review and Warmup Use the properties of exponents to simplify the expression.(
3t12)41.

(
5r2)32. (2x)23. (5r)24.

(
−10t6)35.

(
−6r7)26. −4

(
−3x8)37. −5

(
−8x10)38.

Simplify each expression, if possible, by combining like terms.

a. −9x + 3s

b. −4x2 + 8x2

c. 5x2 + 8x2

d. 2y2 − 5y2

9. a. −8x2 − 7

b. −3t2 − 3s2

c. −9t − 6t2

d. −3z2 + 6y2

10. a. −6x + t

b. −2y2 − 9y2 + 7z2

c. 4x2 − 2 − 7t

d. 3z2 + 9y2

11. a. −4x2 − 9x2

b. −s + 2s2

c. 3x + 6t − 3x + 5s

d. −7x − 8x + 5t + 9s

12.

500



6.5 Special Cases of Multiplying Polynomials

Determine if the following statements are true
or false.

a. (a − b)2 � a2 − b2

(□ True □ False)

b. (a + b)2 � a2 + b2

(□ True □ False)

c. (a + b)(a − b) � a2 − b2

(□ True □ False)

13. Determine if the following statements are true
or false.

a. (2(a − b))2 � 4(a − b)2

(□ True □ False)

b. 2(a + b)2 � 2a2 + 2b2

(□ True □ False)

c. 2(a + b)(a − b) � 2a2 − 2b2

(□ True □ False)

14.

Perfect Square Trinomial Formula Expand the square of a binomial.

(r + 1)2 �15. (r + 8)2 �16. (5r + 1)2 �17.

(2t + 5)2 �18. (t − 4)2 �19. (x − 7)2 �20.

(10x − 3)2 �21.
(
7y − 9

)2
�22.

(
4y2 − 5

)2
�23.

(
10r2 − 1

)2
�24.

(
r6 + 3

)2
�25.

(
r9 − 7

)2
�26.

(9a − 10b)2 �27. (10a + 6b)2 �28. (2ab − 3)2 �29.

(3ab − 9)2 �30. (x2
+ 4y2)2 �31. (x2 − 5y2)2 �32.

Difference of Squares Formula Multiply the polynomials.

(r + 9) (r − 9) �33. (r − 1) (r + 1) �34. (2r + 1) (2r − 1) �35.

(5t + 10) (5t − 10) �36. (5 − 5t) (5 + 5t) �37. (1 + 9x) (1 − 9x) �38.

(
x4 + 6

) (
x4 − 6

)
�39.

(
y8 − 3

) (
y8 + 3

)
�40.

(
2y10 − 12

) (
2y10 + 12

)
�41.

(
5r7 − 1

) (
5r7 + 1

)
�42.

(
1 + 7r5) (

1 − 7r5) �43.
(
1 − 13r3) (

1 + 13r3) �44.
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(9x + 7y)(9x − 7y) �45. (10x − 4y)(10x + 4y) �46. (ab + 2)(ab − 2) �47.

(ab + 3)(ab − 3) �48. 3
(
y − 7

) (
y + 7

)
�49. 5

(
y + 11

) (
y − 11

)
�50.

2 (4r − 6) (4r + 6) �51. 6 (3r + 3) (3r − 3) �52. 2 (r + 9)2 �53.

4 (t + 6)2 �54. 2 (3t + 9)2 �55. 6 (9x + 4)2 �56.

(x2 − 3y2)(x2
+ 3y2) �57. (x2 − 4y2)(x2

+ 4y2) �58. (5x8
+ 9y4)(5x8 − 9y4) �59.

(6x6
+ 5y4)(6x6 − 5y4) �60. (7x4 y3 − 2y4)(7x4 y3

+ 2y4) �61. (8x2 y6
+ 8y4)(8x2 y6 − 8y4) �62.

Binomials Raised to Other Powers Simplify the given expression into an expanded polynomial.

(t + 3)3 �63. (t + 2)3 �64. (x − 5)3 �65.

(x − 3)3 �66.
(
6y + 5

)3
�67.

(
5y + 3

)3
�68.

(3r − 6)3 �69. (6r − 2)3 �70.
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6.6 Dividing by a Monomial

Now that we know how to add, subtract, and multiply polynomials, we will learn how to divide a polyno-
mial by a monomial.

6.6.1 Dividing a Polynomial by a Monomial

One example of dividing a polynomial is something we already studied in Section 4.7, when we rewrote an
equation in standard form in slope-intercept form. We’ll briefly review this process.

Example 6.6.2 Rewrite 4x − 2y � 10 in slope-intercept form.

In being asked to rewrite this equation in slope-
intercept form, we’re really being asked to solve the
equation 4x − 2y � 10 for y.

7x − 2y � 10
7x − 2y − 7x � 10 − 7x

−2y � −7x + 10
−2y
−2 �

−7x + 10
−2

y � −7
2 x − 5

In the final step of work, we divided each term on
the right side of the equation by −2.

This is an example of polynomial division
that we have already done. We’ll extend
it to more complicated examples, many of
which involve dividing polynomials by vari-
ables (instead of just numbers).

Like polynomial multiplication, polynomial division will rely upon distribution.

It’s important to remember that dividing by a number c is the same as multiplying by the reciprocal 1
c :

8
2 �

1
2 · 8 and 9

3 �
1
3 · 9

If we apply this idea to a situation involving polynomials, say a+b
c , we can show that distribution works for

division as well:
a + b

c
�

1
c
· (a + b)

�
1
c
· a +

1
2 · b

�
a
c
+

b
c

Oncewe recognize that the division distributes just asmultiplication distributed, we are left with individual
monomial pairs that we will divide.

Example 6.6.3 Simplify 2x3 + 4x2 − 10x
2 .

The first step will be to recognize that the 2 we’re dividing by will be divided into every term of the
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numerator. Once we recognize that, we will simply perform that division.

2x3 + 4x2 − 10x
2 �

2x3

2 +
4x2

2 +
−10x

2
� x3

+ 2x2 − 5x

Example 6.6.4 Simplify 15x4 − 9x3 + 12x2

3x2

Explanation. The key to simplifying 15x4−9x3+12x2

3x2 is to recognize that each term in the numerator will
be divided by 3x2. In doing this, each coefficient and exponent will change. Performing this division by
distributing, we get:

15x4 − 9x3 + 12x2

3x2 �
15x4

3x2 +
−9x3

3x2 +
12x2

3x2

� 5x2 − 3x + 4

Remark 6.6.5. Once you become comfortable with this process, you will often leave out the step where we
wrote out the distribution. You will do the distribution in your head and this will often become a one-step
problem. Here’s how Example 6.6.4 would be visualized:

15x4 − 9x3 + 12x2

3x2 � x − x + x

And when calculated, we’d get:
15x4 − 9x3 + 12x2

3x2 � 5x2 − 3x + 4

(Note that x2

x2 is technically x0, which is equivalent to 1.)

Example 6.6.6 Simplify
20x3 y4 + 30x2 y3 − 5x2 y2

−5x y2

Explanation.

20x3 y4 + 30x2 y3 − 5x2 y2

−5x y2 �
20x3 y4

−5x y2 +
30x2 y3

−5x y2 +
−5x2 y2

−5x y2

� −4x2 y2 − 6x y + x

Checkpoint 6.6.7. Simplify the following expression

18r20 + 18r16 − 54r14

−6r2 �

Explanation. We divide each term by −6r2 as follows.

18r20 + 18r16 − 54r14

−6r2 �
18r20

−6r2 +
18r16

−6r2 +
−54r14

−6r2

� −18
6 r18 − 18

6 r14
+

54
6 r12

� −3r18 − 3r14
+ 9r12
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Example 6.6.8 A rectangular prism’s volume can be calculated by the formula

V � Bh

where Vstands for volume, B stands for base area, and h stands for height. A certain rectangular prism’s
volume can be modeled by 4x3 − 6x2 + 8x cubic units. If its height is 2x units, find the prism’s base area.

Explanation. Since V � Bh, we can use B �
V
h to calculate the base area. After substitution, we have:

B �
V
h

�
4x3 − 6x2 + 8x

2x

�
4x3

2x
− 6x2

2x
+

8x
2x

� 2x2 − 3x + 4

The prism’s base area can be modeled by 2x2 − 3x + 4 square units.

Exercises

Review and Warmup Use the properties of exponents to simplify the expression.

t17

t5 �1.
y19

y17 �2. 8r16

2r4 �3.

−12x11

4x3 �4. 5x14

30x3 �5. 7x4

28x3 �6.

Rewrite the expression simplified and using only positive exponents.

y6

y11 �7. r37

r42 �8. −3r9

11r25 �9.

−13t7

3t9 �10.

Dividing Polynomials by Monomials Simplify the following expression

56t5 + 7t3

7 �11. −6x13 − 18x4

3 �12.

−66x10 + 78x8 + 78x7

6x3 �13.
−54y10 + 27y7 − 54y6

−9y3 �14.
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−21y18 − 14y4

7y
�15.

−24y8 − 18y4

2y
�16.

25r20 − 60r18 − 60r9 − 60r8

5r4 �17. −40r11 − 100r10 − 10r9 − 40r8

10r4 �18.

18x2 y2 − 26x y − 10x y2

2x y
�19.

24x2 y2 + 8x y + 22x y2

2x y
�20.

60x25 y18 + 25x19 y9 − 35x15 y7

−5x5 y2 �21.
72x18 y14 − 96x17 y6 − 48x10 y9

−8x5 y2 �22.

18y8 + 12y5 + 12y4

6y2 �23.
60y15 + 110y14 − 40y13

−10y2 �24.

Application Problems

A rectangular prism’s volume can be calculated by the formula V � Bh, where V stands for volume,
B stands for base area, and h stands for height. A certain rectangular prism’s volume can bemodeled
by 16x5 − 24x3 − 40x cubic units. If its height is 4x units, find the prism’s base area.

B � square units

25.

A rectangular prism’s volume can be calculated by the formula V � Bh, where V stands for volume,
B stands for base area, and h stands for height. A certain rectangular prism’s volume can bemodeled
by 28x6 − 20x4 − 40x2 cubic units. If its height is 4x units, find the prism’s base area.

B � square units

26.

A cylinder’s volume can be calculated by the formula V � Bh, where V stands for volume, B
stands for base area, and h stands for height. A certain cynlinder’s volume can be modeled by
12πx5 − 36πx4 + 40πx3 cubic units. If its base area is 4πx2 square units, find the prism’s height.

h � units

27.

A cylinder’s volume can be calculated by the formula V � Bh, where V stands for volume, B
stands for base area, and h stands for height. A certain cynlinder’s volume can be modeled by
45πx6 + 20πx4 − 50πx2 cubic units. If its base area is 5πx2 square units, find the prism’s height.

h � units

28.
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6.7 Exponents and Polynomials Chapter Review

6.7.1 Exponent Rules

In Section 6.1 we covered the exponent rules and how to use them.

Example 6.7.1 Quotients and Exponents. Let t and q be real numbers, where q , 0 and t , 0. Find

another way to write
(

q9

t·q3

)2
.

Explanation. We first use the Quotient Rule, then the Quotient to a Power Rule, then the Power to a
Power Rule. (

q9

t · q3

)2

�

(
q9−3

t

)2

�

(
q6

t

)2

�
q6·2

t2

�
q12

t2

Example 6.7.2 The Zero Exponent. Recall that the Zero Exponent Rule says that any real number raised
to the 0-power is 1. Using this, and the other exponent rules, find another way to write −90.

Explanation. Remember that in expressions like −90, the exponent only applies to what it is directly
next to! In this case, the 0 only applies to the 9 and not the negative sign. So,

−90
� −1

Example 6.7.3 Negative Exponents. Write 5x−3 without any negative exponents.

Explanation. Recall that theNegative Exponent Rule says that a factor in the numeratorwith a negative
exponent can be flipped into the denominator. So

5x−3
�

5
x3

Note that the 5 does not move to the denominator because the −3 exponent only applies to the x to which
it is directly attached.

Example 6.7.4 Summary of Exponent Rules. Use the exponent rules in List 6.1.15 to write the expres-
sions in a different way. Reduce and simplify when possible. Always find a way to write your final
simplification without any negative exponents.

a.
24p3

20p12 b.
(

2v5

41−2

)4 c. 12n7 (
m0 · n2)2

d. k5

k−4
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Explanation.

a.
24p3

20p12 �
24
20 ·

p3

p12

�
6
5 · p

3−12

�
6
5 · p

−9

�
6
5 ·

1
p9

�
6

5p9

b.
(

2v5

41−2

)4

�

(
v5

21−2

)4

�

(
v512

2

)4

�
v5·412·4

24

�
v2018

16

c. 12n7 (
m0 · n2)2

� 12n7 (
1 · n2)2

� 12n7 (
n2)2

� 12n7n2·2

� 12n7n4

� 12n7+4

� 12n11

d. k5

k−4 � k5 · k4

� k5+4

� k9

6.7.2 Scientific Notation

In Section 6.2 we covered the definition of scientific notation, how to convert to and from scientific notation,
and how to do some calculations in scientific notation.

Example 6.7.5 Scientific Notation for Large Numbers.

a. The distance to the star Betelgeuse is about 3,780,000,000,000,000 miles. Write this number in
scientific notation.

b. The gross domestic product (GDP) of California in the year 2017 was about $2.746 × 1013. Write
this number in standard notation.

Explanation.

a. 3,780,000,000,000,000 � 3.78 × 1015. b. $2.746 × 1013 � $2,746,000,000,000.

Example 6.7.6 Scientific Notation for Small Numbers.

a. Human DNA forms a double helix with diameter 2 × 10−9 meters. Write this number in standard
notation.

b. A single grain of Forget-me-not (Myosotis) pollen is about 0.00024 inches in diameter. Write this
number in scientific notation.

Explanation.

a. 2 × 10−9 � 0.000000002. b. 0.00024 � 2.4 × 10−4.

Example 6.7.7 Multiplying and Dividing Using Scientific Notation. The fastest spacecraft so far have
traveled about 5 × 106 miles per day.

a. If that spacecraft traveled at that same speed for 2 × 104 days (which is about 55 years), how far
would it have gone? Write your answer in scientific notation.

b. The nearest star to Earth, besides the Sun, is Proxima Centauri, about 2.5 × 1013 miles from Earth.
How many days would you have to fly in that spacecraft at top speed to reach Proxima Centauri
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Explanation.

a. Remember that you can find the distance traveled by multiplying the rate of travel times the time
traveled: d � r · t. So this problem turns into

d � r · t
d �

(
5 × 106) · (2 × 104)

Multiply coefficient with coefficient and power of 10 with power of 10.

� (5 · 2)
(
106 × 104)

� 10 × 1010

Remember that this still isn’t in scientific notation. So we convert like this:

� 1.0 × 101 × 1010

� 1.0 × 1011

So, after traveling for 2 × 104 days (55 years), we will have traveled about 1.0 × 1011 miles. That’s
one-hundred million miles. I hope someone remembered the snacks.

b. Since we are looking for time, let’s solve the equation d � r · t for t by dividing by r on both sides:
t � d

r . So we have:

t �
d
r

t �
2.5 × 1013

5 × 106

Now we can divide coefficient by coefficient and power of 10 with power of 10.

t �
2.5
5 ×

1013

106

t � 0.5 × 107

t � 5 × 10−1 × 107

t � 5 × 106

This means that to get to Proxima Centauri, even in our fastest spacecraft, would take 5×106 years.
Converting to standard form, this is 5,000,000 years. I think we’re going to need a faster ship.

6.7.3 Adding and Subtracting Polynomials

In Section 6.3 we covered the definitions of a polynomial, a term of a polynomial, a coefficient of a term, the
degree of a term, the degree of a polynomial, theleading term of a polynomial, a constant term, monomials,
binomials, and trinomials, and how to write a polynomial in standard form.

Example 6.7.8 Polynomial Vocabulary. Decide if the following statements are true or false.

a. The expression 3
5 x2 − 1

5 x7 + x
2 − 4 is a polynomial.

b. The expression 4x6 − 3x−2 − x + 1 is a polynomial.
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c. The degree of the polynomial 3
5 x2 − 1

5 x7 + x
2 − 4 is 10.

d. The degree of the term 5x2 y4 is 6.

e. The leading coefficient of 3
5 x2 − 1

5 x7 + x
2 − 4 is 3

5 .

f. There are 4 terms in the polynomial 3
5 x2 − 1

5 x7 + x
2 − 4.

g. The polynomial 3
5 x2 − 1

5 x7 + x
2 − 4 is in standard form.

Explanation.

a. True. The expression 3
5 x2 − 1

5 x7 + x
2 − 4 is a polynomial.

b. False. The expression 4x6 − 3x−2 − x + 1 is not a polynomial. Variables are only allowed to have
whole number exponents in polynomials and the second term has a −2 exponent.

c. False. The degree of the polynomial 3
5 x2 − 1

5 x7 + x
2 − 4 is not 10. It is 7, which is the highest power

of any variable in the expression.

d. True. The degree of the term 5x2 y4 is 6.

e. False. The leading coefficient of 3
5 x2 − 1

5 x7 + x
2 − 4 is not 3

5 .The leading coefficient comes from the
degree 7 term which is − 1

5 .

f. True. There are 4 terms in the polynomial 3
5 x2 − 1

5 x7 + x
2 − 4.

g. False. The polynomial 3
5 x2 − 1

5 x7 + x
2 − 4 is not in standard form. The exponents have to be written

from highest to lowest, i.e. − 1
5 x7 + 3

5 x2 + x
2 − 4.

Example 6.7.9Adding andSubtractingPolynomials. Simplify the expression
( 2

9 x − 4x2 − 5
)
+
(
6x2 − 1

6 x − 3
)
.

Explanation. First identify like terms and group them either physically or mentally. Then wewill look
for common denominators for these like terms and combine appropriately.(

2
9 x − 4x2 − 5

)
+

(
6x2 − 1

6 x − 3
)

�
2
9 x − 4x2 − 5 + 6x2 − 1

6 x − 3

�
(
−4x2

+ 6x2)
+

(
2
9 x − 1

6 x
)
+ (−3 − 5)

� 2x2
+

(
4
18 x − 3

18 x
)
− 8

� 2x2
+

1
18 x − 8

6.7.4 Multiplying Polynomials

In Section 6.4 we covered how to multiply two polynomials together using distribution, foil, and generic
rectangles.

Example 6.7.10 Multiplying Binomials. Expand the expression (5x − 6)(3 + 2x) using the binomial
multiplication method of your choice: distribution, foil, or generic rectangles.
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Explanation. We will show work using the foil method.

(5x − 6)(3 − 2x) � (5x · 3) + (5x · (−2x)) + (−6 · 3) + (−6 · (−2x))
� 15x − 10x2 − 18 + 12x

� −10x2
+ 27x − 18

Example 6.7.11MultiplyingPolynomials Larger thanBinomials. Expand the expression (3x−2)
(
4x2 − 2x + 5

)
by multiplying every term in the first factor with every term in the second factor.

Explanation. (3x − 2)
(
4x2 − 2x + 5

)
� 3x · 4x2

+ 3x · (−2x) + 3x · 5 + (−2) · 4x2
+ (−2) · (−2x) + (−2) · 5

� 12x3 − 6x2
+ 15x − 8x2

+ 4x − 10
� 12x3 − 14x2

+ 19x − 10

6.7.5 Special Cases of Multiplying Polynomials

In Section 6.5 we covered how to square a binomial and how to find the product of the sum or difference of
two terms.

Example 6.7.12 Squaring a Binomial. Recall that Fact 6.5.4 gives formulas that help square a binomial.

Simplify the expression (2x + 3)2.

Explanation. Remember that you can use foil to do these problems, but in the interest of understand-
ing concepts at a higher level for use in later chapters, we will use the relevant formula from Fact 6.5.4.
In this case, since we have a sum of two terms being squared, we will use (a + b)2 � a2 + 2ab + b2.

First identify a and b. In this case, a � 2x and b � 3. So, we have:

(a + b)2 � (a)2 + 2(a)(b) + (b)2

(2x + 3)2 � (2x)2 + 2(2x)(3) + (3)2

� 4x2
+ 12x + 9

Example 6.7.13 The Product of the Sum and Difference of Two Terms. Recall that Fact 6.5.12 gives a
formula to help multiply things that look like (a + b)(a − b).
Simplify the expression (7x + 4)(7x − 4).

Explanation. Remember that you can use foil to do these problems, but in the interest of understand-
ing concepts at a higher level for use in later chapters, we will use the formula from Fact 6.5.12. In this
case, that means we will use (a + b)(a − b) � a2 − b2.

First identify a and b. In this case, a � 7x and b � 4. So, we have:

(a + b)(a − b) � (a)2 − (b)2

(7x + 4)(7x − 4) � (7x)2 − (4)2

� 49x2 − 16
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Example 6.7.14 Binomials Raised to Other Powers. To raise binomials to powers higher than 2, we start
by expanding the expression and multiplying all factors together from left to right.

Expand the expression (2x − 5)3.

Explanation.

(2x − 5)3

� (2x − 5)(2x − 5)(2x − 5)
�

[
(2x)2 − 2(2x)(5) + 52](2x − 5)

�
[
4x2 − 20x + 25

]
(2x − 5)

�
[
4x2](2x) +

[
4x2](−5) + [−20x](2x) + [−20x](−5) + [25](2x) + [25](−5)

� 8x3 − 20x2 − 40x2
+ 100x + 50x − 125

� 8x3 − 60x2
+ 150x − 125

6.7.6 Dividing by a Monomial

In Section 6.6 we covered how you can split a fraction up into multiple terms if there is a sum or difference
in the numerator. Mathematically, this happens using the rule a+b

c �
a
c +

b
c . This formula can be used for

any number of terms in the numerator, and for both sums and differences.

Example 6.7.15 Expand the expression 12x5+2x3−4x2

4x2 .

Explanation.

12x5 + 2x3 − 4x2

4x2 �
12x5

4x2 +
2x3

4x2 −
4x2

4x2

� 3x3
+

x
2 − 1

Exercises

Exponent Rules Use the properties of exponents to simplify the expression.(
4r12)31.

(
2y2)22. (6y4) · (9y17)3. (10y7) · (−8y11)4.

(
− y9

4

)
·
(

y4

9

)
5.

(
− r11

7

)
·
(
− r16

8

)
6. (−21)0 �7. (−16)0 �8.

−420 �9. −470 �10.
(
−3
2x9

)3

�11.
(
−3
8x4

)3

�12.
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5r14

15r3 �13. 7r4

14r3 �14.
(

x7

2y6z8

)3

�15.
(

x4

2y10z5

)3

�16.

Rewrite the expression simplified and using only positive exponents.(
1
8

)−3

�17.
(
1
9

)−3

�18. 9x−12
�19.

19x−3
�20. 14

x−4 �21. 8
x−5 �22.

18x−9

x−26 �23. 8x−11

x−17 �24. r−3

(r4)10 �25.

r−2

(r11)7
�26. t−11 · t6 �27. t−5 · t4 �28.

(9x−17) · (6x6) �29. (6x−10) · (10x7) �30.
(
−5y−4)−231.

(
−2y−16)−332.

(
3y8)4 · y−22 �33.

(
3r3)3 · r−4 �34.

(
r4t8)−3

�35.
(
t6 y14)−3

�36.
(
t−11x10)−3

�37.

(
x−4r6)−3

�38.
(

x6

2

)−3

�39.
(

y15

4

)−4

�40.

Scientific Notation Write the following number in scientific notation.

42000 �41. 5200 �42.

0.062 �43. 0.0072 �44.

Write the following number in decimal notation without using exponents.

8.24×102 �45. 9.24×105 �46. 1.23×100 �47.
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2.23×100 �48. 3.23×10−2 �49. 4.23×10−3 �50.

Multiply the following numbers, writing your answer in scientific notation.

(5×102)(7×102) �51. (6×105)(9×103) �52.

Divide the following numbers, writing your answer in scientific notation.

3.5 × 103

7 × 10−5 �53. 1.6 × 104

8 × 10−2 �54.

Adding and Subtracting Polynomials Is the following expression a monomial, binomial, or trinomial?

10t12 − 14t10 is a (□monomial □ binomial

□ trinomial) of degree

55. −4x7
+ 3x6 is a (□ monomial □ binomial

□ trinomial) of degree

56.

−18x6 − 19x5
+ 20x3 is a (□monomial □ bi-

nomial □ trinomial) of degree

57. 8x6
+ 11x5 − 3x is a (□ monomial □ bino-

mial □ trinomial) of degree

58.

Find the degree of the following polynomial.

−6x5 y7 − 6x2 y3
+ 14x2 − 1

The degree of this polynomial is .

59. −x5 y9 − 20x2 y4 − 10x2 − 12

The degree of this polynomial is .

60.

Add the polynomials.(
7x2 − 2x − 1

)
+

(
4x2 − 2x + 4

)
61.

(
−8x2

+ 2x − 9
)
+

(
10x2 − 8x + 9

)
62.

(
−10t6 − 5t4 − 2t2)

+
(
−7t6

+ 6t4
+ t2)63.

(
7t6 − 2t4

+ 8t2)
+

(
8t6 − 9t4 − 7t2)64.

(
−2x3

+ 5x2 − 2x +
7
10

)
+

(
3x3

+ 9x2
+ 6x +

1
8

)
65.

(
3x3

+ 8x2
+ 2x +

9
4

)
+

(
−5x3

+ 6x2
+ 8x +

1
6

)
66.

Subtract the polynomials.(
−5x2

+ 2x
)
−

(
−7x2 − 5x

)
67.

(
−3x2 − 6x

)
−

(
2x2

+ 10x
)

68.
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6x2

+ 2x + 10
)
−

(
−5x2 − 7x + 4

)
69.

(
7x2 − 5x + 10

)
−

(
−9x2

+ 10x − 8
)

70.

(
3r6 − 5r4 − 2r2) − (

10r6 − 7r4
+ 7r2)71.

(
−9t6

+ 9t4
+ 8t2) − (

5t6 − 4t4 − 6t2)72.

Add or subtract the given polynomials as in-
dicated.(
−10x4 + 8x y − 9y2) − (

−6x4 − 6x y + 10y2)
73. Add or subtract the given polynomials as in-

dicated.(
−2x8 − 2x y + 9y9) − (

10x8 + 7x y − 6y9)
74.

A handyman is building two pig pens shar-
ing the same side. Assume the length of the
shared side is x meters. The cost of building
one pen would be 44x2 + 9.5x − 13.5 dollars,
and the cost of building the other pen would
be 23.5x2 − 9.5x + 41.5 dollars. What’s the to-
tal cost of building those two pens?

Apolynomial representing the total cost of build-
ing those two pens is
dollars.

75. A handyman is building two pig pens shar-
ing the same side. Assume the length of the
shared side is x meters. The cost of building
one penwould be 33.5x2 − 8.5x + 40.5 dollars,
and the cost of building the other pen would
be 27x2 + 8.5x + 27 dollars. What’s the total
cost of building those two pens?

Apolynomial representing the total cost of build-
ing those two pens is
dollars.

76.

Multiplying Polynomials Multiply the polynomials.

−3x (x − 2) �77. −x (x + 9) �78. −5r2 (
10r2 − 5r − 7

)
�79.

2r2 (
7r2 − 9r + 2

)
�80. (8t + 1) (t + 4) �81. (5t + 2) (t + 9) �82.

(x + 1) (x − 2) �83. (x + 7) (x − 8) �84. (3x − 4) (2x − 3) �85.

(
6y − 10

) (
5y − 2

)
�86. 3(x + 2)(x + 3) �87. −3(x + 2)(x + 3) �88.

x(x − 2)(x + 2) �89. −x(x + 2)(x + 3) �90. (a − 10b)(a2
+ 3ab − 8b2) �91.

(a + 2b)(a2 − 7ab + 8b2) �92.
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Arectangle’s length is 2 feet shorter than 4 times
its width. If we use w to represent the rectan-
gle’s width, use a polynomial to represent the
rectangle’s area in expanded form.

area � square feet

93. Arectangle’s length is 3 feet shorter than twice
its width. If we use w to represent the rectan-
gle’s width, use a polynomial to represent the
rectangle’s area in expanded form.

area � square feet

94.

Special Cases of Multiplying Polynomials Expand the square of a binomial.(
9y + 6

)2
�95.

(
6y + 3

)2
�96. (r − 9)2 �97.

(r − 2)2 �98. (9a + 6b)2 �99. (10a + 2b)2 �100.

Multiply the polynomials.

(x + 7) (x − 7) �101. (x − 2) (x + 2) �102. (1 − 3x) (1 + 3x) �103.

(
8 − 7y

) (
8 + 7y

)
�104.

(
3y8 − 13

) (
3y8 + 13

)
�105.

(
2r6 − 2

) (
2r6 + 2

)
�106.

Simplify the given expression into an expanded polynomial.

(r + 5)3 �107. (t + 3)3 �108.

Dividing by a Monomial Simplify the following expression

52t15 + 12t8

4 �109. 24x4 − 32x3

8 �110. −12x12 − 24x11 − 2x9

2x3 �111.

−24x15 − 24x13 − 16x12

−2x3 �112.
4y10 − 4y5

2y
�113.

−56y17 − 56y9

8y
�114.
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CHAPTER 7
Factoring

7.1 Factoring Out the Common Factor

In Chapter 6, we learned how tomultiply polynomials, such as when you start with (x+2)(x+3) and obtain
x2 + 5x + 6. This chapter, starting with this section, is about the opposite process—factoring. For example,
starting with x2 + 5x + 6 and obtaining (x + 2)(x + 3). We will start with the simplest kind of factoring: for
example starting with x2 + 2x and obtaining x(x + 2).

7.1.1 Motivation for Factoring

When you write x2 + 2x, you have an algebraic expression built with two terms—two parts that are added
together. When you write x(x + 2), you have an algebraic expression built with two factors—two parts that
are multiplied together. Factoring is useful, because sometimes (but not always) having your expression
written as parts that are multiplied together makes it easy to simplify the expression.

You’ve seen this with fractions. To simplify 15
35 , breaking down the numerator and denominator into factors

is useful: 3·5
7·5 . Now you can see that the factors of 5 cancel.

There are a few other reasons to appreciate the value of factoring that will float to the surface in this chapter
and beyond.

7.1.2 Identifying the Greatest Common Factor

The most basic technique for factoring involves recognizing the greatest common factor between two ex-
pressions, which is the largest factor that goes in evenly to both expressions. For example, the greatest
common factor between 6 and 8 is 2 since 2 goes in nicely into both 6 and 8 and no larger number would
divide both 6 and 8 nicely.

Similarly, the greatest common factor between 4x and 3x2 is x. If you write 4x as a product of its factors,
you have 2 · 2 · x. And if you fully factor 3x2, you have 3 · x · x. The only factor they have in common is x,
so that is the greatest common factor. No larger expression goes in nicely to both expressions.

Example 7.1.2 Finding the Greatest Common Factor. What is the common factor between 6x2 and 70x?
Break down each of these into its factors:

6x2
� 2 · 3 · x · x 70x � 2 · 5 · 7 · x

517



Chapter 7 Factoring

And identify the common factors:

6x2
�

↓
2 · 3 · ↓x · x 70x �

↓
2 · 5 · 7 · ↓x

With 2 and x in common, the greatest common factor is 2x.

Let’s try a few more examples.

Checkpoint 7.1.3.

a. The greatest common factor between 6x and 8x is .

b. The greatest common factor between 14x2 and 10x is .

c. The greatest common factor between 6y2 and 7y2 is .

d. The greatest common factor between 12x y2 and 9x y is .

e. The greatest common factor between 6x3, 2x2, and 8x is .

Explanation.

a. Since 6x completely factors as
↓
2 · 3 · ↓x ...

... and 8x completely factors as
↓
2 · 2 · 2 · ↓x, ...

... the greatest common factor is 2x.

b. Since 14x2 completely factors as
↓
2 · 7 · ↓x · x ...

... and 10x completely factors as
↓
2 · 5 · ↓x, ...

... the greatest common factor is 2x.

c. Since 6y2 completely factors as 2 · 3 · ↓y · ↓y ...

... and 7y2 completely factors as 7 · ↓y · ↓y, ...

... the greatest common factor is y2.

d. Since 12x y2 completely factors as 2 · 2 ·
↓
3 · ↓x · ↓y · y ...

... and 9x y completely factors as
↓
3 · 3 · ↓x · ↓y, ...

... the greatest common factor is 3x y.

e. Since 6x3 completely factors as
↓
2 · 3 · ↓x · x · x ...

..., 2x2 completely factors as
↓
2 · ↓x · x, ...

... and 8x completely factors as
↓
2 · 2 · 2 · ↓x, ...

... the greatest common factor is 2x.
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7.1.3 Factoring Out the Greatest Common Factor

We have learned the distributive property: a(b + c) � ab + ac. Perhaps you have thought of this as a way
to “distribute” the number a to each of b and c. In this section, we will use the distributive property in the
opposite way. If you have an expression ab + ac, it is equal to a(b + c). In that example, we factored out a,
which is the common factor between ab and ac.

The following steps use the distributive property to factor out the greatest common factor between two or
more terms.

Factoring Out the Greatest Common Factor by Filling in the Blank
Process 7.1.4.

1. Identify the common factor in all terms.

2. Write the common factor outside a pair of parentheses with the appropriate addition or subtraction signs inside.

3. For each term from the original expression, what would you multiply the greatest common factor by to result in
that term? Write your answer in the parentheses.

Example 7.1.5 To factor 12x2 + 15x:

1. The common factor between 12x2 and 15x is 3x.

2. 3x( + )
3. 3x(4x + 5)

Let’s look at a few examples.

Example 7.1.6 Factor the polynomial 3x3 + 3x2 − 9.

a. We identify the common factor as 3, because 3 is the only common factor between 3x3, 3x2 and 9.

b. We write:
3x3

+ 3x2 − 9 � 3( + − ).

c. We ask the question “3 times what gives 3x3?” The answer is x3. Now we have:

3x3
+ 3x2 − 9 � 3(x3

+ − ).

We ask the question “3 times what gives 3x2?” The answer is x2. Now we have:

3x3
+ 3x2 − 9 � 3(x3

+ x2 − ).

We ask the question “3 times what gives 9?” The answer is 3. Now we have:

3x3
+ 3x2 − 9 � 3(x3

+ x2 − 3).

To check that this is correct, multiplying through 3(x3 + x2 − 3) should give the original expression
3x3 + 3x2 − 9. We check this, and it does.

Checkpoint 7.1.7. Factor the polynomial 4x3 + 12x2 − 12x.
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Explanation. In this exercise, 4x is the greatest common factor. We find

4x3
+ 12x2 − 12x � 4x( + − )

� 4x(x2
+ − )

� 4x(x2
+ 3x − )

� 4x(x2
+ 3x − 3)

Note that youmight fail to recognize that 4x is the greatest common factor. At first youmight only find that,
say, 4 is a common factor. This is OK—you can factor out the 4 and continue from there:

4x3
+ 12x2 − 12x � 4( + − )

� 4(x3
+ − )

� 4(x3
+ 3x2 − )

� 4(x3
+ 3x2 − 3x)

Now examine the second factor here and there is still a common factor, x. Factoring this out too.

� 4x(x2
+ 3x − 3)

So there is more than one way to find the answer here.

7.1.4 Visualizing With Rectangles

In Section 6.4, we learned one way to multiply polynomials using rectangle diagrams. Similarly, we can
factor a polynomial with a rectangle diagram.

Factoring Out the Greatest Common Factor Using Rectangles

Process 7.1.8 Factoring Out the Greatest Common Factor Using Rectangles.

1. Put the terms into adjacent rectangles. Think of these as labeling the areas of each rectangle.

2. Identify the common factor, and mark the height of the overall rectangle with it.

3. Mark the base of each rectangle based on each rectangle’s area and height.

4. Since the overall rectangle’s area equals its base times its height, the height is one factor, and the sum of the widths
is another factor.

Example 7.1.9 We will factor 12x2 + 15x, the same polynomial from the example in Algorithm 7.1.4, so
that you may compare the two styles.

12x2 15x 3x 12x2 15x
4x 5

3x 12x2 15x

So 12x2 + 15x factors as 3x(4x + 5).
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7.1.5 More Examples of Factoring out the Common Factor

Previous examples did not cover every nuance with factoring out the greatest common factor. Here are a
few more factoring examples that attempt to do so.

Example 7.1.10 Factor −35m5 + 5m4 − 10m3.

First, we identify the common factor. The number 5 is the greatest common factor of the three coefficients
(whichwere−35, 5, and−10) and also m3 is the largest expression that divides m5, m4, and m3. Therefore
the greatest common factor is 5m3.

In this example, the leading term is a negative number. When this happens, we will make it common
practice to take that negative as part of the greatest common factor. So we will proceed by factoring out
−5m3. Note the sign changes.

−35m5
+ 5m4 − 10m3

� −5m3( − + )
� −5m3(7m2 − + )
� −5m3(7m2 − m + )
� −5m3(7m2 − m + 2)

Example 7.1.11 Factor 14 − 7n2 + 28n4 − 21n.

Notice that the terms are not in a standard order, with powers of n decreasing as you read left to right.
It is usually a best practice to rearrange the terms into the standard order first.

14 − 7n2
+ 28n4 − 21n � 28n4 − 7n2 − 21n + 14.

The number 7 divides all of the numerical coefficients. Separately, no power of n is part of the greatest
common factor because the 14 term has no n factors. So the greatest common factor is just 7. We proceed
by factoring that out:

14 − 7n2
+ 28n4 − 21n � 28n4 − 7n2 − 21n + 14

� 7
(
4n4 − n2 − 3n + 2

)
Example 7.1.12 Factor 24ab2 + 16a2b3 − 12a3b2.

There are two variables in this polynomial, but that does not change the factoring strategy. The greatest
numerical factor between the three terms is 4. The variable a divides all three terms, and b2 divides all
three terms. So we have:

24ab2
+ 16a2b3 − 12a3b2

� 4ab2 (6 + 4ab − 3a2)
Example 7.1.13 Factor 4m2n − 3x y.

There are no common factors in those two terms (unless you want to count 1 or −1, but we do not
count these for the purposes of identifying a greatest common factor). In this situation we can say the
polynomial is prime or irreducible, and leave it as it is.
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Example 7.1.14 Factor −x3 + 2x + 18.

There are no common factors in those three terms, and it would be correct to state that this polynomial
is prime or irreducible. However, since its leading coefficient is negative, it may be wise to factor out a
negative sign. So, it could be factored as −

(
x3 − 2x − 18

)
. Note that every term is negated as the leading

negative sign is extracted.

Exercises

Review and Warmup Multiply the polynomials.

6x (x − 3) �1. 8x (x − 8) �2.

10x (9x − 5) �3. −2x (4x − 8) �4.

−6x2 (x + 9) �5. −4x2 (x − 5) �6.

2y2 (
−8y2 + 4y

)
�7. 8r2 (

−6r2 − 8r
)
�8.

Identifying Common Factors Find the greatest common factor of the following terms.

5 and 20r9. 2 and 18t10. 8t and 32t211.

5t and 35t212. 2x3 and −20x413. 8x3 and −56x414.

4y19 and −24y1015. 10y12 and −80y916. 7r17, −14r10, 21r817.

4r11, −16r9, 32r818. 5x11 y9, −45x9 y17, 35x8 y1819. 3x11 y13, −12x9 y14, 27x6 y1920.

Factoring out the Common Factor Factor the given polynomial.

4t + 4 �21. 10x + 10 �22.

6x − 6 �23. 3y − 3 �24.
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−9y − 9 �25. −6r − 6 �26.

3r − 27 �27. 9t + 36 �28.

18t2 + 48 �29. 21t2 − 6 �30.

14x2 − 20x + 8 �31. 50x2 + 90x + 70 �32.

16y4 + 24y3 + 72y2 �33. 12y4 + 6y3 + 16y2 �34.

50r5 − 70r4 + 100r3 �35. 40r5 + 12r4 + 4r3 �36.

24t − 64t2 + 80t3 �37. 8t + 6t2 + 18t3 �38.

27t2 + 5 �39. 20x2 + 9 �40.

3x y + 3y �41. 4x y + 4y �42.

5x13 y9 + 35y9 �43. 6x7 y9 + 24y9 �44.

20x5 y6 − 32x4 y6 + 40x3 y6 �45. 80x5 y9 + 10x4 y9 + 60x3 y9 �46.

24x5 y7z6 + 20x4 y7z5 + 32x3 y7z4 �47. 50x5 y8z8 + 35x4 y8z7 + 10x3 y8z6 �48.
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7.2 Factoring by Grouping

This section covers a technique for factoring polynomials like x3+3x2+2x+6, which factors as
(
x2 + 2

)
(x+3).

If there are four terms, the technique in this section might help you to factor the polynomial. Additionally,
this technique is a stepping stone to a factoring technique in Section 7.3 and Section 7.4.

7.2.1 Factoring out Common Polynomials

Recall that to factor 3x + 6, we factor out the common factor 3:

3x + 6 �

↓
3x +

↓
3 · 2

� 3(x + 2)

The “3” here could have been something more abstract, and it still would be valid to factor it out:

xA + 2A � x
↓
A + 2

↓
A x🍎 + 2🍎 � x

↓
🍎 + 2

↓
🍎

� A(x + 2) � 🍎(x + 2)

In fact, even “larger” things can be factored out, as in this example:

x(a + b) + 2(a + b) � x

↓︷ ︸︸ ︷
(a + b) + 2

↓︷ ︸︸ ︷
(a + b)

� (a + b)(x + 2)

In this last example, we factored out the binomial factor (a + b). Factoring out binomials is the essence of
this section, so let’s see that a few more times:

x(x + 2) + 3(x + 2) � x

↓︷ ︸︸ ︷
(x + 2) + 3

↓︷ ︸︸ ︷
(x + 2)

� (x + 2)(x + 3)

z2(2y + 5) + 3(2y + 5) � z2

↓︷   ︸︸   ︷
(2y + 5) + 3

↓︷   ︸︸   ︷
(2y + 5)

� (2y + 5)(z2
+ 3)

And even with an expression like Q2(Q − 3) + Q − 3, if we re-write it in the right way using a 1 and some
parentheses, then it too can be factored:

Q2(Q − 3) + Q − 3 � Q2(Q − 3) + 1(Q − 3)

� Q2

↓︷  ︸︸  ︷
(Q − 3) + 1

↓︷  ︸︸  ︷
(Q − 3)

� (Q − 3)(Q2
+ 1)

The truth is you are unlikely to come upon an expression like x(x + 2)+ 3(x + 2), as in these examples. Why
wouldn’t someone have multiplied that out already? Or factored it all the way? So far in this section, we
have only been looking at a stepping stone to a real factoring technique called factoring by grouping.
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7.2.2 Factoring by Grouping

Factoring by grouping is a factoring technique that sometimes works on polynomials with four terms. Here
is an example.

Example 7.2.2 Suppose we must factor x3 − 3x2 + 5x − 15. Note that there are four terms, and they are
written in descending order of the powers of x. “Grouping” means to group the first two terms and the
last two terms together:

x3 − 3x2
+ 5x − 15 �

(
x3 − 3x2)

+ (5x − 15)

Now, each of these two groups has its own greatest common factor we can factor out:

� x2(x − 3) + 5(x − 3)

In a sense, we are “lucky” because we now see matching binomials that can themselves be factored out:

� x2

↓︷ ︸︸ ︷
(x − 3) + 5

↓︷ ︸︸ ︷
(x − 3)

� (x − 3)
(
x2

+ 5
)

And so we have factored x3 − 3x2 + 5x − 15 as (x − 3)
(
x2 + 5

)
. But to be sure, if we multiply this back

out, it should recover the original x3 − 3x2 + 5x − 15. To confirm your answers are correct, you should
always make checks like this.

Checkpoint 7.2.3. Factor x3 + 4x2 + 2x + 8.

Explanation. We will break the polynomial into two groups: x3 + 4x2 and 2x + 8.

x3
+ 4x2

+ 2x + 8 �
(
x3

+ 4x2)
+ (2x + 8)

and now each group has its own greatest common factor to factor out:

� x2(x + 4) + 2(x + 4)
and now the binomial (x + 4) appears twice and can be factored out:

� (x + 4)
(
x2

+ 2
)

Example 7.2.4 Factor t3 − 5t2 − 3t + 15. This example has a complication with negative signs. If we
try to break up this polynomial into two groups as

(
t3 − 5t2) − (3t + 15), then we’ve made an error! In

that last expression, we are subtracting a group with the term 15, so overall it subtracts 15. The original
polynomial added 15, so we are off course.

One way to handle this is to treat subtraction as addition of a negative:

t3 − 5t2 − 3t + 15 � t3 − 5t2
+ (−3t) + 15

�
(
t3 − 5t2)

+ (−3t + 15)

Now we can proceed to factor out common factors from each group. Since the second group leads with
a negative coefficient, we’ll factor out −3. This will result in the “ + 15” becoming “ − 5.”

� t2(t − 5) + (−3)(t − 5)
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� t2

↓︷ ︸︸ ︷
(t − 5) − 3

↓︷ ︸︸ ︷
(t − 5)

� (t − 5)
(
t2 − 3

)
And remember that we can confirm this is correct by multiplying it out. If we made no mistakes, it
should result in the original t3 − 5t2 − 3t + 15.

Checkpoint 7.2.5. Factor 6q3 − 9q2 − 4q + 6.

Explanation. We will break the polynomial into two groups: 6q3 − 9q2 and −4q + 6.

6q3 − 9q2 − 4q + 6 �
(
6q3 − 9q2)

+ (−4q + 6)
and now each group has its own greatest common factor to factor out:

� 3q2(2q − 3) − 2(2q − 3)

and now the binomial (2q − 3) appears twice and can be factored out:

� (2q − 3)
(
3q2 − 2

)
Example 7.2.6 Factor x3−3x2+x−3. To succeed with this example, we will need to “factor out” a trivial
number 1 that isn’t apparent until we make it so.

x3 − 3x2
+ x − 3 �

(
x3 − 3x2)

+ (x − 3)
� x2(x − 3) + 1(x − 3)

� x2

↓︷ ︸︸ ︷
(x − 3) + 1

↓︷ ︸︸ ︷
(x − 3)

� (x − 3)
(
x2

+ 1
)

Notice how we changed x − 3 to +1(x − 3), so we wouldn’t forget the +1 in the final factored form. As
always, we should check this is correct by multiplying it out.

Checkpoint 7.2.7. Factor 6t6 + 9t4 + 2t2 + 3.

Explanation. We will break the polynomial into two groups: 6t6 + 9t4 and 2t2 + 3.

6t6
+ 9t4

+ 2t2
+ 3 �

(
6t6

+ 9t4)
+

(
2t2

+ 3
)

the first group has its own greatest common factor to factor out, and with the second group we can write a
1:

� 3t4 (2t2
+ 3

)
+ 1

(
2t2

+ 3
)

and now the binomial
(
2t2 + 3

)
appears twice and can be factored out:

�
(
2t2

+ 3
) (

3t4
+ 1

)
Example 7.2.8 Factor x y2 − 10y2 − 2x + 20. The technique can work when there are multiple variables
too.

x y2 − 10y2 − 2x + 20 �
(
x y2 − 10y2)

+ (−2x + 20)
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� y2(x − 10) + (−2)(x − 10)

� y2

↓︷   ︸︸   ︷
(x − 10)−2

↓︷   ︸︸   ︷
(x − 10)

� (x − 10)
(
y2 − 2

)
.

Unfortunately, this technique is not guaranteed to work on every polynomial with four terms. In fact, most
randomly selected four-term polynomials will not factor using this method and those selected here should
be considered “nice.” Here is an example that will not factor with grouping:

x3
+ 6x2

+ 11x + 6 �
(
x3

+ 6x2)
+ (11x + 6)

� x2 (x + 6)︸ ︷︷ ︸
?

+1 (11x + 6)︸    ︷︷    ︸
?

In this example, at the step where we hope to see the same binomial appearing twice, we see two different
binomials. It doesn’t mean that this kind of polynomial can’t be factored, but it does mean that “factoring
by grouping” is not going to help. This polynomial actually factors as (x + 1)(x + 2)(x + 3). So the fact that
grouping fails to factor the polynomial doesn’t tell us whether or not it is prime.

Exercises

Review and Warmup Factor the given polynomial.

−6y−6 �1. −3r−3 �2. 8r+16 �3.

5t−30 �4. 14t2−20 �5. 56t2+40 �6.

Factoring out Common Polynomials Factor the given polynomial.

x(x + 5) + 7(x + 5) �7. x(x − 2) + 5(x − 2) �8.

x
(
y + 4

)
− 7

(
y + 4

)
�9. x

(
y − 5

)
+ 2

(
y − 5

)
�10.

6x
(
x + y

)
+ 7

(
x + y

)
�11. 7x

(
x + y

)
+ 4

(
x + y

)
�12.

4t7(4t − 7) + 4t − 7 �13. 10t10(8t + 5) + 8t + 5 �14.

42t4(t + 18) + 21t3(t + 18) + 56t2(t + 18) �15.
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14x4(x + 2) + 21x3(x + 2) + 14x2(x + 2) �16.

Factoring by Grouping Factor the given polynomial.

x2 + 10x − 9x − 90 �17. y2 − 6y − 7y + 42 �18.

y2 + 3y − 4y − 12 �19. r2 − 9r − 2r + 18 �20.

r3 + 6r2 − 8r − 48 �21. r3 − 3r2 − 6r + 18 �22.

t3 − 8t2 − 3t + 24 �23. t3 + 6t2 − 10t − 60 �24.

x y − 2x + 4y − 8 �25. x y + 3x − 8y − 24 �26.

x y − 4x − 3y + 12 �27. x y − 5x + 6y − 30 �28.

6x2 + 30x y + 5x y + 25y2 �29. 7x2 + 14x y + 4x y + 8y2 �30.

8x2 − 80x y + 7x y − 70y2 �31. 9x2 − 36x y + 8x y − 32y2 �32.

x3 − 10 − 7x3 y + 70y �33. x3 + 2 − 4x3 y − 8y �34.

x3 + 3 + 6x3 y + 18y �35. x3 − 4 + 9x3 y − 36y �36.

18y5 + 36y4 − 9y4 − 18y3 + 18y3 + 36y2 �37.

8r5 + 24r4 − 8r4 − 24r3 + 12r3 + 36r2 �38.
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7.3 Factoring Trinomials with Leading Coefficient One

In Chapter 6, we learned how to multiply binomials like (x + 2)(x + 3) and obtain the trinomial x2 + 5x + 6.
In this section, we will learn how to undo that. So we’ll be starting with a trinomial like x2 + 5x + 6 and
obtaining its factored form (x + 2)(x + 3). The trinomials that we’ll factor in this section all have leading
coefficient 1, but Section 7.4 will cover some more general trinomials.

7.3.1 Factoring Trinomials by Listing Factor Pairs

Consider the example x2 +5x +6 � (x +2)(x +3). There are at least three things that are important to notice:

• The leading coefficient of x2 + 5x + 6 is 1.

• The two factors on the right use the numbers 2 and 3, and when you multiply these you get the 6.

• The two factors on the right use the numbers 2 and 3, and when you add these you get the 5.

So the idea is that if you need to factor x2+5x+6 and you somehowdiscover that 2 and 3 are special numbers
(because 2 · 3 � 6 and 2 + 3 � 5), then you can conclude that (x + 2)(x + 3) is the factored form of the given
polynomial.

Example 7.3.2 Factor x2+13x+40. Since the leading coefficient is 1, we are looking to write this polyno-
mial as (x + ?)(x + ?) where the question marks are two possibly different, possibly negative, numbers.
We need these two numbers to multiply to 40 and add to 13. How can you track these two numbers
down? Since the numbers need to multiply to 40, one method is to list all factor pairs of 40 in a table
just to see what your options are. We’ll write every pair of factors that multiply to 40.

1 · 40
2 · 20
4 · 10
5 · 8

−1 · (−40)
−2 · (−20)
−4 · (−10)
−5 · (−8)

We wanted to find all factor pairs. To avoid missing any, we started using 1 as a factor, and then slowly
increased that first factor. The table skips over using 3 as a factor, because 3 is not a factor of 40. Similarly
the table skips using 6 and 7 as a factor. And there would be no need to continue with 8 and beyond,
because we already found “large” factors like 8 as the partners of “small” factors like 5.

There is an entire second columnwhere the signs are reversed, since these are also ways to multiply two
numbers to get 40. In the end, there are eight factor pairs.

We need a pair of numbers that also adds to 13. So we check what each of our factor pairs add up to:

Factor Pair Sum of the Pair
1 · 40 41
2 · 20 22
4 · 10 14
5 · 8 13 (what we wanted)

Factor Pair Sum of the Pair
−1 · (−40) (no need to go this far)
−2 · (−20) (no need to go this far)
−4 · (−10) (no need to go this far)
−5 · (−8) (no need to go this far)

The winning pair of numbers is 5 and 8. Again, what matters is that 5 · 8 � 40, and 5+ 8 � 13. So we can
conclude that x2 + 13x + 40 � (x + 5)(x + 8).
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To ensure that we made no mistakes, here are some possible checks.

Multiply it Out Multiplying out our answer (x + 5)(x + 8) should give us x2 + 13x + 40.

(x + 5)(x + 8) � (x + 5) · x + (x + 5) · 8
� x2

+ 5x + 8x + 40
✓
� x2

+ 13x + 40

We could also use a rectangular area diagram to
verify the factorization is correct:

x 5
x x2 5x
8 8x 40

Evaluating If the answer really is (x + 5)(x + 8), then notice how evaluating at −5 would result in 0. So
the original expression should also result in 0 if we evaluate at −5. And similarly, if we evaluate it at −8,
x2 + 13x + 40 should be 0.

(−5)2 + 13(−5) + 40 ?
� 0 (−8)2 + 13(−8) + 40 ?

� 0

25 − 65 + 40 ?
� 0 64 − 104 + 40 ?

� 0

0 ✓� 0 0 ✓� 0.

This also gives us evidence that the factoring was correct.

Example 7.3.3 Factor y2−11y +24. The negative coefficient is a small complication from Example 7.3.2,
but the process is actually still the same.

Explanation. We need a pair of numbers that multiply to 24 and add to −11. Note that we do care to
keep track that they sum to a negative total.

Factor Pair Sum of the Pair
1 · 24 25
2 · 12 14
3 · 8 11 (close; wrong sign)
4 · 6 10

Factor Pair Sum of the Pair
−1 · (−24) −25
−2 · (−12) −14
−3 · (−8) −11 (what we wanted)
−4 · (−6) (no need to go this far)

So y2 − 11y + 24 � (y − 3)(y − 8). To confirm that this is correct, we should check. Either by multiplying
out the factored form:

(y − 3)(y − 8) � (y − 3) · y − (y − 3) · 8
� y2 − 3y − 8y + 24
✓
� y2 − 11y + 24

y −3
y y2 −3y
−8 −8y 24

Or by evaluating the original expression at 3 and 8:

32 − 11(3) + 24 ?
� 0 82 − 11(8) + 24 ?

� 0
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9 − 33 + 24 ?
� 0 64 − 88 + 24 ?

� 0

0 ✓� 0 0 ✓� 0.

Our factorization passes the tests.

Example 7.3.4 Factor z2 + 5z − 6. The negative coefficient is again a small complication from Exam-
ple 7.3.2, but the process is actually still the same.

Explanation. We need a pair of numbers that multiply to −6 and add to 5. Note that we do care to keep
track that they multiply to a negative product.

Factor Pair Sum of the Pair
1 · (−6) −5 (close; wrong sign)
2 · (−3) 14

Factor Pair Sum of the Pair
−1 · 6 5 (what we wanted)
−2 · 3 (no need to go this far)

So z2 + 5z − 6 � (z − 1)(z + 6). To confirm that this is correct, we should check. Either by multiplying out
the factored form:

(z − 1)(z + 6) � (z − 1) · z + (z − 1) · 6
� z2 − z + 6z − 6
✓
� z2

+ 5z − 6

z −1
z z2 −z
6 6z −6

Or by evaluating the original expression at 1 and −6:

12
+ 5(1) − 6 ?

� 0 (−6)2 + 5(−6) − 6 ?
� 0

1 + 5 − 6 ?
� 0 36 − 30 − 6 ?

� 0

0 ✓� 0 0 ✓� 0.

Our factorization passes the tests.

Checkpoint 7.3.5. Factor m2 − 6m − 40.

Explanation. We need a pair of numbers that multiply to −40 and add to −6. Note that we do care to keep
track that they multiply to a negative product and sum to a negative total.

Factor Pair Sum of the Pair
1 · (−40) −39
2 · (−20) −18
4 · (−10) −6 (what we wanted)
(no need to continue) ...

So m2 − 6m − 40 � (m + 4)(m − 10).
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7.3.2 Connection to Grouping

The factoring method we just learned takes a bit of a shortcut. To prepare yourself for a more complicated
factoring technique in Section 7.4, you may want to try taking the “scenic route” instead of that short-
cut.

Example 7.3.6 Let’s factor x2 + 13x + 40 again (the polynomial from Example 7.3.2). As before, it is
important to discover that 5 and 8 are important numbers, because they multiply to 40 and add to 13.
As before, listing out all of the factor pairs is one way to discover the 5 and the 8.

Instead of jumping to the factored answer, we can show how x2 + 13x + 40 factors in a more step-by-step
fashion using 5 and 8. Since they add up to 13, we can write:

x2
+

↓
13x + 40 � x2

+

↓︷  ︸︸  ︷
5x + 8x + 40

We have intentionally split up the trinomial into an unsimplified polynomial with four terms. In Sec-
tion 7.2, we handled such four-term polynomials by grouping:

�
(
x2

+ 5x
)
+ (8x + 40)

Now we can factor out each group’s greatest common factor:

� x(x + 5) + 8(x + 5)

� x

↓︷ ︸︸ ︷
(x + 5) + 8

↓︷ ︸︸ ︷
(x + 5)

� (x + 5)(x + 8)

And we have found that x2 + 13x + 40 factors as (x + 5)(x + 8)without memorizing the shortcut.

This approach takesmore time, and ultimately youmay not use it much. However, if you try a few examples
this way, it may make you more comfortable with the more complicated technique in Section 7.4.

7.3.3 Trinomials with Higher Powers

So far we have only factored examples of quadratic trinomials: trinomials whose highest power of the vari-
able is 2. However, this technique can also be used to factor trinomials where there is a larger highest
power of the variable. It only requires that the highest power is even, that the next highest power is half of
the highest power, and that the third term is a constant term.

In the four examples below, check:

1. if the highest power is even

2. if the next highest power is half of the highest power

3. if the last term is constant

Factor pairs will help with…

• y6 − 23y3 − 50

• h16 + 22h8 + 105

Factor pairs won’t help with…

• y5 − 23y3 − 50

• h16 + 22h8 + 105h2
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Example 7.3.7 Factor h16 + 22h8 + 105. This polynomial is one of the examples above where using factor
pairs will help. We find that 7 · 15 � 105, and 7 + 15 � 22, so the numbers 7 and 15 can be used:

h16
+ 22h8

+ 105 � h16
+

︷       ︸︸       ︷
7h8

+ 15h8
+105

�
(
h16

+ 7h8)
+

(
15h8

+ 105
)

� h8 (
h8

+ 7
)
+ 15

(
h8

+ 7
)

�
(
h8

+ 7
) (

h8
+ 15

)
Actually, once we settled on using 7 and 15, we could have concluded that h16 + 22h8 + 105 factors as(
h8 + 7

) (
h8 + 15

)
, if we know which power of h to use. We’ll always use half the highest power in these

factorizations.

In any case, to confirm that this is correct, we should check by multiplying out the factored form:

(h8
+ 7)(h8

+ 15) � (h8
+ 7) · h8

+ (h8
+ 7) · 15

� h16
+ 7h8

+ 15h8
+ 105

✓
� h16

+ 22h8
+ 15

h8 7
h8 h16 7h8

15 15h8 105

Our factorization passes the tests.

Checkpoint 7.3.8. Factor y6 − 23y3 − 50.

Explanation. We need a pair of numbers that multiply to −50 and add to −23. Note that we do care to keep
track that they multiply to a negative product and sum to a negative total.

Factor Pair Sum of the Pair
1 · (−50) −49
2 · (−25) −23 (what we wanted)
(no need to continue) ...

So y6 − 23y3 − 50 �
(
y3 − 25

) (
y3 + 2

)
.

7.3.4 Factoring in Stages

Sometimes factoring a polynomial will take two or more “stages.” Always begin factoring a polynomial by
factoring out its greatest common factor, and then apply a second stage where you use a technique from this
section. The process of factoring a polynomial is not complete until each of the factors cannot be factored
further.

Example 7.3.9 Factor 2z2 − 6z − 80.

Explanation. We will first factor out the common factor, 2:

2z2 − 6z − 80 � 2
(
z2 − 3z − 40

)
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Now we are left with a factored expression that might factor more. Looking inside the parentheses, we
ask ourselves, “what two numbers multiply to be −40 and add to be −3?” Since 5 and −8 do the job the
full factorization is:

2z2 − 6z − 80 � 2
(
z2 − 3z − 40

)
� 2(z + 5)(z − 8)

Example 7.3.10 Factor −r2 + 2r + 24.

Explanation. The three terms don’t exactly have a common factor, but as discussed in Section 7.1, when
the leading term has a negative sign, it is often helpful to factor out that negative sign:

−r2
+ 2r + 24 � −

(
r2 − 2r − 24

)
.

Looking inside the parentheses, we ask ourselves, “what two numbers multiply to be −24 and add to be
−2?” Since −6 and 4 work here and the full factorization is shown:

−r2
+ 2r + 24 � −

(
r2 − 2r − 24

)
� −(r − 6)(r + 4)

Example 7.3.11 Factor p2q3 + 4p2q2 − 60p2q.

Explanation. First, always look for the greatest common factor: in this trinomial it is p2q. After factor-
ing this out, we have

p2q3
+ 4p2q2 − 60p2q � p2q

(
q2

+ 4q − 60
)
.

Looking inside the parentheses, we ask ourselves, “what two numbers multiply to be −60 and add to be
4?” Since 10 and −6 fit the bill, the full factorization can be shown below:

p2q3
+ 4p2q2 − 60p2q � p2q

(
q2

+ 4q − 60
)

� p2q(q + 10)(q − 6)

7.3.5 More Trinomials with Two Variables

Youmight encounter a trinomial with two variables that can be factored using themethods we’ve discussed
in this section. It can be tricky though: x2 + 5x y + 6y2 has two variables and it can factor using the methods
from this section, but x2 + 5x + 6y2 also has two variables and it cannot be factored. So in examples of this
nature, it is even more important to check that factorizations you find actually work.

Example 7.3.12 Factor x2 + 5x y + 6y2. This is a trinomial, and the coefficient of x is 1, so maybe we can
factor it. We want to write (x + ?)(x + ?) where the question marks will be something that makes it all
multiply out to x2 + 5x y + 6y2.

Since the last term in the polynomial has a factor of y2, it is natural to wonder if there is a factor of y
in each of the two question marks. If there were, these two factors of y would multiply to y2. So it is
natural to wonder if we are looking for (x + ?y)(x + ?y)where now the question marks are just numbers.

At this point we can think like we have throughout this section. Are there some numbers that multiply
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to 6 and add to 5? Yes, specifically 2 and 3. So we suspect that (x+2y)(x+3y)might be the factorization.

To confirm that this is correct, we should check by multiplying out the factored form:

(x + 2y)(x + 3y) � (x + 2y) · x + (x + 2y) · 3y

� x2
+ 2x y + 3x y + 6y2

✓
� x2

+ 5x y + 6y2

x 2y
x x2 2x y

3y 3x y 6y2

Our factorization passes the tests.

In Section 7.4, there is a more definitive method for factoring polynomials of this form.

Exercises

Review and Warmup Multiply the polynomials.

(t + 6) (t + 10) �1. (t + 3) (t + 4) �2. (x + 9) (x − 3) �3.

(x + 6) (x − 8) �4.
(
y − 9

) (
y − 4

)
�5.

(
y − 2

) (
y − 10

)
�6.

3(x + 2)(x + 3) �7. −4
(
y − 1

) (
y − 9

)
�8. 2

(
y − 10

) (
y − 3

)
�9.

−2(r + 7)(r + 6) �10.

Factoring Trinomials with Leading Coefficient One Factor the given polynomial.

t2 + 3t + 2 �11. x2 + 14x + 48 �12. x2 + 14x + 40 �13.

y2 + 5y + 4 �14. y2 + 3y − 28 �15. r2 − 3r − 4 �16.

r2 + 2r − 80 �17. r2 − 2r − 35 �18. t2 − 9t + 20 �19.

t2 − 19t + 90 �20. x2 − 10x + 21 �21. x2 − 11x + 24 �22.

y2 + 12y + 20 �23. y2 + 15y + 54 �24. r2 + 13r + 30 �25.
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r2 + 13r + 36 �26. r2 − 4r − 60 �27. t2 + 6t − 16 �28.

t2 + 4t − 45 �29. x2 − 3x − 10 �30. x2 − 7x + 10 �31.

y2 − 17y + 72 �32. y2 − 8y + 15 �33. r2 − 9r + 8 �34.

r2 + 2r + 7 �35. r2 + 5 �36. t2 − 2t + 5 �37.

t2 + 9 �38. x2 + 10x + 25 �39. x2 + 24x + 144 �40.

y2 + 16y + 64 �41. y2 + 8y + 16 �42. r2 − 24r + 144 �43.

r2 − 16r + 64 �44. r2 − 8r + 16 �45. t2 − 22t + 121 �46.

9t2 − 9t − 18 �47. 7x2 + 7x − 42 �48. 6x2 − 6x − 12 �49.

4y2 − 16 �50. 2y2 − 8y + 6 �51. 2y2 − 14y + 20 �52.

4r2 − 20r + 16 �53. 2r2 − 12r + 10 �54. 9t4 + 27t3 + 18t2 �55.

2t4 + 22t3 + 20t2 �56. 5x6 + 20x5 + 15x4 �57. 2x6 + 18x5 + 16x4 �58.

5y6 − 10y5 − 40y4 �59. 6y4 − 18y3 − 24y2 �60. 4y10 − 12y9 − 16y8 �61.

2r8 + 12r7 − 32r6 �62. 4r6 − 12r5 + 8r4 �63. 7t9 − 28t8 + 21t7 �64.

4t10 − 20t9 + 16t8 �65. 9x6 − 27x5 + 18x4 �66. −x2 + 16 �67.

−y2 + 4y + 21 �68. −y2 + 6y + 40 �69. −y2 − 5y + 6 �70.
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r2 + 10rx + 16x2 �71. r2 + 9rt + 18t2 �72. t2 − 7tr − 30r2 �73.

t2 + tx − 12x2 �74. x2 − 6xt + 8t2 �75. x2 − 11x y + 24y2 �76.

y2 + 16yx + 64x2 �77. y2 + 2yt + t2 �78. y2 − 4yr + 4r2 �79.

r2 − 22rx + 121x2 �80. 4r2 + 20r + 16 �81. 2t2 + 14t + 12 �82.

2x2 y + 10x y + 8y �83. 8x2 y + 24x y + 16y �84. 3a2b − 21ab − 24b �85.

7a2b − 7b �86. 2x2 y − 6x y + 4y �87. 2x2 y − 16x y + 14y �88.

2x3 y + 12x2 y + 16x y �89. 2x3 y + 14x2 y + 20x y �90. x2 y2 − 9x2z2 �91.

x2 y2 − 5x2 yz − 14x2z2 �92. x2 + x + 0.24 �93. x2 + x + 0.21 �94.

y2t2 + 12yt + 20 �95. y2r2 + 11yr + 28 �96. y2x2 + 7yx − 30 �97.

r2t2 + 8rt − 20 �98. r2 y2 − 12r y + 20 �99. t2x2 − 11tx + 24 �100.

2t2r2 + 22tr + 20 �101. 2x2 y2 + 20x y + 18 �102. 10x2 y2 − 10 �103.

5y2r2 − 10yr − 15 �104. 2x2 y3 − 16x y2 + 30y �105. 2x2 y3 − 6x y2 + 4y �106.

(a + b) r2 + 10(a + b) r + 16(a + b) �107.

(a + b) r2 + 10(a + b) r + 24(a + b) �108.

Challenge

What integers can go in the place of b so that the quadratic expression x2 + bx − 16 is factorable?109.
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7.4 Factoring Trinomials with a Nontrivial Leading Coefficient

In Section 7.3, we learned how to factor ax2+bx+c when a � 1. In this section, wewill examine the situation
when a , 1. The techniques are similar to those in the last section, but there are a few important differences
that will make-or-break your success in factoring these.

7.4.1 The AC Method

The ACMethod is a technique for factoring trinomials like 4x2 +5x−6, where there is no greatest common
factor, and the leading coefficient is not 1.

Please note at this point that if we try the method in the previous section and ask ourselves the question
“what two numbers multiply to be −6 and add to be 5?,” we might come to the erroneous conclusion that
4x2 + 5x − 6 factors as (x + 6)(x − 1). If we expand (x + 6)(x − 1), we get

(x + 6)(x − 1) � x2
+ 5x − 6

This expression is almost correct, except for the missing leading coefficient, 4. Dealing with this missing
coefficient requires starting over with the AC method. If you are only interested in the steps for using the
technique, skip ahead to Algorithm 7.4.3.

The example below explains why the AC Method works. Understanding all of the details might take a
few rereads, and coming back to this example after mastering the algorithm may be the best course of
action.

Example 7.4.2 Expand the expression (px + q)(rx + s) and analyze the result to gain an insight into why
the AC method works. Then use this information to factor 4x2 + 5x − 6.

Explanation. Factoring is the opposite process from multiplying polynomials together. We can gain
some insight into how to factor complicated polynomials by taking a closer look at what happens when
two generic polynomials are multiplied together:

(px + q)(rx + s) � (px + q)(rx) + (px + q)s
� (px)(rx) + q(rx) + (px)s + qs

� (pr)x2
+ qrx + psx + qs

� (pr)x2
+ (qr + ps)x + qs (7.4.1)

When you encounter a trinomial like 4x2 + 5x − 6 and you wish to factor it, the leading coefficient, 4, is
the (pr) from Equation (7.4.1). Similarly, the −6 is the qs, and the 5 is the (qr + ps).
Now, if you multiply the leading coefficient and constant term from Equation (7.4.1), you have (pr)(qs),
which equals pqrs. Notice that if we factor this number in just the right way, (qr)(ps), then we have two
factors that add to the middle coefficient from Equation (7.4.1), (qr + ps).
Can we do all this with the example 4x2 + 5x − 6? Multiplying 4 and −6 makes −24. Is there some way
to factor −24 into two factors which add to 5? We make a table of factor pairs for −24 to see:
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Factor Pair Sum of the Pair
−1 · 24 23
−2 · 12 10
−3 · 8 5 (what we wanted)
−4 · 6 (no need to go this far)

Factor Pair Sum of the Pair
1 · (−24) (no need to go this far)
2 · (−12) (no need to go this far)
3 · (−8) (no need to go this far)
4 · (−6) (no need to go this far)

So that 5 in 4x2 + 5x − 6, which is equal to the abstract (qr + ps) from Equation (7.4.1), breaks down as
−3 + 8. We can take −3 to be the qr and 8 to be the ps. Once we intentionally break up the 5 this way,
factoring by grouping (see Section 7.2) can take over and is guaranteed to give us a factorization.

4x2
︷︸︸︷
+ 5x −6 � 4x2

︷    ︸︸    ︷
−3x + 8x −6

Now that there are four terms, group them and factor out each group’s greatest common factor.

�
(
4x2 − 3x

)
+ (8x − 6)

� x(4x − 3) + 2(4x − 3)
� (4x − 3)(x + 2)

And this is the factorization of 4x2 + 5x − 6. This whole process is known as the “AC method,” since it
begins by multiplying a and c from the generic ax2 + bx + c.

The AC Method Here is a summary of the algorithm:

Process 7.4.3 The AC Method. To factor ax2 + bx + c:

1. Multiply a · c.
2. Make a table of factor pairs for ac. Look for a pair that adds to b. If you cannot find one, the polynomial is

irreducible.

3. If you did find a factor pair summing to b, replace b with an explicit sum, and distribute x. With the four terms
you have at this point, use factoring by grouping to continue. You are guaranteed to find a factorization.

Example 7.4.4 Factor 10x2 + 23x + 6.

1. 10 · 6 � 60

2. Use a list of factor pairs for 60 to find that 3 and 20 are a pair that sums to 23.

3. Intentionally break up the 23 as 3 + 20:

10x2
︷︸︸︷
+ 23x +6

� 10x2
︷        ︸︸        ︷
+ 3x + 20x +6

�
(
10x2

+ 3x
)
+ (20x + 6)

� x(10x + 3) + 2(10x + 3)
� (10x + 3)(x + 2)
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Example 7.4.5 Factor 2x2 − 5x − 3.

Explanation. Always start the factoring process by examining if there is a greatest common factor.
Here there is not one. Next, note that this is a trinomial with a leading coefficient that is not 1. So the
AC Method may be of help.

1. Multiply 2 · (−3) � −6.

2. Examine factor pairs that multiply to −6, looking for a pair that sums to −5:

Factor Pair Sum of the Pair
1 · −6 −5 (what we wanted)
2 · −3 (no need to go this far)

Factor Pair Sum of the Pair
−1 · 6 (no need to go this far)
−2 · 3 (no need to go this far)

3. Intentionally break up the −5 as 1 + (−6):

2x2
︷︸︸︷
− 5x −3 � 2x2

︷    ︸︸    ︷
+ x − 6x −3

�
(
2x2

+ x
)
+ (−6x − 3)

� x(2x + 1) − 3(2x + 1)
� (2x + 1)(x − 3)

So we believe that 2x2 − 5x − 3 factors as (2x + 1)(x − 3), and we should check by multiplying out the
factored form:

(2x + 1)(x − 3) � (2x + 1) · x + (2x + 1) · (−3)
� 2x2

+ x − 6x − 3
✓
� 2x2 − 5x − 3

2x 1
x 2x2 x
−3 −6x −3

Our factorization passes the tests.

Example 7.4.6 Factor 6p2 + 5pq − 6q2. Note that this example has two variables, but that does not really
change our approach.

Explanation. There is no greatest common factor. Since this is a trinomial, we try the AC Method.

1. Multiply 6 · (−6) � −36.
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2. Examine factor pairs that multiply to −36, looking for a pair that sums to 5:

Factor Pair Sum of the Pair
1 · −36 −35
2 · −18 −16
3 · −12 −9
4 · −9 −5 (close; wrong sign)
6 · −6 0

Factor Pair Sum of the Pair
−1 · 36 35
−2 · 18 16
−3 · 12 9
−4 · 9 5 (what we wanted)

3. Intentionally break up the 5 as −4 + 9:

6p2
︷ ︸︸ ︷
+ 5pq −6q2

� 6p2
︷         ︸︸         ︷
− 4pq + 9pq −6q2

�
(
6p2 − 4pq

)
+

(
9pq − 6q2)

� 2p(3p − 2q) + 3q(3p − 2q)
� (3p − 2q)(2p + 3q)

So we believe that 6p2 + 5pq − 6q2 factors as (3p − 2q)(2p + 3q), and we should check by multiplying out
the factored form:

(3p − 2q)(2p + 3q) � (3p − 2q) · 2p + (3p − 2q) · 3q

� 6p2 − 4pq + 9pq − 6q2

✓
� 6p2

+ 5pq − 6q2

3p −2q
2p 6p2 −4pq
3q 9pq −6q2

Our factorization passes the tests.

7.4.2 Factoring in Stages

Sometimes factoring a polynomial will take two or more “stages.” For instance you may need to begin
factoring a polynomial by factoring out its greatest common factor, and then apply a second stage where
you use a technique from this section. The process of factoring a polynomial is not complete until each of
the factors cannot be factored further.

Example 7.4.7 Factor 18n2 − 21n − 60.

Explanation. Notice that 3 is a common factor in this trinomial. We should factor it out first:

18n2 − 21n − 60 � 3
(
6n2 − 7n − 20

)
Now we are left with two factors, one of which is 6n2 − 7n − 20, which might factor further. Using the
AC Method:

1. 6 · −20 � −120
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2. Examine factor pairs that multiply to −120, looking for a pair that sums to −7:

Factor Pair Sum of the Pair
1 · −120 −119
2 · −60 −58
3 · −40 −37
4 · −30 −26
5 · −24 −19
6 · −20 −14
8 · −15 −7 (what we wanted)
10 · −12 (no need to go this far)

Factor Pair Sum of the Pair
−1 · 120 (no need to go this far)
−2 · 60 (no need to go this far)
−3 · 40 (no need to go this far)
−4 · 30 (no need to go this far)
−5 · 24 (no need to go this far)
−6 · 20 (no need to go this far)
−8 · 15 (no need to go this far)
−10 · 12 (no need to go this far)

3. Intentionally break up the −7 as 8 + (−15):

18n2 − 21n − 60 � 3

(
6n2

︷︸︸︷
− 7n −20

)
� 3

(
6n2

︷        ︸︸        ︷
+ 8n − 15n −20

)
� 3

(
(6n2

+ 8n) + (−15n − 20)
)

� 3 (2n(3n + 4) − 5(3n + 4))
� 3(3n + 4)(2n − 5)

So we believe that 18n2 − 21n − 60 factors as 3(3n + 4)(2n − 5), and you should check by multiplying out
the factored form.

Example 7.4.8 Factor −16x3 y − 12x2 y + 18x y.

Explanation. Notice that 2x y is a common factor in this trinomial. Also the leading coefficient is neg-
ative, and as discussed in Section 7.1, it is wise to factor that out as well. So we find:

−16x3 y − 12x2 y + 18x y � −2x y
(
8x2

+ 6x − 9
)

Now we are left with one factor being 8x2 + 6x − 9, which might factor further. Using the AC Method:

1. 8 · −9 � −72

2. Examine factor pairs that multiply to −72, looking for a pair that sums to 6:

Factor Pair Sum of the Pair
1 · −72 −71
2 · −36 −34
3 · −24 −21
4 · −18 −14
6 · −12 −6 (close; wrong sign)
8 · −9 −1

Factor Pair Sum of the Pair
−1 · 72 71
−2 · 36 34
−3 · 24 21
−4 · 18 14
−6 · 12 6 (what we wanted)
−8 · 9 (no need to go this far)
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3. Intentionally break up the 6 as −6 + 12:

−16x3 y − 12x2 y + 18x y � −2x y

(
8x2

︷︸︸︷
+ 6x −9

)
� −2x y

(
8x2

︷        ︸︸        ︷
− 6x + 12x −9

)
� −2x y

(
(8x2 − 6x) + (12x − 9)

)
� −2x y (2x(4x − 3) + 3(4x − 3))
� −2x y(4x − 3)(2x + 3)

So we believe that −16x3 y − 12x2 y + 18x y factors as −2x y(4x − 3)(2x + 3), and you should check by
multiplying out the factored form.

Exercises

Review and Warmup Multiply the polynomials.

(5t + 4) (6t + 8) �1. (3x + 9) (5x + 8) �2. (6x − 8) (3x − 4) �3.

(
5y − 4

) (
y − 3

)
�4.

(
4y − 10

) (
y + 9

)
�5.

(
10y − 6

) (
y + 7

)
�6.

(
7r3 + 9

) (
r2 + 4

)
�7.

(
4r3 + 1

) (
r2 + 7

)
�8.

Factoring Trinomials with a Nontrivial Leading Coefficient Factor the given polynomial.

3t2 + 22t + 7 �9. 3t2 + 17t + 10 �10. 2x2 + 5x − 7 �11.

5x2 + 3x − 14 �12. 2y2 − 15y + 7 �13. 3y2 − 7y + 2 �14.

2y2 + y + 1 �15. 3r2 + 3r + 7 �16. 4r2 + 25r + 6 �17.

6t2 + 7t + 1 �18. 6t2 + t − 7 �19. 4x2 + 5x − 9 �20.

8x2 − 21x + 10 �21. 6x2 − 11x + 5 �22. 6y2 + 11y + 3 �23.
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15y2 + 29y + 8 �24. 9r2 − 3r − 20 �25. 6r2 + 7r − 20 �26.

12t2 − 25t + 12 �27. 10t2 − 17t + 3 �28. 6x2 + 8x + 2 �29.

10x2 + 25x + 15 �30. 15x2 − 12x − 27 �31. 4y2 − 14y − 18 �32.

6y2 − 27y + 12 �33. 6r2 − 20r + 16 �34. 4r9 + 14r8 + 6r7 �35.

6t9 + 15t8 + 6t7 �36. 4t6 + 30t5 − 16t4 �37. 4x7 − 14x6 − 30x5 �38.

6x10 − 27x9 + 21x8 �39. 6x5 − 26x4 + 24x3 �40. 2y2t2 + 15yt + 18 �41.

2y2r2 + 19yr + 9 �42. 5r2x2 + rx − 4 �43. 2r2 y2 − 13r y − 7 �44.

3t2 y2 − 4t y + 1 �45. 2t2x2 − 17tx + 8 �46. 3x2 + 20xr + 12r2 �47.

5x2 + 7x y + 2y2 �48. 5x2 − 8xt − 21t2 �49. 5y2 − 14yr − 3r2 �50.

3y2 − 10yx + 8x2 �51. 2r2 − 13rt + 18t2 �52. 8r2 + 17rx + 9x2 �53.

6t2 + 7tx + x2 �54. 4t2 − 11tx − 3x2 �55. 4x2 − 3xr − r2 �56.

4x2 − 17xr + 4r2 �57. 4x2 − 9xt + 2t2 �58. 8y2 + 14yr + 3r2 �59.

12y2 + 17yx + 6x2 �60. 15r2 + 2rt − 24t2 �61. 25r2 − y2 �62.

8t2 − 22tx + 15x2 �63. 8t2 − 14tr + 5r2 �64. 10x2 y2 + 18x y + 8 �65.

10x2 y2 + 34x y + 12 �66. 6x2r2 + 3xr − 18 �67. 6y2t2 − 9yt − 6 �68.

544



7.4 Factoring Trinomials with a Nontrivial Leading Coefficient

21y10x2 − 35y9x + 14y8 �69. 25r6x2 − 35r5x + 10r4 �70. 10x2 + 25x y + 15y2 �71.

9x2 + 24x y + 12y2 �72. 4a2 + 6ab − 4b2 �73. 6a2 − 9ab − 15b2 �74.

10x2 − 15x y + 5y2 �75. 4x2 − 18x y + 20y2 �76. 6x2 y + 26x y2 + 20y3 �77.

6x2 y + 38x y2 + 12y3 �78.

12x2 (y − 3
)
+ 20x

(
y − 3

)
+ 8

(
y − 3

)
�79.

10x2 (y + 3
)
+ 34x

(
y + 3

)
+ 12

(
y + 3

)
�80.

6x2 (y − 6
)
+ 15x

(
y − 6

)
+ 6

(
y − 6

)
�81.

15x2 (y + 7
)
+ 18x

(
y + 7

)
+ 3

(
y + 7

)
�82.

83.a. Factor the given polynomial.

2x2 + 17x + 21 �

b. Use your previous answer to factor

2
(
y − 1

)2
+ 17

(
y − 1

)
+ 21 �

84.a. Factor the given polynomial.

5x2 + 11x + 6 �

b. Use your previous answer to factor

5
(
y + 7

)2
+ 11

(
y + 7

)
+ 6 �

Challenge

What integers can go in the place of b so that the quadratic expression 3x2 + bx + 4 is factorable?85.
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7.5 Factoring Special Polynomials

Certain polynomials have patterns that you can train yourself to recognize. And when they have these
patterns, there are formulas you can use to factor them, much more quickly than using the techniques from
Section 7.3 and Section 7.4.

7.5.1 Difference of Squares

If b is some positive integer, then when you multiply (x − b)(x + b):

(x − b)(x + b) � x2 − bx + bx − b2

� x2 − b2.

The −bx and the +bx cancel each other out. So this is telling us that

x2 − b2
� (x − b)(x + b).

And so if we ever encounter a polynomial of the form x2 − b2 (a “difference of squares”) then we have a
quick formula for factoring it. Just identify what “b” is, and use that in (x − b)(x + b).
To use this formula, it’s important to recognize which numbers are perfect squares, as in Table 1.3.7.

Example 7.5.2 Factor x2 − 16.

Explanation. The “16” being subtracted here is a perfect square. It is the same as 42. So we can take
b � 4 and write:

x2 − 16 � (x − b)(x + b)
� (x − 4)(x + 4)

Checkpoint 7.5.3. Try to factor one yourself:

Factor x2 − 49.

Explanation. The “49” being subtracted here is a perfect square. It is the same as 72. So we can take b � 7
and write:

x2 − 49 � (x − b)(x + b)
� (x − 7)(x + 7)

We can do a little better. There is nothing special about starting with “x2” in these examples. In full gener-
ality:

Fact 7.5.4 The Difference of Squares Formula. If A and B are any algebraic expressions, then:

A2 − B2
� (A − B)(A + B).

Example 7.5.5 Factor 1 − p2.

Explanation. The “1” at the beginning of this expression is a perfect square; it’s the same as 12. The
“p2” being subtracted here is also perfect square. We can take A � 1 and B � p, and use The Difference
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of Squares Formula:

1 − p2
� (A − B)(A + B)
� (1 − p)(1 + p)

Example 7.5.6 Factor m2n2 − 4.

Explanation. Is the “m2n2” at the beginning of this expression a perfect square? By the rules for ex-
ponents, it is the same as (mn)2, so yes, it is a perfect square and we may take A � mn. The “4” being
subtracted here is also perfect square. We can take B � 2. The Difference of Squares Formula tells us:

m2n2 − 4 � (A − B)(A + B)
� (mn − 2)(mn + 2)

Checkpoint 7.5.7. Try to factor one yourself:

Factor 4z2 − 9.

Explanation. The “4z2” at the beginning here is a perfect square. It is the same as (2z)2. So we can take
A � 2z. The “9” being subtracted is also a perfect square, so we can take B � 3:

4z2 − 9 � (A − B)(A + B)
� (2z − 3)(2z + 3)

Example 7.5.8 Factor x6 − 9.

Explanation. Is the “x6” at the beginning of this expression is a perfect square? It may appear to be a
sixth power, but it is also a perfect square because we can write x6 �

(
x3)2. So we may take A � x3. The

“9” being subtracted here is also perfect square. We can take B � 3. The Difference of Squares Formula
tells us:

x6 − 9 � (A − B)(A + B)
� (x3 − 3)(x3

+ 3)

Warning 7.5.9. It’s a common mistake to write something like x2 + 16 � (x + 4)(x − 4). This is not what The
Difference of Squares Formula allows you to do, and this is in fact incorrect. The issue is that x2 + 16 is a
sum of squares, not a difference. And it happens that x2 + 16 is actually prime. In fact, any sum of squares
without a common factor will always be prime.

7.5.2 Perfect Square Trinomials

If we expand (A + B)2:

(A + B)2 � (A + B)(A + B)
� A2

+ BA + AB + B2

� A2
+ 2AB + B2.

The BA and the AB equal each other and double up when added together. So this is telling us that

A2
+ 2AB + B2

� (A + B)2.
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And so if we ever encounter a polynomial of the form A2 + 2AB + B2 (a “perfect square trinomial”) then we
have a quick formula for factoring it.

The tricky part is recognizing when a trinomial you have encountered is in this special form. Ask yourself:

1. Is the first term a perfect square? If so, jot down what A would be.

2. Is the second term a perfect square? If so, jot down what B would be.

3. When you multiply 2 with what you wrote down for A and B, i.e. 2AB, do you have the middle term?
If you have this middle term exactly, then your polynomial factors as (A + B)2. If the middle term is
the negative of 2AB, then the sign on your B can be reversed, and your polynomial factors as (A−B)2.

Fact 7.5.10 The Perfect Square Trinomial Formula. If A and B are any algebraic expressions, then:

A2
+ 2AB + B2

� (A + B)2

and
A2 − 2AB + B2

� (A − B)2

Example 7.5.11 Factor x2 + 6x + 9.

Explanation. The first term, x2, is clearly a perfect square. So we could take A � x. The last term, 9, is
also a perfect square since it is equal to 32. So we could take B � 3. Now we multiply 2AB � 2 · x · 3, and
the result is 6x. This is the middle term, which is what we hope to see.

So we can use The Perfect Square Trinomial Formula:

x2
+ 6x + 9 � (A + B)2

� (x + 3)2

Example 7.5.12 Factor 4x2 − 20x y + 25y2.

Explanation. The first term, 4x2, is a perfect square because it equals (2x)2. So we could take A � 2x.
The last term, 25y2, is also a perfect square since it is equal to (5y)2. So we could take B � 5y. Now we
multiply 2AB � 2 · (2x) · (5y), and the result is 20x y. This is the negative of the middle term, which we
can work with. The factored form will be (A − B)2 instead of (A + B)2.
So we can use The Perfect Square Trinomial Formula:

4x2 − 20x y + 25y2
� (A − B)2

� (2x − 5y)2

Checkpoint 7.5.13. Try to factor one yourself:

Factor 16q2 + 56q + 49.

Explanation. The first term, 16q2, is a perfect square because it equals (4q)2. So we could take A � 4q.
The last term, 49, is also a perfect square since it is equal to 72. So we could take B � 7. Now we multiply
2AB � 2 · (4q) · 7, and the result is 56q. This is the middle term, which is what we hope to see.

So we can use The Perfect Square Trinomial Formula:

16q2
+ 56q + 49 � (A + B)2

� (4q + 7)2
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Warning 7.5.14. It is not enough to just see that the first and last terms are perfect squares. For example,
9x2 + 10x + 25 has its first term equal to (3x)2 and its last term equal to 52. But when you examine 2 · (3x) · 5
the result is 30x, not equal to the middle term. So The Perfect Square Trinomial Formula doesn’t apply here.
In fact, this polynomial doesn’t factor at all.

Remark 7.5.15. To factor these perfect square trinomials, we could use methods from Section 7.3 and Sec-
tion 7.4. As an exercise for yourself, try to factor each of the three previous examples using those methods.
The advantage to using The Perfect Square Trinomial Formula is that it is much faster. With some practice,
all of the work for using it can be done mentally.

7.5.3 Difference/Sum of Cubes Formulas

The following calculation may seem to come from nowhere at first, but see it through. If we multiply (A −
B)

(
A2 + AB + B2) :

(A − B)
(
A2

+ AB + B2)
� A3 − BA2

+ A2B − BAB + AB2 − B3

� A3 − A2B + A2B − AB2
+ AB2 − B3

� A3
︷           ︸︸           ︷
− A2B + A2B

︷           ︸︸           ︷
− AB2

+ AB2 −B3

� A3 − B3.

This is telling us that
A3 − B3

� (A − B)
(
A2

+ AB + B2) .
And so if we ever encounter a polynomial of the form A3−B3 (a “difference of cubes”) then we have a quick
formula for factoring it.

A similar formula exists for factoring a sum of cubes, A3 + B3. Here are both formulas, followed by some
tips on how to memorize them.

Fact 7.5.16 The Difference/Sum of Cubes Formula. If A and B are any algebraic expressions, then:

A3 − B3
� (A − B)

(
A2

+ AB + B2)
and

A3
+ B3

� (A + B)
(
A2 − AB + B2)

Differences of cubes are sums of cubes.
Technically a difference of cubes, A3 − B3,
is equal to A3+ (−B)3. So you can treat any
difference of cubes as a sum of cubes, A3 +
B3, where B is negative and you only need
to memorize the sum of cubes formula.

To memorize this, focus on:

• The factorization is a binomial times a trinomial.

• The sign you start with appears again in the binomial.

• The three terms in the trinomial are all quadratic: A2, AB, and B2.

• In the trinomial, it’s always adding A2 and B2. But the sign on AB is always the opposite of the sign in
the sum/difference of cubes.

To use these formulas effectively, we need to recognize when numbers are perfect cubes. Perfect cubes
become large fast before you can list too many of them. Try to memorize as many of these as you can:

13
� 1 23

� 8 33
� 27 43

� 64
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53
� 125 63

� 216 73
� 343 83

� 512
93

� 729 103
� 1000 113

� 1331 123
� 1728

Let’s look at a few examples.

Example 7.5.17 Factor x3 − 27.

Explanation. We recognize that x3 is a perfect cube and 27 � 33, so we can use The Difference/Sum of
Cubes Formula to factor the binomial. Note that since we have a difference of cubes, the binomial factor
from the formula will subtract two terms, and the middle term from the trinomial will be +AB.

x3 − 27 � (A − B)
(
A2

+ AB + B2)
� (x − 3)

(
x2

+ (x)(3) + 32)
� (x − 3)

(
x2

+ 3x + 9
)

Example 7.5.18 Factor 27m3 + 64n3.

Explanation. We recognize that 27m3 � (3m)3 and 64n3 � (4n)3 are both perfect cubes, so we can use
The Difference/Sum of Cubes Formula to factor the binomial. Note that since we have a sum of cubes,
the binomial factor from the formula will add two terms, and the middle term from the trinomial will
be −AB.

27m3
+ 64n3

� (A + B)
(
A2 − AB + B2)

� (3m + 4n)
(
(3m)2 − (3m)(4n) + (4n)2

)
� (3m + 4n)

(
9m2 − 12mn + 16n2)

Checkpoint 7.5.19. Try to factor one yourself:

Factor y3 + 1000.

Explanation. We recognize that y3 is a perfect cube and 1000 � 103, so we can use The Difference/Sum of
Cubes Formula to factor the binomial. Note that since we have a sum of cubes, the binomial factor from the
formula will add two terms, and the middle term from the trinomial will be −AB.

y3
+ 1000 � (A + B)

(
A2 − AB + B2)

� (y + 10)
(
y2 − (y)(10) + 102)

� (y + 10)
(
y2 − 10y + 100

)
7.5.4 Factoring in Stages

Sometimes factoring a polynomial will take two or more “stages.” For instance you might use one of the
special formulas from this section to factor something into two factors, and then those factorsmight be factor
even more. When the task is to factor a polynomial, the intention is that you fully factor it, breaking down
the pieces into even smaller pieces when that is possible.

Example 7.5.20 Factor out any greatest common factor. Factor 12z3 − 27z.
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Explanation. The two terms of this polynomial have greatest common factor 3z, so the first step in
factoring should be to factor this out:

3z
(
4z2 − 9

)
.

Nowwe have two factors. There is nothing for us to do with 3z, but we should ask if
(
4z2 − 9

)
can factor

further. And in fact, that is a difference of squares. So we can apply The Difference of Squares Formula.
The full process would be:

12z3 − 27z � 3z
(
4z2 − 9

)
� 3z(2z − 3)(2z + 3)

Example 7.5.21 Recognize a second special pattern. Factor p4 − 1.

Explanation. Since p4 is the same as
(
p2)2, we have a difference of squares here. We can apply The

Difference of Squares Formula:

p4 − 1 �
(
p2 − 1

) (
p2

+ 1
)

It doesn’t end here. Of the two factors we found,
(
p2 + 1

)
cannot be factored further. But the other one,(

p2 − 1
)
is also a difference of squares. So we should apply The Difference of Squares Formula again:

� (p − 1)(p + 1)
(
p2

+ 1
)

Checkpoint 7.5.22. Try to factor one yourself:

Factor 3x3 − 3.

Explanation. The two terms of this polynomial have greatest common factor 3, so the first step in factoring
should be to factor this out:

3
(
x3 − 1

)
.

Now we have two factors. There is nothing for us to do with 3, but we should ask if
(
x3 − 1

)
can factor

further. And in fact, that is a difference of cubes. So we can apply The Difference/Sum of Cubes Formula.
The full process would be:

3x3 − 3 � 3
(
x3 − 1

)
� 3(x − 1)(x2

+ x + 1)

The trinomial fromTheDifference/Sumof Cubes Formulawill never factor further. However, in some cases,
the binomial from that formula will factor further, and you should look for this.

Example 7.5.23 Factor 64p6 − 729.

Explanation. We recognize that 64p6 is a perfect square because it equals
(
8p3)2. And 729 is also

a perfect square because 729 � 272. So we can use The Difference of Squares Formula to factor the
binomial.

64p6 − 729 � (A − B) (A + B)
�

(
8p3 − 27

) (
8p3

+ 27
)
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Next, note that in each of the factors we have an 8p3 and a 27, both of which can be viewed as perfect
cubes: 8p3 � (2p)3 and a 27 � 33. So we will use both the difference of cubes and the sum of cubes
formulas.

� (A − B)
(
A2

+ AB + B2)(A + B)
(
A2 − AB + B2)

� (2p − 3)
(
(2p)2 + (2p) · 3 + 32)(2p + 3)

(
(2p)2 − (2p) · 3 + 32)

� (2p − 3)
(
4p2

+ 6p + 9
)
(2p + 3)

(
4p2 − 6p + 9

)
Example 7.5.24 Factor 32x6 y2 − 48x5 y + 18x4.

Explanation. The first step of factoring any polynomial is to factor out the common factor if possible.
For this trinomial, the common factor is 2x4, so we write

32x6 y2 − 48x5 y + 18x4
� 2x4(16x2 y2 − 24x y + 9).

The square numbers 16 and 9 in 16x2 y2 − 24x y + 9 hint that maybe we could use The Perfect Square
Trinomial Formula. Taking A � 4x y and B � 3, we multiply 2AB � 2 · (4x y) · 3. The result is 24x y,
which is the negative of our middle term. So the whole process is:

32x6 y2 − 48x5 y + 18x4
� 2x4(16x2 y2 − 24x y + 9)
� 2x4(a − b)2

� 2x4(4x y − 3)2

Exercises

Review and Warmup Expand the square of a binomial.

(5t + 10)2 �1. (2t + 4)2 �2. (x − 4)2 �3.

(x − 7)2 �4.
(
y7 + 13

)2
�5.

(
y10 + 4

)2
�6.

Multiply the polynomials.

(r − 6) (r + 6) �7. (r + 12) (r − 12) �8. (4t − 5) (4t + 5) �9.

(3t + 3) (3t − 3) �10.
(
6t5 − 11

) (
6t5 + 11

)
�11.

(
4x6 − 13

) (
4x6 + 13

)
�12.

Factoring Factor the given polynomial.

x2 − 9 �13. y2 − 121 �14. 49y2 − 81 �15.
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4r2 − 121 �16. r2t2 − 49 �17. t2 y2 − 144 �18.

36t2x2 − 1 �19. 121t2 y2 − 64 �20. 36 − x2 �21.

1 − x2 �22. 4 − 81y2 �23. 49 − 25y2 �24.

r4 − 4 �25. r4 − 25 �26. 25t4 − 121 �27.

144t4 − 49 �28. t10 − 64 �29. x6 − 25 �30.

16x4 − 9y4 �31. 25x4 − 64y4 �32. x6 − 36y10 �33.

x14 − 49y10 �34. r2 + 14r + 49 �35. t2 + 6t + 9 �36.

t2 − 22t + 121 �37. t2 − 14t + 49 �38. 9x2 + 6x + 1 �39.

100x2 + 20x + 1 �40. 49y2 − 14y + 1 �41. 9y2 − 6y + 1 �42.

36r2t2 − 12rt + 1 �43. 121r2 y2 − 22r y + 1 �44. t2 + 8tx + 16x2 �45.

t2 + 18tr + 81r2 �46. t2 − 4t y + 4y2 �47. x2 − 2xr + r2 �48.

49x2 + 84xr + 36r2 �49. 4y2 + 20yt + 25t2 �50. 16y2 − 24yt + 9t2 �51.

4r2 − 12rx + 9x2 �52. r3 + 125 �53. t3 + 1728 �

Hint: 1728 � 123.

54.

t3 − 512 �

Hint: −512 � −83.

55. t3 − 64 �56. 1000x3 + 1 �

Hint: 1000 � 103.

57.
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343x3 + 1 �

Hint: 343 � 73.

58. 27y3 − 1 �59. 729y3 − 1 �

Hint: 729 � 93.

60.

216r3 + 125 �

Hint: 216 � 63.

61. 27r3 + 125 �62. 729t3 − 512 �

Hint: 729 � 93, −512 � −83.

63.

216t3 − 343 �

Hint: 216 � 63, −343 � −73.

64. x3 y3 + 1728 �

Hint: 1728 � 123.

65. x3 y3 + 8 �66.

x3 − 64y3 �67. x3 − 125y3 �68. 81y4 − 16 �69.

16r4 − 81 �70. 3r2 − 3 �71. 4r2 − 64 �72.

9t3 − 36t �73. 3t3 − 147t �74. 9x4r3 − 81x2r �75.

7x4 y4 − 63x2 y2 �76. 108 − 12y2 �77. 128 − 2y2 �78.

80r2 + 40r + 5 �79. 63r2 + 42r + 7 �80. 64r2 y2 + 32r y + 4 �81.

98t2x2 + 28tx + 2 �82. 96t2 − 48t + 6 �83. 24x2 − 24x + 6 �84.

9x10 + 6x9 + x8 �85. 121y6 + 22y5 + y4 �86. 49y9 − 14y8 + y7 �87.

9r5 − 6r4 + r3 �88. 18r8 + 12r7 + 2r6 �89. 72r6 + 24r5 + 2r4 �90.

20t4 − 20t3 + 5t2 �91. 36t9 − 36t8 + 9t7 �92. 125x4 + 64x �93.

8x4 + 125x �94. 64x3 + 125y3 �95. 125x3 + 216y3 �

Hint: 216 � 63.

96.
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3r4 − 243 �97. 3r4 − 48 �98. r10 + 125r7 �99.

t6 + 1728t3 �

Hint: 1728 � 123.

100. t2 + 64 �101. x2 + 16 �102.

5x3 + 20x �103. 4y3 + 100y �104. 0.09y − y3 �105.

0.81r − r3 �106. (r − 8)2 − 81 �107. (r − 7)2 − 49 �108.

x2 + 14x + 49 − 121y2 �109. x2 + 20x + 100 − 49y2 �110.
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7.6 Factoring Strategies

7.6.1 Factoring Strategies

Deciding which method to use when factoring a random polynomial can seem like a daunting task. Under-
standing all of the techniques that we have learned and how they fit together can be done using a decision
tree.

Factor
out GCF

A2 − B2

� (A − B)(A + B)

Differenceof Squares

A3 − B3

� (A − B)(A2
+ AB + B2)

Difference of Cubes

A3
+ B3

� (A + B)(A2 − AB + B2)
Sum

of

Cubes

binom
ial

Try
Grouping

four
terms

Are first and
last terms
perfect
squares?

try the AC method
leading coefficient , 1

find factors of c
that add to bleading coefficient 1no

A2
+ 2AB + B2

� (A + B)2

try

A2 − 2AB + B2

� (A − B)2
try

yes

trin
omial

Figure 7.6.2: Factoring Decision Tree

Using the decision tree can guide us when we are given an expression to factor.

Example 7.6.3 Factor the expression 4k2 + 12k − 40 completely.

Explanation. Start by noting that the GCF is 4. Factoring this out, we get

4k2
+ 12k − 40 � 4

(
k2

+ 3k − 10
)
.

Following the decision tree, we now have a trinomial where the leading coefficient is 1 and we need to
look for factors of −10 that add to 3. We find that −2 and 5 work. So, the full factorization is:

4k2
+ 12k − 40 � 4

(
k2

+ 3k − 10
)

� 4(k − 2)(k + 5)

Example 7.6.4 Factor the expression 64d2 + 144d + 81 completely.

Explanation. Start by noting that the GCF is 1, and there is no GCF to factor out. We continue along
the decision tree for a trinomial. Notice that both 64 and 81 are perfect squares and that this expression
might factor using the pattern A2 + 2AB + B2 � (A + B)2. To find A and B, take the square roots of
the first and last terms, so A � 8d and B � 9. We have to check that the middle term is correct: since
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2AB � 2(8d)(9) � 144d matches our middle term, the expression must factor as

64d2
+ 144d + 81 � (8d + 9)2.

Example 7.6.5 Factor the expression 10x2 y − 12x y2 completely.

Explanation. Start by noting that the GCF is 2x y. Factoring this out, we get

10x2 y − 12x y2
� 2x y(5x − 6y).

Since we have a binomial inside the parentheses, the only options on the decision tree for a binomial
involve squares or cubes. Since there are none, we conclude that 2x y(5x − 6y) is the complete factoriza-
tion.

Example 7.6.6 Factor the expression 9b2 − 25y2 completely.

Explanation. Start by noting that the GCF is 1, and there is noGCF to factor out. We continue along the
decision tree for a binomial and notice that we now have a difference of squares, A2−B2 � (A−B)(A+B).
To find the values for A and B that fit the patterns, just take the square roots. So A � 3b since (3b)2 � 9b2

and B � 5y since (5y)2 � 25y2. So, the expression must factor as

9b2 − 25y2
� (3b − 5y)(3b + 5y).

Example 7.6.7 Factor the expression 24w3 + 6w2 − 9w completely.

Explanation. Start by noting that the GCF is 3w. Factoring this out, we get

24w3
+ 6w2 − 9w � 3w

(
8w2

+ 2w − 3
)
.

Following the decision tree, we now have a trinomial inside the parentheses where a , 1. We should
try the ACmethod because neither 8 nor −3 are perfect squares. In this case, ac � −24 and wemust find
two factors of −24 that add to be 2. The numbers 6 and −4 work in this case. The rest of the factoring
process is:

24w3
+ 6w2 − 9w � 3w

(
8w2

︷︸︸︷
+ 2w −3

)
� 3w

(
8w2

︷       ︸︸       ︷
+ 6w − 4w −3

)
� 3w

( (
8w2

+ 6w
)
+ (−4w − 3)

)
� 3w (2w(4w + 3) − 1(4w + 3))
� 3w(4w + 3)(2w − 1)

Example 7.6.8 Factor the expression q5 + q2 completely.

Explanation. Start by noting that the GCF is q2. Factoring this out, we find

q5
+ q2

� q2 (
q3

+ 1
)
.
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Following the decision tree, we now have a binomial with a sum of cubes. (Notice that 13 � 1.) So using
the sum of cubes formula, we have the complete factorization:

q5
+ q2

� q2 (
q3

+ 1
)

� q2(q + 1)
(
q2 − q + 1

)
.

Example 7.6.9 Factor the expression −6x y + 9y + 2x − 3 completely.

Explanation. Start by noting that the GCF is 1, and there is no GCF to factor out. We continue along
the decision tree. Since we have a four-term polynomial, we should try to factor by grouping. The full
process is:

−6x y + 9y + 2x − 3 � (−6x y + 9y) + (2x − 3)
� −3y(2x − 3) + 1(2x − 3)
� (2x − 3)(−3y + 1)

Note that the negative sign in front of the 3y can be factored out if you wish. That would look like:

� −(2x − 3)(3y − 1)

Example 7.6.10 Factor the expression 4w3 − 20w2 + 24w completely.

Explanation. Start by noting that the GCF is 4w. Factoring this out, we get

4w3 − 20w2
+ 24w � 4w

(
w2 − 5w + 6

)
.

Following the decision tree, we now have a trinomial with a � 1 inside the parentheses. So, we can look
for factors of 6 that add up to −5. Since −3 and −2 fit the requirements, the full factorization is:

4w3 − 20w2
+ 24w � 4w

(
w2 − 5w + 6

)
� 4w(w − 3)(w − 2)

Example 7.6.11 Factor the expression 9 − 24y + 16y2 completely.

Explanation. Start by noting that the GCF is 1, and there is no GCF to factor out. Continue along the
decision tree. We now have a trinomial where both the first term, 9, and last term, 16y2, look like perfect
squares. To use the perfect squares difference pattern, A2 − 2AB + B2 � (A − B)2, recall that we need to
mentally take the square roots of these two terms to find A and B. So, A � 3 since 32 � 9, and B � 4y
since (4y)2 � 16y2. Now we have to check that 2AB matches 24y:

2AB � 2(3)(4y) � 24y.

So the full factorization is:
9 − 24y + 16y2

� (3 − 4y)2.

Example 7.6.12 Factor the expression 9 − 25y + 16y2 completely.

Explanation. Start by noting that the GCF is 1, and there is no GCF to factor out. Since we now have
a trinomial where both the first term and last term are perfect squares in exactly the same way as in
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Example 11. However, we cannot apply the perfect squares method to this problem because it worked
when 2AB � 24y. Since our middle term is 25y, we can be certain that it won’t be a perfect square.

Continuing on with the decision tree, our next option is to use the AC method. You might be tempted
to rearrange the order of the terms, but that is unnecessary. In this case, ac � 144 and we need to come
up with two factors of 144 that add to be −25. After a brief search, we conclude that those values are
−16 and −9. The remainder of the factorization is:

9
︷ ︸︸ ︷
− 25y +16y2

� 9
︷        ︸︸        ︷
− 16y − 9y +16y2

�
(
9 − 16y

)
+

(
−9y + 16y2)

� 1
(
9 − 16y

)
− y

(
9 + 16y

)
�

(
9 − 16y

)
(1 − y)

Example 7.6.13 Factor the expression 20x4 + 13x3 − 21x2 completely.

Explanation. Start by noting that the GCF is x2. Factoring this out, we get

20x4
+ 13x3 − 21x2

� x2 (
20x2

+ 13x − 21
)
.

Following the decision tree, we now have a trinomial inside the parentheses where a , 1 and we should
try the AC method. In this case, ac � −420 and we need factors of −420 that add to 13.

Factor Pair Sum
1 · −420 −419
2 · −210 −208
3 · −140 −137
4 · −105 −101

Factor Pair Sum
5 · −84 −79
6 · −70 −64
7 · −60 −53
10 · −42 −32

Factor Pair Sum
12 · −35 −23
14 · −30 −16
15 · −28 −13
20 · −21 −1

In the table of the factor pairs of −420 we find 15 + (−28) � −13, the opposite of what we want, so we
want the opposite numbers: −15 and 28. The rest of the factoring process is shown:

20x4
+ 13x3 − 21x2

� x2

(
20x2

︷︸︸︷
+ 13x −21

)
� x2

(
20x2

︷        ︸︸        ︷
−15x + 28x −21

)
� x2 ( (

20x2 − 15x
)
+ (28x − 21)

)
� x2 (5x(4x − 3) + 7(4x − 3))
� x2(4x − 3)(5x + 7)
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Exercises

Strategies

In factoring 7x3 − 2401y3, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

1.

In factoring −7r − 4, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

2.

In factoring 8a2 − 8, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

3.

In factoring 16b2 + 8b + 1, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

4.

In factoring A2 − 16A + 64, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

5.

In factoring 2560B3 + 3645, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

6.

In factoring mx −m − 5x + 5, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

7.
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In factoring 200n2 − 32C2, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

8.

In factoring q2 − 4qa + 4a2, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

9.

In factoring −36n − 6, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

10.

In factoring 9r3 + 9C3, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

11.

In factoring 56ta + 21t + 8a + 3, which factoring techniques/tools will be useful? Check all that
apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

12.

In factoring 4b4 − 4b, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

13.

In factoring 16A2 + 72A + 81, which factoring techniques/tools will be useful? Check all that apply.

□ Factoring out a GCF □ Factoring by grouping □ Finding two numbers that multiply
to c and sum to b □ The AC Method □ Difference of Squares □ Difference of
Cubes □ Sum of Cubes □ Perfect Square Trinomial □ None of the above

14.
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Factoring Factor the given polynomial.

4r+4 �15. −10r−10 �16. 14t2−35 �17.

30t4 + 80t3 + 80t2 �18. 20x − 50x2 + 90x3 �19. 3x y + 3y �20.

64x5 y8 − 24x4 y8 + 72x3 y8 �21. y2 + 9y + 8y + 72 �22. x y − 6x − 10y + 60 �23.

x3 − 7 − 5x3 y + 35y �24. r2 − 2r − 80 �25. 5t2 − 23t − 10 �26.

3t2x2 + tx − 4 �27. 3x2 + x + 8 �28. 6x2 − 17x − 3 �29.

4y2 + 16y + 7 �30. 9y2 − 15y + 4 �31. 3y2 + 5yr + 2r2 �32.

2r2 − 9rx + 9x2 �33. 8r2 − 17r y − 21y2 �34. 20t2 + 13t y + 2y2 �35.

12t2 − 7t y + y2 �36. 4x2 + 6x − 28 �37. 15x2 y2 + 27x y − 6 �38.

8y10 + 28y9 + 20y8 �39. 10y5 − 22y4 + 4y3 �40. 9x2 + 24x y + 15y2 �41.

9x2 − 24x y + 12y2 �42. r2 + 9r + 18 �43. t2 − 9t + 14 �44.

t2 + 10tx + 24x2 �45. x2 y2 − x y − 30 �46. x2 − 7xt + 10t2 �47.

2y2t2 + 10yt + 8 �48. 3y2 − 12y − 36 �49. 10y7 + 30y6 + 20y5 �50.

10r6 − 30r5 + 20r4 �51. 2x2 y + 10x y + 12y �52. 2x2 y − 16x y + 14y �53.

3x2 y3 − 15x y2 + 12y �54. x2 y2 + 2x2 yz − 3x2z2 �55. x2 + 0.9x + 0.14 �56.
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y2 − 64 �57. y2r2 − 100 �58. 36 − y2 �59.

r4 − 64 �60. r14 − 100 �61. x14 − 121y10 �62.

16t4 − 81 �63. 2x3 − 18x �64. x2 + 121 �65.

40 − 10y2 �66. y2 + 6y + 9 �67. y2 − 18yt + 81t2 �68.

r2 − 12r + 36 �69. 9r2 − 6r + 1 �70. t2 + 6tx + 9x2 �71.

16t2 + 40t y + 25y2 �72. 48x2t2 + 24xt + 3 �73. 100x5 + 20x4 + x3 �74.

12y10 + 12y9 + 3y8 �75. y3 + 8 �76. 512y3 + 1 �

Hint: 512 � 83.

77.

125r3 + 729 �

Hint: 729 � 93.

78. x3 y3 + 729 �

Hint: 729 � 93.

79. 343t4 + 512t �

Hint: 343 � 73, 512 � 83.

80.

0.16t − t3 �81. 3x4 − 243 �82. x2 − 14x + 49 − 64y2 �83.

30x2 (y + 2
)
+ 36x

(
y + 2

)
+ 6

(
y + 2

)
�84.

Challenge

Select the expression which is equivalent to the following expression: 3332 − 8882 (□ 1221(1221)
□ 1221(-555) □ -555(-555) □ none of the above)

85.
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7.7 Factoring Chapter Review

7.7.1 Review of Factoring out the GCF

In Section 7.1 we covered how to factor out the greatest common factor. Recall that the greatest common
factor between two expressions is the largest factor that goes in evenly to both expressions.

Example 7.7.1 Finding the Greatest Common Factor. What is the greatest common factor between
12x3 y and 42x2 y2?

Explanation. Break down each of these into its factors:

12x3 y � (2 · 2) · 3 · (x · x · x) · y 42x2 y2
� 2 · 3 · 7 · (x · x) · (y · y)

Identify the common factors:

12x3 y �

↓
2 · 2 ·

↓
3 · ↓x · ↓x · x · ↓y 42x2 y2

�

↓
2 ·
↓
3 · 7 · ↓x · ↓x · ↓y · y

With 2, 3, two x’s and a y in common, the greatest common factor is 6x2 y.

Example 7.7.2 What is the greatest common factor between 18c3 y2 and 27y3c?

Explanation. Break down each into factors. You can definitely do this mentally with practice.

18c3 y2
� 2 · 3 · 3 · c · c · c · y · y 27y3c � 3 · 3 · 3 · y · y · y · c

And take note of the common factors.

18c3 y2
� 2 ·

↓
3 ·
↓
3 · ↓c · c · c · ↓y · ↓y 27y3c �

↓
3 ·
↓
3 · 3 · ↓y · ↓y · y · c

And so the GCF is 9y2c

Example 7.7.3 Factoring out the Greatest Common Factor. Factor out the GCF from the expression
32mn2 − 24m2n − 12mn.

Explanation. To factor out the GCF from the expression 32mn2 − 24m2n − 12mn, first note that the
GCF to all three terms is 4mn. Begin by writing that in front of a blank pair of parentheses and fill in
the missing pieces.

32mn2 − 24m2n − 12mn � 4mn( − − )
� 4mn(8n − 6m − 3)

Example 7.7.4 Factor out the GCF from the expression 14x3 − 35x2.

Explanation. First note that the GCF of the terms in 14x3 − 35x2 is 7x2. Factoring this out, we have:

14x3 − 35x2
� 7x2 ( − )
� 7x2 (2x − 5)
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Example 7.7.5 Factor out the GCF from the expression 36m3n2 − 18m2n5 + 24mn3.

Explanation. First note that the GCF of the terms in 36m3n2 − 18m2n5 + 24mn3 is 6mn2. Factoring this
out, we have:

36m3n2 − 18m2n5
+ 24mn3

� 6mn2 (
− +

)
� 6mn2 (

6m2 − 3mn3
+ 4n

)
Example 7.7.6 Factor out the GCF from the expression 42 f 3w2 − 8w2 + 9 f 3.

Explanation. First note that the GCF of the terms in 42 f 3w2 − 8w2 + 9 f 3 is 1. The only way to factor
the GCF out of this expression is:

42 f 3w2 − 8w2
+ 9 f 3

� 1
(
42 f 3w2 − 8w2

+ 9 f 3)
7.7.2 Review of Factoring by Grouping

In Section 7.2 we covered how to factor by grouping. Recall that factoring using grouping is used on four-
term polynomials, and also later in the ACmethod in Section 7.4. Begin by grouping two pairs of terms and
factoring out their respective GCF; if all is well, we should be left with two matching pieces in parentheses
that can be factored out in their own right.

Example 7.7.7 Factor the expression 2x3 + 5x2 + 6x + 15 using grouping.

Explanation.

2x3
+ 5x2

+ 6x + 15 �
(
2x3

+ 5x2)
+ (6x + 15)

� x2 (2x + 5) + 3 (2x + 5)
�

(
x2

+ 3
)
(2x + 5)

Example 7.7.8 Factor the expression 2x y − 3x − 8y + 12 using grouping.

Explanation.

2x y − 3x + 8y − 12 �
(
2x y − 3x

)
+

(
−8y + 12

)
� x

(
2y − 3

)
− 4

(
2y − 3

)
� (x − 4)(2y − 3)

Example 7.7.9 Factor the expression x y − 2 − 2x + y using grouping.

Explanation. This is a special example because if we try to simply follow the algorithm without con-
sidering the bigger context, we will fail:

x y − 2 − 2x + y �
(
x y − 2

)
+

(
−2x + y

)
Note that there is no common factor in either grouping, besides 1, but the groupings themselves don’t
match. We should now recognize that whatever we are doing isn’t working and try something else. It
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turns out that this polynomial isn’t prime; all we need to do is rearrange the polynomial into standard
form where the degrees decrease from left to right before grouping.

x y − 2 − 2x + y � x y − 2x + y − 2
�

(
x y − 2x

)
+

(
y − 2

)
� x

(
y − 2

)
+ 1

(
y − 2

)
� (x + 1)(y − 2)

Example 7.7.10 Factor the expression 15m2 − 3m − 10mn + 2n using grouping.

Explanation.

15m2 − 3m − 10mn + 2n �
(
15m2 − 3m

)
+ (−10mn + 2n)

� 3m (5m − 1) − 2n (5m − 1)
� (3m − 2n)(5m − 1)

7.7.3 Review of Factoring Trinomials with Leading Coefficient 1

In Section 7.3 we covered factoring expressions that look like x2 + bx + c. The trick was to look for two
numbers whose product was c and whose sum was b. Always remember to look for a greatest common
factor first, before looking for factor pairs.

Example 7.7.11 Answer the questions to practice for the factor pairs method.

a. What two numbers multiply to be 6 and add to be 5?

b. What two numbers multiply to be −6 and add to be 5?

c. What two numbers multiply to be −6 and add to be −1?

d. What two numbers multiply to be 24 and add to be −10?

e. What two numbers multiply to be −24 and add to be 2?

f. What two numbers multiply to be −24 and add to be −5?

g. What two numbers multiply to be 420 and add to be 44?

h. What two numbers multiply to be −420 and add to be −23?

i. What two numbers multiply to be 420 and add to be −41?

Explanation.

a. What two numbers multiply to be 6 and add to be 5? The numbers are 2 and 3.

b. What two numbers multiply to be −6 and add to be 5? The numbers are 6 and −1.

c. What two numbers multiply to be −6 and add to be −1? The numbers are −3 and 2.

d. What two numbers multiply to be 24 and add to be −10? The numbers are −6 and −4.

e. What two numbers multiply to be −24 and add to be 2? The numbers are 6 and −4.

f. What two numbers multiply to be −24 and add to be −5? The numbers are −8 and 3.
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g. What two numbers multiply to be 420 and add to be 44? The numbers are 30 and 14.

h. What two numbers multiply to be −420 and add to be −23? The numbers are −35 and 12.

i. What two numbers multiply to be 420 and add to be −41? The numbers are −20 and −21.

Note that for parts g–i, the factors of 420 are important. Below is a table of factors of 420 which will
make it much clearer how the answers were found. To generate a table like this, we start with 1, and we
work our way up the factors of 420.

Factor Pair
1 · 420
2 · 210
3 · 140
4 · 105

Factor Pair
5 · 84
6 · 70
7 · 60
10 · 42

Factor Pair
12 · 35
14 · 30
15 · 28
20 · 21

It is now much easier to see how to find the numbers in question. For example, to find two numbers
that multiply to be −420 and add to be −23, simply look in the table for two factors that are 23 apart and
assign a negative sign appropriately. As we found earlier, the numbers that are 23 apart are 12 and 35,
and making the larger one negative, we have our answer: 12 and −35.

Example 7.7.12 Factor the expression x2 − 3x − 28

Explanation. To factor the expression x2 − 3x − 28, think of two numbers that multiply to be −28 and
add to be −3. In the Section 7.3, we created a table of all possibilities of factors, like the one shown, to be
sure that we never missed the right numbers; however, we encourage you to try this mentally for most
problems.

Factor Pair Sum of the Pair
−1 · 28 27
−2 · 14 12
−4 · 7 3 (close; wrong sign)

Factor Pair Sum of the Pair
1 · (−28) −27
2 · (−14) −12
4 · (−7) −3 (what we wanted)

Since the two numbers in question are 4 and −7 that means simply that

x2 − 3x − 28 � (x + 4)(x − 7)

Remember that you can always multiply out your factored expression to verify that you have the correct
answer. We will use the FOIL expansion.

(x + 4)(x − 7) � x2 − 7x + 4x − 28
✓
� x2 − 3x − 28

Example 7.7.13 Factoring in Stages. Completely factor the expression 4x3 − 4x2 − 120x.

Explanation. Remember that some expressions require more than one step to completely factor. To
factor 4x3 − 4x2 − 120x, first, always look for any GCF; after that is done, consider other options. Since
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the GCF is 4x, we have that
4x3 − 4x2 − 120x � 4x

(
x2 − x − 30

)
.

Now the factor inside parentheses might factor further. The key here is to consider what two numbers
multiply to be −30 and add to be −1. In this case, the answer is −6 and 5. So, to completely write the
factorization, we have:

4x3 − 4x2 − 120x � 4x
(
x2 − x − 30

)
� 4x(x − 6)(x + 5)

Example 7.7.14 Factoring Expressions with Higher Powers. Completely factor the expression p10 −
6p5 − 72.

Explanation. If we have a trinomial with an even exponent on the leading term, and the middle term
has an exponent that is half the leading term exponent, we can still use the factor pairs method. To factor
p10 − 6p5 − 72, we note that the middle term exponent 5 is half of the leading term exponent 10, and
that two numbers that multiply to be −72 and add to be −6 are −12 and 6. So the factorization of the
expression is

p10 − 6p5 − 72 �
(
p5 − 12

) (
p5

+ 6
)

Example 7.7.15 Factoring Expressionswith TwoVariables. Completely factor the expression x2−3x y−
70y2.

Explanation. If an expression has two variables, like x2 − 3x y − 70y2, we pretend for a moment that
the expression is x2 − 3x − 70. To factor this expression we ask ourselves “what two numbers multiply
to be −70 and add to be −3?” The two numbers in question are 7 and −10. So x2 − 3x − 70 factors as
(x + 7)(x − 10).
To go back to the original problem now, simply make the two numbers 7y and −10y. So, the full factor-
ization is

x2 − 3x y − 70y2
� (x + 7y)(x − 10y)

With problems like this, it is important to verify the your answer to be sure that all of the variables ended
up where they were supposed to. So, to verify, simply FOIL your answer.

(x + 7y)(x − 10y) � x2 − 10x y + 7yx − 70y2

� x2 − 10x y + 7x y − 70y2

✓
� x2 − 3x y − 70y2

Example 7.7.16 Completely factor the expressions.

a. x2 − 11x + 30

b. −s2 + 3s + 28

c. 12 − 31 − 24

d. w2 − wr − 30r2

e. z8 + 2z4 − 63

Explanation.

a. x2 − 11x + 30 � (x − 6)(x − 5)
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b. −s2
+ 3s + 28 � −

(
s2 − 3s − 28

)
� −(s − 7)(s + 4)

c. 12 − 31 − 24 is prime. No two integers multiply to be −24 and add to be −3.

d. w2 − wr − 30r2 � (w − 6r)(w + 5r)
e. z8 + 2z4 − 63 �

(
z4 − 7

) (
z4 + 9

)
7.7.4 Review of Factoring Trinomials with Non-Trivial Leading Coefficient

In Section 7.4 we covered factoring trinomials of the form ax2 + bx + c when a , 1 using the AC method.

Example 7.7.17 Using the AC Method. Completely factor the expression 9x2 − 6x − 8.

Explanation. To factor the expression 9x2 − 6x − 8, we first find ac:

1. 9 · (−8) � −72.

2. Examine factor pairs that multiply to −72, looking for a pair that sums to −6:

Factor Pair Sum of the Pair
1 · −72 −71
2 · −36 −34
3 · −24 −21
4 · −18 −14
6 · −12 −6
8 · −9 (no need to go this far)

Factor Pair Sum of the Pair
−1 · 72 (no need to go this far)
−2 · 36 (no need to go this far)
−3 · 24 (no need to go this far)
−4 · 18 (no need to go this far)
−6 · 12 (no need to go this far)
−8 · 9 (no need to go this far)

3. Intentionally break up the −6 as 6 + (−12) and then factor using grouping:

9x2
︷︸︸︷
− 6x −8 � 9x2

︷        ︸︸        ︷
+ 6x − 12x −8

�
(
9x2

+ 6x
)
+ (−12x − 8)

� 3x(3x + 2) − 4(3x + 2)
� (3x + 2)(3x − 4)

Example 7.7.18 Completely factor the expression 3x2 + 5x − 6.

Explanation. First note that there is no GCF besides 1 and that ac � −18. To look for two factors of −18
that add up to 5, we will make a factor pair table.

Factor Pair Sum of the Pair
1 · −18 −17
2 · −9 −7
3 · −6 −3

Factor Pair Sum of the Pair
−1 · 18 17
−2 · 9 7
−3 · 6 3
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Since none of the factor pairs of −18 sum to 5, we must conclude that this trinomial is prime. The only
way to factor it is 3x2 + 5x − 6 � 1

(
3x2 + 5x − 6

)
.

Example 7.7.19 Completely factor the expression 3y2 + 20y − 63.

Explanation. First note that ac � −189. Looking for two factors of −189 that add up to 20, we find 27
and −7. Breaking up the +20 into +27 − 7, we can factor using grouping.

3y2
︷ ︸︸ ︷
+ 20y −63 � 3y2

︷        ︸︸        ︷
+ 27y − 7y −63

�
(
3y2

+ 27y
)
+

(
−7y − 63

)
� 3y

(
y + 9

)
− 7

(
y + 9

)
�

(
y + 9

)
(3y − 7)

Example 7.7.20 Factoring in Stageswith the ACMethod. Completely factor the expression 8y3+54y2+
36y.

Explanation. Recall that some trinomials need to be factored in stages: the first stage is always to factor
out the GCF. To factor 8y3 + 54y2 + 36y, first note that the GCF of the three terms in the expression is
2y. Then apply the AC method:

8y3
+ 54y2

+ 36y � 2y
(
4y2

+ 27y + 18
)

Now we find ac � 4 · 18 � 72. What two factors of 72 add up to 27? After checking a few numbers, we
find that 3 and 24 fit the requirements. So:

� 2y

(
4y2

︷︸︸︷
+27y +18

)
� 2y

(
4y2

︷      ︸︸      ︷
+3y + 24y +18

)
� 2y

( (
4y2

+ 3y
)
+

(
24y + 18

) )
� 2y

(
y
(
4y + 3

)
+ 6

(
4y + 3

) )
� 2y

(
4y + 3

) (
y + 6

)
Example 7.7.21 Completely factor the expression 18x3 + 26x2 + 4x.

Explanation. First note that there is a GCF of 2x which should be factored out first. Doing this leaves
us with 18x3 + 26x2 + 8x � 2x

(
9x2 + 13x + 4

)
. Now we apply the AC method on the factor in the

parentheses. So, ac � 36, and we must find two factors of 36 that sum to be 13. These two factors are 9
and 4. Now we can use grouping.

18x3
+ 26x2

+ 8x � 2x

(
9x2

︷︸︸︷
+ 13x +4

)
� 2x

(
9x2

︷      ︸︸      ︷
+ 9x + 4x +4

)
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� 2x
( (

9x2
+ 9x

)
+ (4x + 4)

)
� 2x (9x(x + 1) + 4(x + 1))
� 2x(x + 1)(9x + 4)

7.7.5 Review of Factoring Special Forms

In Section 7.5 we covered how to factor binomials and trinomials using formulas. Using these formulas,
when appropriate, often drastically increased the speed of factoring. Below is a summary of the formulas
covered. For each, consider that A and B could be any algebraic expressions.

Difference of Squares A2 − B2 � (A + B)(A − B)
Perfect Square Sum A2 + 2AB + B2 � (A + B)2

Perfect Square Difference A2 − 2AB + B2 � (A + B)2

Difference of Cubes A3 − B3 � (A − B)
(
A2 + AB + B2)

Sum of Cubes A3 + B3 � (A + B)
(
A2 − AB + B2)

Example 7.7.22 Factoring the Form A2 − 2AB + B2. Completely factor the expression 16y2 − 24y + 9.

Explanation. To factor 16y2−24y+9wenotice that the expressionmight be of the form A2−2AB+B2. To
find A and B, we mentally take the square root of both the first and last terms of the original expression.
The square root of 16y2 is 4y since (4y)2 � 42 y2 � 16y2. The square root of 9 is 3. So, we conclude that
A � 4y and B � 3. Recall that we now need to check that the 24y matches our 2AB. Using our values
for A and B, we indeed see that 2AB � −2(4y)(3) � 24y. So, we conclude that

16y2 − 24y + 9 � (4y − 3)2.

Example 7.7.23 Mixed Special Forms Factoring.

a. Completely factor the expression v3 − 27.

b. Completely factor the expression 9w2 + 12w + 4.

c. Completely factor the expression 4q2 − 81.

d. Completely factor the expression 9p2 + 25.

e. Completely factor the expression 121b2 − 36.

f. Completely factor the expression 25u2 − 70u + 49.

g. Completely factor the expression 64q3 − 27y3.

Explanation. The first step for each problem is to try to fit the expression to one of the special factoring
forms.

a. To factor v3 − 27 we notice that the expression is of the form A3 − B3. To find values for A and
B, take mentally take the cube root of both terms. So, A � v and B � 3. So, using the form
A3 − B3 � (A − B)(A2 + AB + B2), we have that

v3 − 27 � (v − 3)
(
v2

+ (v)(3) + 32)
� (v − 3)

(
v2

+ 3v + 9
)
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b. To factor 9w2 + 12w + 4 we notice that the expression might be of the form A2 + 2AB + B2 where
A � 3w and B � 2. With this formula we need to check the value of 2AB which in this case is
2AB � 2(3w)(2) � 12w. Since the value of 2AB is correct, the expression must factor as

9w2
+ 12w + 4 � (3w + 2)2

c. To factor 4q2 − 81 we notice that the expression is of the form A2 − B2 where A � 2q and B � 9.
Thus, the expression must factor as

4q2 − 81 � (2q − 9)(2q + 9)

d. To factor 9p2 + 25 we notice that the expression is of the form A2 + B2. This is called a sum of
squares. If you recall from the section, the sum of squares is always prime. So 9p2 + 25 is prime.

e. To completely factor the expression 121b2 − 36 first note that the expression is of the form A2 − B2

where A � 11b and B � 6. So, the expression factors as

121b2 − 36 � (11b + 6)(11b − 6).

f. To completely factor the expression 25u2 − 70u + 49 first note that the expression might be of the
form A2 − 2AB + B2 where A � 5u and B � 7. Now, we check that 2AB matches the middle term:
2AB � 2(5u)(7) � 70u. So, the expression factors as

25u2 − 70u + 49 � (5u − 7)2.

g. To completely factor the expression 64q3−27y3 first note that the expression is of the form A3−B3

where A � 4q and B � 3y. So, the expression factors as

64q3 − 27y3
� (4q − 3y)

(
(4q)2 + (4q)(3y) + (3y)2

)
� (4q − 3y)

(
16q2

+ 12q y + 9y2)
7.7.6 Review of Factoring Strategies

In Section 7.6 we covered a factoring decision tree to help us decide what methods to try when factoring a
given expression. Remember to always factor out the GCF first.

Example 7.7.24 Factor the expressions using an effective method.

a. 24x y − 20x − 18y + 15.

b. 12t2 + 36t + 27.
c. 8u2 + 14u − 9.

d. 18c2 − 98p2.

Explanation.

a. To factor the expression 24x y − 20x − 18y + 15, we first look for a GCF. Since the GCF is 1, we can
move further on the flowchart. Since this is a four-term polynomial, we will try grouping.

24x y − 20x − 18y + 15 � 24x y + (−20x) + (−18y) + 15
� (24x y − 20x) + (−18y + 15)
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� 4x(6y − 5) + (−3)(6y − 5)

� 4x
︷   ︸︸   ︷
(6x − 5) − 3

︷   ︸︸   ︷
(6x − 5)

� (6x − 5)(4x − 3)

b. To factor the expression 12t2 + 36t + 27, we first look for a GCF. Since the GCF is 3, first we will
factor that out.

12t2
+ 36t + 27 � 3

(
4t2

+ 12t + 9
)

Next, we can note that the first and last terms are perfect squares where A2 � 4t2 and B � 9; so
A � 2t and B � 3. To check the middle term, 2AB � 12t. So the expression factors as a perfect
square.

12t2
+ 36t + 27 � 3

(
4t2

+ 12t + 9
)

� 3(2t + 3)2

c. To factor the expression 8u2 + 14u − 9, we first look for a GCF. Since the GCF is 1, we can move
further on the flowchart. Since the expression is a trinomial with leading coefficient other than 1,
we should try the AC method. Note that AC � −72 and factor pairs of −72 that add up to 14 are
18 and −4.

8u2
+ 14u − 9 � 8u2

+ 18u − 4u − 9
�

(
8u2

+ 18
)
+ (−4u − 9)

� 2u(4u + 9) − 1(4u + 9)
� (2u − 1)(4u + 9)

d. To factor the expression 18c2 − 98p2, we first look for a GCF. Since the GCF is 2, first we will factor
that out.

18c2 − 98p2
� 2

(
9c2 − 49p2)

Now we notice that we have a binomial where both the first and second terms can be written as
squares: 9c2 � (3c)2 and 49p2 � (7p)2.

18c2 − 98p2
� 2

(
9c2 − 49p2)

� 2(3c − 7p)(3c + 7p)

Exercises

Find the greatest common factor of the following terms.

7y and 28y21. 4r and 28r22. 9r10 and −54r93.

6t15 and −54t94. 10x20 y9,−70x18 y11, 80x7 y205. 7x20 y4, −21x19 y9, 21x13 y106.
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Greatest Common Factor Factor the given polynomial.

6x−6 �7. 3y−3 �8. 9y+54 �9.

6y+60 �10. 28r2 − 16r + 16 �11. 9r2 − 6r + 12 �12.

13t2+8 �13. 3t2−20 �14. x(x − 8) + 3(x − 8) �15.

x(x − 5) + 9(x − 5) �16. 4x
(
x + y

)
+ 7

(
x + y

)
�17. 5x

(
x + y

)
− 8

(
x + y

)
�18.

Factor by Grouping Factor the given polynomial.

y2 + 4y + 2y + 8 �19. r2 − 10r + 8r − 80 �20. r3 + 7r2 + 6r + 42 �21.

t3 + 3t2 − 8t − 24 �22. x y + 10x + 5y + 50 �23. x y + 2x + 9y + 18 �24.

3x2 + 18x y + 5x y + 30y2 �25. 4x2 + 32x y + 9x y + 72y2 �26.

One-variable Polynomials Factor the given polynomial.

y2 + 7y + 6 �27. y2 + 7y + 10 �28. r2 + 6r − 27 �29.

r2 + 5r − 50 �30. t2 − 10t + 16 �31. t2 − 11t + 18 �32.

x2 − x + 1 �33. x2 + 5x + 7 �34. x2 − 20x + 100 �35.

y2 − 10y + 25 �36. 7y2 − 7 �37. 6r2 + 18r − 24 �38.

3r2 − 21r + 18 �39. 2t2 − 16t + 30 �40. 2t8 − 6t7 − 36t6 �41.

6x4 − 12x3 − 18x2 �42. −x2 − 6x + 40 �43. −x2 + 5x + 14 �44.
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Multivariable Polynomials Factor the given polynomial.

y2 − 6yr − 27r2 �45. y2 + 4yt − 32t2 �46. r2 − 12r y + 27y2 �47.

r2 − 3rx + 2x2 �48. 2a2b + 2ab − 24b �49. 2a2b + 6ab − 8b �50.

2x3 y + 6x2 y + 4x y �51. 4x3 y + 16x2 y + 12x y �52.

Non-trivial Leading Coefficient Factor the given polynomial.

3x2 + 2x − 8 �53. 2y2 − 3y − 9 �54. 2y2 + y + 2 �55.

3r2 − 8r + 6 �56. 6r2 + 19r + 10 �57. 4t2 + 12t + 5 �58.

6t2 − 19t + 10 �59. 9x2 − 21x + 10 �60. 8x2 + 20x + 8 �61.

15x2 + 25x + 10 �62. 4y2 − 22y + 28 �63. 6y2 − 10y + 4 �64.

4r4 − 14r3 + 12r2 �65. 6r6 − 14r5 + 8r4 �66. 5t2r2 + 18tr + 16 �67.

2t2 y2 + 9t y + 10 �68. 3x2 − 14xt + 15t2 �69. 2x2 − 5xr + 2r2 �70.

8x2 − 25x y + 3y2 �71. 8y2 − 25yt + 3t2 �72. 6y2r2 + 15yr + 6 �73.

4r2x2 + 18rx + 14 �74. 12r2t2 + 18rt − 12 �75. 20t2r2 − 30tr − 20 �76.

8x2 + 28x y + 12y2 �77. 8x2 + 28x y + 20y2 �78.

Factor Special Forms Factor the given polynomial.

x2 − 36 �79. x2 − 4 �80. 100y2 − 49 �81.
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36y2 − 49 �82. 25 − r2 �83. 100 − 81r2 �84.

t6 − 36 �85. t12 − 4 �86. x12 − 4y10 �87.

x10 − 9y12 �88. 144x2 − 24x + 1 �89. 81y2 − 18y + 1 �90.

4y2 − 44yr + 121r2 �91. 9r2 − 60rt + 100t2 �92. x3 − 729y3 �

Hint: −729 � −93.

93.

x3 − 1000y3 �

Hint: −1000 � −103.

94. 81t4 − 16 �95. 16t4 − 81 �96.

4x3 − 36x �97. 10x3 − 40x �98. 4y4r4 − 4y2r2 �99.

3y4x4 − 48y2x2 �100. 24 − 6r2 �101. 9 − 9r2 �102.

72t9 + 48t8 + 8t7 �103. 18t7 + 12t6 + 2t5 �104. t8 + 216t5 �

Hint: 216 � 63.

105.

x11 + 8x8 �106. x2 + 81 �107. y2 + 25 �108.
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CHAPTER 8
Solving Quadratic Equations

8.1 Solving Quadratic Equations by Factoring

We have learned how to factor trinomials like x2 + 5x + 6 into (x + 2)(x + 3). This skill is needed to solve an
equation like x2+5x+6 � 0, which is a quadratic equation. Aquadratic equation is is an equation in the form
ax2+bx+ c � 0 with a , 0. We also consider equations such as x2 � x+3 and 5x2+3 � (x+1)2+(x+1)(x−3)
to be quadratic equations, becausewe can expand anymultiplication, add or subtract terms from both sides,
and combine like terms to get the form ax2 + bx + c � 0. The form ax2 + bx + c � 0 is called the standard
form of a quadratic equation.

Before we begin exploring themethod of solving quadratic equations by factoring, we’ll identify what types
of equations are quadratic and which are not.

Checkpoint 8.1.2. Identify which of the items are quadratic equations.

a. The equation 2x2 + 5x � 7 (□ is □ is not) a quadratic equation.

b. The equation 5 − 2x � 3 (□ is □ is not) a quadratic equation.

c. The equation 15 − x3 � 3x2 + 9x (□ is □ is not) a quadratic equation.

d. The equation (x + 3)(x − 4) � 0 (□ is □ is not) a quadratic equation.

e. The equation x(x + 1)(x − 1) � 0 (□ is □ is not) a quadratic equation.

f. The expression x2 − 5x + 6 (□ is □ is not) a quadratic equation.

g. The equation (2x − 3)(x + 5) � 12 (□ is □ is not) a quadratic equation.

Explanation.

a. The equation 2x2 +5x � 7 is a quadratic equation. To write it in standard form, simply subtract 7 from
both sides.

b. The equation 5 − 2x � 3 is not quadratic. It is a linear equation.

c. The equation 15 + x3 � 3x2 + 9x is not a quadratic equation because of the x3 term.

d. The equation (x+3)(x−4) � 0 is a quadratic equation. If we expand the left-hand side of the equation,
we would get something in standard form.

e. The equation x(x + 1)(x − 1) � 0 is not a quadratic equation. If we expanded the left-hand side of the
equation, we would have an expression with an x3 term, which automatically makes it not quadratic.

f. The expression x2 − 5x + 6 is not a quadratic equation; it’s not an equation at all. Instead, this is a
quadratic expression.

g. The equation (2x − 3)(x + 5) � 12 is a quadratic equation. Multiplying out the left-hand side, and
subtracting 12 form both sides, we would have a quadratic equation in standard form.
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Now we’ll look at an application that demonstrates the need and method for solving a quadratic equation
by factoring.

Nita is in a physics class that launches a tennis ball
from a rooftop 80 feet above the ground. They fire
it directly upward at a speed of 64 feet per second
and measure the time it takes for the ball to hit the
ground below. We canmodel the height of the ten-
nis ball, h, in feet, with the quadratic equation

h � −16t2
+ 64t + 80,

where t represents the time in seconds after the
launch. Using the model we can predict when the
ball will hit the ground.

Figure 8.1.3: A Diagram of the Ball Thrown
from the Roof

The ground has a height of 0, or h � 0. We will substitute 0 for h in the equation and we have

−16t2
+ 64t + 80 � 0

We need to solve this quadratic equation for t to find when the ball will hit the ground.

The key strategy for solving a linear equation is to separate the variable terms from the constant terms
on either side of the equal sign. It turns out that this same method will not work for quadratic equations.
Fortunately, we already have spent a good amount of time discussing a method that will work: factoring.
If we can factor the polynomial on the left-hand side, we will be on the home stretch to solving the whole
equation.

We will look for a common factor first, and see that we can factor out −16. Then we can finish factoring the
trinomial:

−16t2
+ 64t + 80 � 0

−16(t2 − 4t − 5) � 0
−16(t + 1)(t − 5) � 0

In order to finish solving the equation, weneed to understand the followingproperty. This property explains
why it was incredibly important to not move the 80 in our example over to the other side of the equation before
trying to factor.

Fact 8.1.4 Zero Product Property. If the product of two or more numbers is equal to zero, then at least one of the
numbers must be zero.

One way to understand this property is to think about the equation a · b � 0. Maybe b � 0, because that
would certainly cause the equation to be true. But suppose that b , 0. Then it is safe to divide both sides
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by b, and the resulting equation says that a � 0. So no matter what, either a � 0 or b � 0.

To understand this property more, let’s look at a few products:

4 · 7 � 28 4 · 0 � 0 4 · 7 · 3 � 84
0 · 7 � 0 −4 · 0 � 0 4 · 0 · 3 � 0

When none of the factors are 0, the result is never 0. The only way to get a product of 0 is when one of the
factors is 0. This property is unique to the number 0 and can be used no matter how many numbers are
multiplied together.

Now we can see the value of factoring. We have three factors in our equation

−16(t + 1)(t − 5) � 0.

The first factor is the number−16. The second and third factors, t+1 and t−5, are expressions that represent
numbers. Since the product of the three factors is equal to 0, one of the factors must be zero.

Since −16 is not 0, either t + 1 or t − 5 must be 0. This gives us two equations to solve:

t + 1 � 0 or t − 5 � 0
t + 1 − 1 � 0 − 1 or t − 5 + 5 � 0 + 5

t � −1 or t � 5

We have found two solutions, −1 and 5. A quadratic expression will have at most two linear factors, not
including any constants, so it can have up to two solutions.

Let’s check each of our two solutions −1 and 5:

−16t2
+ 64t + 80 � 0 −16t2

+ 64t + 80 � 0

−16(−1)2 + 64(−1) + 80 ?
� 0 −16(5)2 + 64(5) + 80 ?

� 0

−16(1) − 64 + 80 ?
� 0 −16(25) + 320 + 80 ?

� 0

−16 − 64 + 80 ?
� 0 −400 + 320 + 80 ?

� 0

0 ✓� 0 0 ✓� 0

We have verified our solutions. While there are two solutions to the equation, the solution −1 is not relevant
to this physics model because it is a negative time which would tell us something about the ball’s height
before it was launched. The solution 5 does make sense. According to the model, the tennis ball will hit the
ground 5 seconds after it is launched.

8.1.1 Further Examples

We’ll now look at further examples of solving quadratic equations by factoring. The general process is
outlined here:
Process 8.1.5 Solving Quadratic Equations by Factoring.

Simplify Simplify the equation using distribution and by combining like terms.

Isolate Move all terms onto one side of the equation so that the other side has 0.

Factor Factor the quadratic expression.

Apply the Zero Product Property Apply the Zero Product Property.

Solve Solve the equation(s) that result after the zero product property was applied.
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Example 8.1.6 Solve x2 − 5x − 14 � 0 by factoring.

Explanation.

x2 − 5x − 14 � 0
(x − 7)(x + 2) � 0

x − 7 � 0 or x + 2 � 0
x − 7 + 7 � 0 + 7 or x + 2 − 2 � 0 − 2

x � 7 or x � −2

The solutions are −2 and 7, so the solution set is written as {−2, 7}.

If the two factors of a polynomial happen to be the same, the equation will only have one solution. Let’s
look at an example of that.

Example 8.1.7 A Quadratic Equation with Only One Solution. Solve x2 − 10x + 25 � 0 by factoring.

Explanation.

x2 − 10x + 25 � 0
(x − 5)(x − 5) � 0

(x − 5)2 � 0
x − 5 � 0

x − 5 + 5 � 0 + 5
x � 5

The solution is 5, so the solution set is written as {5}.

Example 8.1.8 Factor Out a Common Factor. Solve 5x2 + 55x + 120 � 0 by factoring.

Explanation. Note that the terms are all divisible by 5, so we can factor that out to start.

5x2
+ 55x + 120 � 0

5(x2
+ 11x + 24) � 0

5(x + 8)(x + 3) � 0

x + 8 � 0 or x + 3 � 0
x � −8 or x � −3

The solution set is {−8,−3}.

Example 8.1.9 Factoring Using the AC Method. Solve 3x2 − 7x + 2 � 0 by factoring.

Explanation. Recall that we multiply 3 · 2 � 6 and find a factor pair that multiplies to 6 and adds to
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−7. The factors are −6 and −1. We use the two factors to replace the middle term with −6x and −x.

3x2 − 7x + 2 � 0
3x2 − 6x − x + 2 � 0

(3x2 − 6x) + (−x + 2) � 0
3x(x − 2) − 1(x − 2) � 0

(3x − 1)(x − 2) � 0

3x − 1 � 0 or x − 2 � 0
3x � 1 or x � 2

x �
1
3 or x � 2

The solution set is
{ 1

3 , 2
}
.

So far the equations have been written in standard form, which is

ax2
+ bx + c � 0

If an equation is not given in standard form then we must rearrange it in order to use the Zero Product
Property.

Example 8.1.10 Writing in Standard Form. Solve x2 − 10x � 24 by factoring.

Explanation. There is nothing like the Zero Product Property for the number 24. We must have a 0 on
one side of the equation to solve quadratic equations using factoring.

x2 − 10x � 24
x2 − 10x − 24 � 24 − 24
x2 − 10x − 24 � 0
(x − 12)(x + 2) � 0

x − 12 � 0 or x + 2 � 0
x � 12 or x � − 2

The solution set is {−2, 12}.

Example 8.1.11 Writing in Standard Form. Solve (x + 4)(x − 3) � 18 by factoring.

Explanation. Again, there is nothing like the Zero Product Property for a number like 18. We must
expand the left side and subtract 18 from both sides.

(x + 4)(x − 3) � 18
x2

+ x − 12 � 18
x2

+ x − 12 − 18 � 18 − 18
x2

+ x − 30 � 0
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(x + 6)(x − 5) � 0

x + 6 � 0 or x − 5 � 0
x � −6 or x � 5

The solution set is {−6, 5}.

Example 8.1.12 A Quadratic Equation with No Constant Term. Solve 2x2 � 5x by factoring.

Explanation. It may be tempting to divide both sides of the equation by x. But x is a variable, and for
all we know, maybe x � 0. So it is not safe to divide by x. As a general rule, never divide an equation by
a variable in the solving process. Instead, we will put the equation in standard form.

2x2
� 5x

2x2 − 5x � 5x − 5x

2x2 − 5x � 0

We can factor out x.

x(2x − 5) � 0

x � 0 or 2x − 5 � 0
x � 0 or 2x � 5

x � 0 or x �
5
2

The solution set is
{
0, 5

2
}
. In general, if a quadratic equation does not have a constant term, then 0 will

be one of the solutions.

Example 8.1.13 Factoring a Special Polynomial. Solve x2 � 9 by factoring.

Explanation. We can put the equation in standard form and use factoring. In this case, we find a
difference of squares.

x2
� 9

x2 − 9 � 0
(x + 3)(x − 3) � 0

x + 3 � 0 or x − 3 � 0
x � −3 or x � 3

The solution set is {−3, 3}.

Example 8.1.14 Solving an Equation with a Higher Degree. Solve 2x3 − 10x2 − 28x � 0 by factoring.
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Explanation. Although this equation is not quadratic, it does factor so we can solve it by factoring.

2x3 − 10x2 − 28x � 0
2x(x2 − 5x − 14) � 0
2x(x − 7)(x + 2) � 0

2x � 0 or x − 7 � 0 or x + 2 � 0
x � 0 or x � 7 or x � −2

The solution set is {−2, 0, 7}.

8.1.2 Applications

Example 8.1.15 Kicking it on Mars. Some time in the recent past, Filip traveled to Mars for a vacation
with his kids, Henrik and Karina, who wanted to kick a soccer ball around in the comparatively re-
duced gravity. Karina stood at point K and kicked the ball over her dad standing at point F to Henrik
standing at point H. The height of the ball off the ground, h in feet, can be modeled by the equation
h � −0.01

(
x2 − 70x − 1800

)
, where x is how far to the right the ball is from Filip. Note that distances to

the left of Filip will be negative.

a. Find out how high the ball was above the ground when it passed over Filip’s head.

b. Find the distance from Karina to Henrik.

K F H

Figure 8.1.16: A Soccer Kick on Mars

Explanation.

a. The ball was neither left nor right of Filip when it went over him, so x � 0. Plugging that value
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into our equation for x,

h � −0.01
(
02 − 70(0) − 1800

)
� −0.01(−1800)
� 18

It seems that the soccer ball was 18 feet above the ground when it flew over Filip.

b. The distance from Karina to Henrik is the same as the distance from point K to point H. These are
the horizontal intercepts of the graph of the given formula: h � −0.01

(
x2 − 70x − 1800

)
. To find

the horizontal intercepts, set h � 0 and solve for x.

0 � −0.01
(
x2 − 70x − 1800

)
Note that we can divide by −0.01 on both sides of the equation to simplify.

0 � x2 − 70x − 1800
0 � (x − 90)(x + 20)

So, either:

x − 90 � 0 or x + 20 � 0
x � 90 or x � −20

Since the x-values are how far right or left the points are from Filip, Karina is standing 20 feet left
of Filip and Henrik is standing 90 feet right of Filip. Thus, the two kids are 110 feet apart.

It is worth noting that if this same kick, with
same initial force at the same angle, took place
on Earth, the ball would have traveled less than
30 feet from Karina before landing!

−20 20 40 60 80

10

20

30

MarsEarth x

y

Figure 8.1.17: A Soccer Kick on Mars and the
Same Kick on Earth

Example 8.1.18 An Area Application. Rajesh has a hot tub and he wants to build a deck around it. The
hot tub is 7 ft by 5 ft and it is covered by a roof that is 99 ft2. How wide can he make the deck so that it
will be covered by the roof?

Explanation. We will define x to represent the width of the deck (in feet). Here is a diagram to help
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us understand the scenario.

7 ft

5 ft
x x

x

x

Figure 8.1.19: Diagram for the Deck

The overall length is 7+2x feet, because Rajesh is adding x feet on each side. Similarly, the overall width
is 5 + 2x feet.

The formula for the area of a rectangle is area � length ·width. Since the total area of the roof is 99 ft2,
we can write and solve the equation:

(7 + 2x)(5 + 2x) � 99
4x2

+ 24x + 35 � 99
4x2

+ 24x + 35 − 99 � 99 − 99
4x2

+ 24x − 64 � 0
4(x2

+ 6x − 16) � 0
4(x + 8)(x − 2) � 0

x + 8 � 0 or x − 2 � 0
x � −8 or x � 2

Since a length cannot be negative, we take x � 2 as the only applicable solution. Rajesh should make
the deck 2 ft wide on each side to fit under the roof.

Exercises

Warmup and Review Factor the given polynomial.

8r+56 �1. 5r+10 �2. t2 − 7t − 30 �3.

t2 − 3t − 70 �4. 2t2 − 13t + 21 �5. 3x2 − 11x + 8 �6.
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54x2 + 9x + 54 �7. 24y2 + 6y + 48 �8. 121y4 − 144 �9.

64r4 − 25 �10.

Solve Quadratic Equations by Factoring Solve the equation.

(x + 4)(x − 7) � 011. (x + 7)(x + 9) � 012. −74(x + 8)(11x − 7) � 013.

−60(x + 10)(5x − 1) � 014. x2 + 10x + 9 � 015. x2 + 8x + 15 � 016.

x2 − 2x − 8 � 017. x2 + 7x − 8 � 018. x2 − 11x + 30 � 019.

x2 − 14x + 40 � 020. x2 + 18x � −8021. x2 + 13x � −3622.

x2 + 9x � 1023. x2 − 2x � 6324. x2 − 15x � −5625.

x2 − 8x � −726. x2 � 2x27. x2 � −x28.

7x2 � −63x29. 8x2 � −16x30. 9x2 � 5x31.

10x2 � −9x32. x2 − 4x + 4 � 033. x2 − 6x + 9 � 034.

x2 � 8x − 1635. x2 � 12x − 3636. 49x2 � −42x − 937.

4x2 � −28x − 4938. 5x2 � −36x − 3639. 5x2 � −52x − 2040.

x2 − 100 � 041. x2 − 81 � 042. 9x2 − 1 � 043.

16x2 − 81 � 044. 9x2 � 1645. 36x2 � 146.

x(x − 5) � 3647. x(x + 1) � 3048. x(5x + 62) � −12049.

x(5x + 54) � −4050. (x − 7)(x − 1) � −851. (x + 2)(x + 4) � 352.
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(x + 2)(4x − 7) � 6 + 3x253. (x − 2)(2x − 3) � x2 − 654. x(x + 4) � 2x − 155.

x(x + 12) � 3(2x − 3)56. 64x2 + 48x + 9 � 057. 81x2 + 198x + 121 � 058.

(x + 7)
(
x2 + 16x + 60

)
� 059. (x − 5)

(
x2 + 3x + 2

)
� 060. x

(
x2 − 4

)
� 061.

x
(
x2 − 16

)
� 062. x3 − 10x2 + 16x � 063. x3 + 15x2 + 54x � 064.

Quadratic Equation Application Problems

There is a rectangular lot in the garden, with
9 ft in length and 5 ft in width. You plan to ex-
pand the lot by an equal length around its four
sides, andmake the area of the expanded rect-
angle 117 ft2. How long should you expand
the original lot in four directions?

You should expand the original lot by
in four directions.

65. There is a rectangular lot in the garden, with
9 ft in length and 3 ft in width. You plan to ex-
pand the lot by an equal length around its four
sides, andmake the area of the expanded rect-
angle 135 ft2. How long should you expand
the original lot in four directions?

You should expand the original lot by
in four directions.

66.

Two numbers’ sum is 16, and their product is
63. Find these two numbers.

These two numbers are .

67. Two numbers’ sum is 4, and their product is
−60. Find these two numbers.

These two numbers are .

68.

Arectangle’s base is 5 cm longer than its height.
The rectangle’s area is 50 cm2. Find this rect-
angle’s dimensions.

The rectangle’s height is .

The rectangle’s base is .

69. Arectangle’s base is 8 cm longer than its height.
The rectangle’s area is 65 cm2. Find this rect-
angle’s dimensions.

The rectangle’s height is .

The rectangle’s base is .

70.
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A rectangle’s base is 8 in shorter than three
times its height. The rectangle’s area is 3 in2.
Find this rectangle’s dimensions.

The rectangle’s height is .

The rectangle’s base is .

71. A rectangle’s base is 3 in shorter than twice its
height. The rectangle’s area is 9 in2. Find this
rectangle’s dimensions.

The rectangle’s height is .

The rectangle’s base is .

72.

Challenge

Give an example of a cubic equation that has three solutions: one solution is x � 6, the second
solution is x � −4, and the third solution is x �

2
3 .

73.

Solve for x in the equation 27x14 − 3x12 � 0.74.
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8.2 Square Root Properties

In this chapter, we will learn how to both simplify square roots and to do operations with square roots.

Definition 8.2.2 The Definition of the Square Root of a Number. If y2 � x for a positive number y, then
y is called the square root of x, and we write y �

√
x, where the

√
symbol is called the radical or the root.

We call expressions with a root symbol radical expressions. The number inside the radical is called the
radicand.

For example, since 42 � 16, then
√

16 � 4. Both
√

2 and 3
√

2 are radical expressions. In both expressions, the
number 2 is the radicand. You can review the square root basics in Section 1.3.

The word “radical” means something like “on the fringes”
when used in politics, sports, and other places. It actually has
that same meaning in math, when you consider a square with
area A as in Figure 8.2.3.

area A
√

A

side length
√

A

Figure 8.2.3: “Radical” means “off
to the side.”

8.2.1 Estimating Square Roots

When the radicand is a perfect square, its square root is a rational number. If the radicand is not a perfect
square, the square root is irrational. We want to be able to estimate square roots without using a calculator.

To estimate
√

10, we can find the nearest perfect squares that are whole numbers on either side of 10. Recall
that the perfect squares are 1, 4, 9, 16, 25, 36, 49, 64, . . . The perfect square that is just below 10 is 9 and the
perfect square just above 10 is 16. This tells us that

√
10 is between

√
9 and

√
16, or between 3 and 4. We can

also say that
√

10 is much closer to 3 than 4 because 10 is closer to 9, so we think 3.1 or 3.2 would be a good
estimate.

To check our estimate, let’s find
√

10 with a calculator:
√

10 ≈ 3.162

The actual value is just above 3 as we estimated, and between 3.1 and 3.2. Let’s look at somemore examples.

Checkpoint 8.2.4. Estimate
√

19 without a calculator.

Explanation. The radicand, 19, is between 16 and 25, so
√

19 is between
√

16 and
√

25, or between 4 and 5.

To be more precise, we notice that 19 is in the middle between 16 and 25 but closer to 16. We estimate
√

19
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to be about 4.4.

We will check our estimate with a calculator:

√
19 ≈ 4.358

Example 8.2.5 Estimate
√

3.2 without a calculator.

Explanation. The radicand 3.2 is between 1 and 4, so
√

3.2 is between
√

1 and
√

4, or between 1 and 2.

To be more precise, we notice that 3.2 is much closer to 4 than 1. We estimate
√

3.2 to be about 1.8.

We will check our estimate with a calculator:
√

3.2 ≈ 1.788

8.2.2 Multiplication and Division Properties of Square Roots

Here is an example using perfect squares and the rules of exponents to show a relationship between the
product of two square roots:

√
9 · 16 �

√
32 · 42 �

√
(3 · 4)2 � 3 · 4 � 12

and
√

9 ·
√

16 �

√
32 ·
√

42 � 3 · 4 � 12

Whether we multiply the radicands first or take the square roots first, we get the same result. This tells us
that in multiplication with radicals, we can combine factors into a single radical or separate them as needed.

Now let’s look at division. When we learned how to find the square root of a fraction in Section 1.3, we saw
that the numerators and denominators could be simplified separately. We multiply the numerators and
denominators independently. Here is an example of two different ways to simplify a fraction in a square
root: √

25
9 �

√(
5
3

)2

�
5
3

and
√

25√
9

�

√
52
√

32
�

5
3

Just like with multiplication, we can separate the numerators and denominators in a radical expression
or combine them as needed. Note that we worked with expressions that were perfect squares, but these
properties will work regardless of the number inside the radical. Let’s summarize these properties.

Fact 8.2.6 Multiplication and Division Properties of Square Roots. For any positive real numbers x and y we
have the following properties:

Multiplication Property of Square Roots √x · y �
√

x · √y

Division Property of Square Roots
√

x
y �

√
x√
y
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8.2.3 Simplifying Square Roots

We can useMultiplication andDivision Properties of Square Roots to simplify a radicand that is not a perfect
square. Simplifying radicals is similar to simplifying fractions because we want the radicand to be as small
as possible.

To understand why we can simplify radicals, let’s use a calculator to compare
√

12 and 2
√

3.
√

12 � 3.4641 . . . and 2
√

3 � 3.4641 . . .

These are equivalent expressions so let’s see how we can simplify
√

12 to 2
√

3.

First, we will make a table of factor pairs for the number 12, as we did in Section 7.3.

1 · 12
2 · 6
3 · 4

The factor pair with the largest perfect square is 3 · 4. We will use the property of multiplying radicals to
separate the perfect square from the other factor. We write the perfect square first because it will end up in
front of the radical.

√
12 �

√
4 ·
√

3

� 2 ·
√

3

� 2
√

3

This process can be used to simplify any square root, or to determine that it is fully simplified. Let’s look at
a few more examples.

Example 8.2.7 Simplify
√

72.

Explanation.

Here is a table of factor pairs for the number 72.

1 · 72 4 · 18
2 · 36 6 · 12
3 · 24 8 · 9

The largest perfect square is 36 so wewill rewrite
72 as 36 · 2.

√
72 �

√
36 · 2

�
√

36 ·
√

2

� 6
√

2

Notice that if we had chosen 4 ·18 we could simplify the radical partially but we would need to continue
and find the perfect square of 9 in 18.

Checkpoint 8.2.8. Simplify
√

125.

Explanation. Here is a table of factor pairs for the number 125.

1 · 125
5 · 25
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The largest perfect square is 25 so we will rewrite 125 as 25 · 5.

√
125 �

√
25 · 5

�
√

25 ·
√

5

� 5
√

5

Example 8.2.9 Simplify
√

30.

Explanation.

Here is a table of factor pairs for the number 30.

1 · 30 3 · 10
2 · 15 5 · 6

The number 30 does not have any factors that are
perfect squares so it cannot be simplified further.

We can also use Division Property of Square Roots to simplify expressions.

Example 8.2.10

a. Simplify
√

9
16 . b. Simplify

√
50√
2
.

Explanation.

a. For the first expression, we will use the Divi-
sion Property of Square Roots:

√
9
16 �

√
9√
16

�
3
4

b. For the second expression, we use the same
property in reverse:

√
x√
y �

√
x
y :

√
50√
2

�

√
50
2

�
√

25
� 5

8.2.4 Multiplying Square Root Expressions

If we use the Multiplication Property of Square Roots and the Division Property of Square Roots in the
reverse order as

√
x · √y �

√
x y and

√
x√
y
�

√
x
y
,

we can use these properties tomultiply and divide square root expressions. Wewant to simplify each radical
first to keep the radicands as small as possible. Let’s look at a few examples.

Example 8.2.11 Multiply
√

8 ·
√

54.
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Explanation. We will simplify each radical first, and then multiply them together. We do not want to
multiply 8 · 54 because we will end up with a larger number that is harder to factor.

√
8 ·
√

54 �
√

4 · 2 ·
√

9 · 6
� 2
√

2 · 3
√

6

� 2 · 3
√

2 · 6
� 2 · 3

√
2 · 2 · 3

� 6 · 2
√

3

� 12
√

3

We could have multiplied 2 · 6 inside the radical to get 12 and then factored 12 into 4 · 3. Whenever you
find a pair of identical factors, this is a perfect square.

Checkpoint 8.2.12. Multiply 2
√

7 · 3
√

21.

Explanation. First multiply the non-radical factors together and the radical factors together. Then look for
further simplifications.

2
√

7 · 3
√

21 � 2 · 3 ·
√

7 ·
√

21

� 6 ·
√

7 ·
√

7 · 3
� 6
√

7 · 7 · 3
� 6 · 7 ·

√
3

� 42
√

3

Example 8.2.13 Multiply
√

6
5 ·

√
3
5 .

Explanation. √
6
5 ·

√
3
5 �

√
6
5 ·

3
5

�

√
18
25

�

√
18√
25

�

√
9 · 2
5

�
3
√

2
5

8.2.5 Adding and Subtracting Square Root Expressions

We learned the Multiplication Property of Square Roots previously and applied this to multiplication of
square roots, but we cannot apply this property to the operations of addition or subtraction. Here are two
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examples to demonstrate this:
√

9 + 16 ?
�
√

9 +
√

16
√

169 − 25 ?
�
√

169 −
√

25
√

25 ?
� 3 + 4

√
144 ?

� 13 − 5

5 no
� 7 12 no

� 8

Wedonot get the same result ifwe separate the radicals, sowemust complete any additions and subtractions
inside the radical first.

To add and subtract radical expressions, we will need to recognize that we can only add and subtract like
terms. In this case, we will call them like radicals. In fact, adding like radicals will work just like adding
like terms

x + x � 2x

and
√

5 +
√

5 � 2
√

5

We can verify that the second equation is true by replacing x with
√

5 in the second equation. Let’s look at
a few more examples.

Example 8.2.14 Simplify
√

2 +
√

8.

Explanation.
√

2 +
√

8 �
√

2 +
√

4 · 2
�
√

2 + 2
√

2

� 3
√

2

To help understand
√

2 + 2
√

2 � 3
√

2, think of x + 2x � 3x or “a taco plus two tacos is three tacos.”

Checkpoint 8.2.15. Simplify 2
√

3 − 3
√

48.

Explanation. First wewill simplify the radical termwhere 48 is the radicand, andwemay see that we then
have like radicals.

2
√

3 − 3
√

48 � 2
√

3 − 3
√

16 · 3
� 2
√

3 − 3 · 4
√

3

� 2
√

3 − 12
√

3

� −10
√

3

Example 8.2.16 Simplify
√

2 +
√

27.

Explanation.
√

2 +
√

27 �
√

2 +
√

9 · 3
�
√

2 + 3
√

3

594



8.2 Square Root Properties

We cannot simplify the expression further because
√

2 and
√

3 are not like radicals.

Example 8.2.17 Simplify
√

6 −
√

18 ·
√

12.

Explanation. In this example, we should multiply the latter two square roots first and then see if we
have like radicals.

√
6 −
√

18 ·
√

12 �
√

6 −
√

9 · 2 ·
√

4 · 3
�
√

6 − 3
√

2 · 2
√

3

�
√

6 − 3 · 2 ·
√

2 ·
√

3

�
√

6 − 6
√

6

� −5
√

6

8.2.6 Rationalizing the Denominator

When simplifying square root expressions, we have seen that we need to make the radicand as small as
possible. Another rule is that we do not leave any irrational numbers, such as

√
3 or 2

√
5, in the denominator

of a fraction. In other words, we want the denominator to be rational. The process of dealing with such
numbers in the denominator is called rationalizing the denominator.

Let’s see how we can remove the square root symbol from the denominator in 1√
5
. If we multiply a radical

by itself, the result is the radicand, by Definition 8.2.2. As an example:
√

5 ·
√

5 � 5

To write 1√
5
as an equivalent fraction, we must multiply both the numerator and denominator by the same

number. If we multiply the numerator and denominator by
√

5, we have:

1√
5
�

1√
5
·
√

5√
5

�
1 ·
√

5√
5 ·
√

5

�

√
5

5

We can use a calculator to verify that 1√
5
�

√
5

5 . They both are 0.4472 . . .. Let’s look at a few more exam-
ples.

Example 8.2.18 Rationalize the denominator in 6√
3
.

Explanation. We will rationalize this denominator by multiplying the numerator and denominator by√
3:

6√
3
�

6√
3
·
√

3√
3
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�
6 ·
√

3√
3 ·
√

3

�
6
√

3
3

� 2
√

3

Note that we reduced any fractions that are outside the radical.

Checkpoint 8.2.19. Rationalize the denominator in 2√
10
.

Explanation. Wewill rationalize the denominator bymultiplying the numerator and denominator by
√

10:

2√
10

�
2√
10
·
√

10√
10

�
2 ·
√

10√
10 ·
√

10

�
2
√

10
10

�

√
10
5

Again note that the fraction was simplified in the last step.

Example 8.2.20 Rationalize the denominator in
√

2
7 .

Explanation. √
2
7 �

√
2√
7

�

√
2√
7
·
√

7√
7

�

√
2 ·
√

7√
7 ·
√

7

�

√
14
7

8.2.7 More Complicated Square Root Operations

In Section 6.4, we learned how to multiply polynomials like 2(x + 3) and (x + 2)(x + 3). All the methods
we learned apply when we multiply square root expressions. We will look at a few examples done with
different methods.

Example 8.2.21 Multiply
√

5
(√

3 −
√

2
)
.
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Explanation. We will use the distributive property to do this problem:
√

5
(√

3 −
√

2
)
�
√

5
√

3 −
√

5
√

2

�
√

15 −
√

10

Example 8.2.22 Multiply
(√

6 +
√

12
) (√

3 −
√

2
)
.

Explanation. We will use the foil Method to do this problem:(√
6 +
√

12
) (√

3 −
√

2
)
�
√

6
√

3 −
√

6
√

2 +
√

12
√

3 −
√

12
√

2

�
√

18 −
√

12 +
√

36 −
√

24

� 3
√

2 − 2
√

3 + 6 − 2
√

6

When simplifying radicals it is useful to keep in mind that for any x ≥ 0,

√
x ·
√

x � x.

Example 8.2.23 Expand
(√

3 −
√

2
)2
.

Explanation. We will use the foil method to expand this expression:(√
3 −
√

2
)2

�

(√
3 −
√

2
) (√

3 −
√

2
)

�

(√
3
)2
−
√

3
√

2 −
√

2
√

3 +

(√
2
)2

� 3 −
√

6 −
√

6 + 2

� 5 − 2
√

6

Example 8.2.24 Multiply
(√

5 −
√

7
) (√

5 +
√

7
)
.

Explanation. We will again use the foil method to expand this expression, but will note that it is a
special form (a − b)(a + b) and will simplify to a2 − b2:(√

5 −
√

7
) (√

5 +
√

7
)
�

(√
5
)2

+
√

5
√

7 −
√

7
√

5 −
(√

7
)2

� 5 +
√

35 −
√

35 − 7
� −2
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Exercises

Review and Warmup Which of the following are square numbers? There may be more than one correct
answer.

□ 16 □ 86 □ 40 □ 9 □ 132 □ 64

1.

□ 53 □ 121 □ 25 □ 84 □ 93 □ 1

2.

Evaluate the following.

a.
√

49 =

b.
√

36 =

c.
√

25 =

3. a.
√

64 =

b.
√

4 =

c.
√

121 =

4. a.
√

81
121 =

b.
√
− 9

100 =

5.

a.
√

121
36 =

b.
√
−64

25 =

6. Do not use a calculator.

a.
√

144 =

b.
√

1.44 =

c.
√

14400 =

7. Do not use a calculator.

a.
√

4 =

b.
√

0.04 =

c.
√

400 =

8.

Do not use a calculator.

a.
√

9 =

b.
√

900 =

c.
√

90000 =

9. Do not use a calculator.

a.
√

16 =

b.
√

1600 =

c.
√

160000 =

10. Do not use a calculator.

a.
√

25 =

b.
√

0.25 =

c.
√

0.0025 =

11.

Do not use a calculator.

a.
√

49 =

b.
√

0.49 =

c.
√

0.0049 =

12.
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Without using a calculator, estimate the value
of
√

65:

(□ 7.94 □ 8.94 □ 8.06 □ 7.06)

13. Without using a calculator, estimate the value
of
√

78:

(□ 9.83 □ 8.83 □ 9.17 □ 8.17)

14.

Simplify Radical Expressions Evaluate the following.√
100
121 � .15.

√
121
144 � .16. −

√
4 � .17.

−
√

9 � .18.
√
−25 � .19.

√
−36 � .20.

√
−36

49 � .21.
√
− 49

144 � .22. −
√

81
100 � .23.

−
√

100
121 � .24. a.

√
169 −

√
144 �

b.
√

169 − 144 �

25. a.
√

25 −
√

9 �

b.
√

25 − 9 �

26.

Simplify the radical expression or state that it is not a real number.
√

8√
2
�27.

√
54√
6

�28.
√

4√
36

�29.
√

2√
32

�30.

√
343 �31.

√
90 �32.

√
360 �33.

√
2156 �34.

√
231 �35.

√
70 �36.

Multiplying Square Root Expressions Simplify the expression.

4
√

7 ·7
√

5 �37. 5
√

7 ·4
√

2 �38. 6
√

13 ·2
√

25 �39.

6
√

3 ·7
√

121 �40. 4
√

6 · 3
√

12 �41. 5
√

3 · 5
√

150 �42.

√
2 · 4
√

50 �43.
√

2 · 6
√

8 �44.
√

7
3 ·

√
5
3 �45.
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3
4 ·

√
1
4 �46.

√
6
19 ·

√
3
19 �47.

√
28
11 ·

√
4
11 �48.

Adding and Subtracting Square Root Expressions Simplify the expression.

16
√

10 − 17
√

10 �49. 17
√

3 − 18
√

3 �50.

19
√

2 − 19
√

2 + 14
√

2 �51. 20
√

23 − 15
√

23 + 19
√

23 �52.

√
8 +
√

18 �53.
√

50 +
√

18 �54.

√
48 −
√

12 �55.
√

12 −
√

75 �56.

√
180 +

√
125 +

√
27 +
√

75 �57.
√

54 +
√

24 +
√

108 +
√

12 �58.

√
294 −

√
54 −
√

72 −
√

50 �59.
√

175 −
√

63 −
√

180 −
√

20 �60.

Rationalizing the Denominator Evaluate the following.
9√
25

= .61. 1√
4
= .62.

Rationalize the denominator and simplify the expression.
1√
2
�63. 1√

3
�64. 4√

5
�65. 7√

5
�66.

7
8
√

6
�67. 10

3
√

7
�68. 12√

30
�69. 15√

35
�70.

10√
2
�71. 6√

2
�72. 1√

18
�73. 1√

63
�74.

8√
180

�75. 10√
252

�76.
√

13
64 �77.

√
7
81 �78.
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8.2 Square Root Properties√
9
2 �79.

√
81
2 �80.

√
3
7 �81.

√
5
2 �82.

√
54
7 �83.

√
48
11 �84.

More Complicated Square Root Operations Expand and simplify the expression.
√

7
(√

3 +
√

13
)
�85.

√
7
(√

19 +
√

5
)
�86.

(
5 +
√

13
) (

6 +
√

13
)
�87.

(
10 +
√

13
) (

9 +
√

13
)
�88.

(
8 −
√

5
) (

7 − 3
√

5
)
�89.

(
5 −
√

5
) (

6 − 4
√

5
)
�90.

(
3 +
√

7
)2

�91.
(
4 +
√

5
)2

�92.

(√
3 − 5

)2
�93.

(√
7 − 6

)2
�94.

(√
35 −
√

5
)2

�95.
(√

14 +
√

7
)2

�96.

(
9 − 5
√

7
)2

�97.
(
6 − 3
√

5
)2

�98.

(
4 −
√

5
) (

4 +
√

5
)
�99.

(
9 −
√

6
) (

9 +
√

6
)
�100.

(√
6 +
√

7
) (√

6 −
√

7
)
�101.

(√
7 +
√

5
) (√

7 −
√

5
)
�102.

(
5
√

5 + 6
√

7
) (

5
√

5 − 6
√

7
)
�103.

(
6
√

6 + 4
√

5
) (

6
√

6 − 4
√

5
)
�104.
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8.3 Solving Quadratic Equations by Using a Square Root

In Section 8.1, we learned how to solve quadratic equations by factoring. In this section, we will learn how
to solve some specific types of quadratic equations using the square root property. We will also learn how
to use the Pythagorean Theorem to find the length of one side of a right triangle when the other two lengths
are known.

8.3.1 Solving Quadratic Equations Using the Square Root Property

When we learned how to solve linear equations, we used inverse operations to isolate the variable. For
example, we use subtraction to remove an unwanted term that is added to one side of a linear equation. We
can’t quite do the same thing with squaring and using square roots, but we can do something very similar.
Taking the square root is the inverse of squaring if you happen to know the original number was positive. In
general, we have to remember that the original number may have been negative, and that usually leads to
two solutions to a quadratic equation.

For example, if x2 � 9, we can think of undoing the square with a square root, and
√

9 � 3. However, there
are two numbers that we can square to get 9: −3 and 3. So we need to include both solutions. This brings us
to the Square Root Property.

Fact 8.3.2 The Square Root Property. If k is positive, and x2 � k then x � −
√

k or x �
√

k. The positive solution,√
k, is called the principal root of k.

Example 8.3.3 Solve for y in y2 − 49 � 0.

Explanation. While we could factor and use the Zero Product Property, here we are demonstrating
The Square Root Property instead. We need to isolate the squared quantity.

y2 − 49 � 0
y2 − 49 + 49 � 0 + 49

y2
� 49

y � −
√

49 or y �
√

49
y � −7 or y � 7

To check these solutions, we will replace y with −7 and with 7:

y2 − 49 � 0 y2 − 49 � 0

(−7)2 − 49 ?
� 0 (7)2 − 49 ?

� 0

49 − 49 ✓� 0 49 − 49 ✓� 0

The solution set is {−7, 7}.

Remark 8.3.4. Every solution to a quadratic equation can be checked, as shown in Example 8.3.3. In general,
the process of checking is omitted from this section.

Remark 8.3.5. Factoring will generally be a possible approach to solving a quadratic equation when the
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solution(s) are rational, but won’t be a possible approach when the solution(s) are irrational.

For example, we could have solved the quadratic equation in Example 8.3.3 by factoring in this way:

y2 − 49 � 0
(y + 7)(y − 7) � 0

y + 7 � 0 or y − 7 � 0
y � −7 or y � 7

However, as we’ll see in Example 8.3.9, we cannot solve 2n2 − 3 � 0 by factoring but we can use the square
root property.

Checkpoint 8.3.6. Solve for z in 4z2 − 81 � 0.

Explanation. Before we use the square root property we need to isolate the squared quantity.

4z2 − 81 � 0
4z2

� 81

z2
�

81
4

z � −
√

81
4 or z �

√
81
4

z � −9
2 or z �

9
2

The solution set is
{
− 9

2 ,
9
2
}
.

We can also use the square root property to solve an equation that has a squared expression.

Example 8.3.7 Solve for p in 50 � 2(p − 1)2.

Explanation. It’s important here to suppress any urge you may have to expand the squared binomial.
We begin by isolating the squared expression.

50 � 2(p − 1)2

50
2 �

2(p − 1)2
2

25 � (p − 1)2

Now that we have the squared expression isolated, we can use the square root property.

(p − 1) � −
√

25 or (p − 1) �
√

25
p − 1 � −5 or p − 1 � 5

p � −4 or p � 6

The solution set is {−4, 6}.

This method of solving quadratic equations is not limited to equations that have rational solutions, or when
the radicands are perfect squares. Here are a few examples where the solutions are irrational numbers.
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Checkpoint 8.3.8. Solve for q in (q + 2)2 − 12 � 0.

Explanation. It’s important here to suppress any urge you may have to expand the squared binomial.

(q + 2)2 − 12 � 0
(q + 2)2 � 12

(q + 2) � −
√

12 or (q + 2) �
√

12

q + 2 � −2
√

3 or q + 2 � 2
√

3

q � −2
√

3 − 2 or q � 2
√

3 − 2

The solution set is
{
−2
√

3 − 2, 2
√

3 − 2
}
.

To check the solution, we would replace q with each of −2
√

3 − 2 and 2
√

3 − 2 in the original equation, as
shown here: ((

−2
√

3 − 2
)
+ 2

)2
− 12 ?

� 0
((

2
√

3 − 2
)
+ 2

)2
− 12 ?

� 0(
−2
√

3
)2
− 12 ?

� 0
(
2
√

3
)2
− 12 ?

� 0

(−2)2
(√

3
)2
− 12 ?

� 0 (2)2
(√

3
)2
− 12 ?

� 0

(4)(3) − 12 ?
� 0 (4)(3) − 12 ?

� 0

12 − 12 ✓� 0 12 − 12 ✓� 0

Note that these simplifications relied on exponent rules and the multiplicative property of square roots.

Remember that if a square root is in the denominator then we need to rationalize it like we learned in
Section 8.2. We will need to rationalize the denominator in the next example.

Example 8.3.9 Solve for n in 2n2 − 3 � 0.

Explanation.

2n2 − 3 � 0
2n2

� 3

n2
�

3
2

n � −
√

3
2 or n �

√
3
2

n � −
√

3√
2

or n �

√
3√
2

n � −
√

3 ·
√

2√
2 ·
√

2
or n �

√
3 ·
√

2√
2 ·
√

2
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n � −
√

6
2 or n �

√
6

2

The solution set is
{
−
√

6
2 ,
√

6
2

}
.

When the radicand is a negative number, there is no real solution. Here is an example of an equation with
no real solution.

Example 8.3.10 Solve for x in x2 + 49 � 0.

Explanation.

x2
+ 49 � 0

x2
� −49

Since
√
−49 is not a real number, we say the equation has no real solution.

8.3.2 The Pythagorean Theorem

Right triangles have an important property called the Pythagorean Theorem.

Theorem 8.3.11 The PythagoreanTheorem. For any right triangle, the lengths of the three sides have the following
relationship: a2 + b2 � c2. The sides a and b are called legs and the longest side c is called the hypotenuse.

a

bc

Figure 8.3.12: In a right triangle, the length of its three sides satisfy the equation a2 + b2 � c2

Keisha is designing a wooden frame in the shape of a right triangle,
as shown in Figure 8.3.14. The legs of the triangle are 3 ft and 4 ft.
How long should shemake the diagonal side? Use the Pythagorean
Theorem to find the length of the hypotenuse.

B a � 3 ft C

b � 4 ft

A

c

Figure 8.3.14
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Example 8.3.13 According to Pythagorean Theorem, we have:

c2
� a2

+ b2

c2
� 32

+ 42

c2
� 9 + 16

c2
� 25

Now we have a quadratic equation that we need to solve. We need to find the number that has a square
of 25. That is what the square root operation does.

c �
√

25
c � 5

The diagonal side Keisha will cut is 5 ft long.

Note that −5 is also a solution of c2 � 25 because (−5)2 � 25 but a length cannot be a negative number.
We will need to include both solutions when they are relevant.

Example 8.3.15 A 16.5ft ladder is leaning against a wall. The distance from the base of the ladder to the
wall is 4.5 feet. How high on the wall can the ladder reach?

The Pythagorean Theorem says:

a2
+ b2

� c2

4.52
+ b2

� 16.52

20.25 + b2
� 272.25

Now we need to isolate b2 in order to solve for b:

20.25 + b2 − 20.25 � 272.25 − 20.25
b2

� 252

To remove the square, we use the square root property. Be-
cause this is a geometric situation we only need to use the
principal root:

b �
√

252

Now simplify this radical and then approximate it:

b �
√

36 · 7
b � 6

√
7

b ≈ 15.87 a � 4.5 ft

b
c
�

16
.5

ft

Figure 8.3.16: Leaning Ladder
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The ladder can reach about 15.87 feet high on the wall.

Here are some more examples using the Pythagorean Theorem to find sides of triangles. Note that in many
contexts, only the principal root will be relevant.

Example 8.3.17 Find the missing length in this right triangle.

x 5
10

Figure 8.3.18: A Right Triangle

Explanation. We will use the Pythagorean Theorem to solve for x:

52
+ x2

� 102

25 + x2
� 100

x2
� 75

x �
√

75 (no need to consider −
√

75 in this context)

x �
√

25 · 3
x � 5

√
3

The missing length is x � 5
√

3.

Example 8.3.19 Sergio is designing a 50-inch TV, which implies the diagonal of the TV’s screen will be
50 inches long. He needs the screen’s width to height ratio to be 4 : 3. Find the TV screen’s width and
height.

a

bc �
50

in

Figure 8.3.20: Pythagorean Theorem Problem

Explanation. Let’s let x represent the height of the screen, in inches. Since the screen’s width to height
ratio will be 4 : 3, then the width is 4

3 times as long as the height, or 4
3 x inches. We will draw a diagram.

a �
4
3 x in

b � x inc �
50

in

Figure 8.3.21: Pythagorean Theorem Problem
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Now we can use the Pythagorean Theorem to write and solve an equation:

a2
+ b2

� c2(
4
3 x

)2

+ x2
� 502

16
9 x2

+
9
9 x2

� 2500

25
9 x2

� 2500

9
25 ·

25
9 x2

�
9
25 · 2500

x2
� 900

x � 30

Since the screen’s height is 30 inches, its width is 4
3 x �

4
3 (30) � 40 inches.

Example 8.3.22 Luca wanted to make a bench.

Figure 8.3.23: Sketch of a Bench with Highlighted Back

He wanted the top of the bench back to be a per-
fect portion of a circle, in the shape of an arc, as
in Figure 8.3.24. (Note that this won’t be a half-
circle, just a small portion of a circular edge.) He
started with a rectangular board 3 inches wide
and 48 inches long, and a piece of string, like
a compass, to draw a circular arc on the board.
How long should the string be so that it can be
swung round to draw the arc?

3 in

48 in
circle center

Figure 8.3.24: Bench Back Board
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Explanation. Let’s first define x to be the radius of the circle in question, in inches. The circle should
go through the bottom corners of the board and just barely touch the top of the board. That means that
the line from the middle of the bottom of the board to the center of the circle will be 3 inches shorter
than the radius.

x

x − 3

24 in

3 incenter

Figure 8.3.25: Bench Back Board Diagram

Now we can set up the Pythagorean Theorem based on the scenario. The equation a2 + b2 � c2 turns
into…

(x − 3)2 + 242
� x2

x2 − 6x + 9 + 576 � x2

−6x + 585 � 0

Note that at this point the equation is no longer quadratic! Solve the linear equation by isolating x

6x � 585
x � 97.5

So, the circle radius required is 97.5 inches. Luca found a friend to stand on the string end and drew a
circular segment on the board to great effect.

Exercises

Solving Quadratic Equations with the Square Root Property Solve the equation.

x2 � 41. x2 � 92. x2 �
1
163.

x2 �
1
254. x2 � 125. x2 � 206.
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x2 � 437. x2 � 538. 10x2 � 1609.

2x2 � 810. x2 �
144
12111. x2 �

64
2512.

81x2 � 1613. 121x2 � 14414. 29x2 − 37 � 015.

5x2 − 43 � 016. −5 − 7t2 � −817. 14 − 3t2 � 718.

5x2 + 2 � 019. 47x2 + 5 � 020. (x − 5)2 � 3621.

(x − 3)2 � 422. (11x + 6)2 � 10023. (11x + 6)2 � 1624.

26 − 2(r + 8)2 � 825. 8 − 5(t + 8)2 � 326. (x − 4)2 � 6127.

(x + 10)2 � 228. (x + 6)2 � 7529. (x + 7)2 � 6330.

7 � 154 − (y − 6)231. 7 � 154 − (y − 8)232.

Pythagorean Theorem Applications

Find the value of x.

x �

33.

Find the value of x.

x �

34.
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Find the value of x.

x �

35.

Find the value of x.

x �

36.

Find the value of x, accurate to at least two
decimal places.

x ≈

37.

Find the value of x, accurate to at least two
decimal places.

x ≈

38.

Find the exact value of x.

x �

39.

Find the exact value of x.

x �

40.
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Find the exact value of x.

x �

41.

Find the exact value of x.

x �

42.

Rebecca is designing a rectangular garden. The
garden’s diagonal must be 18.5 feet, and the
ratio between the garden’s base andheightmust
be 4 : 3. Find the length of the garden’s base
and height.

The garden’s base is

feet and its height is .

43. Jessica is designing a rectangular garden. The
garden’s diagonal must be 44.2 feet, and the
ratio between the garden’s base andheightmust
be 15 : 8. Find the length of the garden’s base
and height.

The garden’s base is

feet and its height is .

44.

Ashley is designing a rectangular garden. The
garden’s base must be 6 feet, and the ratio be-
tween the garden’s hypotenuse andheightmust
be 5 : 3. Find the length of the garden’s hy-
potenuse and height.

The garden’s hypotenuse is

feet and its height is .

45. Neil is designing a rectangular garden. The
garden’s base must be 4.8 feet, and the ratio
between the garden’s hypotenuse and height
must be 13 : 5. Find the length of the garden’s
hypotenuse and height.

The garden’s hypotenuse is

feet and its height is .

46.

Challenge

Imagine that you are in Math Land, where roads are perfectly straight, and Mathlanders can walk
along a perfectly straight line between any two points. One day, you bike 2 miles west, 4 miles north,
and 8 miles east. Then, your bike gets a flat tire and you have to walk home. How far do you have
to walk?You have to walk miles home.

47.
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8.4 The Quadratic Formula

We have learned how to solve quadratic equations using factoring and the square root property. In this
section, we will learn a third method, the quadratic formula. We will also learn when to use each method
and to distinguish between linear and quadratic equations.

8.4.1 Solving Quadratic Equations with the Quadratic Formula

The standard form of a quadratic equation is

ax2
+ bx + c � 0

Let’s look at two examples as a review of solving quadratic equations.

First, let’s look at when b � 0 and the equation looks like ax2 + c � 0. One way to solve this type of equation
is with the square root property.

Example 8.4.2 Solve for x in x2 − 4 � 0.

Explanation.

x2 − 4 � 0
x2

� 4

x � −2 or x � 2

The solution set is {−2, 2}.

Second, if we can factor the left side of the equation in ax2 + bx + c � 0, then we can solve the equation by
factoring.

Example 8.4.3 Solve for x in x2 − 4x − 12 � 0.

Explanation.

x2 − 4x − 12 � 0
(x − 6)(x + 2) � 0

x − 6 � 0 or x + 2 � 0
x � 6 or x � −2

The solution set is {−2, 6}.

A third method for solving a quadratic equation is to use what is known as the quadratic formula.

Fact 8.4.4 The Quadratic Formula. For any quadratic equation ax2 + bx + c � 0, the solutions are given by

x �
−b ±

√
b2 − 4ac

2a
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As we have seen from solving quadratic equations, there can be at most two solutions. Both of the solutions
are included in the quadratic formula with the ± symbol. We could write the two solutions separately as

x �
−b −

√
b2 − 4ac

2a
or x �

−b +
√

b2 − 4ac
2a

but it is more efficient to simplify them together.

This method for solving quadratic equations will work to solve every quadratic equation. It is most helpful
when b , 0 and when ax2 + bx + c cannot be factored. In this section, we will only focus on how to use the
formula.

In Section 8.1, we saw an example where a physics class launched a tennis ball off the roof of a building. In
that example, the numbers were simplified so we could solve it by factoring. Now we will solve a similar
example with more realistic numbers.

Example 8.4.5 Linh is in another physics class that launches a tennis ball from a rooftop that is 90.2 feet
above the ground. They fire it directly upward at a speed of 14.4 feet per second andmeasure the time it
takes for the ball to hit the ground below. We can model the height of the tennis ball, h, in feet, with the
quadratic equation h � −16x2 + 14.4x + 90.2, where x represents the time in seconds after the launch.
According to the model, when should the ball hit the ground? Round the time to one decimal place.

The ground has a height of 0 feet. Substituting 0 for h in the equation, we have this quadratic equation:

0 � −16x2
+ 14.4x + 90.2

We cannot solve this equation with factoring or the square root property, so we will use the quadratic
formula. First we will identify that a � −16, b � 14.4 and c � 90.2, and substitute them into the formula:

x �
−b ±

√
b2 − 4ac

2a

x �
−(14.4) ±

√
(14.4)2 − 4(−16)(90.2)

2(−16)

x �
−14.4 ±

√
207.36 − (−5772.8)
−32

x �
−14.4 ±

√
207.36 + 5772.8
−32

x �
−14.4 ±

√
5980.16

−32

These are the exact solutions but because we have a context we want to approximate the solutions with
decimals.

x ≈ −2.0 or x ≈ 2.9

We don’t use the negative solution because a negative time does not make sense in this context. The ball
will hit the ground approximately 2.9 seconds after it is launched.

The quadratic formula can be used to solve any quadratic equation, but it requires that you don’t make
any slip-up with remembering the formula, that you correctly identify a, b, and c, and that you don’t make
any arithmetic mistakes when you calculate and simplify. We recommend that you always check whether
you can factor or use the square root property before using the quadratic formula. Here is another exam-
ple.
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Example 8.4.6 Solve for x in 2x2 − 9x + 5 � 0.

Explanation. First, we check and see that we cannot factor the left side (because we can’t find two
numbers that multiply to 10 and add to −9) or use the square root property (because b , 0) so we must
use the quadratic formula. Next we identify that a � 2, b � −9 and c � 5. We will substitute them into
the quadratic formula:

x �
−b ±

√
b2 − 4ac

2a

x �
−(−9) ±

√
(−9)2 − 4(2)(5)
2(2)

x �
−9 ±

√
81 − 40
4

x �
−9 ±

√
41

4

This is fully simplified because we cannot simplify
√

41 or reduce the fraction. The solution set is{
−9−
√

22
4 , −9+

√
22

4

}
. We do not have a context here so we leave the solutions in their exact form.

When a quadratic equation is not in standard form we must convert it before we can identify the values of
a, b and c. We will show that in the next example.

Example 8.4.7 Solve for x in x2 � −10x − 3.

Explanation. First, we convert the equation into standard form by adding 10x and 3 to each side of the
equation:

x2
+ 10x + 3 � 0

Next, we check and see that we cannot factor the left side or use the square root property so we must
use the quadratic formula. We identify that a � 1, b � 10 and c � 3. We will substitute them into the
quadratic formula:

x �
−b ±

√
b2 − 4ac

2a

x �
−10 ±

√
(10)2 − 4(1)(3)
2(1)

x �
−10 ±

√
100 − 12
2

x �
−10 ±

√
88

2

Now we need to simplify the square root:

x �
−10 ± 2

√
22

2
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Lastly we need to reduce the fractions, which can be done by separating terms:

x �
−10

2 ± 2
√

22
2

x � −5 ±
√

22

The solution set is {−5 −
√

22,−5 +
√

22}.

Remark 8.4.8. The irrational solutions to quadratic equations can be checked, although doing so can some-
times involve a lot of simplification and is not shown throughout this section. As an example, to check the
solution of −5+

√
22 from Example 8.4.7, we would replace x with −5+

√
22 and check that the two sides of

the equation are equal. This check is shown here:

x2
� −10x − 3

(−5 +
√

22)2 ?
� −10(−5 +

√
22) − 3

(−5)2 + 2(−5)(
√

22) + (
√

22)2 ?
� −10(−5 +

√
22) − 3

25 − 10
√

22 + 22 ?
� 50 − 10

√
22 − 3

47 − 10
√

22 ✓� 47 − 10
√

22

When the radicand from the quadratic formula (which is called the discriminant) is a negative number, the
quadratic equation has no real solution. Example 8.4.9 shows what happens in this case.

Example 8.4.9 Solve for y in y2 − 4y + 8 � 0.

Explanation. Identify that a � 1, b � −4 and c � 8. Wewill substitute them into the quadratic formula:

y �
−b ±

√
b2 − 4ac

2a

�
−(−4) ±

√
(−4)2 − 4(1)(8)
2(1)

�
4 ±
√

16 − 32
2

�
4 ±
√
−16

2

The square root of a negative number is not a real number, so we will simply state that this equation has
no real solutions.

8.4.2 Recognizing Linear and Quadratic Equations

Now that we have solved both linear and quadratic equations, it is important to identify each type of equa-
tion. Recall that a linear equation has a degree of one and a quadratic equation has a degree of two. If there
is any other operation on the variable such as division or a square root then it is not linear or quadratic. We
can have other operations on numbers, but not the variables. Let’s look at an example.

Checkpoint 8.4.10. Identify whether each equation is linear, quadratic or neither.
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a. The equation 3 � 7y2 − 8y is (□ linear □ quadratic □ neither) .

b. The equation 5x + 3 � 7x − 8 is (□ linear □ quadratic □ neither) .

c. The equation r3 − 7 � 4 is (□ linear □ quadratic □ neither) .

d. The equation
√

7x + 4 � 10 is (□ linear □ quadratic □ neither) .

Explanation. We will check the degree of each equation:

a. This is a quadratic equation because there is a y2 term.

b. This is a linear equation because the highest exponent is one.

c. This is neither linear nor quadratic because it has a degree of three.

d. This is a linear equation because it has a degree of one. The coefficient is irrational but the variable is
not in the square root.

8.4.3 Solving Linear and Quadratic Equations

When an equation is linear, we move all variable terms to one side of the equation and all constant terms
to the other side. Then we use division if needed to solve for the variable. This is outlined in List 3.1.4.

When an equation isquadratic, we have three differentmethodswe can use. Here is an outline of the general
process for determining which method to use.

Process 8.4.11 Solving Quadratic Equations.

1. First, check whether there is a linear term, or whether there is only a squared expression and a constant. If there
is only a squared expression and a constant, isolate the squared quantity and use the square root method.

2. If there is a linear term, put the equation in standard form with all of the terms on one side and zero on the
other side.

a) If the polynomial factors, solve the equation by factoring.

b) If the polynomial does not factor, use the quadratic formula.

Here are some examples:

Example 8.4.12 Solve for x in x2 � 7x2 − 12.

Explanation. This is a quadratic equation because there are x2 terms. There are no x terms so we will
use the square root method. We start by combining the x2 terms on the left.

x2
� 7x2 − 12

−6x2
� −12

x2
� 2

x � −
√

2 or x �
√

2

The solution set is {−
√

2,
√

2}.
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Example 8.4.13 Solve for p in p2 � −2p + 2.

Explanation. This is a quadratic equation that also contains a linear term so we will put the equation
in standard form. Then we see that the left side does not factor so we will use the quadratic formula.

p2
+ 2p − 2 � 0

p �
−(2) ±

√
(2)2 − 4(1)(−2)
2(1)

p �
−2 ±

√
4 + 8

2

p �
−2 ±

√
12

2

p �
−2 ± 2

√
3

2

p �
−2
2 ±

2
√

3
2

p � −1 ±
√

3

The solution set is {1 −
√

3, 1 +
√

3}.

Example 8.4.14 Solve for t in 7 − t � 9t + 11.

Explanation. This is a linear equation sowewill combine the linear terms on one side and the constant
terms on the other side.

−10t � 4

t �
4
−10

t � −2
5

The solution set is
{
− 2

5
}
.

Example 8.4.15 Solve for z in z2 − 10 � 3z + 30.

Explanation. This is a quadratic equation with a linear term so we will put it in standard form. Then
we see that the left side factors so we solve by factoring.

z2 − 10 � 3z + 30
z2 − 3z − 40 � 0
(z + 5)(z − 8) � 0

z + 5 � 0 or z − 8 � 0
z � −5 or z � 8

The solution set is {−5, 8}.
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Exercises

Review and Warmup

Evaluate 2a − 2B + 10
−10a + 10B

for a � 6 and B � −5.1. Evaluate 2c + 8b − 9
−c − 5b

for c � −6 and b � 10.2.

Evaluate the expression 1
3
(
x + 3

)2 − 9 when
x � −6.

3. Evaluate the expression 1
6
(
x + 3

)2 − 7 when
x � −9.

4.

Evaluate the expression−16t2+64t+128when
t � 3.

5. Evaluate the expression−16t2+64t+128when
t � 5.

6.

Evaluate the expression x2:

a. When x � 6, x2
�

b. When x � −4, x2
�

7. Evaluate the expression x2:

a. When x � 3, x2
�

b. When x � −7, x2
�

8.

Evaluate each algebraic expression for the given
value(s):
√

x
y
− y

x
, for x � 16 and y � 3:

9. Evaluate each algebraic expression for the given
value(s):

y
4x
−
√

x
2y

, for x � 9 and y � 8:

10.

Solve Quadratic Equations Using the Quadratic Formula Solve the equation.

x2 − 8x + 5 � 011. x2 − 10x + 17 � 012. 10x2 + 17x − 20 � 013.

15x2 + 4x − 32 � 014. x2 � −5x − 315. x2 � x + 116.

x2 + 9x + 9 � 017. x2 − 9x + 9 � 018. 3x2 + 5x + 1 � 019.

2x2 + 3x − 1 � 020. 7x2 − 2x − 1 � 021. 4x2 − 10x − 5 � 022.

5x2 − 10x + 10 � 023. 5x2 − 5x + 7 � 024.
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Solve Quadratic Equations Using an Appropriate Method Solve the equation.

2x2 − 18 � 025. 3x2 − 75 � 026. 9t + 7 � t + 2327.

7a + 2 � a + 5028. 9x2 − 16 � 029. 49x2 − 64 � 030.

−2 − 7r2 � −431. 8 − 7t2 � 332. x2 + 70x � 033.

x2 − 90x � 034. 9y + 10 � −9y + 10 − 3y35. 6t + 5 � −6t + 5 − 3t36.

x2 − 2x � 837. x2 + 8x � 938. (x + 1)2 � 4939.

(x + 3)2 � 940. x2 � −3x − 141. x2 � −3x + 242.

4x2 � 9x − 443. 3x2 � 5x − 144. −6 − 3(x − 10)2 � −945.

14 − 2(y + 10)2 � 646. −10 � −8c − 10 − c47. 31 � −5A − 5 − A48.

Quadratic Formula Applications

Two numbers’ sum is 16, and their product is
60. Find these two numbers.

These two numbers are .

49. Two numbers’ sum is 14, and their product is
48. Find these two numbers.

These two numbers are .

50.

Two numbers’ sum is 11.7, and their product
is 28.22. Find these two numbers.

These two numbers are .
(Use a comma to separate your numbers.)

51. Two numbers’ sum is 2.1, and their product is
−95.92. Find these two numbers.

These two numbers are .
(Use a comma to separate your numbers.)

52.

Arectangle’s base is 8 cm longer than its height.
The rectangle’s area is 65 cm2. Find this rect-
angle’s dimensions.

The rectangle’s height is .

The rectangle’s base is .

53. Arectangle’s base is 6 cm longer than its height.
The rectangle’s area is 72 cm2. Find this rect-
angle’s dimensions.

The rectangle’s height is .

The rectangle’s base is .

54.
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Arectangle’s base is 3 in shorter thanfive times
its height. The rectangle’s area is 36 in2. Find
this rectangle’s dimensions.

The rectangle’s height is .

The rectangle’s base is .

55. Arectangle’s base is 7 in shorter than four times
its height. The rectangle’s area is 15 in2. Find
this rectangle’s dimensions.

The rectangle’s height is .

The rectangle’s base is .

56.

Youwill build a rectangular sheep pen next to
a river. There is no need to build a fence along
the river, so you only need to build three sides.

You have a total of 480 feet of fence to use, and
the area of the pen must be 28600 square feet.
Find the dimensions of the pen.

There should be two solutions:When thewidth
is feet, the length is
feet.

When the width is feet, the

length is feet.

57. Youwill build a rectangular sheep pen next to
a river. There is no need to build a fence along
the river, so you only need to build three sides.

You have a total of 550 feet of fence to use, and
the area of the pen must be 37700 square feet.
Find the dimensions of the pen.

There should be two solutions:When thewidth
is feet, the length is
feet.

When the width is feet, the

length is feet.

58.

There is a rectangular lot in the garden, with
7 ft in length and 3 ft in width. You plan to
expand the lot by an equal length around its
four sides, and make the area of the expanded
rectangle 77 ft2. How long should you expand
the original lot in four directions?

You should expand the original lot by
in four directions.

59. There is a rectangular lot in the garden, with
10 ft in length and 6 ft in width. You plan to
expand the lot by an equal length around its
four sides, and make the area of the expanded
rectangle 192 ft2. How long should you ex-
pand the original lot in four directions?

You should expand the original lot by
in four directions.

60.
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One car started at Town A, and traveled due
north at 70 miles per hour. 3.5 hours later, an-
other car started at the same spot and traveled
due east at 65 miles per hour. Assume both
cars don’t stop, after how many hours since
the second car starts would the distance be-
tween them be 469 miles? Round your answer
to two decimal places if needed.

Approximately hours since the
second car starts, the distance between those
two cars would be 469 miles.

61. One car started at Town A, and traveled due
north at 40 miles per hour. 1.5 hours later, an-
other car started at the same spot and traveled
due east at 55 miles per hour. Assume both
cars don’t stop, after how many hours since
the second car starts would the distance be-
tween them be 229 miles? Round your answer
to two decimal places if needed.

Approximately hours since the
second car starts, the distance between those
two cars would be 229 miles.

62.

An object is launched upward at the height of
240 meters. It’s height can be modeled by

h � −4.9t2
+ 50t + 240,

where h stands for the object’s height in me-
ters, and t stands for time passed in seconds
since its launch. The object’s heightwill be 280
meters twice before it hits the ground. Find
howmany seconds since the launchwould the
object’s height be 280 meters. Round your an-
swers to two decimal places if needed.

The object’s height would be 280 meters the
first time at seconds, and

then the second time at
seconds.

63. An object is launched upward at the height of
260 meters. It’s height can be modeled by

h � −4.9t2
+ 90t + 260,

where h stands for the object’s height in me-
ters, and t stands for time passed in seconds
since its launch. The object’s heightwill be 270
meters twice before it hits the ground. Find
howmany seconds since the launchwould the
object’s height be 270 meters. Round your an-
swers to two decimal places if needed.

The object’s height would be 270 meters the
first time at seconds, and

then the second time at
seconds.

64.
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Currently, an artist can sell 230 paintings ev-
ery year at the price of $60.00 per painting.
Each time he raises the price per painting by
$5.00, he sells 10 fewer paintings every year.

Assume he will raise the price per painting x
times, then he will sell 230− 10x paintings ev-
ery year at the price of 60 + 5x dollars. His
yearly income can be modeled by the equa-
tion:

i � (60 + 5x)(230 − 10x)
where i stands for his yearly income in dollars.
If the artist wants to earn $14,700.00 per year
from selling paintings, what new price should
he set?

To earn $14,700.00 per year, the artist could
sell his paintings at two different prices. The
lower price is per painting,

and the higher price is
per painting.

65. Currently, an artist can sell 250 paintings ev-
ery year at the price of $110.00 per painting.
Each time he raises the price per painting by
$10.00, he sells 10 fewer paintings every year.

Assume he will raise the price per painting x
times, then he will sell 250− 10x paintings ev-
ery year at the price of 110 + 10x dollars. His
yearly income can be modeled by the equa-
tion:

i � (110 + 10x)(250 − 10x)
where i stands for his yearly income in dollars.
If the artist wants to earn $32,000.00 per year
from selling paintings, what new price should
he set?

To earn $32,000.00 per year, the artist could
sell his paintings at two different prices. The
lower price is per painting,

and the higher price is
per painting.

66.

67. Solve for x in the equation mx2 + nx + p � 0.
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8.5 Complex Solutions to Quadratic Equations

8.5.1 Imaginary Numbers

Let’s look at how to simplify a square root that has a negative radicand. Remember that
√

16 � 4 because
42 � 16. So what could

√
−16 be equal to? There is no real number that we can square to get −16, because

when you square a real number, the result is either positive or 0. You might think about 4 and −4, but:

42
� 16 and (−4)2 � 16

so neither of those could be
√
−16. To handle this situation, mathematicians separate a factor of

√
−1 and

represent it with the letter i, which stands for imaginary unit.

Definition 8.5.2 Imaginary Numbers. The imaginary unit, i, is defined by i �
√
−1. The imaginary unit¹

satisfies the equation i2 � −1. A real number times i, such as 4i, is called an imaginary number.

Now we can simplify square roots with negative radicands like
√
−16.

√
−16 �

√
−1 · 16

�
√
−1 ·
√

16
� i · 4
� 4i

Imaginary numbers are widely used in electrical engineering, physics, computer science and other fields.
Let’s look some more examples.

Example 8.5.3 Simplify
√
−2.

Explanation.
√
−2 �

√
−1 · 2

�
√
−1 ·
√

2

� i
√

2

We write the i first because it’s difficult to tell the difference between
√

2i and
√

2i.

Example 8.5.4 Simplify
√
−72.

Explanation.
√
−72 �

√
−1 · 36 · 2

�
√
−1 ·
√

36 ·
√

2

� 6i
√

2

¹en.wikipedia.org/wiki/Imaginary_number
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8.5.2 Solving Quadratic Equations with Imaginary Solutions

Example 8.5.5 Solve for x in x2 + 49 � 0, where x is an imaginary number.

Explanation. There is no x term so we will use the square root method.

x2
+ 49 � 0

x2
� −49

x � −
√
−49 or x �

√
−49

x � −
√
−1 ·
√

49 or x �
√
−1 ·
√

49
x � −7i or x � 7i

The solution set is {−7i , 7i}.

Example 8.5.6 Solve for p in p2 + 75 � 0, where p is an imaginary number.

Explanation. There is no p term so we will use the square root method.

p2
+ 75 � 0

p2
� −75

p � −
√
−75 or p �

√
−75

p � −
√
−1 ·
√

25 ·
√

3 or p �
√
−1 ·
√

25 ·
√

3

p � −5i
√

3 or p � 5i
√

3

The solution set is
{
−5i
√

3, 5i
√

3
}
.

8.5.3 Solving Quadratic Equations with Complex Solutions

A complex number is a combination of a real number and an imaginary number, like 3 + 2i or −4 − 8i.

Definition 8.5.7 ComplexNumber. A complex number is a number that can be expressed in the form a+bi,
where a and b are real numbers and i is the imaginary unit. In this expression, a is the real part and b (not
bi) is the imaginary part of the complex number².

Here are some examples of equations that have complex solutions.

Example 8.5.8 Solve for m in (m − 1)2 + 18 � 0, where m is a complex number.

Explanation. This equation has a squared expression so we will use the square root method.

(m − 1)2 + 18 � 0
(m − 1)2 � −18

²en.wikipedia.org/wiki/Complex_number
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m − 1 � −
√
−18 or m − 1 �

√
−18

m − 1 � −
√
−1 ·
√

9 ·
√

2 or m − 1 �
√
−1 ·
√

9 ·
√

2

m − 1 � −3i
√

2 or m − 1 � 3i
√

2

m � 1 − 3i
√

2 or m � 1 + 3i
√

2

The solution set is
{
1 − 3i

√
2, 1 + 3i

√
2
}
.

Example 8.5.9 Solve for y in y2 − 4y + 13 � 0, where y is a complex number.

Explanation. Note that there is a y term, but the left side does not factor. We will use the quadratic
formula. We identify that a � 1, b � −4 and c � 13 and substitute them into the quadratic formula.

y �
−b ±

√
b2 − 4ac

2a

�
−(−4) ±

√
(−4)2 − 4(1)(13)
2(1)

�
4 ±
√

16 − 52
2

�
4 ±
√
−36

2

�
4 ±
√
−1 ·
√

36
2

�
4 ± 6i

2
� 2 ± 3i

The solution set is {2 − 3i , 2 + 3i}.

Note that in Example 8.5.9, the expressions 2 + 3i and 2 − 3i are fully simplified. In the same way that the
terms 2 and 3x cannot be combined, the terms 2 and 3i can not be combined.

Remark 8.5.10. Each complex solution can be checked, just as every real solution can be checked. For ex-
ample, to check the solution of 2 + 3i from Example 8.5.9, we would replace y with 2 + 3i and check that
the two sides of the equation are equal. In doing so, we will need to use the fact that i2 � −1. This check is
shown here:

y2 − 4y + 13 � 0

(2 + 3i)2 − 4(2 + 3i) + 13 ?
� 0

(22
+ 2(3i) + 2(3i) + (3i)2) − 4 · 2 − 4 · (3i) + 13 ?

� 0

4 + 6i + 6i + 9i2 − 8 − 12i + 13 ?
� 0

4 + 9(−1) − 8 + 13 ?
� 0

4 − 9 − 8 + 13 ?
� 0

0 ✓� 0
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Exercises

Simplifying Square Roots with Negative Radicands Simplify the radical and write it into a complex
number.

√
−105 �1.

√
−42 �2.

√
−72 �3.

√
−56 �4.

√
−126 �5.

√
−200 �6.

Quadratic Equations with Imaginary and Complex Solutions Solve the quadratic equation. Solutions
could be complex numbers.

y2 � −167. r2 � −1008. −6r2 + 2 � 2969.

−3t2 + 2 � 5010. 2t2 + 10 � 611. 2t2 − 2 � −812.

−6x2 + 4 � 12413. −6x2 − 7 � 29314. 9(y + 4)2 + 1 � −32315.

6(y − 5)2 − 7 � −6116. r2 + 2r + 5 � 017. r2 + 6r + 10 � 018.

t2 + 4t + 9 � 019. t2 + 4t + 11 � 020.
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8.6 Strategies for Solving Quadratic Equations

In this section, we will review how to solve quadratic equations using three different methods: The square
root method, factoring and the quadratic formula.

8.6.1 How to Choose a Method for Solving a Quadratic Equation

Process 8.6.2. So far, we have learned three methods for solving quadratic equations in standard form, ax2+bx+c � 0:

1. When b � 0, as in x2 − 4 � 0, we can use the square root property, Property 8.3.2.

2. If we can easily factor the polynomial, as in x2 − 4x − 12 � 0, we will solve the equation by factoring and use
the zero product property, Property 8.1.4.

3. If we cannot solve the equation by the first two methods, we must use the Quadratic Formula, Property 8.4.4.
This formula works for any quadratic equation, but the first two methods are usually easier.

Let’s look at a few examples for how to choose which method to use.

Example 8.6.3 Solve for y in y2 − 49 � 0.

Explanation. In this equation, b � 0, so it is easiest to use the square root method. We isolate the
squared quantity and then use the square root property.

y2 − 49 � 0
y2

� 49

y � −
√

49 or y �
√

49
y � −7 or y � 7

The solution set is {−7, 7}.
Because 49 is a perfect square, we could also solve this equation by factoring.

y2 − 49 � 0
(y + 7)(y − 7) � 0

y + 7 � 0 or y − 7 � 0
y � −7 or y � 7

We get the same solution set, {−7, 7}.

We can also use the square root method when a binomial is squared, like (p − 1)2, as we will see in the next
example.

Example 8.6.4 Solve for p in −40 � 10 − 2(p − 1)2.

Explanation. We isolate the squared binomial and then use the square root property.

−40 � 10 − 2(p − 1)2
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−50 � −2(p − 1)2

25 � (p − 1)2

p − 1 � −5 or p − 1 � 5
p � −4 or p � 6

The solution set is {−4, 6}
Let’s check the solution p � −4:

−40 � 10 − 2(p − 1)2

−40 ?
� 10 − 2(−4 − 1)2

−40 ?
� 10 − 2(−5)2

−40 ?
� 10 − 2(25)

−40 ✓� 10 − 50

The solution p � −4 is verified. Checking p � 6 is left as an exercise.

When we have a middle term in ax2 + bx + c � 0, we cannot use the square root property. We look first to
see if we can solve the equation by factoring. Here are some examples.

Example 8.6.5 Solve for x in x2 − 4x − 12 � 0.

Explanation. The equation is already in standard form and we can factor the polynomial on the left
side of the equation. We will factor it and then use the zero product property to solve the equation.

x2 − 4x − 12 � 0
(x − 6)(x + 2) � 0

x − 6 � 0 or x + 2 � 0
x � 6 or x � −2

The solution set is {−2, 6}.

Example 8.6.6 Solve for t in 2t2 − 30t + 28 � 0.

Explanation. First we factor out the common factor of 2. Then we can see that the polynomial is fac-
torable. We solve it using the zero product property.

2t2 − 30t + 28 � 0
2(t2 − 15t + 14) � 0
2(t − 1)(t − 14) � 0

t − 1 � 0 or t − 14 � 0
t � 1 or t � 14
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The solution set is {1, 14}.

If the equation is not in standard form, we must rewrite it before we can solve it. Let’s look at the next
example.

Example 8.6.7 Solve for x in (x + 4)(x − 3) � 18.

Explanation. We need to have one side equal to 0 in order to use the zero product property, so we will
multiply the left side and subtract 18 from both sides.

(x + 4)(x − 3) � 18
x2

+ x − 12 � 18
x2

+ x − 12 − 18 � 18 − 18
x2

+ x − 30 � 0
(x + 6)(x − 5) � 0

x + 6 � 0 or x − 5 � 0
x � −6 or x � 5

The solution set is {−6, 5}.

When it’s difficult or impossible to factor the trinomial in ax2+ bx+ c � 0, we have to resort to the Quadratic
Formula:

x �
−b ±

√
b2 − 4ac

2a
Here is an example.

Example 8.6.8 Solve for x in x2 − 10x + 3 � 0.

Explanation. We identify that a � 1, b � −10 and c � 3 and substitute them into the Quadratic
Formula:

x �
−b ±

√
b2 − 4ac

2a

x �
−(−10) ±

√
(−10)2 − 4(1)(3)
2(1)

x �
10 ±
√

100 − 12
2

x �
10 ±
√

88
2

x �
10 ± 2

√
22

2
x � 5 ±

√
22

The solution set is
{
5 −
√

22, 5 +
√

22
}
.

If a quadratic equation is not in standard formwe need to rewrite it to identify the values of a, b and c. Let’s
look at an example.
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Example 8.6.9 Solve for x in −3x2 − 1 � −8x.

Explanation. First, we convert the equation into standard form:

−3x2 − 1 � −8x

−3x2
+ 8x − 1 � 0

Nowwe can identify that a � −3, b � 8 and c � −1. We will substitute them into the Quadratic Formula:

x �
−b ±

√
b2 − 4ac

2a

x �
−8 ±

√
82 − 4(−3)(−1)
2(−3)

x �
−8 ±

√
64 − 12
−6

x �
−8 ±

√
52

−6

x �
−8 ± 2

√
13

−6

x �
4 ±
√

13
3

The solution set is
{

4−
√

13
3 , 4+

√
13

3

}
Also recall that if the radicand is negative, there is no real solution to the equation.

This was a brief review of solving quadratic equations. If you would like the full explanation of solving
using the square root method, you can go to Section 8.3. For solving by factoring, you can go to Section 8.1.
If you want more on the quadratic formula, you can go to Section 8.4.

Exercises

Solving Quadratic Equations Using the Square Root Method Solve the equation.

x2 � 1441. x2 � 42. 3x2 � 483.

4x2 � 364. 2x2 + 23 � 05. 43x2 + 31 � 06.

9 − 3(r + 3)2 � −37. 48 − 6(t − 3)2 � −68.

Solving Quadratic Equations by Factoring Solve the equation.

82(x + 8)(14x − 5) � 09. −82(x + 10)(7x − 9) � 010. x2 − 11x + 10 � 011.
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x2 − 13x + 36 � 012. x2 − 15x � −5613. x2 − 7x � −614.

x2 + 14x + 49 � 015. x2 + 16x + 64 � 016. x(5x + 59) � −9017.

x(5x + 51) � −1018. (x + 3)(x − 5) � −719. (x + 6)(x + 3) � −220.

Solving Quadratic Equations Using the Quadratic Formula Solve the equation.

x2 − 2x − 11 � 021. x2 + 6x − 2 � 022. x2 � −3x − 123.

x2 � 5x − 224. 5x2 − 8x + 4 � 025. 4x2 + 10x + 7 � 026.

Choosing Which Method to Use Solve the equation.

x2 + 4x � 3227. x2 + 9x � 1028. 2x2 � 3229.

3x2 � 2730. 4x2 − 8x + 5 � 031. 3x2 + 3x + 10 � 032.

13x2 + 29 � 033. 67x2 + 41 � 034. 4x2 � −29x − 735.

5x2 � −39x − 2836. x2 − 10x + 8 � 037. x2 − 2x − 19 � 038.

29 − 3(x + 10)2 � 239. 2 − 6(y + 9)2 � −440. x2 + 11x � −3041.

x2 + 8x � −1242.
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8.7 Solving Quadratic Equations Chapter Review

8.7.1 Solving Quadratic Equations by Factoring

In Section 8.1 we covered the zero product property and learned an algorithm for solving quadratic equa-
tions by factoring.

Example 8.7.1 Solving Using Factoring. Solve the quadratic equations using factoring.

a. x2 − 2x − 15 � 0

b. 4x2 − 40x � −96

c. 6x2 + x − 12 � 0

d. (x − 3)(x + 2) � 14

e. x3 − 64x � 0

Explanation.

a. Use factor pairs.

x2 − 2x − 15 � 0
(x − 5)(x + 3) � 0

x − 5 � 0 or x + 3 � 0
x � 5 or x � −3

So the solution set is {5,−3}.
b. Start by putting the equation in standard form and factoring out the greatest common factor.

4x2 − 40x � −96
4x2 − 40x + 96 � 0

4
(
x2 − 10x + 24

)
� 0

4(x − 6)(x − 4) � 0

x − 6 � 0 or x − 4 � 0
x � 6 or x � 4

So the solution set is {4, 6}.
c. Use the AC method.

6x2
+ x − 12 � 0

Note that a · c � −72 and that 9 · −8 � −72 and 9 − 8 � 1

6x2
+9x − 8x − 12 � 0(

6x2
+ 9x

)
+ (−8x − 12) � 0

3x (2x + 3) −4 (2x + 3) � 0
(2x + 3) (3x − 4) � 0
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2x + 3 � 0 or 3x − 4 � 0

x � −3
2 or x �

4
3

So the solution set is
{
− 3

2 ,
4
3
}
.

d. Start by putting the equation in standard form.

(x − 3)(x + 2) � 14
x2 − x − 6 � 14

x2 − x − 20 � 0
(x − 5)(x + 4) � 0

x − 5 � 0 or x + 4 � 0
x � 5 or x � −4

So the solution set is {5,−4}.
e. Even though this equation has a power higher than 2, we can still find all of its solutions by fol-

lowing the algorithm. Start by factoring out the greatest common factor.

x3 − 64x � 0
x
(
x2 − 64

)
� 0

x(x − 8)(x + 8) � 0

x � 0 or x − 8 � 0 or x + 8 � 0
x � 0 or x � 8 or x � −8

So the solution set is {0, 8,−8}.

8.7.2 Square Root Properties

In Section 8.2 we covered the definition of a square root, how to estimate and simplify square roots, multi-
plication and division properties of square roots, and rationalizing the denominator.

Example 8.7.2 Estimating Square Roots. Estimate the value of
√

28 without a calculator.

Explanation. To estimate
√

28, we can find the nearest perfect squares that arewhole numbers on either
side of 28. Recall that the perfect squares are 1, 4, 9, 16, 25, 36, 49, 64, . . . The perfect square that is just
below 28 is 25 and the perfect square just above 28 is 36. This tells us that

√
28 is between

√
25 and

√
36,

or between 5 and 6. We can also say that
√

28 is closer to 5 than 6 because 28 is closer to 25, so we think
5.2 or 5.3 would be a good estimate.

On the calculator we can see that
√

28 ≈ 5.29, so our guess was very close to reality.

Example 8.7.3Multiplication andDivision Properties of SquareRoots. Simplify the expressions using
the multiplication and division properties of square roots.
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a
√

18 ·
√

2. b
√

18√
2
.

Explanation.

a
√

18 ·
√

2 �
√

18 · 2
�
√

36
� 6

b
√

18√
2

�

√
18
2

�
√

9
� 3

Example 8.7.4 Simplifying Square Roots. Simplify the expression
√

54.

Explanation. Recall that the perfect squares are 1, 4, 9, 16, 25, 36, 49, 64, . . . To simplify the
√

54, we
need to look at that list and find the largest perfect square the goes into 54 evenly. In this case, it is 9. We
then break up 54 into two factors 9 and 6, and we have:

√
54 �

√
9 · 6

�
√

9 ·
√

6

� 3
√

6

Since 6 has no perfect square factors, we can stop.

Example 8.7.5 Multiplying Square Root Expressions. Simplify the expression
√

50 ·
√

27.

Explanation. Note that 25 is a perfect-square factor of 50, and that 9 is a perfect-square factor of 27.
Now we have:

√
50 ·
√

27 �
√

25 · 2 ·
√

9 · 3
�
√

25 ·
√

2 ·
√

9 ·
√

3

� 5 ·
√

2 · 3 ·
√

3

� 15
√

6

Example 8.7.6 Adding and Subtracting Square Root Expressions. Simplify the expression
√

32 +
√

50.

Explanation. Recall that radicals can only be added if the radicands match identically, so we cannot
initially combine these two terms. However, if we simplify first, we may be able to add terms later. Note
that 16 is a perfect-square factor of 32, and that 25 is a perfect-square factor of 50.

√
32 +
√

50 �
√

16 · 2 +
√

25 · 2
�
√

16 ·
√

2 +
√

25 ·
√

2

� 4
√

2 + 5
√

2

� 9
√

2
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Example 8.7.7 Rationalizing the Denominator. Rationalize the denominator in the expression 2√
6
.

Explanation.

2√
6
�

2√
6
·
√

6√
6

�
2 ·
√

6√
6 ·
√

6

�
2
√

6
6

�

√
6

3

Example 8.7.8 More Complicated Square Roots. Expand
(√

5 +
√

3
)2
.

Explanation. We will use the foil method to expand this expression:(√
5 +
√

3
)2

�

(√
5 +
√

3
) (√

5 +
√

3
)

�

(√
5
)2

+
√

5
√

3 +
√

3
√

5 +

(√
3
)2

� 5 +
√

15 +
√

15 + 3

� 8 + 2
√

15

8.7.3 Solving Quadratic Equations by Using a Square Root

In Section 8.3 we covered how to solve quadratic equations using the square root property and how to use
the Pythagorean Theorem.

Example 8.7.9 SolvingQuadratic Equations Using the Square Root Property. Solve for w in 3(2−w)2−
24 � 0.

Explanation. It’s important here to suppress any urge you may have to expand the squared binomial.
We begin by isolating the squared expression.

3(2 − w)2 − 24 � 0
3(2 − w)2 � 24
(2 − w)2 � 8

Now that we have the squared expression isolated, we can use the square root property.

2 − w � −
√

8 or 2 − w �
√

8

2 − w � −
√

4 · 2 or 2 − w �
√

4 · 2
2 − w � −

√
4 ·
√

2 or 2 − w �
√

4 ·
√

2
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2 − w � −2
√

2 or 2 − w � 2
√

2

−w � −2
√

2 − 2 or −w � 2
√

2 − 2

w � 2
√

2 + 2 or w � −2
√

2 + 2

The solution set is
{
2
√

2 + 2,−2
√

2 + 2
}
.

Example 8.7.10 The Pythagorean Theorem. Faven was doing some wood working in her garage. She
needed to cut a triangular piece of wood for her project that had a hypotenuse of 16 inches, and the sides
of the triangle should be equal in length. How long should she make her sides?

Explanation.

Let’s start by representing the length of the tri-
angle, measured in inches, by the letter x. That
would also make the other side x inches long.

x

16 in x

Figure 8.7.11: Piece of wood with labels for
Faven

Faven should now set up the Pythagorean theorem regarding the picture. That would be

x2
+ x2

� 162

Solving this equation, we have:

x2
+ x2

� 162

x2
+ x2

� 256
2x2

� 256
x2

� 128
√

x2 �
√

128

x �
√

64 · 2
x �
√

64 ·
√

2

x � 8
√

2
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x ≈ 11.3

Faven should make the sides of her triangle about 11.3 inches long to force the hypotenuse to be 16
inches long.

8.7.4 The Quadratic Formula

In Section 8.4 we covered how to use the quadratic formula to solve any quadratic equation, as well as an
algorithm to help solve linear and quadratic equations.

Example 8.7.12 Solving Quadratic Equations with the Quadratic Formula. Solve the equations using
the quadratic formula.

a. x2 + 4x � 6 b. 5x2 − 2x + 1 � 0

Explanation.

a. First we should change the equation into standard form.

x2
+ 4x � 6

x2
+ 4x − 6 � 0

Next, we check and see that we cannot factor the left side or use the square root property so we
must use the quadratic formula. We identify that a � 1, b � 4, and c � −6. We will substitute them
into the quadratic formula:

x �
−b ±

√
b2 − 4ac

2a

x �
−4 ±

√
(4)2 − 4(1)(−6)

2(1)

�
−4 ±

√
16 + 24
2

�
−4 ±

√
40

2

�
−4 ±

√
4 · 10

2

�
−4 ±

√
4 ·
√

10
2

�
−4 ± 2

√
10

2

� −4
2 ±

2
√

10
2

� −2 ±
√

10

So the solution set is
{
−2 +

√
10,−2 −

√
10

}
.
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b. Since the equation 5x2 − 2x + 1 � 0 is already in standard form, we check and see that we cannot
factor the left side or use the square root property so we must use the quadratic formula. We
identify that a � 5, b � −2, and c � 1. We will substitute them into the quadratic formula:

x �
−b ±

√
b2 − 4ac

2a

x �
−(−2) ±

√
(−2)2 − 4(5)(1)
2(5)

�
2 ±
√

4 − 20
10

�
2 ±
√
−16

10

Since the solutions have square roots of negative numbers, wemust conclude that there are no real
solutions.

Example 8.7.13 Recognizing Linear and Quadratic Equations. Identify which equations are linear,
which are quadratic, and which are neither.

a. 2(x − 3)2 − 5x � 6

b. 2(x − 3) − 5x � 6

c. 2x − 6 � 7x3

d. 2x2 − 6 � 7x2

e. 2
√

x − x − 6 � 0

f. 2x − (x − 6) � 0

Explanation.

a. 2(x − 3)2 − 5x � 6 is quadratic.

b. 2(x − 3) − 5x � 6 is linear.

c. 2x − 6 � 7x3 is neither linear or quadratic.

d. 2x2 − 6 � 7x2 is quadratic.

e. 2
√

x − x − 6 � 0 is neither linear or quadratic.

f. 2x − (x − 6) � 0 is linear.

Example 8.7.14 Solving Linear and Quadratic Equations. Use 8.4.11 to help solve the equations after
deciding if they are linear or quadratic.

a. 4x2 − 11x + 6 � 0

b. 2(x − 6)2 − 16 � 0

c. 2(x − 6) − 16 � 0

d. 3(x − 4)2 − 15x � 0

Explanation.

a. To solve the equation 4x2 − 11x + 6 � 0 we first note that it is quadratic. Since there is a linear
term (−11x), we must use either factoring or the quadratic formula, and we will try factoring first.
Since the leading coefficient is 4, we will try the AC method. In this case, ac � 24: numbers that
multiply to be 24 and add to be −11 are −8 and −3. So we split up th equation like this:

4x2 − 11x + 6 � 0
4x2 − 8x − 3x + 6 � 0
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4x2 − 8x

)
+ (− 3x +6) � 0

4x(x − 2) − 3(x − 2) � 0
(x − 2)(4x − 3) � 0

x − 2 � 0 or 4x − 3 � 0

x � 2 or x �
3
4

So, the solution set is
{
2, 3

4
}
.

b. To solve the equation 2(x − 6)2 − 16 � 0 we first note that it is quadratic. Since there is no linear
term, we should try using the square root method.

2(x − 6)2 − 16 � 0
2(x − 6)2 � 16
(x − 6)2 � 8

x − 6 �
√

8 or x − 6 � −
√

8

x − 6 �
√

4 · 2 or x − 6 � −
√

4 · 2
x − 6 �

√
4 ·
√

2 or x − 6 � −
√

4 ·
√

2

x − 6 � 2
√

2 or x − 6 � −2
√

2

x � 6 + 2
√

2 or x � 6 − 2
√

2

So, the solution set is
{
6 + 2
√

2, 6 − 2
√

2
}
.

c. To solve the equation 2(x−6)−16 � 0 we first we first note that it is linear. Since it is linear, we just
need to isolate the terms with the variable on one side and all the other terms on the other side of
the equals sign.

2(x − 6) − 16 � 0
2x − 12 − 16 � 0

2x − 28 � 0
2x � 28
x � 14

So, the solution set is {14}.
d. To solve the equation 2(x − 6)2 − 15x � 0 we first note that it is quadratic. Since there is a linear

term, we must use either factoring or the quadratic formula. Before we can decide which to use,
we need to put the equation in standard form:

3(x − 4)2 − 15x � 0
3(x − 4)(x − 4) − 15x � 0
3(x2 − 8x + 16) − 15x � 0
3x2 − 24x + 48 − 15x � 0
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3x2 − 39x + 48 � 0

Now we can see that the left hand side does not factor easily, so we will fall back on the quadratic
formula. We identify that a � 3, b � −39, and c � 48.

x �
−b ±

√
b2 − 4ac

2a

x �
−(−39) ±

√
(−39)2 − 4(3)(48)
2(3)

�
39 ±
√

1521 − 576
6

�
39 ±
√

945
6

�
39 ±
√

9 · 105
6

�
39 ±
√

9 ·
√

105
6

�
39 ± 3

√
105

6

So the solution set is
{

39+3
√

105
6 , 39−3

√
105

6

}
.

8.7.5 Complex Solutions to Quadratic Equations

In Section 8.5 we covered what both imaginary numbers and complex numbers are, as well as how to solve
quadratic equations where the solutions are imaginary numbers or complex numbers.

Example 8.7.15 Imaginary Numbers. Simplify the expression
√
−12 using the imaginary number, i.

Explanation. Start by splitting the −1 from the 12 and by looking for the largest perfect-square factor
of −12, which happens to be 4.

√
−12 �

√
4 · −1 · 3

�
√

4 ·
√
−1 ·
√

3

� 2i
√

3

Example 8.7.16 Solving Quadratic Equations with Imaginary Solutions. Solve for m in 2m2 + 16 � 0,
where p is an imaginary number.

Explanation. There is no m term so we will use the square root method.

2m2
+ 16 � 0
2m2

� −16
m2

� −8
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m � −
√
−8 or m �

√
−8

m � −
√

4 ·
√
−1 ·
√

2 or m �
√

4 ·
√
−1 ·
√

2

m � −2i
√

2 or m � 2i
√

2

The solution set is
{
−2i
√

2, 2i
√

2
}
.

Example 8.7.17 Solving Quadratic Equations with Complex Solutions. Solve the equation 3(v − 2)2 +
54 � 0, where v is a complex number.

Explanation.

3(v − 2)2 + 54 � 0
3(v − 2)2 � −54
(v − 2)2 � −18

v − 2 � −
√
−18 or v − 2 �

√
−18

v − 2 � −
√

9 · −1 · 2 or v − 2 �
√

9 · −1 · 2
v − 2 � −

√
9 ·
√
−1 ·
√

2 or v − 2 �
√

9 ·
√
−1 ·
√

2

v − 2 � −3i
√

2 or v − 2 � 3i
√

2

v � 2 − 3i
√

2 or v � 2 + 3i
√

2

So, the solution set is
{
2 + 3i

√
2, 2 − 3i

√
2
}
.

8.7.6 Strategies for Solving Quadratic Equations

In Section 8.6 we reviews all three methods for solving quadratic equations that we know. For the full
explanation of solving using the factoring, visit Section 8.1, solving using the square root method, visit
Section 8.3, and for more on the quadratic formula, visit Section 8.4.

Example 8.7.18 How to Choose aMethod for Solving a Quadratic Equation. Solve the quadratic equa-
tions using an effective method.

a. (x − 4)2 − 2 � 0 b. (x − 4)2 − 2x � 0 c. (x − 4)2 + 2x � 0

Explanation. All three of the equations here are very similar, so we will need to examine them closely
to choose the best method for solving them.

a. To solve the equation (x − 4)2 − 2 � 0, first note that there is no linear term: there is only a square
and a constant. This leads us to consider the square root method. Before doing that, isolate the
square:

(x − 4)2 − 2 � 0
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(x − 4)2 � 2

Now we can apply the square root method to the equation.

x − 4 �
√

2 or x − 4 � −
√

2

x � 4 +
√

2 or x � 4 −
√

2

So the solution set is
{
4 +
√

2, 4 −
√

2
}

b. To solve the equation (x − 4)2 − 2x � 0, first note that there is a linear term (−2x), so we must use
either factoring or the quadratic formula. To use either, we must first put the equation in standard
form.

(x − 4)2 − 2x � 0
(x − 4)(x − 4) − 2x � 0
x2 − 8x + 16 − 2x � 0

x2 − 10x + 16 � 0

Now that the equation is in standard form, we can decidewhether to use factoring or the quadratic
formula. While the quadratic formula always works, it can take more time than factoring if factor-
ing is possible. In this case, factoring entails answering the question “are there two integers that
multiply to be 16 and add to be −10?” The answer is “yes”: −8 and −2 are such numbers.

x2 − 10x + 16 � 0
(x − 8)(x − 2) � 0

x − 8 � 0 or x − 2 � 0
x � 8 or x � 2

So the solution set is {2, 8}.
c. To solve the equation (x − 4)2 + 2x � 0, first note that there is a linear term (+2x), so we must use

either factoring or the quadratic formula. To use either, we must first put the equation in standard
form.

(x − 4)2 + 2x � 0
(x − 4)(x − 4) + 2x � 0
x2 − 8x + 16 + 2x � 0

x2 − 6x + 16 � 0

Now that the equation is in standard form, we can decidewhether to use factoring or the quadratic
formula. In this case, factoring entails answering the question “are there two integers thatmultiply
to be 16 and add to be −6?” The answer is “no,” so we must use the quadratic formula. First,
identify that a � 1, b � −6, and c � 16.

x �
−b ±

√
b2 − 4ac

2a
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x �
−(−6) ±

√
(−6)2 − 4(1)(16)
2(1)

�
6 ±
√

36 − 48
2

�
6 ±
√
−12

2

At this point, we notice that the solutions are complex. Continue to simplify until they are com-
pletely reduced.

x �
6 ±
√

4 · −1 · 3
2

�
6 ±
√

4 ·
√
−1 ·
√

3
2

�
6 ± 2i

√
3

2

�
6
2 ±

2i
√

3
2

� 3 ± i
√

3

So the solution set is
{
3 + i
√

3, 3 − i
√

3
}
.

Exercises

Solving Quadratic Equations by Factoring Solve the equation.

x2 − 6x − 27 � 01. x2 − 5x − 50 � 02. x2 + 11x � −183.

x2 + 18x � −804. x2 � 9x5. x2 � 7x6.

x2 − 8x + 16 � 07. x2 − 10x + 25 � 08. 4x2 � −41x − 109.

4x2 � −25x − 3610. x(x + 20) � 5(2x − 5)11. x(x + 36) � 9(2x − 9)12.

Arectangle’s base is 7 in shorter than four times
its height. The rectangle’s area is 65 in2. Find
this rectangle’s dimensions.

The rectangle’s height is .

The rectangle’s base is .

13. Arectangle’s base is 7 in shorter than four times
its height. The rectangle’s area is 2 in2. Find
this rectangle’s dimensions.

The rectangle’s height is .

The rectangle’s base is .

14.
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Square Root Properties

Without using a calculator, estimate the value
of
√

22:

(□ 5.69 □ 4.69 □ 4.31 □ 5.31)

15. Without using a calculator, estimate the value
of
√

38:

(□ 6.16 □ 6.84 □ 5.84 □ 5.16)

16.

Evaluate the following.√
25
81 � .17.

√
36
49 � .18.

√
−64 � .19.

√
−100 � .20.

Simplify the radical expression or state that it is not a real number.
√

6√
216

�21.
√

4√
144

�22.
√

8 �23.
√

147 �24.

Simplify the expression.

3
√

5 · 3
√

40 �25. 3
√

15 · 2
√

30 �26.
√

28
13 ·

√
4
13 �27.

√
15
19 ·

√
5
19 �28.

√
20 +
√

45 �29.
√

175 +
√

112 �30.

√
176 −

√
44 �31.

√
8 −
√

32 �32.

Rationalize the denominator and simplify the expression.
1√
3
�33. 1√

3
�34. 2

5
√

5
�35.

7
3
√

6
�36. 1√

75
�37. 1√

175
�38.

Expand and simplify the expression.(
7 −
√

7
) (

10 − 3
√

7
)
�39.

(
5 −
√

7
) (

8 − 5
√

7
)
�40.

(√
5 +
√

13
) (√

5 −
√

13
)
�41.

(√
5 +
√

7
) (√

5 −
√

7
)
�42.
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Solving Quadratic Equations by Using a Square Root Solve the equation.

x2 � 2043. x2 � 9944. 144x2 � 4945. 16x2 � 946.

(x + 5)2 � 12147. (x + 7)2 � 4948. 2 − 2(t − 5)2 � −649. 54 − 5(x − 5)2 � 950.

Find the value of x.

x �

51.

Find the value of x.

x �

52.

Parnell is designing a rectangular garden. The
garden’s diagonal must be 2 feet, and the ratio
between the garden’s base and height must be
4 : 3. Find the length of the garden’s base and
height.

The garden’s base is

feet and its height is .

53. Gregory is designing a rectangular garden.
The garden’s diagonal must be 42.9 feet, and
the ratio between the garden’s base and height
must be 12 : 5. Find the length of the garden’s
base and height.

The garden’s base is

feet and its height is .

54.

The Quadratic Formula Solve the equation.

14x2 − 11x − 9 � 055. 18x2 − 37x − 20 � 056. x2 � −3x − 157.

x2 � 5x − 358. 2x2 + 4x + 5 � 059. 2x2 − x + 1 � 060.

10t + 7 � t + 8861. 9b + 10 � b + 6662. −1 − 3y2 � −363.

−8 − 7r2 � −1064. x2 + 39x � 065. x2 + 59x � 066.
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x2 + 8x � 967. x2 − 3x � 5468. (x − 7)2 � 1669.

(x − 5)2 � 12170. x2 � −9x − 1971. x2 � −7x − 872.

An object is launched upward at the height of
320 meters. It’s height can be modeled by

h � −4.9t2
+ 90t + 320,

where h stands for the object’s height in me-
ters, and t stands for time passed in seconds
since its launch. The object’s heightwill be 350
meters twice before it hits the ground. Find
howmany seconds since the launchwould the
object’s height be 350 meters. Round your an-
swers to two decimal places if needed.

The object’s height would be 350 meters the
first time at seconds, and

then the second time at
seconds.

73. An object is launched upward at the height of
340 meters. It’s height can be modeled by

h � −4.9t2
+ 70t + 340,

where h stands for the object’s height in me-
ters, and t stands for time passed in seconds
since its launch. The object’s heightwill be 350
meters twice before it hits the ground. Find
howmany seconds since the launchwould the
object’s height be 350 meters. Round your an-
swers to two decimal places if needed.

The object’s height would be 350 meters the
first time at seconds, and

then the second time at
seconds.

74.

Complex Solutions to Quadratic Equations Simplify the radical and write it into a complex number.
√
−48 �75.

√
−98 �76.

Solve the quadratic equation. Solutions could be complex numbers.

−2x2 − 4 � 877. 4x2 + 7 � −578.

−9(y − 4)2 + 8 � 58479. 7(y + 7)2 + 8 � −16780.

Strategies for Solving Quadratic Equations Solve the equation.

2x2 + 29 � 081. 41x2 + 37 � 082. 5x2 � −31x − 4483.

5x2 � −27x − 3684. x2 + 4x + 1 � 085. x2 + 10x + 7 � 086.

28 − 6(x + 6)2 � 487. 34 − 4(y + 6)2 � −288. x2 + 7x � −1289.

x2 + 14x � −4590.
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CHAPTER 9
Graphs of Quadratic Functions

9.1 Introduction to Functions

In mathematics, we use functions to model real-life data. In this section, we will learn the definition of a
function and related concepts.

9.1.1 Introduction to Functions

When working with two variables, we are interested in the relationship between those two variables. For
example, consider the two variables of hare population and lynx population in a Canadian forest. If we
know the value of one variable, are we able to determine the value of the second variable? If we know that
one variable is increasing over time, do we know if the other is increasing or decreasing?

First
Variable

In a relation, information
passes back and forth,
possibly imperfectly

Second
Variable

Figure 9.1.2: In a relation, some knowledge of one variable implies some knowledge about the other

Definition 9.1.3 Relation. A relation is a very general situation between two variables, where having a
little bit of information about one variable could tell you something about the other variable. For example,
if you know the hare population is high this year, you can say the lynx population is probably increasing. So
“hare population” and “lynx population” make a relation. If one of the variables is identified as the “first”
variable, the relation’s domain is the set of all values that variable can take. Likewise, the relation’s range
is the set of all values that the second variable can take.

We are not so much concerned with relations in this book. But we are interested in a special type of relation
called a function. Informally, a function is a device that takes input values for one variable one by one,
thinks about them, and gives respective output values one by one for the other variable.
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Example 9.1.4 Mariana has 5 chickens: Hazel, Yvonne, Georgia, Isabella, and Emma. For the relation
“Chicken to Egg Color,” the first variable (the input) is a chicken’s name and the second variable (the
output) is the color of that chicken’s eggs. The relation’s domain is the set of all of Mariana’s chicken’s
names, and its range is the set of colors of her chicken’s eggs. Figure 9.1.5 shows two inputs and their
corresponding outputs.

Hazel
Chicken
to Egg
Color

Tan Yvonne
Chicken
to Egg
Color

Brown

Figure 9.1.5: Two Pairs of Inputs and Outputs of the Relation “Chicken to Egg Color”

It would not be convenient to make diagrams
like the ones in Figure 9.1.5 for all five chick-
ens. There are too many inputs. Instead, Fig-
ure 9.1.6 represents the function graphically in a
more concise way. The function’s input variable
is “chicken name,” and its output variable is “egg
color.” Note that we are using the word “vari-
able,” because the chicken names and egg col-
ors vary depending onwhich individual chicken
you choose.

Hazel

Yvonne

Georgia

Isabella

Emma

Tan

Brown

White

Green

Figure 9.1.6: Diagram for the function
“Chicken to Egg Color”

We can also use a set of ordered pairs to represent this function:

{(Hazel, Tan), (Yvonne, Brown), (Georgia, Brown), (Isabella,White), (Emma,Green)}

where you read the ordered pair left to right, with the first value as an input and the second value as its
output.

Definition 9.1.7 Function. In mathematics, a function is a relation between a set of inputs and a set of
outputs with the property that each input is related to exactly one output.

In Figure 9.1.6, we can see each chicken’s name (input) is related to exactly one output, so the relation
“Chicken to Egg Color” qualifies as a function. Note that it is irrelevant that multiple inputs might related
to the same output, like in (Yvonne, brown) and (Georgia, brown). The point is that whichever chicken you
are thinking about, you know exactly which color egg it lays.

Example 9.1.8 Next, we will look at the “inverse” relation named “Egg Color to Chicken.” Here we
consider the color of an egg to be the input, and want the output to be the name of a chicken. If the egg
is green, we know it is Emma’s. But what if the egg is brown?
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In Figure 9.1.9, we can see the color brown (an in-
put) is related to two outputs, Yvonne and Geor-
gia. This disqualifies the relation “Egg Color to
Chicken” from being a function. (It is still a re-
lation, because in general knowing the egg color
does give you some information about which
chicken it may have come from.)

Tan

Brown

White

Green

Yvonne

Hazel

Georgia

Isabella

Emma

Figure 9.1.9: The relation “Egg Color to
Chicken”

9.1.2 Functions as Predictors

Functions are useful because they describe our ability to accurately predict a result. If we can predict some-
thing precisely every time, then there is a function involved.

Example 9.1.10 If you go to the store and buy 5 two-dollar cans of soup, then you should predict that
your total will be $10. No matter if you buy the soup in the morning, afternoon, or evening. If it doesn’t
total $10, then the cash register isn’t functioning.

Example 9.1.11 A vending machine is like a function. You push a button and the item you desired pops
out. In this case, the inputs are all of the buttons that you can press, and the outputs are the kinds of
candy bars, chip bags, etc. that can come out. The mechanics and electronics that connect the buttons
with the items represent the function.

Going in a little further, if the button A1 delivers a bag of M&M’s, then you would be surprised if you
pressed A1 and got anything other than M&M’s. In this case, the machine wouldn’t be functioning and
you would get upset at your prediction ability being taken away.

What if buttons A1 and B3 both delivered M&M’s? Would that violate the definition a function?

No, the vending machine is still a function even if two buttons generate the same output. Remember
that to be a function, each inputmust generate a single output; that output doesn’t have to be unique for
each input. So as long as each button generates the same item each time you press it, there can be two
buttons that deliver the same item.

Example 9.1.12 Some relations are not functions, because they can’t be used to make 100% accurate
predictions. For example, if you have a student’s first name and want to determine their student ID
number, you probably won’t be able to look it up. For a common first name like “Michael,” there will be
many student ID number possibilities. Multiple outputs for a single input make “student ID number”
not be a function of “first name.”

On the other hand, if we exchange the variables and think of the ID number as the first variable, then
there is only one student that ID number applies to, and there is only one official first name for that
person. So “first name” is a function of “student ID number.”
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9.1.3 Algebraic Functions

Many functions have specific algebraic formulas to turn an input number into an output number. We explore
some examples here.

Example 9.1.13 Aylen is an electrician who is hired to install a new circuit. She charges $111 to come to
your house and then, in addition, $89 per hour to do the work. If x represents the total number of hours
that the job takes and y represents the total cost of her work, in dollars, then the equation y � 89x + 111
relates the variables.

We know that at the end of the job, if Aylen worked x hours, you are going to have one bill that totals
89x + 111. This must mean that the bill is a function of the number of hours of labor. For every possible
number of hours that she could work, you would only get one bill for that cost.

Context aside, the expression 89x+111 represents a function of x, because it can be used to turn an input
number x into a specific output. In fact, every algebraic expression in one variable represents a function
for similar reasons.

Example 9.1.14 The equation x2 + y2 � 25 represents a relation that is not a function, where we view x
as the “first variable” as usual. Remember that to not be a function, all we have to do is find one input
that has two outputs. Let’s pick a nice easy input number to test: x � 4. Substituting this value gives us

x2
+ y2

� 25
(4)2 + y2

� 25
16 + y2

� 25
y2

� 9

At this point, we see that y could be 3 or y could be −3. There are two y-values for the single x-value,
so that must mean that x2 + y2 � 25 cannot represent a function.

Checkpoint 9.1.15. Identify which of the following represent functions and which do not.

a. The formula for the area of a circle is A � πr2. With this equation, A (□ is □ is not) a function of
r.

b. A quadratic equation can be written as y � ax2 + bx + c. With this equation, y (□ is □ is not) a
function of x.

c. With the equation y2 � x, the variable y (□ is □ is not) a function of x.

Explanation.

a. Since each circle with a given radius has only one area, this must be a function. Another way to look
at it is that for any one r, the formula tells you exactly what A must be.

b. If you plug in any one x-value into y � ax2 + bx + c, you will know exactly what the value of y is. So
y is a function of x.

c. For example, if x � 9, then y could be 3 or −3. Since there are two y-values for the single x-value, that
must mean that the equation y2 � x cannot represent y as a function of x.
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9.1.4 Function Notation

We know that the equation y � 5x + 3 represents y as a function of x, because for each x-value (input),
there is only one y-value (output). If we want to determine the value of the output when the input is 2, we’d
replace x with 2 and find the value of y:

y � 5(2) + 3
� 10 + 3
� 13

Our end result is that y � 13. Well, y is 13, but only in the situation when x is 2. In general, for other inputs,
y is not going to be 13. So the equation y � 13 is lacking in the sense that it is not communicating everything
we might want to say. It does not communicate the value of x that we used. Function notation will allow
us to communicate both the input and the output at the same time. It will also allow us to give each function
a name, which is helpful when we have multiple functions.

Functions can have names just like variables. The most common function name is f , since “f” stands for
“function.” A letter like f doesn’t stand for a single number though. Instead, it represents an input-output
relation like we’ve been discussing in this section.

We will write equations like y � f (x), and what we mean is:

• “y equals f of x”

• the function’s name is f

• the input variable is x

• the parentheses following the f surround the input; they do not indicate multiplication

• the output variable is y

Remark 9.1.16. Parentheses have a lot of uses in mathematics. Their use with functions is very specific, and
it’s important to note that f is not beingmultiplied by anythingwhenwewrite f (x). With function notation,
the parentheses specifically are just meant to indicate the input by surrounding the input.

Example 9.1.17 The expression f (x) is read as “ f of x,” and the expression f (2) is read as “ f of 2.” Be
sure to practice saying this correctly while reading.

The expression f (2) means that 2 is being treated as an input, and the function f is turning it into an
output. And then f (2) represents that actual output number.

Remark 9.1.18. The most common letters used to represent functions are f , 1 , and h. The most common
variableswe use are x, y, and z. Butwe can use any function name and any input and output variable. When
dealing with functions in context, it often makes sense to use meaningful function names and variables. For
example, if we are modeling temperature of a cup of coffee as a function of time with a function C, we could
use T � C(t), where T is the temperature (in degrees Fahrenheit) after t minutes.

9.1.5 Evaluating Functions

When we determine a function’s value for a specific input, this is known as evaluating a function. To do so,
we replace the input with the numerical value given and determine the associated output.

When using function notation, instead of writing 5x + 3 or y � 5x + 3, we often write something like
f (x) � 5x + 3. We are saying that the rule for function f is to use the expression 5x + 3. To find f (2),
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wherever you see x in the formula f (x) � 5x + 3, substitute in 2:

f (x) � 5x + 3
f (2) � 5(2) + 3

� 10 + 3
� 13

Our end result is that f (2) � 13, which tells us that f turns 2 into 13. In other words, when the input is 2,
the output will be 13.

Checkpoint 9.1.19 Functions with Algebraic Formulas. Find the given function values for a function 1
where 1(x) � 5x2 − 3x + 4.

a. 1(3) � b. 1(0) � c. 1(−2) �

Explanation.

a. We will substitute x � 3 into 1(x):

1(3) � 5(3)2 − 3(3) + 4
� 5(9) − 9 + 4
� 40

b. We will substitute x � 0 into 1(x):

1(0) � 5(0)2 − 3(0) + 4
� 5(0) + 0 + 4
� 4

c. We will substitute x � −2 into 1(x). Especially when inputting negative numbers, be certain to put
parentheses around the input values in the first step:

1(−2) � 5(−2)2 − 3(−2) + 4
� 5(4) + 6 + 4
� 30

A function may be described by explicitly listing many inputs and their corresponding outputs in a ta-
ble.

Example 9.1.20 Functions given in Table Form. Temperature readings for Portland, OR, on a given day
are recorded in Table 9.1.21 . Let f (x) be the temperature in degrees Fahrenheit x hours after midnight.

x, hours after midnight 0 1 2 3 4 5 6 7 8 9 10
f (x), temperature in °F 45 44 42 42 43 44 45 48 49 50 53

Table 9.1.21: Recorded Temperatures in Portland, OR, on a certain day
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a. What was the temperature at midnight?

b. Find f (9). Explain what this function value represents in the context of the problem.

Explanation.

a. To determine the temperature atmidnight, we look in the tablewhere x � 0 and see that the output
is 45. Using function notation, we would write:

f (0) � 45.

Thus at midnight the temperature was 45 °F.

b. To determine the value of f (9), we look in the table where x � 9 and read the output:

f (9) � 50.

In context, this means that at 9AM the temperature was 50 °F.

A function may be described using a graph, where the horizontal axis corresponds to possible input values
(the domain), and the vertical axis corresponds to possible output values (the range).

Example 9.1.22 Functions in Graphical Form. A colony of bees settled in Zahid’s backyard in 2012.
Let B(x) be the number of bees in the colony (in thousands) x months after April 1, 2012. A graph of
y � B(x) is shown in Figure 9.1.23.

a. Determine the number of bees in the
colony on July 1, 2012.

b. Find B(0). Explainwhat this function value
represents in the context of the problem.
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Figure 9.1.23: Bee Population

Explanation.

a. Since July 1 is 3 months after April 1, that means we need to use x � 3 as the input. On the
horizontal axis, find 3, as in Figure 9.1.24. Looking straight up or down, we find the point (3, 15)
on the curve. That means that B(3) � 15. A value of y � 15 when x � 3 tells us that there were
15,000 bees 3 months after April 1, 2012 (on July 1, 2012).

b. To find B(0), we recognize that this will be the output of the function when x � 0. The point (0, 10)
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on the graph of y � B(x) tells us that B(0) � 10. In the context of this problem, this means on April
1, 2012 there were 10,000 bees in the colony.

2 4 6 8 10

2

4

6

8

10

12

14

(3, 15)

(0, 10)

x, months after April 1, 2012

y,
th

ou
sa

nd
so

fb
ee

s

Figure 9.1.24: Bee Population

9.1.6 Solving Equations That Have Function Notation

Evaluating a function and solving an equation that has function notation in it are two separate things. Stu-
dents understandably mix up these two tasks, because they are two sides of the same coin. Evaluating a
function means that you know an input (typically, an x-value) and then you calculate an output (typically,
a y-value). Solving an equation that has function notation in it is the opposite process. You know an output
(typically, a y-value) and then you determine all the inputs that could have led to that output (typically,
x-values).

Checkpoint 9.1.25 Functions with Algebraic Formulas. In Checkpoint 9.1.19, we found the function
valuewhen given the input, whichwe refer to as evaluating a function. To solve an equation that has function
notation in it, we need to solve for the value of the variable that makes an equation true, just like in any other
equation.

Solve the equations below for a function h where h(x) � −4x + 7. Check each answer and state the solution
set.

a. h(x) � −1

The solution set is .

b. h(x) � 0

The solution set is .

c. h(x) � 11

The solution set is .
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Explanation.

a. To solve for x, we will substitute h(x)with its formula, −4x + 7:

h(x) � −1
−4x + 7 � −1
−4x � −8

x � 2

The solution is 2, and the solution set is {2}.
b. To solve for x, we will substitute h(x)with its formula:

h(x) � 0
−4x + 7 � 0
−4x � −7

x �
7
4

The solution is 7
4 , and the solution set is

{ 7
4
}
.

c. To solve for x, we will substitute h(x)with its formula:

h(x) � 11
−4x + 7 � 11
−4x � 4

x � −1

The solution is −1, and the solution set is {−1}.

Example 9.1.26 Functions given in Table Form. In Example 9.1.20, we evaluated a function given in
table form, using Table 9.1.21. Let’s use that function to solve equations.

a. Solve f (x) � 48. Explain what this solution set represents in context.

b. When was the temperature 44 °F?

Explanation.

a. To solve f (x) � 48, we need to find the value of x that makes the equation true. Looking at the
table, we look at the outputs and see that the output 48 occurs when x � 7. In abstract terms, the
solution set is {7}. In context, this means that the temperature was 48 °F at 7AM.

b. To determine when the temperature was 44 °F, we look in the table to see where the output was
44 °F. This occurs when x � 1 and again when x � 5. In abstract terms, the solution set is {1, 5}.
In context, this means that the temperature was 44 °F at 1AM and again at 5AM.

Example 9.1.27 Functions given in Graphical Form. In Example 9.1.22, we evaluated a function given
in graphical form, using Figure 9.1.23. Now let’s use that function to solve some equations.

a. Solve B(x) � 0. Explain what the solution set represents in the context of the problem.
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b. When did the population reach 13,000 bees?

Explanation.

a. To solve B(x) � 0, we need to consider that number 0 as an output value, so it belongs on the
vertical axis in Figure 9.1.28. Moving straight right or left, we find the point (9, 0) is on the graph,
and that tells us that B(x) � 0 when x � 9. Abstractly, the solution set is {9}. In the context of this
problem, this means there were 0 bees in the colony 9 months after April 1, 2012 (on January 1,
2013).

b. To determine when the number of bees reached 13,000, we need to recognize that 13 is an output
value and locate it on the vertical axis. Moving straight right or left, we find (approximately)
that the points (1, 13) and (5, 13) are on the graph. This means x ≈ 1 and x ≈ 5 are solutions.
Abstractly, the solution set is approximately {1, 5}. In context, there will be 13, 000 bees in the
colony approximately 1 month after April 1, 2012 (on May 1, 2012) and again 5 months after April
1, 2012 (on September 1, 2012).
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Figure 9.1.28: Bee Population

9.1.7 Domain and Range

Earlier we defined the domain and range of a relation. We repeat those definitions more formally here,
specifically for functions.

Definition 9.1.29Domain andRange. Given a function f , the domain of f is the collection of all valid input
values for f . The range of f is the collection of all possible output values of f .

When working with functions, a common necessary task is to determine the function’s domain and range.
Also, the ability to identify domain and range is strong evidence that a person really understands the concepts
of domain and range.
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Example 9.1.30 Functions Defined by Ordered Pairs. The function f is defined by the ordered pairs

{(1, 2), (3,−2), (5, 2), (7,−4), (9, 6)}.

Determine the domain and range of f .

Explanation. The ordered pairs tell us that f (1) � 2, f (3) � −2, etc. So the valid input values are 1, 3,
5, 7, and 9. This means the domain is the set {1, 3, 5, 7, 9}.
Similarly, the ordered pairs tell us that 2, −2, −4, and 6 are possible output values. Notice that the output
2 happened twice, but it only needs to be listed in this collection once. The range of f is {2,−2,−4, 6}.

Example 9.1.31 Functions in Table Form. For each function defined using a table, state the domain and
range.

a. The function 1 is defined by:

x −2 −1 0 1 2
y 5 5 5 5 5

b. The function h is defined by:

x 0 1 2 3 4
y 8 6 4 2 0

Explanation.

a. The table tells us that 1(−2) � 5, 1(−1) � 5, etc. So the valid input values are −2, −1, 0, 1, and 2.
This means the domain of 1 is the set {−2,−1, 0, 1, 2}.
The only output evident from this table is 5, so the range of 1 is the set {5}.

b. The table tells us that h(0) � 8, h(1) � 6, etc. So the valid input values are 0, 1, 2, 3, and 4. This
means the domain of h is the set {0, 1, 2, 3, 4}.
Similarly, the table shows us that the possible outputs are 8, 6, 4, 2, and 0. So the range of h is the
set {8, 6, 4, 2, 0}.

Example 9.1.32 Functions in Graphical Form. Functions are graphed in Figure 9.1.33 through Fig-
ure 9.1.35. For each one, find its domain and range. In previous examples the domain and range were
finite sets and we used set notation braces to communicate them. In these examples, the domain and
range will be intervals, and so we use interval notation.
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Figure 9.1.33: Function k Figure 9.1.34: Function ℓ Figure 9.1.35: Function m

Explanation.

To find the domain of k, we look left and right across the x-axis.
No matter where we look on the x-axis, we can look straight up
or down and find a point on the graph. So no matter what input
we imagine, there is always an corresponding output. Therefore
the domain is all real numbers, which we write as (−∞,∞).
Similarly, to find the range of k, we look up and down over the
entire y-axis. No matter where we stop on the y-axis, we will be
able to move straight left or right and find a point on the graph.
So no matter what output we imagine, there is always an input
that leads to that output. Therefore the range is also (−∞,∞).
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Figure 9.1.36: Function k

To find the domain of ℓ, we look left and right across the entire
x-axis. No matter where we stop on the x-axis, we will be able
to move straight up or down and find a point on the graph. (Al-
though if we are far out left or right, we will have to look very far
down to find that point.) So no matter what input we imagine,
there is always an output to this function. Therefore the domain
is (−∞,∞).
To find the range of ℓ, we look up and down over the entire y-
axis. For y-values larger than 4, if we look straight left or right,
there is no point on the curve. Only with y-values 4 and under
can we find an input that leads to such an output. So the range
is all real numbers less than or equal to 4. In interval notation,
that is (−∞, 4].
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Figure 9.1.37: Function ℓ
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To find the domain of m, we look left and right across the entire
x-axis. For an x-value less than 2, there is no point on the curve
directly above or below that x-value. So the graph is not telling
you what m(x)would be. Only for x-values 2 and greater do we
get an output value. So the domain is [2,∞).
To find the range of m, we look up and down over the entire y-
axis. For y-values less than 1, if we look straight left or right,
there is no point on the curve. Only with y-values 1 and greater
can we find an input that leads to such an output. So the range is
all real numbers greater than or equal to 1. In interval notation,
that is [1,∞).
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Figure 9.1.38: Function m

9.1.8 Determining if a Relation is a Function

We have seen functions that are defined using a verbal description, using an equation, using a list of or-
dered pairs, using a table, and using a graph. With all of these things, you might have a relation that is not
actually a function. (We have seen a few examples of these as well.) Determining whether or not a given
relation actually defines a function is another task that demonstrates actual understanding of the concept
of a function.

Example 9.1.39 Verbally Described Relations. In the introduction, we discussed the relation between
the variables of hare population and lynx population. These variables are related—for one thing, if
the hare population is high, you will have information about the lynx population: it will probably be
increasing because there is plenty of food.

But is this relation a function? Suppose that one year you know the hare population is 100,000 and the
lynx population is 2000. Isn’t it possible that some other year, the hare population is 100,000 again, but
the lynx population is something different like 3000? Knowing one value of the first variable does not
guarantee exactly one value of the second variable. So this relation is not a function.

Checkpoint 9.1.40 Sets of Ordered Pairs. The relations below are given in the form of ordered pairs.
Determine if each is a function.

a. {(2, 5), (3, 6), (4, 3), (4,−5), (8, 0)}
(□ yes □ no)

b. {(1, 2), (3,−2), (5, 2), (7,−4), (9, 6)}
(□ yes □ no)

Explanation.

a. The first relation does not represent a function because the input of 4 is associated with more than one
output (3 and −5).

b. The second relation does represent a function as each input is associated with exactly one output. Note
that it does not matter that both the inputs 1 and 5 lead to the same output. All that matters is that
the input 1 has only one output. And the input 5 has only one output. And the same for each of the
other inputs.

To determine if a relation that is represented graphically is a function, we need to visually determine if each
input corresponds to exactly one output. How could that not happen? Somewhere on the horizontal axis,
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there would be a number, and looking straight up or straight down from there, you would find at least two
points on the graph.

This thinking gives rise to the vertical line test.

Fact 9.1.41 Vertical Line Test. If any vertical line passes through the graph of a relation more than once, then y is
not a function of x in the graph.

Example 9.1.42 Consider the relations given by Figure 9.1.43 and Figure 9.1.44.
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Figure 9.1.43: Fails the Vertical Line Test Figure 9.1.44: Passes the Vertical Line Test

In Figure 9.1.43, we can see that there are vertical lines that pass through the graph more than once.
This means that this graph does not represent a function. The issue is that supposing it were a function
f , then what would f (3) be? The graph suggests it could be three different things: ≈ 1.3, ≈ −1.6, and
≈ −3.7. With no clear single output for the input 3, we don’t have a function.

However, in Figure 9.1.44, we see that all vertical lines pass through the graph one time (or not at all).
Therefore, this graph does represent a function. If we name the function 1, the domain of 1 is only
numbers greater than or equal to 2. And for such numbers, the graphs shows us exactly one output for
each input. For example, the graph shows us that 1(2) ≈ −2.27.

For relations in table form, we can determine if it makes a function by again checking to see if multiple
outputs are ever associated with a single input.

Example 9.1.45 Functions in Table Form. For each relation shown in Table 9.1.46 through Table 9.1.48,
determine if y is a function of x.

This relation represents a function as each input corresponds to
exactly one output. For instance, the input −2 only corresponds
to the output 5 and no other output. (Note that it does notmatter
that multiple inputs correspond to the same output 5.)

x −2 −1 0 1 2
y 5 5 5 5 5

Table 9.1.46: A function?
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This relation represents a function as each input corresponds to
exactly one output. For instance, the input 0 only corresponds to
the output 8 and no other output.

x 0 1 2 3 4
y 8 6 4 2 0

Table 9.1.47

This relation does not represent a function as some of the inputs
correspond to more than one output. In particular, the input of
2 corresponds to both 7 and 9 for outputs.

x −2 −2 0 2 2
y 1 3 5 7 9

Table 9.1.48

Exercises

Review and Warmup

Write each point’s position as an ordered pair,
like (1, 2).

A � B �

C � D �

1.

Write each point’s position as an ordered pair,
like (1, 2).

A � B �

C � D �

2.

Sketch the points (8, 2), (5, 5), (−3, 0), and (2,−6)
on a Cartesian plane.

3. Sketch the points (1,−4), (−3, 5), (0, 4), and
(−2,−6) on a Cartesian plane.

4.
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Determining Whether a Relation Is a Function of Not

Do these sets of ordered pairs make functions of x? What are their domains and ranges?

a.
{
(9, 8), (−10, 4)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

b.
{
(1, 4), (0, 6), (0, 10)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

c.
{
(3, 0), (7, 1), (−5, 9), (−9, 10)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

d.
{
(5, 8), (−3, 8), (3, 3), (9, 9), (8, 5)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

5.

Do these sets of ordered pairs make functions of x? What are their domains and ranges?

a.
{
(−3, 1), (−10, 6)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

b.
{
(3, 8), (−9, 9), (2, 5)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

c.
{
(−2, 7), (4, 3), (−7, 5), (−6, 9)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

d.
{
(−3, 2), (−5, 2), (−5, 9), (10, 4), (5, 8)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

6.
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Does the following set of ordered pairs make for a function of x?{
(−8, 8), (5, 9), (−3, 8), (7, 10), (3, 4)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of ordered
pairs has domain and range .

7.

Does the following set of ordered pairs make for a function of x?{
(8, 3), (−6, 5), (−1, 6), (4, 6), (1, 10)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of ordered
pairs has domain and range .

8.

Decide whether each graph shows a relation-
ship where y is a function of x.

The first graph (□ does □ does not) give
a function of x. The second graph (□ does
□ does not) give a function of x.

9. Decide whether each graph shows a relation-
ship where y is a function of x.

The first graph (□ does □ does not) give
a function of x. The second graph (□ does
□ does not) give a function of x.

10.

The following graphs show two relationships.
Decide whether each graph shows a relation-
ship where y is a function of x.

The first graph (□ does □ does not) give
a function of x. The second graph (□ does
□ does not) give a function of x.

11. The following graphs show two relationships.
Decide whether each graph shows a relation-
ship where y is a function of x.

The first graph (□ does □ does not) give
a function of x. The second graph (□ does
□ does not) give a function of x.

12.
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Which of the following graphs show y as a function of x?
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13.

Which of the following graphs show y as a function of x?
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14.
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Evaluating Functions Algebraically Evaluate the function at the given values.

G(x) � x − 7

a. G(4) �

b. G(−1) �

c. G(0) �

15. h(x) � x − 5

a. h(2) �

b. h(−4) �

c. h(0) �

16. h(x) � 10x

a. h(4) �

b. h(−5) �

c. h(0) �

17.

F(x) � 7x

a. F(1) �

b. F(−1) �

c. F(0) �

18. G(x) � −4x + 6

a. G(3) �

b. G(−3) �

c. G(0) �

19. G(x) � −2x + 1

a. G(2) �

b. G(−3) �

c. G(0) �

20.

H(x) � −x + 6

a. H(3) �

b. H(−5) �

c. H(0) �

21. K(x) � −x + 3

a. K(5) �

b. K(−2) �

c. K(0) �

22. f (t) � t2 − 5

a. f (3) �

b. f (−3) �

c. f (0) �

23.

f (r) � r2 + 4

a. f (1) �

b. f (−3) �

c. f (0) �

24. 1(x) � −x2 − 9

a. 1(5) �

b. 1(−3) �

c. 1(0) �

25. h(t) � −t2 + 3

a. h(3) �

b. h(−2) �

c. h(0) �

26.

F(r) � 9

a. F(2) �

b. F(9) �

c. F(0) �

27. G(x) � −3

a. G(1) �

b. G(−3) �

c. G(0) �

28. G(x) � 7x
5x + 6

a. G(3) � .

b. G(−7) � .

29.
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H(x) � 5x
−7x + 1

a. H(3) � .

b. H(−2) � .

30. K(x) � − 16
x − 5 .

a. K(7) � .

b. K(5) � .

31. f (x) � − 60
x + 10 .

a. f (−20) � .

b. f (−10) � .

32.

f (x) � x2 − x − 1

a. f (4) �

b. f (−4) �

33. 1(x) � x2 − 5x + 4

a. 1(2) �

b. 1(−4) �

34. h(x) � −2x2 − 3x − 5

a. h(1) �

b. h(−5) �

35.

F(x) � −3x2 + 2x + 5

a. F(1) �

b. F(−2) �

36. G(x) �
√

x.

a. G(4) �

b. G
( 1

49
)
�

c. G(−8) �

37. G(x) �
√

x.

a. G(64) �

b. G
( 36

25
)
�

c. G(−8) �

38.

H(x) � 3√x

a. H(−64) �

b. H
( 125

8
)
�

39. K(x) � 3√x

a. K(−1) �

b. K
( 8

125
)
�

40.

Solving Equations with Function Notation

Solve for x, where f (x) � −10x − 10.

a. If f (x) � −60, then x � .

b. If f (x) � −24, then x � .

41. Solve for x, where f (x) � 8x + 8.

a. If f (x) � 40, then x � .

b. If f (x) � 26, then x � .

42.

Solve for x, where 1(x) � x2 + 9.

a. If 1(x) � 18, then x � .

b. If 1(x) � 8, then x � .

43. Solve for x, where h(x) � x2 + 2.

a. If h(x) � 3, then x � .

b. If h(x) � −2, then x � .

44.

Solve for x, where F(x) � x2 − 6x + 2.

If F(x) � −3, then x � .

45. Solve for x, where G(x) � x2 + 15x + 47.

If G(x) � −9, then x � .

46.
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Functions Represented with Graphs

A function is graphed.

This function has domain

and range .

47. A function is graphed.

This function has domain

and range .

48. A function is graphed.

This function has domain

and range .

49.

A function is graphed.

This function has domain

and range .

50. Function f is graphed.

a. f (−1) �
b. Solve f (x) � −2.

51. Function f is graphed.

a. f (−3) �
b. Solve f (x) � −1.

52.

Function f is graphed.

a. f (−1) �
b. Solve f (x) � −2.

53. Function f is graphed.

a. f (0) �
b. Solve f (x) � 3.

54. Function f is graphed.

a. f (3) �
b. Solve f (x) � −2.

55.
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Chapter 9 Graphs of Quadratic Functions

Function f is graphed.

a. f (−1) �
b. Solve f (x) � 1.

56. If H(1) � 0, then the point

is
on the graph of H.

If (1, 6) is on the graph of H,
then H(1) � .

57. If K(8) � 12, then the point

is
on the graph of K.

If (8, 13) is on the graph of K,
then K(8) � .

58.

If f (y) � t, then the point

is
on the graph of f .

The answer is not a specific
numerical point, but onewith
variables for coordinates.

59. If f (x) � r, then the point

is
on the graph of f .

The answer is not a specific
numerical point, but onewith
variables for coordinates.

60. If (r, x) is on the graph of 1,

then 1(r) � .

61.

If
(
y , r

)
is on the graph of h,

then h(y) � .

62.

Function Notation in Context

Suppose that M is the function that computes how many miles are in x feet. Find the algebraic rule
for M. (If you do not know how many feet are in one mile, you can look it up on Google.)

M(x) �
Evaluate M(19000) and interpret the result:

There are about miles in feet.

63.

Suppose that K is the function that computes how many kilograms are in x pounds. Find the
algebraic rule for K. (If you do not know how many pounds are in one kilogram, you can look it up
on Google.)

K(x) �
Evaluate K(214) and interpret the result.

Something that weighs pounds would weigh about kilograms.

64.
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Stephanie started saving in a piggy bank on her birthday. The function f (x) � 3x + 2 models the
amount of money, in dollars, in Stephanie’s piggy bank. The independent variable represents the
number of days passed since her birthday.

Interpret the meaning of f (4) � 14.

⊙ A. Four days after Stephanie started her piggy bank, there were $14 in it.

⊙ B. Fourteen days after Stephanie started her piggy bank, there were $4 in it.

⊙ C. The piggy bank started with $14 in it, and Stephanie saves $4 each day.

⊙ D. The piggy bank started with $4 in it, and Stephanie saves $14 each day.

65.

Sherial started saving in a piggy bank on her birthday. The function f (x) � 5x + 3 models the
amount of money, in dollars, in Sherial’s piggy bank. The independent variable represents the num-
ber of days passed since her birthday.

Interpret the meaning of f (1) � 8.

⊙ A. The piggy bank started with $1 in it, and Sherial saves $8 each day.

⊙ B. The piggy bank started with $8 in it, and Sherial saves $1 each day.

⊙ C. One days after Sherial started her piggy bank, there were $8 in it.

⊙ D. Eight days after Sherial started her piggy bank, there were $1 in it.

66.

An arcade sells multi-day passes. The function 1(x) � 1
4 x models the number of days a pass will

work, where x is the amount of money paid, in dollars.

Interpret the meaning of 1(12) � 3.

⊙ A. If a pass costs $12, it will work for 3 days.

⊙ B. Each pass costs $12, and it works for 3 days.

⊙ C. If a pass costs $3, it will work for 12 days.

⊙ D. Each pass costs $3, and it works for 12 days.

67.

An arcade sells multi-day passes. The function 1(x) � 1
2 x models the number of days a pass will

work, where x is the amount of money paid, in dollars.

Interpret the meaning of 1(4) � 2.

⊙ A. Each pass costs $2, and it works for 4 days.

⊙ B. Each pass costs $4, and it works for 2 days.

⊙ C. If a pass costs $4, it will work for 2 days.

⊙ D. If a pass costs $2, it will work for 4 days.

68.
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Bobbi will spend $105 to purchase some bowls and some plates. Each bowl costs $2, and each plate
costs $3. The function p(b) � − 2

3 b + 35 models the number of plates Bobbi will purchase, where b
represents the number of bowls Bobbi will purchase.

Interpret the meaning of p(39) � 9.

⊙ A. $9 will be used to purchase bowls, and $39 will be used to purchase plates.

⊙ B. If 9 bowls are purchased, then 39 plates will be purchased.

⊙ C. If 39 bowls are purchased, then 9 plates will be purchased.

⊙ D. $39 will be used to purchase bowls, and $9 will be used to purchase plates.

69.

Lisa will spend $135 to purchase some bowls and some plates. Each bowl costs $2, and each plate
costs $3. The function p(b) � − 2

3 b + 45 models the number of plates Lisa will purchase, where b
represents the number of bowls Lisa will purchase.

Interpret the meaning of p(30) � 25.

⊙ A. $25 will be used to purchase bowls, and $30 will be used to purchase plates.

⊙ B. If 25 bowls are purchased, then 30 plates will be purchased.

⊙ C. If 30 bowls are purchased, then 25 plates will be purchased.

⊙ D. $30 will be used to purchase bowls, and $25 will be used to purchase plates.

70.

Barbara will spend $125 to purchase some bowls and some plates. Each plate costs $3, and each
bowl costs $5. The function q(x) � − 3

5 x + 25 models the number of bowls Barbara will purchase,
where x represents the number of plates to be purchased.

Interpret the meaning of q(5) � 22.

⊙ A. 5 plates and 22 bowls can be purchased.

⊙ B. 22 plates and 5 bowls can be purchased.

⊙ C. $22 will be used to purchase bowls, and $5 will be used to purchase plates.

⊙ D. $5 will be used to purchase bowls, and $22 will be used to purchase plates.

71.

Sharell will spend $360 to purchase some bowls and some plates. Each plate costs $9, and each bowl
costs $8. The function q(x) � − 9

8 x + 45 models the number of bowls Sharell will purchase, where x
represents the number of plates to be purchased.

Interpret the meaning of q(24) � 18.

⊙ A. $18 will be used to purchase bowls, and $24 will be used to purchase plates.

⊙ B. 18 plates and 24 bowls can be purchased.

⊙ C. 24 plates and 18 bowls can be purchased.

⊙ D. $24 will be used to purchase bowls, and $18 will be used to purchase plates.

72.

672



9.1 Introduction to Functions

The following figure has the graph y � d(t), whichmodels a particle’s distance from the starting line in feet,
where t stands for time in seconds since timing started.

a. d(8) �
b. Interpret the meaning of d(8):

⊙ A. The particlewas 3.33333 feet away
from the starting line 8 seconds since
timing started.

⊙ B. In the first 3.33333 seconds, the
particle moved a total of 8 feet.

⊙ C. The particlewas 8 feet away from
the starting line 3.33333 seconds since
timing started.

⊙ D. In the first 8 seconds, the parti-
cle moved a total of 3.33333 feet.

c. Solve d(t) � 5 for t. t �

d. Interpret themeaning of part c’s solution(s):

⊙ A. The article was 5 feet from the
starting line 7 seconds since tim-
ing started.

⊙ B. The article was 5 feet from the
starting line 1 seconds since tim-
ing started, and again 7 seconds since
timing started.

⊙ C. The article was 5 feet from the
starting line 1 seconds since tim-
ing started, or 7 seconds since tim-
ing started.

⊙ D. The article was 5 feet from the
starting line 1 seconds since tim-
ing started.

73.

a. d(4) �
b. Interpret the meaning of d(4):

⊙ A. The particlewas 9 feet away from
the starting line 4 seconds since tim-
ing started.

⊙ B. In the first 4 seconds, the parti-
cle moved a total of 9 feet.

⊙ C. The particlewas 4 feet away from
the starting line 9 seconds since tim-
ing started.

⊙ D. In the first 9 seconds, the parti-
cle moved a total of 4 feet.

c. Solve d(t) � 6 for t. t �

d. Interpret themeaning of part c’s solution(s):

⊙ A. The article was 6 feet from the
starting line 2 seconds since tim-
ing started, or 8 seconds since tim-
ing started.

⊙ B. The article was 6 feet from the
starting line 8 seconds since tim-
ing started.

⊙ C. The article was 6 feet from the
starting line 2 seconds since tim-
ing started, and again 8 seconds since
timing started.

⊙ D. The article was 6 feet from the
starting line 2 seconds since tim-
ing started.

74.

The function C models the the number of customers in a store t hours since the store opened.
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t 0 1 2 3 4 5 6 7
C(t) 0 48 78 92 100 78 38 0

a. C(6) �
b. Interpret the meaning of C(6):

⊙ A. There were 38 customers in the
store 6hours after the store opened.

⊙ B. In 6hours since the store opened,
the store had an average of 38 cus-
tomers per hour.

⊙ C. In 6hours since the store opened,
there were a total of 38 customers.

⊙ D. There were 6 customers in the
store 38hours after the store opened.

c. Solve C(t) � 78 for t. t �

d. Interpret themeaning of Part c’s solution(s):

⊙ A. There were 78 customers in the
store 2hours after the store opened.

⊙ B. There were 78 customers in the
store either 5 hours after the store
opened, or 2 hours after the store
opened.

⊙ C. There were 78 customers in the
store 5hours after the store opened.

⊙ D. There were 78 customers in the
store 5hours after the store opened,
and again 2 hours after the store
opened.

75. t 0 1 2 3 4 5 6 7
C(t) 0 41 81 97 97 81 44 0

a. C(7) �
b. Interpret the meaning of C(7):

⊙ A. There were 0 customers in the
store 7hours after the store opened.

⊙ B. There were 7 customers in the
store 0hours after the store opened.

⊙ C. In 7hours since the store opened,
there were a total of 0 customers.

⊙ D. In 7hours since the store opened,
the store had an average of 0 cus-
tomers per hour.

c. Solve C(t) � 97 for t. t �

d. Interpret themeaning of Part c’s solution(s):

⊙ A. There were 97 customers in the
store 3hours after the store opened.

⊙ B. There were 97 customers in the
store either 3 hours after the store
opened, or 4 hours after the store
opened.

⊙ C. There were 97 customers in the
store 3hours after the store opened,
and again 4 hours after the store
opened.

⊙ D. There were 97 customers in the
store 4hours after the store opened.

76.
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9.2 Properties of Quadratic Functions

9.2.1 Introduction

In this section we will learn about quadratic functions and how to identify their key features on a graph.
We will identify their direction, vertex, axis of symmetry and intercepts. We will also see how to graph
a parabola by finding the vertex and making a table of function values. We will look at applications that
involve the vertex of a quadratic function.

Definition 9.2.2. A quadratic function has the form f (x) � ax2 + bx + c where a , b, and c are real numbers,
and a , 0. The graph of a quadratic function has the shape of a parabola.

Notice that a quadratic function has a squared term that linear functions do not have. If a � 0, the function
is linear. To understand the shape and features of a quadratic function, let’s look at an example.

9.2.2 Properties of Quadratic Functions

Hannah fired a toy rocket from the ground, which flew into the air at a speed of 64 feet per second. The path
of the rocket can be modeled by the function f where f (t) � −16t2 + 64t. To see the shape of the function
we will make a table of values and plot the points. For the table we we will choose some values for t and
then evaluate the function at each t-value:

t f (t) � −16t2 + 64t Point
0 f (0) � −16(0)2 + 64(0) � 0 (0, 0)
1 f (1) � −16(1)2 + 64(1) � 48 (1, 48)
2 f (2) � −16(2)2 + 64(2) � 64 (2, 64)
3 f (3) � −16(3)2 + 64(3) � 48 (3, 48)
4 f (4) � −16(4)2 + 64(4) � 0 (4, 0)

−2 2 4 6

20

40

60

(0, 0)

(1, 48)

(2, 64)

(3, 48)

(4, 0) t

y

Table 9.2.3: Function values and points for
f (t) � −16t2 + 64t

Figure 9.2.4: Graph of f (t) � −16t2 + 64t

Now that we have Table 9.2.3 and Figure 9.2.4, we can see the features of this parabola. Notice the symmetry
in the shape of the graph and the y-values in the table. Consecutive y-values do not increase by a constant
amount in the way that linear functions do.

The first feature that we will talk about is the direction that a parabola opens. All parabolas open either
upward or downward. This parabola in the rocket example opens downward because a is negative. Here
are some more quadratic functions graphed so we can see which way they open.
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−6 −4 −2 2 4 6
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y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 9.2.5: The graph of y �

x2 − 2x + 2 opens upward
Figure 9.2.6: The graph of y �

− 1
4 x2− 1

2 x− 1
4 opens downward

Figure 9.2.7: The graph of y �

3x2 − 18x + 23.5 opens upward

Fact 9.2.8. We only need to look at the sign of the leading coefficient to determine which way the graph opens. If
the leading coefficient is positive, the parabola opens upward. If the leading coefficient is negative, the parabola opens
downward.

Checkpoint 9.2.9. Determine whether the graph of each quadratic function opens upward or down-
ward.

a. The graph of the quadratic function y � 3x2 − 4x − 7 opens (□ upward □ downward) .

b. The graph of the quadratic function y � −5x2 + x opens (□ upward □ downward) .

c. The graph of the quadratic function y � 2 + 3x − x2 opens (□ upward □ downward) .

d. The graph of the quadratic function y �
1
3 x2 − 2

5 x +
1
4 opens (□ upward □ downward) .

Explanation.

a. The graph of the quadratic function y � 3x2 − 4x − 7 opens upward as the leading coefficient is the
positive number 3.

b. The graph of the quadratic function y � −5x2 + x opens downward as the leading coefficient is the
negative number −5.

c. The graph of the quadratic function y � 2 + 3x − x2 opens downward as the leading coefficient is −1.
(Note that the leading coefficient is the coefficient on x2.)

d. The graph of the quadratic function y �
1
3 x2 − 2

5 x +
1
4 opens upward as the leading coefficient is the

positive number 1
3 .

The vertex is the highest or lowest point on the graph. In Figure 9.2.4, the vertex is (2, 64). This tells us that
Hannah’s rocket reached its maximum height of 64 feet after 2 seconds. If the parabola opens downward,
as in the rocket example, then the y-value of the vertex is the maximum y-value. If the parabola opens
upward then the y-value of the vertex is the minimum y-value.

The axis of symmetry is a vertical line that passes through the vertex, dividing it in half. The vertex is the
only point that does not have a symmetric point. We write the axis of symmetry as an equation of a vertical
line so it always starts with ”x �.” In Figure 9.2.4, the equation for the axis of symmetry is x � 2.

The vertical intercept is the point where the parabola crosses the vertical axis. The vertical intercept is the
y-intercept if the axes are labeled x and y. In Figure 9.2.4, the point (0, 0) is the starting point of the rocket.
The y-value of 0 means the rocket started on the ground.

The horizontal intercept(s) are the points where the parabola crosses the horizontal axis. They are the
x-intercepts if the axes are labeled x and y. The point (0, 0) on the path of the rocket is also a horizontal
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intercept. The t-value of 0 indicates the time when the rocket was launched from the ground. There is
another horizontal intercept at the point (4, 0), which means the rocket hit the ground after 4 seconds.

It is possible for a quadratic function to have 0, 1 or 2 horizontal intercepts. The figures below show an
example of each.

−6 −4 −2 2 4 6
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−6 −4 −2 2 4 6

−6

−4

−2

2

4

6
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y

Figure 9.2.10: The graph of
y � x2 − 2x + 2 has no horizon-
tal intercepts

Figure 9.2.11: The graph of
y � − 1

4 x2 − 1
2 x − 1

4 has one
horizontal intercept

Figure 9.2.12: The graph of
y � 3x2 − 18x + 23.5 has two
horizontal intercepts

Here is a summary of the properties of quadratic functions:

Direction A parabola opens upward if a is positive and opens downward of a is negative.

Vertex The vertex of a parabola is the maximum or minimum point on the graph.

Axis of Symmetry The axis of symmetry is the vertical line that passes through the vertex.

Vertical Intercept The vertical intercept is the point where the function intersects the vertical
axis. There is exactly one vertical intercept.

Horizontal Intercept(s) The horizontal intercept(s) are the points where a function intersects
the horizontal axis. The graph of a parabola can have 0, 1, or 2 horizontal intercepts.

List 9.2.13: Summary of Properties of Quadratic Functions

Example 9.2.14 Identify the key features of the quadratic function y � x2−2x−8 shown in Figure 9.2.15.

677



Chapter 9 Graphs of Quadratic Functions

Explanation.

First, we see that this parabola opens upward be-
cause the leading coefficient is positive.

Then we locate the vertex which is the point
(1,−9). The axis of symmetry is the vertical line
x � 1.

The vertical intercept or y-intercept is the point
(0,−8).
The horizontal intercepts are the points (−2, 0)
and (4, 0).

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

x

y

Figure 9.2.15: Graph of y � x2 − 2x − 8

Checkpoint 9.2.16. Use the graph to answer the following questions.

a. What are the coordinates of the vertex?

b. What is the equation of the axis of symmetry?

c. What are the coordinates of the x-intercept(s)?

d. What are the coordinates of the y-intercept?

Explanation.

a. The vertex is at (−2, 1).
b. The equation of the axis of symmetry is x � −2.
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c. There are no x-intercepts. (Answer None.)

d. The y-intercept is at (0, 5).

9.2.3 Finding the Vertex and Axis of Symmetry Algebraically

The coordinates of the vertex are not easy to identify on a graph if they are not integers. Another way to
find it is by using a formula.

Fact 9.2.17. If we denote (h , k) as the coordinates of the vertex of a quadratic function f (x) � ax2 + bx + c, then
h � − b

2a .

To understand why, we can look at the quadratic formula. The vertex is on the axis of symmetry, so it will
always occur halfway between the two x-intercepts (if there are any). The quadratic formula shows that the
x-intercepts happen at − b

2a minus some number and at − b
2a plus that same number:

x �
−b ±

√
b2 − 4ac

2a

Example 9.2.18 Determine the vertex and axis of symmetry of the quadratic function f (x) � x2−4x−12.

We will find the x-value of the vertex using the formula h � − b
2a , for a � 1 and b � −4.

h � − b
2a

h � −(−4)
2(1)

h � 2

Now we know the x-value of the vertex is 2, so we may evaluate f (2) to determine the y-value of the
vertex:

k � f (2) � (2)2 − 4(2) − 12
k � � 4 − 8 − 12
k � � −16

The vertex is the point (2,−16) and the axis of symmetry is the line x � 2.

Example 9.2.19 Determine the vertex and axis of symmetry of the quadratic function y � −3x2 − 3x + 7.

Explanation. Using the formula h � − b
2a with a � −3 and b � −3, we have :

h � − b
2a

h � − (−3)
2(−3)

h � −1
2
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Now that we’ve determined h � − 1
2 , we can substitute it for x to find the y-value of the vertex:

y � −3x2 − 3x + 7

y � −3
(
−1

2

)2

− 3
(
−1

2

)
+ 7

y � −3
(
1
4

)
+

3
2 + 7

y � −3
4 +

3
2 + 7

y � −3
4 +

6
4 +

28
4

y �
31
4

The vertex is the point
(
− 1

2 ,
31
4
)
and the axis of symmetry is the line x � − 1

2 .

9.2.4 Graphing Quadratic Functions by Making a Table

When we learned how to graph lines, we could choose any x-values. For quadratic functions, though, we
want to find the vertex and choose our x-values around it. Then we can use the property of symmetry to
help us. Let’s look at an example.

Example 9.2.20 Determine the vertex and axis of symmetry for the quadratic function y � −x2 − 2x + 3.
Then make a table of values and sketch the graph of the function.

Explanation. To determine the vertex of y � −x2 − 2x + 3, we want to find the x-value of the vertex
first. We use h � − b

2a with a � −1 and b � −2:

h � − (−2)
2(−1)

h �
2
−2

� −1

To find the y-coordinate of the vertex, we substitute x � −1 into the equation for our parabola.

y � −x2 − 2x + 3
y � −(−1)2 − 2(−1) + 3
� −1 + 2 + 3
� 4

Now we know that our axis of symmetry is the line x � −1 and the vertex is the point (−1, 4). We will
set up our table with two values on each side of x � −1. We choose x � −3,−2,−1, 0, and 1 as shown in
Table 9.2.21.

Next, we’ll determine the y-coordinates by replacing x with each value and we have the complete table
as shown in Table 9.2.22. Notice that each pair of y-values on either side of the vertex match. This helps
us to check that our vertex and y-values are correct.
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x y � −x2 − 2x + 3 Point
−3
−2
−1

0
1

x y � −x2 − 2x + 3 Point
−3 y � −(−3)2 − 2(−3) + 3 � 0 (−3, 0)
−2 y � −(−2)2 − 2(−2) + 3 � 3 (−2, 3)
−1 y � −(−1)2 − 2(−1) + 3 � 4 (−1, 4)

0 y � −(0)2 − 2(0) + 3 � 3 (0, 3)
1 y � −(1)2 − 2(1) + 3 � 0 (1, 0)

Table 9.2.21: Setting up the table for
y � −x2 − 2x + 3

Table 9.2.22: Function values and points for y �

−x2 − 2x + 3

Now that we have our table, we will plot the points and draw in the axis of symmetry as shown in
Figure 9.2.23. We complete the graph by drawing a smooth curve through the points and drawing an
arrow on each end as shown in Figure 9.2.24
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Figure 9.2.23: Plot of the points and axis of
symmetry

Figure 9.2.24: Graph of y � −x2 − 2x + 3

The method we used works best when the x-value of the vertex is an integer. We can still make a graph if
that is not the case as we will demonstrate in the next example.

Example 9.2.25 Determine the vertex and axis of symmetry for the quadratic function y � 2x2 − 3x − 4.
Use this to create a table of values and sketch the graph of this function.

Explanation. To determine the vertex of y � 2x2 − 3x − 4, we’ll find h � − b
2a with a � 2 and b � −3:

h � −(−3)
2(2)

h �
3
4
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Next, we’ll determine the y-coordinate by replacing x with 3
4 in y � 2x2 − 3x − 4:

y � 2
(
3
4

)2

− 3
(
3
4

)
− 4

y � 2
(

9
16

)
− 9

4 − 4

y �
9
8 −

18
8 −

32
8

y � −41
8

Thus the vertex occurs at
( 3

4 ,− 41
8
)
, or at (0.75,−5.125). The axis of symmetry is then the line x �

3
4 , or

x � 0.75.

Now that we know the x-value of the vertex, we will create a table. We will choose x-values on both
sides of x � 0.75, but we will choose integers because it will be easier to find the function values.

x y � 2x2 − 3x − 4 Point
−1 1 (−1, 1)

0 −4 (0,−4)
0.75 −5.125 (0.75,−5.125)

1 −5 (1,−5)
2 −2 (2,−2)
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Table 9.2.26: Function values and points for
y � 2x2 − 3x − 4

Figure 9.2.27: Plot of initial points

The points graphed in Figure 9.2.27 don’t have the symmetry we’d expect from a parabola. This is
because the vertex occurs at an x-value that is not an integer, and all of the chosen values in the table
are integers. We can use the axis of symmetry to determine more points on the graph (as shown in
Figure 9.2.28), which will give it the symmetry we expect. From there, we can complete the sketch of
this graph.
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Figure 9.2.28: Plot of symmetric points Figure 9.2.29: Graph of y � 2x2 − 3x − 4

9.2.5 The Domain and Range of Quadratic Functions

In Example 9.1.32, we found the domain and range of different types of functions using their graphs. Now
that we have graphed some quadratic functions, let’s practice identifying the domain and range.

Example 9.2.30 We graphed the quadratic function y � −x2 − 2x + 3 in Figure 9.2.24. The domain
is the set of all possible inputs to the function. The function is a continuous curve and when we look
horizontally, one arrow points to the left and the other arrow points to the right. This means all x-values
can be used in the function. The domain is {x | x is a real number} which is equivalent to (−∞,∞).
The range is the set of all outputs we can get from the function. For the range of this function we look
vertically up and down the graph. This parabola opens downward, so both arrows point downward and
the highest point along the graph is the vertex at (−1, 4). The range is {y | y ≤ 4} which is equivalent to
(−∞, 4].

Example 9.2.31 Use the graph of y � 2x2 − 3x − 4 in Figure 9.2.29 and its vertex at (0.75,−5.125) to
identify the domain and range in set-builder and interval notation.

Explanation. For the domain, we look horizontally and see the graph is a continuous curve and one
arrow points to the left and the other arrow points to the right. The domain is {x | x is a real number}
which is equivalent to (−∞,∞).
For the range we look vertically up and down the graph, which opens upward. Both arrows point
upward and the lowest point on the graph is the vertex at (0.75,−5.125). The range is {y | y ≥ −5.125}
which is equivalent to [−5.125,∞).

Since all parabolas have the same shape, they all have the same domain of {x | x is a real number} which
is equivalent to (−∞,∞). The range depends on which way the parabola opens and the y-coordinate of the
vertex. When we look at application problems, however, the domain and range will depend on the values
that make sense in the given context. For example, times and lengths do not usually have negative values.
We will revisit this after looking at some applications.
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9.2.6 Applications of Quadratic Functions Involving the Vertex.

We looked at the height of Hannah’s toy rocket with respect to time at the beginning of this section and
saw that it reached a maximum height of 64 feet after 2 seconds. Let’s look at some more applications that
involve finding the minimum or maximum value of a quadratic function.

Example 9.2.32 Imagine that Jae got a new air rifle to shoot targets. The first thing they did with it was
to sight the scope at a certain distance so the pellets consistently hit where the cross hairs are pointed. In
Olympic 10-meter air rifle shootinga, the bulls-eye is a 0.5 mm diameter dot, about the size of the head
of a pin, so accuracy is key.

Jae would like to set up the air rifle scope to be accurate at a level distance of 35 yards (from the muzzle,
which is the tip of the barrel), but they also need to know how much to correct for gravity at different
distances. Since the projectile will be affected by gravity, knowing the distance that the target will be set
up is essential to be accurate. After zeroing the scope reticule (cross-hairs) at 35 yards so that they can
consistently hit the bulls-eye with the reticule directly over it, they set up targets at various distances to
test the gun. Jae then shoots at the targets with the cross-hairs directly on the bulls-eye and measures
the distance that the pellet hit above or below the bulls-eye when shot at those distances.

Distance to Target in Yards 5 10 20 30 35 40 50
Above/Below Bulls-eye ↓ ↑ ↑ ↑ ⊙ ↓ ↓
Distance Above/Below in Inches 0.1 0.6 1.1 0.6 0 0.8 3.2

Table 9.2.33: Shooting Distance vs Pellet Rise/Fall

Make a graph of the height above the bulls-eye that Jae shoots at the distances listed in the table and
find the vertex. What does the vertex mean in this context?

Explanation.

(Note that values measured below the bulls-eye
should be graphed as negative y-values. Keep
in mind that the units on the axes are different:
along the x-axis, the units are yards, whereas on
the y-axis, the units are inches.)

Since the input values seem to be going up by 5s
or 10s, we will scale the x-axis by 10s. The y-axis
needs to be scaled by 1s.

From the graphwe can see that the point (20, 1.1)
is our best guess for the real life vertex. This
means the highest above the cross-hairs Jae hit
was 1.1 inches when the target was 20 yards
away.
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Figure 9.2.34: Graph of Target Data

aen.wikipedia.org/wiki/ISSF_10_meter_air_rifle
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Example 9.2.35 We looked at the quadratic function R � (13 + 0.25x)(1500 − 50x) in Example 6.4.2 of
Section 6.4, where R was the revenue (in dollars) for x 25-cent price increases. This function had each
jar of Avery’s jam priced at 13 dollars, and simplified to

R � −12.5x2 − 275x + 19500.

Find the vertex of this quadratic function and explain what it means in the context of this model.

Explanation. Note that if we tried to use R � (13 + 0.25x)(1500 − 50x), we would not be able to im-
mediately identify the values of a and b needed to determine the vertex. Using the expanded form of
R � −12.5x2 − 275x + 19500, we see that a � −12.5 and b � −275, so the vertex occurs at:

h � − b
2a

h � − −275
2(−12.5)

h � −11

We will now find the value of R for x � −11:

R � −12.5(−11)2 − 275(−11) + 19500
R � 21012.5

Thus the vertex occurs at (−11, 21012.5).
Literally interpreting this, we can state that −11 of the 25-cent price increases result in a maximum
revenue of $21,012.50.

We can calculate “−11 of the 25-cent price increases” to be a decrease of $2.75. The price was set at $13
per jar, so the maximum revenue of $21,012.50 would occur when Avery sets the price at $10.25 per jar.

Example 9.2.36 Kali has 500 feet of fencing and she needs to build a rectangular pen for her goats. What
are the dimensions of the rectangle that would give her goats the largest area?

Explanation. We will use ℓ for the length of the pen and w for the width, in feet. We know that the
perimeter must be 500 feet so that gives us

2ℓ + 2w � 500

First we will solve for the length:

2ℓ + 2w � 500
2ℓ � 500 − 2w
ℓ � 250 − w

Now we can build a function for the rectangle’s area, using the formula for area:

A(w) � ℓ · w
A(w) � (250 − w) · w
A(w) � 250w − w2

A(w) � −w2
+ 250w
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The area is a quadratic function so we can identify a � −1 and b � 250 and find the vertex:

w � − (250)
2(−1)

w �
250
2

w � 125

Since the width of the rectangle is 125 feet, we can find the length using our expression:

ℓ � 250 − w
ℓ � 250 − 125
ℓ � 125

To find the maximum area we can either substitute the width into the area function or multiply the
length by the width:

A � ℓ · w
A � 125 · 125
A � 15,625

The maximum area that Kali can get is 15,625 square feet if she builds her pen to be a square with a
length and width of 125 feet.

Returning to the domain and range, we will look at the path of Hannah’s toy rocket in Graph 9.2.4. Looking
horizontally, the t-valuesmake sense from 0 seconds, when the rocket is fired, until 4 seconds, when it comes
back to the ground. This give us a domain of {t | 0 ≤ t ≤ 4} or [0, 4]. For the range, the height of the rocket
goes from 0 feet on the ground and reaches a maximum height of 64 feet. The range is { f (t) | 0 ≤ f (t) ≤ 64}
or [0, 64].
In the air-rifle application in Example 9.2.32, the x-values are connected from 5 to 50 yards. If we assume
that Jae will never be competing in target shoots beyond 50 yards, the domain will be [5, 50]. The y-values
go from −3.2 to 1.1 inches so the range is [−3.2, 1.1].
In order to find the domain and range for many applications we need to know how to find the vertical and
horizontal intercepts. We will look at that in the next section.
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Exercises

Review and Warmup Make a table for the equation.

The first row is an example.

x y � −x + 3 Points
−3 6 (−3, 6)
−2
−1
0
1
2

1. The first row is an example.

x y � −x + 4 Points
−3 7 (−3, 7)
−2
−1
0
1
2

2.

The first row is an example.

x y �
5
8 x − 1 Points

−24 −16 (−24,−16)
−16
−8
0
8
16

3. The first row is an example.

x y �
5
4 x + 7 Points

−12 −8 (−12,−8)
−8
−4
0
4
8

4.

Evaluate the expression 1
5
(
x + 3

)2 − 2 when
x � −8.

5. Evaluate the expression 1
2
(
x + 4

)2 − 7 when
x � −6.

6.

Evaluate the expression−16t2+64t+128when
t � 3.

7. Evaluate the expression−16t2+64t+128when
t � −5.

8.

Algebraically Determining the Vertex and Axis of Symmetry of Quadratic Functions Find the axis of
symmetry and vertex of the quadratic function.

y � −4x2 − 16x + 5

Axis of symmetry:

Vertex:

9. y � −3x2 + 12x − 2

Axis of symmetry:

Vertex:

10. y � 3 − 40x − 4x2

Axis of symmetry:

Vertex:

11.
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y � −3 − 6x − 3x2

Axis of symmetry:

Vertex:

12. y � −3 − x2 − 2x

Axis of symmetry:

Vertex:

13. y � 4 − x2 − 4x

Axis of symmetry:

Vertex:

14.

y � 3x2 + 6x

Axis of symmetry:

Vertex:

15. y � 4x2 − 24x

Axis of symmetry:

Vertex:

16. y � 4 − 5x2

Axis of symmetry:

Vertex:

17.

y � 2 − 4x2

Axis of symmetry:

Vertex:

18. y � −3x2 + 9x − 4

Axis of symmetry:

Vertex:

19. y � −2x2 − 6x + 2

Axis of symmetry:

Vertex:

20.

y � −2x2 + 2x + 5

Axis of symmetry:

Vertex:

21. y � 2x2 − 10x − 2

Axis of symmetry:

Vertex:

22. y � 3x2

Axis of symmetry:

Vertex:

23.

y � 0.4x2

Axis of symmetry:

Vertex:

24. y � 0.5x2 + 1

Axis of symmetry:

Vertex:

25. y � 5x2 − 5

Axis of symmetry:

Vertex:

26.

y � −0.5(x − 1)2 + 3

Axis of symmetry:

Vertex:

27. y � −0.4(x + 4)2 − 2

Axis of symmetry:

Vertex:

28.

Graphing Quadratic Functions Using the Vertex and a Table

For the given quadratic function, find the ver-
tex. Then create a table of ordered pairs cen-
tered around the vertex and make a graph of
the function.

f (x) � x2 + 2

29. For the given quadratic function, find the ver-
tex. Then create a table of ordered pairs cen-
tered around the vertex and make a graph of
the function.

f (x) � x2 + 1

30.
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For the given quadratic function, find the ver-
tex. Then create a table of ordered pairs cen-
tered around the vertex and make a graph of
the function.

f (x) � x2 − 5

31. For the given quadratic function, find the ver-
tex. Then create a table of ordered pairs cen-
tered around the vertex and make a graph of
the function.

f (x) � x2 − 3

32.

For the given quadratic function, find the ver-
tex. Then create a table of ordered pairs cen-
tered around the vertex and make a graph of
the function.

f (x) � (x − 2)2

33. For the given quadratic function, find the ver-
tex. Then create a table of ordered pairs cen-
tered around the vertex and make a graph of
the function.

f (x) � (x − 4)2

34.

For the given quadratic function, find the ver-
tex. Then create a table of ordered pairs cen-
tered around the vertex and make a graph of
the function.

f (x) � (x + 3)2

35. For the given quadratic function, find the ver-
tex. Then create a table of ordered pairs cen-
tered around the vertex and make a graph of
the function.

f (x) � (x + 2)2

36.

Graphing Quadratic Functions Using the Vertex and a Table

For f (x) � 4x2 − 8x + 5, determine the vertex, create a table of ordered pairs, and then graph the
function.

37.

For f (x) � 2x2 + 4x + 7, determine the vertex, create a table of ordered pairs, and then graph the
function.

38.

For f (x) � −x2 + 4x + 2, determine the vertex, create a table of ordered pairs, and then graph the
function.

39.

For f (x) � −x2 + 2x − 5, determine the vertex, create a table of ordered pairs, and then graph the
function.

40.

For f (x) � x2 − 5x + 3, determine the vertex, create a table of ordered pairs, and then graph the
function.

41.

For f (x) � x2 + 7x − 1, determine the vertex, create a table of ordered pairs, and then graph the
function.

42.
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For f (x) � −2x2 − 5x + 6, determine the vertex, create a table of ordered pairs, and then graph the
function.

43.

For f (x) � 2x2 − 9x, determine the vertex, create a table of ordered pairs, and then graph the
function.

44.

Domain and Range A function is graphed.

This function has domain

and range .

45.

This function has domain

and range .

46.

This function has domain

and range .

47.

This function has domain

and range .

48.

This function has domain

and range .

49.

This function has domain

and range .

50.
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Finding Maximum and Minimum Values for Applications of Quadratic Functions

Consider two numbers where one number is 10 less than a second number. Find a pair of such
numbers that has the least product possible. One approach is to let x represent the smaller number,
and write a formula for a function of x that outputs the product of the two numbers. Then find its
vertex and interpret it.

These two numbers are and the least possible product is .

51.

Consider two numbers where one number is 4 less than a second number. Find a pair of such
numbers that has the least product possible. One approach is to let x represent the smaller number,
and write a formula for a function of x that outputs the product of the two numbers. Then find its
vertex and interpret it.

These two numbers are and the least possible product is .

52.

Consider two numbers where one number is 10 less than twice a second number. Find a pair of such
numbers that has the least product possible. One approach is to let x represent the smaller number,
and write a formula for a function of x that outputs the product of the two numbers. Then find its
vertex and interpret it.

These two numbers are and the least possible product is .

53.

Consider two numbers where one number is 7 less than twice a second number. Find a pair of such
numbers that has the least product possible. One approach is to let x represent the smaller number,
and write a formula for a function of x that outputs the product of the two numbers. Then find its
vertex and interpret it.

These two numbers are and the least possible product is .

54.

You will build a rectangular sheep enclosure next to a river. There is no need to build a fence along
the river, so you only need to build on three sides. You have a total of 440 feet of fence to use. Find
the dimensions of the pen such that you can enclose the maximum possible area. One approach is
to let x represent the length of fencing that runs perpendicular to the river, and write a formula for
a function of x that outputs the area of the enclosure. Then find its vertex and interpret it.

The length of the pen (parallel to the river) should be , the width (perpendicular

to the river) should be , and the maximum possible area is .

55.
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You will build a rectangular sheep enclosure next to a river. There is no need to build a fence along
the river, so you only need to build on three sides. You have a total of 460 feet of fence to use. Find
the dimensions of the pen such that you can enclose the maximum possible area. One approach is
to let x represent the length of fencing that runs perpendicular to the river, and write a formula for
a function of x that outputs the area of the enclosure. Then find its vertex and interpret it.

The length of the pen (parallel to the river) should be , the width (perpendicular

to the river) should be , and the maximum possible area is .

56.

You will build a rectangular sheep enclosure next to a river. There is no need to build a fence along
the river, so you only need to build on three sides. You have a total of 470 feet of fence to use. Find
the dimensions of the pen such that you can enclose the maximum possible area. One approach is
to let x represent the length of fencing that runs perpendicular to the river, and write a formula for
a function of x that outputs the area of the enclosure. Then find its vertex and interpret it.

The length of the pen (parallel to the river) should be , the width (perpendicular

to the river) should be , and the maximum possible area is .

57.

You will build a rectangular sheep enclosure next to a river. There is no need to build a fence along
the river, so you only need to build on three sides. You have a total of 480 feet of fence to use. Find
the dimensions of the pen such that you can enclose the maximum possible area. One approach is
to let x represent the length of fencing that runs perpendicular to the river, and write a formula for
a function of x that outputs the area of the enclosure. Then find its vertex and interpret it.

The length of the pen (parallel to the river) should be , the width (perpendicular

to the river) should be , and the maximum possible area is .

58.

You will build two identical rectangular enclosures next to a each other, sharing a side. You have
a total of 408 feet of fence to use. Find the dimensions of each pen such that you can enclose the
maximum possible area. One approach is to let x represent the length of fencing that the two pens
share, and write a formula for a function of x that outputs the total area of the enclosures. Then find
its vertex and interpret it.

The length of each (along the wall that they share) should be , the width should

be , and the maximum possible area of each pen is .

59.

You will build two identical rectangular enclosures next to a each other, sharing a side. You have
a total of 420 feet of fence to use. Find the dimensions of each pen such that you can enclose the
maximum possible area. One approach is to let x represent the length of fencing that the two pens
share, and write a formula for a function of x that outputs the total area of the enclosures. Then find
its vertex and interpret it.

The length of each (along the wall that they share) should be , the width should

be , and the maximum possible area of each pen is .

60.
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You plan to build four identical rectangular animal enclosures in a row. Each adjacent pair of pens
share a fence between them. You have a total of 312 feet of fence to use. Find the dimensions of each
pen such that you can enclose the maximum possible area. One approach is to let x represent the
length of fencing that adjacent pens share, and write a formula for a function of x that outputs the
total area. Then find its vertex and interpret it.

The length of each pen (along the walls that they share) should be , the

width (perpendicular to the river) should be , and the maximum possible

area of each pen is .

61.

You plan to build four identical rectangular animal enclosures in a row. Each adjacent pair of pens
share a fence between them. You have a total of 328 feet of fence to use. Find the dimensions of each
pen such that you can enclose the maximum possible area. One approach is to let x represent the
length of fencing that adjacent pens share, and write a formula for a function of x that outputs the
total area. Then find its vertex and interpret it.

The length of each pen (along the walls that they share) should be , the

width (perpendicular to the river) should be , and the maximum possible

area of each pen is .

62.

Currently, an artist can sell 240 paintings every year at the price of $90.00 per painting. Each time
he raises the price per painting by $15.00, he sells 5 fewer paintings every year.

a. To obtain maximum income of , the artist should set the price per painting

at .

b. To earn $43,875.00 per year, the artist could sell his paintings at two different prices. The lower
price is per painting, and the higher price is per painting.

63.

Currently, an artist can sell 270 paintings every year at the price of $150.00 per painting. Each time
he raises the price per painting by $5.00, he sells 5 fewer paintings every year.

a. To obtain maximum income of , the artist should set the price per painting

at .

b. To earn $43,700.00 per year, the artist could sell his paintings at two different prices. The lower
price is per painting, and the higher price is per painting.

64.
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9.3 Graphing Quadratic Functions

We have learned how to locate the key features of quadratic functions on a graph and find the vertex alge-
braically. In this section we’ll explore how to find the intercepts algebraically and use their coordinates to
graph a quadratic function. Then we will see how to interpret the key features in context and distinguish
between quadratic and other functions.

Let’s start by looking at a quadratic function that
models the path of a baseball after it is hit by Ig-
nacio, the batter. The height of the baseball, H(t),
measured in feet, after t seconds is given by H(t) �
−16t2 + 75t + 4.7. We know this quadratic func-
tion has the shape of a parabola and we want to
know the initial height, the maximum height, and
the amount of time it takes for the ball to hit the
ground if it is not caught. These key features cor-
respond to the vertical intercept, the vertex, and
one of the horizontal intercepts.

The graph of this function is shown in Figure 9.3.2.
We cannot easily read where the intercepts occur
from the graph because they are not integers. We
previously covered how to determine the vertex al-
gebraically. In this section, we’ll learn how to find
the intercepts algebraically. Then we’ll come back
to this example and find the intercepts for the path
of the baseball. 1 2 3 4 5
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Figure 9.3.2: Graph of H(t) � −16t2 + 75t + 4.7

9.3.1 Finding the Vertical and Horizontal Intercepts Algebraically

In List 9.2.13, we identified that the vertical intercept occurs where the graph of a function intersects the
vertical axis. If we’re using x and y as our variables, the x-value on the vertical axis is x � 0. We will
substitute 0 for x to find the value of y. In function notation, we find f (0).
The horizontal intercepts occur where the graph of a function intersects the horizontal axis. If we’re using
x and y as our variables, the y-value on the horizontal axis is y � 0, so we will substitute 0 for y and find
the value(s) of x. In function notation, we solve the equation f (x) � 0.

Here is an example where we find the vertical and horizontal intercepts.

Example 9.3.3 Find the intercepts for the quadratic function f (x) � x2 − 4x − 12 algebraically.

To determine the y-intercept, we find f (0) � 02 − 4(0) − 12 � −12. So the y-intercept occurs where
y � −12. On a graph, this is the point (0,−12).
To determine the x-intercept(s), we set f (x) � 0 and solve for x:

0 � x2 − 4x − 12
0 � (x − 6)(x + 2)
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x − 6 � 0 or x + 2 � 0
x � 6 or x � −2

The x-intercepts occur where x � 6 andwhere x � −2. On a graph, these are the points (6, 0) and (−2, 0).

Notice in Example 9.3.3 that the y-intercept was (0,−12) and the value of c � −12. When we substitute 0 for
x we will always get the value of c.

Fact 9.3.4. The vertical intercept of a quadratic function occurs at the point (0, c) because f (0) � c.

Example 9.3.5 Algebraically determine any horizontal and vertical intercepts of the quadratic function
f (x) � −x2 + 5x − 7.

Explanation. To determine the vertical intercept, we find f (0)−(0)2+5(0)−7 � −7. Thus the y-intercept
occurs at the point (0,−7).
To determine the horizontal intercepts, we’ll set f (x) � 0 and solve for x:

0 � −x2
+ 5x − 7

This equation cannot be solved using factoring so we’ll use the quadratic formula:

x �
−5 ±

√
52 − 4(−1)(−7)
2(−1)

x �
−5 ±

√
−3

−2

The radicand is negative so there are no real solutions to the equation. Thismeans there are no horizontal
intercepts.

9.3.2 Graphing Quadratic Functions Using Their Key Features

To graph a quadratic function using its key features, we will algebraically determine the following: whether
the function opens upward or downward, the vertical intercept, the horizontal intercepts and the vertex.
Then we will graph the points and connect them with a smooth curve.

Example 9.3.6 Graph the function f where f (x) � 2x2 + 10x + 8 by algebraically determining its key
features.

To start, we’ll note that this function will open upward, since the leading coefficient is positive.

To find the y-intercept, we evaluate f (0) � 2(0)2 + 10(0) + 8 � 8. The y-intercept is (0, 8).
Next, we’ll find the horizontal intercepts by setting f (x) � 0 and solving for x:

2x2
+ 10x + 8 � 0

2(x2
+ 5x + 4) � 0

2(x + 4)(x + 1) � 0

x + 4 � 0 or x + 1 � 0
x � −4 or x � −1
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The x-intercepts are (−4, 0) and (−1, 0).
Lastly, we’ll determine the vertex. Noting that a � 2 and b � 10, we have:

h � − b
2a

h � − 10
2(2)

h � −2.5

Using this x-value to find the y-coordinate, we have:

k � f (−2.5) � 2(−2.5)2 + 10(−2.5) + 8
k � 12.5 − 25 + 8
k � −4.5

The vertex is the point (−2.5,−4.5), and the axis of symmetry is the line x � −2.5.

We’re now ready to graph this function. We’ll start by drawing and scaling the axes so all of our key
features will be displayed as shown in Figure 9.3.7. Next, we’ll plot these key points as shown in Fig-
ure 9.3.8. Finally, we’ll note that this parabola opens upward and connect these points with a smooth
curve, as shown in Figure 9.3.9.
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Figure 9.3.7: Setting up the
grid.

Figure 9.3.8: Marking key fea-
tures.

Figure 9.3.9: Completing the
graph.

Example 9.3.10 Graph the function for which y � −x2 + 4x − 5 by algebraically determining its key
features.

To start, we’ll note that this function will open downward, as the leading coefficient is negative.

To find the y-intercept, we’ll substitute x with 0:

y � −(0)2 + 4(0) − 5
y � −5

The y-intercept is (0,−5).
Next, we’ll find the horizontal intercepts by setting y � 0 and solving for x. We cannot use factoring to
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solve this equation so we’ll use the quadratic formula:

−x2
+ 4x − 5 � 0

x �
−4 ±

√
(4)2 − 4(−1)(−5)

2(−1)

x �
−4 ±

√
16 − 20
−2

x �
−4 ±

√
−8

−2

The radicand is negative, so there are no real solutions to the equation. This is a parabola that does not
have any horizontal intercepts.

To determine the vertex, we’ll use a � −1 and b � 4:

x � − 4
2(−1)

x � 2

Using this x-value to find the y-coordinate, we have:

y � −(2)2 + 4(2) − 5
y � −4 + 8 − 5
y � −1

The vertex is the point (2,−1), and the axis of symmetry is the line x � 2.

Plotting this information in an appropriate grid, we have:
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Figure 9.3.11: Setting up the
grid.

Figure 9.3.12: Marking key
features.

Figure 9.3.13: Using the axis
of symmetry to determine one
additional point.

Since we don’t have any x-intercepts, we would like to have a few more points to graph. We will make
a table with a few more values around the vertex, add these, and then draw a smooth curve. This is
shown in Table 9.3.14 and Figure 9.3.15.
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x y � −x2 + 4x − 5 Point
0 −(0)2 + 4(0) − 5 � −5 (0,−5)
1 −(1)2 + 4(1) − 5 � −2 (1,−2)
2 −(2)2 + 4(2) − 5 � −1 (2,−1)
3 −(3)2 + 4(3) − 5 � −2 (3,−2)
4 −(4)2 + 4(4) − 5 � −5 (4,−5)
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Table 9.3.14: Determine additional function
values.

Figure 9.3.15: Completing the graph.

9.3.3 Applications of Quadratic Functions

Now we have learned how to find all the key features of a quadratic function algebraically. Here are some
applications of quadratic functions so we can learn how to identify and interpret the vertex, intercepts and
additional points in context. Let’s look at a few examples.

Example 9.3.16 Returning to the path of the baseball in Figure 9.3.2, the function that represents the
height of the baseball after Ignacio hit it, is H(t) � −16t2 + 75t + 4.7. The height is is feet and the time,
t, is in seconds. Find and interpret the following, in context.

a. The vertical intercept.

b. The horizontal intercept(s).

c. The vertex.

d. The height of the baseball 1 second after it was hit.

e. The time(s) when the baseball is 80 feet above the ground.

Explanation.

a. To determine the vertical intercept, we’ll find H(0) � −16(0)2 + 75(0) + 4.7 � 4.7. The vertical
intercept occurs at (0, 4.7). This is the height of the baseball at time t � 0, so the initial height of
the baseball was 4.7 feet.

b. To determine the horizontal intercepts, we’ll solve H(t) � 0. Since factoring is not a possibility to
solve this equation, we’ll use the quadratic formula:

H(t) � 0
−16t2

+ 75t + 4.7 � 0

t �
−75 ±

√
752 − 4(−16)(4.7)
2(−16)
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t �
−75 ±

√
5925.8

−32

Rounding these two values with a calculator, we obtain:

t ≈ −0.06185, t ≈ 4.749

The horizontal intercepts occur at approximately (−0.06185, 0) and (4.749, 0). If we assume that
the ball was hit when t � 0, a negative time does not make sense. The second horizontal intercept
tells us that the ball hit the ground after approximately 4.75 seconds.

c. The vertex occurs at t � h � − b
2a , and for this function a � −16 and b � 75. So we have:

h � − 75
2(−16)

h � 2.34375

We can now find the output for this input:

H(2.34375) � −16(2.34375)2 + 75(2.34375) + 4.7
≈ 92.59

Thus the vertex is (2.344, 92.59).
The vertex tells us that the baseball reached a maximum height of approximately 92.6 feet about
2.3 seconds after Ignacio hit it.

d. To find the height of the baseball after 1 second, we can compute H(1):

H(1) � −16(1)2 + 75(1) + 4.7
� 63.7

The height of the baseball was 63.7 feet after 1 second.

e. If we want to know when the baseball was 80 feet in the air, then we set H(t) � 80 and we have:

H(t) � 80
−16t2

+ 75t + 4.7 � 80
−16t2

+ 75t − 75.3 � 0

t �
−75 ±

√
752 − 4(−16)(−75.3)

2(−16)

t �
−75 ±

√
805.8

−32

Rounding these two values with a calculator, we obtain:

t ≈ 1.457, t ≈ 3.231

The baseball was 80 feet above the ground at two times, at about 1.5 seconds on the way up and
about 3.2 seconds on the way down.

Example 9.3.17 The profit that Keenan’s manufacturing company makes for producing n refrigerators
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is given by P � −0.01n2 + 520n − 54000, for 0 ≤ n ≤ 51,896.

a. Determine the profit the company will make when they produce 1,000 refrigerators.

b. Determine the maximum profit and the number of refrigerators produced that yields this profit.

c. How many refrigerators need to be produced in order for the company to “break even?” (In other
words, for their profit to be $0.)

d. Howmany refrigerators need to be produced in order for the company tomake aprofit of $1,000,000?

Explanation.

a. This question is giving us an input value and asking for the output value. We will substitute 1000
for n and we have:

P � −0.01(1000)2 + 520(1000) − 54000
P � 366000

If Keenan’s company sells 1,000 refrigerators it will make a profit of $366,000.

b. This question is asking for themaximum sowe need to find the vertex. This parabola opens down-
ward so the vertex will tell us the maximum profit and the corresponding number of refrigerators
that need to be produced. Using a � −0.01 and b � 520, we have:

h � − b
2a

h � − 520
2(−0.01)

h � 26000

Now we will find the value of P when n � 26000:

P � −0.01(26000)2 + 520(26000) − 54000
P � 6706000

The maximum profit is $6,706,000, which occurs if 26,000 units are produced.

c. This question is giving an output value of 0 and asking us to find the input(s) so we will be finding
the horizontal intercept(s). We will set P � 0 and solve for n using the quadratic formula:

0 � −0.01n2
+ 520n − 54000

n �
−520 ±

√
5202 − 4(−0.01)(−54000)

2(−0.01)

n �
−520 ±

√
268240

−0.02
n ≈ 104, n ≈ 51896

The company will break even if they produce about 104 refrigerators or 51,896 refrigerators. If the
company produces more refrigerators than it can sell its profit will go down.

d. This question is giving an output value and asking us to find the input. To find the number of
refrigerators that need to be produced for the company to make a profit of $1,000,000, we will set
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P � 1000000 and solve for n using the quadratic formula:

1000000 � −0.01n2
+ 520n − 54000

0 � −0.01n2
+ 520n − 1054000

n �
−520 ±

√
5202 − 4(−0.01)(−1054000)

2(−0.01)

n
−520 ±

√
228240

−0.02
n ≈ 2, 113, n ≈ 49, 887

The company will make $1,000,000 in profit if they produce about 2,113 refrigerators or 49,887
refrigerators.

Example 9.3.18 Maia has a remote-controlled airplane and she is going to do a stunt dive where the
plane dives toward the ground and back up along a parabolic path. The height of the plane is given by
the function H where H(t) � 0.7t2 − 23t + 200, for 0 ≤ t ≤ 30. The height is measured in feet and the
time, t, is measured in seconds.

a. Determine the starting height of the plane as the dive begins.

b. Determine the height of the plane after 5 seconds.

c. Will the plane hit the ground, and if so, at what time?

d. If the plane does not hit the ground, what is the closest it gets to the ground, and at what time?

e. At what time(s) will the plane have a height of 50 feet?

Explanation.

a. This question is asking for the starting height which is the vertical intercept. We will find H(0):

H(0) � 0.7(0)2 − 23(0) + 200
H(0) � 200

When Maia begins the stunt, the plane has a height of 200 feet. Recall that we can also look at the
value of c � 200 to determine the vertical intercept.

b. This question is giving an input of 5 seconds and asking for the output so we will find H(5):

H(5) � 0.7(5)2 − 23(5) + 200
H(5) � 102.5

After 5 seconds, the plane is 102.5 feet above the ground.

c. The ground has a height of 0 feet, so it is asking us to find the horizontal intercept(s) if there are
any. We will set H(t) � 0 and solve for t using the quadratic formula:

H(t) � 0.7t2 − 23t + 200
0 � 0.7t2 − 23t + 200

t �
23 ±

√
(−23)2 − 4(0.7)(200)

2(0.7)
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t �
23 ±
√
−31

1.4

The radicand is negative so there are no real solutions to the equation H(t) � 0. That means the
plane did not hit the ground.

d. This question is asking for the lowest point of the plane so we will find the vertex. Using a � 0.7
and b � −23, we have:

h � − b
2a

h � − (−23)
2(0.7)

h ≈ 16.43

Now we will find the value of H when t ≈ 16.43:

H(16.43) � 0.7(16.43)2 − 23(16.43) + 200
H(16.43) ≈ 11.07

The minimum height of the plane is about 11 feet, which occurs after about 16 seconds.

e. This question is giving us a height and asking for the time(s) so we will set H(t) � 50 and solve for
t using the quadratic formula:

H(t) � 0.7t2 − 23t + 200
50 � 0.7t2 − 23t + 200
0 � 0.7t2 − 23t + 150

t �
23 ±

√
(−23)2 − 4(0.7)(150)

2(0.7)

t �
23 ±
√

109
1.4

t ≈ 8.971, t ≈ 23.89

Maia’s planewill be 50 feet above the ground about 9 seconds and 24 seconds after the plane begins
the stunt.

9.3.4 The Domain and Range of Quadratic Applications

Let’s identify the domain and range in each of the applications of quadratic functions in this section.

Example 9.3.19 In the baseball example in Figure 9.3.2, Ignacio hit the ball at 0 seconds, and it lands on
the ground at about 4.7 seconds. The domain is [0, 4.7].
The baseball is at its lowest point when it hits the ground at 0 feet, and the vertex is its highest point at
about 92.6 feet. The range is [0, 92.6].

Example 9.3.20 Identify the domain and range in Keenan’s refrigerator company application in Exam-
ple 9.3.17. Write them in interval and set-builder notation.
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Explanation. The domain is given in the model as 0 ≤ n ≤ 51,896 refrigerators. Limits are often stated
with a mathematical model because only part of the function fits the real-world situation. The domain
is [0, 51896] or {n | 0 ≤ n ≤ 51,896}.
When 0units are produced, the profit is−$54,000. The profit increases to amaximumvalue of $6,706,000
at the vertex, and then goes back down to $0 at 51,896 units produced. So the range is [−54000, 6706000]
or {P | −54,000 ≤ P ≤ 6,706,000}.

Example 9.3.21 Identify the domain and range of Maia’s remote-controlled airplane application in Ex-
ample 9.3.18. Write them in interval and set-builder notation.

Explanation. The domain is given in themodel as [0, 30] seconds, because this parabola opens upward
and the plane cannot keep flying up forever. In set-builder notation the domain is {t | 0 ≤ t ≤ 30}.
When t � 0 seconds, the plane is 200 feet above the ground. It dives down to a height of about 11 feet
and then flies up again. We need to know how high the plane is at 30 seconds to determine the range,
so we find H(30):

H(30) � 0.7(30)2 − 23(30) + 200
H(30) � 140

The plane has returned to a height of 140 feet after 30 seconds. The starting point of 200 feet is still the
highest point, so the range is [11, 200] or {H(t) | 11 ≤ H(t) ≤ 200}.

9.3.5 Distinguishing Quadratic Functions from Other Functions and Relations

So far, we’ve seen that the graphs of quadratic functions are parabolas and have a specific, curved shape.
We’ve also seen that they have the algebraic form of y � ax2+bx+c. Here, wewill learn to tell the difference
between quadratic functions and other relations and functions.

Example 9.3.22 Determine if each relation represented algebraically is a quadratic function.

a. y + 5x2 − 4 � 0

b. x2 + y2 � 9

c. y � −5x + 1

d. y � (x − 6)2 + 3
e. y �

√
x + 1 + 5

Explanation.

a. As y + 5x2 − 4 � 0 can be re-written as y � −5x2 + 4, this equation represents a quadratic function.

b. The equation x2 + y2 � 9 cannot be re-written in the form y � ax2 + bx + c (due to the y2 term), so
this equation does not represent a quadratic function.

c. The equation y � −5x + 1 represents a linear function, not a quadratic function.

d. The equation y � (x − 6)2 + 3 can be re-written as y � x2 − 12x + 39, so this does represent a
quadratic function.

e. The equation y �
√

x + 1 + 5 does not represent a quadratic function as x is inside a radical, not
squared.
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Example 9.3.23 Determine if each function represented graphically could represent a quadratic function.
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Figure 9.3.24: Function a. Figure 9.3.25: Function b. Figure 9.3.26: Function c.

Explanation.

a. Since this graph has multiple maximum points and minimum points, it is not a parabola and it is
not possible that it represents a quadratic function.

b. This graph looks like a parabola, and it’s possible that it represents a quadratic function.

c. This graph does not appear to be a parabola, but looks like a straight line. It’s not likely that it
represents a quadratic function.

Exercises

Review and Warmup Solve the equation.

x2 + 14x + 48 � 01. x2 + 11x + 28 � 02. x2 − 20x + 100 � 03. x2 − 22x + 121 � 04.

x2 − 100 � 05. x2 − 64 � 06. 41x2 − 11 � 07. 13x2 − 17 � 08.

7x2 − 10x + 1 � 09. 7x2 + 10x + 1 � 010. 4x2 − 5x + 6 � 011. 3x2 − 3x + 5 � 012.

Finding the Intercepts of Quadratic Functions Algebraically

Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 − 5x + 4.

y-intercept:

x-intercept(s):

13. Find the y-intercept and any x-intercept(s) of
the quadratic function y � −x2 + 2x + 15.

y-intercept:

x-intercept(s):

14.
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Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 − 16.

y-intercept:

x-intercept(s):

15. Find the y-intercept and any x-intercept(s) of
the quadratic function y � −x2 + 9.

y-intercept:

x-intercept(s):

16.

Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 + 2x.

y-intercept:

x-intercept(s):

17. Find the y-intercept and any x-intercept(s) of
the quadratic function y � −x2 − x.

y-intercept:

x-intercept(s):

18.

Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 + 8x + 16.

y-intercept:

x-intercept(s):

19. Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 + x + 7.

y-intercept:

x-intercept(s):

20.

Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 + 4x + 8.

y-intercept:

x-intercept(s):

21. Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 + 3x + 9.

y-intercept:

x-intercept(s):

22.

Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 + x + 10.

y-intercept:

x-intercept(s):

23. Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 + 5x − 9.

y-intercept:

x-intercept(s):

24.

Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 − 2x − 6.

y-intercept:

x-intercept(s):

25. Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 − 10x − 4.

y-intercept:

x-intercept(s):

26.
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Find the y-intercept and any x-intercept(s) of
the quadratic function y � x2 + 4x − 2.

y-intercept:

x-intercept(s):

27. Find the y-intercept and any x-intercept(s) of
the parabolawith equation y � 4x2 − 17x + 18.

y-intercept:

x-intercept(s):

28.

Find the y-intercept and any x-intercept(s) of
the parabola with equation y � 16x2 − 8x + 1.

y-intercept:

x-intercept(s):

29. Find the y-intercept and any x-intercept(s) of
the parabola with equation y � 25x2 − 49.

y-intercept:

x-intercept(s):

30.

Find the y-intercept and any x-intercept(s) of
the parabola with equation y � −x + 4 − 5x2.

y-intercept:

x-intercept(s):

31. Find the y-intercept and any x-intercept(s) of
the parabola with equation y � −6x − 5x2.

y-intercept:

x-intercept(s):

32.

Sketching Graphs of Quadratic Functions Graph each curve by algebraically determining its key features.

y � x2 − 7x + 1233. y � x2 + 5x − 1434. y � −x2 − x + 2035.

y � −x2 + 4x + 2136. y � x2 − 8x + 1637. y � x2 + 6x + 938.

y � x2 − 439. y � x2 − 940. y � x2 + 6x41.

y � x2 − 8x42. y � −x2 + 5x43. y � −x2 + 1644.

y � x2 + 4x + 745. y � x2 − 2x + 646. y � x2 + 2x − 547.

y � x2 − 6x + 248. y � −x2 + 4x − 149. y � −x2 − x + 350.

y � 2x2 − 4x − 3051. y � 3x2 + 21x + 3652.
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Applications of Quadratic Functions

An object was shot up into the air at an initial vertical speed of 320 feet per second. Its height as time
passes can be modeled by the quadratic function f , where f (t) � −16t2 + 320t. Here t represents
the number of seconds since the object’s release, and f (t) represents the object’s height in feet.

a. After , this object reached its maximum height of .

b. This object flew for before it landed on the ground.

c. This object was in the air 12 s after its release.

d. This object was 1584 ft high at two times: once after its release, and

again later after its release.

53.

An object was shot up into the air at an initial vertical speed of 384 feet per second. Its height as time
passes can be modeled by the quadratic function f , where f (t) � −16t2 + 384t. Here t represents
the number of seconds since the object’s release, and f (t) represents the object’s height in feet.

a. After , this object reached its maximum height of .

b. This object flew for before it landed on the ground.

c. This object was in the air 7 s after its release.

d. This object was 1520 ft high at two times: once after its release, and

again later after its release.

54.

From a clifftop over the ocean 200 m above sea level, an object was shot into the air with an initial
vertical speed of 156.8 m

s . On its way down it fell into the ocean. Its height (above sea level) as
time passes can be modeled by the quadratic function f , where f (t) � −4.9t2 + 156.8t + 200. Here
t represents the number of seconds since the object’s release, and f (t) represents the object’s height
(above sea level) in meters.

a. After , this object reached its maximum height of .

b. This object flew for before it landed in the ocean.

c. This object was above sea level 26 s after its release.

d. This object was 748.8 m above sea level twice: once after its release,

and again later after its release.

55.
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From a clifftop over the ocean 160 m above sea level, an object was shot into the air with an initial
vertical speed of 176.4 m

s . On its way down it fell into the ocean. Its height (above sea level) as
time passes can be modeled by the quadratic function f , where f (t) � −4.9t2 + 176.4t + 160. Here
t represents the number of seconds since the object’s release, and f (t) represents the object’s height
(above sea level) in meters.

a. After , this object reached its maximum height of .

b. This object flew for before it landed in the ocean.

c. This object was above sea level 8 s after its release.

d. This object was 1742.7 m above sea level twice: once after its release,

and again later after its release.

56.

A remote control aircraft will perform a stunt by flying toward the ground and then up. Its height
can be modeled by the function h(t) � 1.2t2 − 16.8t + 55.8. The plane (□ will □ will not) hit
the ground during this stunt.

57.

A remote control aircraft will perform a stunt by flying toward the ground and then up. Its height
can be modeled by the function h(t) � 0.1t2 − 1.6t + 10.4. The plane (□will □will not) hit the
ground during this stunt.

58.

A submarine is traveling in the sea. Its depth can be modeled by d(t) � −0.9t2 + 16.2t − 72.9, where
t stands for time in seconds. The submarine (□ will □ will not) hit the sea surface along this
route.

59.

A submarine is traveling in the sea. Its depth can be modeled by d(t) � −1.6t2 + 28.8t − 133.6,
where t stands for time in seconds. The submarine (□will □will not) hit the sea surface along
this route.

60.

An object is launched upward at the height of 400 meters. It’s height can be modeled by

h � −4.9t2
+ 90t + 400,

where h stands for the object’s height in meters, and t stands for time passed in seconds since its
launch. The object’s height will be 420 meters twice before it hits the ground. Find how many sec-
onds since the launch would the object’s height be 420 meters. Round your answers to two decimal
places if needed.

The object’s height would be 420 meters the first time at seconds, and then

the second time at seconds.

61.
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An object is launched upward at the height of 210 meters. It’s height can be modeled by

h � −4.9t2
+ 70t + 210,

where h stands for the object’s height in meters, and t stands for time passed in seconds since its
launch. The object’s height will be 250 meters twice before it hits the ground. Find how many sec-
onds since the launch would the object’s height be 250 meters. Round your answers to two decimal
places if needed.

The object’s height would be 250 meters the first time at seconds, and then

the second time at seconds.

62.

Currently, an artist can sell 220 paintings every year at the price of $60.00 per painting. Each time
he raises the price per painting by $5.00, he sells 5 fewer paintings every year.

Assume he will raise the price per painting x times, then he will sell 220 − 5x paintings every year
at the price of 60 + 5x dollars. His yearly income can be modeled by the equation:

i � (60 + 5x)(220 − 5x)

where i stands for his yearly income in dollars. If the artist wants to earn $18,375.00 per year from
selling paintings, what new price should he set?

To earn $18,375.00 per year, the artist could sell his paintings at two different prices. The lower price
is per painting, and the higher price is per painting.

63.

Currently, an artist can sell 250 paintings every year at the price of $90.00 per painting. Each time
he raises the price per painting by $15.00, he sells 5 fewer paintings every year.

Assume he will raise the price per painting x times, then he will sell 250 − 5x paintings every year
at the price of 90 + 15x dollars. His yearly income can be modeled by the equation:

i � (90 + 15x)(250 − 5x)

where i stands for his yearly income in dollars. If the artist wants to earn $37,125.00 per year from
selling paintings, what new price should he set?

To earn $37,125.00 per year, the artist could sell his paintings at two different prices. The lower price
is per painting, and the higher price is per painting.

64.

Challenge

Consider the function f (x) � x2+nx+ p. Let n and p be real numbers. Give your answers as points.

a. Suppose the function has two real x-intercepts. What are they?

b. What is its y-intercept?

c. What is its vertex?

65.
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9.4 Graphs of Quadratic Functions Chapter Review

9.4.1 Introduction to Functions

In Section 9.1 we covered the definitions of a relation, a function, and domain and range. We then discussed
function notation and how to evaluate functions at a particular value as well as how to solve an equation
with function notation. Last we introduced the vertical line test

Example 9.4.1 Introduction to Functions. Oneweek in Portland, it was rainy. Shocking, I know. Shown
is a diagram for the day of the week and how much rain fell on those days. Convert this diagram to a
set of ordered pairs where the first coordinate is the day of the week and the second coordinate is the
amount of rain that fell in Portland that day, in inches.

Monday

Tuesday

Wednesday

Thursday

Friday

0.0
0.2
0.4
0.6

Figure 9.4.2: Diagram for the relation “Day of the week to rainfall in PDX”

Explanation. Since Monday has an arrow to 0.2, that must mean that it rained 0.2 inches of rain on
Monday. That gives us the ordered pair (Monday, 0.2). Likewise, we also have (Tuesday, 0.4). To write
down all of the ordered pairs, we will use a set:{

(Monday, 0.2), (Tuesday, 0.4), (Wednesday, 0.0), (Thursday, 0.6), (Friday, 0.0)
}

Example 9.4.3 Functions as Predictors. Recall that a a function should predict the output perfectly if
you know the input. In Example 9.4.1, we saw that the day of a particular week in Portland was related
to the rainfall during that week. Was this relation a function?

Explanation. Yes, that relation was a function. If I tell you the day of the week, you can with certainty
“predict” how much rain there was on that day by looking at the data. There was a single answer to the
question “How much rain fell on Wednesday during that week in Portland?”

At this point, we should note that all historical weather data can be viewed as a function of some sort:
On any particular day in the recent past, we can “predict” (by looking it up somewhere) how much rain
fell in any city in the world.

However, the opposite question, “If it rained 0.0 inches, what day of the year was it?” is not going to
represent a function because there will be more than one day of the year that it didn’t rain at all. Even
in Portland.

Example 9.4.4 Algebraic Functions.

a. For the equation y � 2x2 + x, will y be a function of x?

b. For the equation y2 � x, will y be a function of x?
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Explanation.

a. This question is equivalent to the question “If you input any x value, will there be only one y
value?” The answer is “yes.” If you input any number for x you first square that number and
multiply it by two, then add the number. For example, if we substitute −3, we get:

y � 2(x)2 + (x)
y � 2(−3)2 + (−3)
� 2(9) − 3
� 18 − 3
� 15

There is no way we could substitute a number for x and get more than one value for y.

b. This question is equivalent to the question “If you input any x value, will there be only one y
value?” The answer is “no.” If you input any number for x and solve for y, you might actually get
two solutions. For example, if we substitute 1, we get:

y2
� x

y2
� 1

y �
√

1 or y � −
√

1
y � 1 or y � −1

Since there is more than one y value for the x value 1, the relation y2 � x is not a function.

Example 9.4.5 Function Notation. For the function V � 1(x), what is the name of the function, what is
the input variable, and what is the output variable?

Explanation. For the function V � 1(x), the name of the function is 1, the input variable is x, and the
output variable is V .

Example 9.4.6 Evaluating Functions.

Let a(x) � x2−2x, let the function
b be defined by the graph in Fig-
ure 9.4.7, and let the function c be
definedby the table in Table 9.4.8.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y � b(x)

x

y x c(x)
−5 7
−3 −2
2 2
6 4
9 7

Figure 9.4.7: A graph of the
function b

Table 9.4.8: The values of the
function c
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a. Evaluate a(−3). b. Evaluate b(−3). c. Evaluate c(−3).

Explanation.

a. To evaluate a(−3)we will substitute the value −3 in wherever we see x in the equation for a(x).

a(x) � x2 − 2x

a(−3) � (−3)2 − 2(−3)
� 9 + 6
� 15

b. To evaluate b(−3), we need to look at the graph of y � b(x) and look for the one place on the graph
where the x-value is −3. The y-value at this point is 1, so we would say that

b(−3) � 1

c. To evaluate c(−3) we examine the table and find the place where the x-value is −3. We conclude
that c(−3) � −2.

Example 9.4.9 Solving Equations That Have Function Notation.

Still let a(x) � x2−2x, let the func-
tion b be defined by the graph in
Figure 9.4.10, and let the function
c be defined by the table in Ta-
ble 9.4.11. −6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y � b(x)

x

y x c(x)
−5 7
−3 −2
2 2
6 4
9 7

Figure 9.4.10: A graph of the
function b

Table 9.4.11: The values of the
function c

a. Solve the equation a(x) � 0. b. Solve the equation b(x) �

2.
c. Solve the equation c(x) � 7.

712



9.4 Graphs of Quadratic Functions Chapter Review

Explanation.

a. To solve the equation a(x) � 0, we should set the formula for a(x) equal to 0. In this case, factoring
will then help.

x2 − 2x � 0
x(x − 2) � 0

x � 0 or x − 2 � 0
x � 0 or x � 2

So, the solution set is {0, 2}.
b. To solve the equation b(x) � 2, we should examine the graph and find all of the locations where

the y-value is 2. According to the graph, that happens twice, both when x � −4 and when x � 0.
So the solution set is {−4, 0}.

c. To solve the equation c(x) � 7, we examine the table and find all the places where the function
value is 7. According to the table, that happens twice: once when x � −5 and again when x � 9.
So the solution set is {−5, 9}.

Example 9.4.12 Domain and Range.

Still let the function b be defined
by the graph in Figure 9.4.13, and
let the function c be defined by
the table in Table 9.4.14.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y � b(x)

x

y x c(x)
−5 7
−3 −2
2 2
6 4
9 7

Figure 9.4.13: A graph of the
function b

Table 9.4.14: The values of the
function c

a. Write the domain of b in interval notation.

b. Write the domain of c in interval notation.

c. Write the range of b in interval notation.

d. Write the range of c in interval notation.

Explanation. Recall the definitions of domain and range.

a. To find the the domain of b, look at the graph of b and see what x-values are used for the graph.
In other words, what x-values could you input and expect to get a y-value? It looks like the graph
extends forever to the right as well as the left. Therefore, the domain is (−∞,∞).

b. To find the the domain of c, we list the x-values in the table in a set. That would be {−5,−3, 2, 6, 9}.
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c. To find the the range of b, look at the graph of b and see what y-values are on the graph. The
lowest y-value is −3 and all higher y-values are possible outputs. Therefore, the range is [−3,∞).

d. To find the the range of c, we list the y-values in the table in a set. That would be {7,−2, 2, 4}.

Example 9.4.15 Determining if a Relation is a Function. Is y a function of x in the following graphs?

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 9.4.16: Is y a function of x? Figure 9.4.17: Is y a function of x?

Explanation. The graph in Figure 9.4.16 fails the vertical line test and so y is not a function of x. The
graph in Figure 9.4.17 passes the vertical line test and so y is a function of x.

9.4.2 Properties of Quadratic Functions

In Section 9.2 we covered the definition of a quadratic function, and how to determine the direction, vertex,
axis of symmetry, and vertical and horizontal intercepts. We then learned how to algebraically find the
vertex, how to graph a parabola using a table, and how to find the domain and range of quadratic func-
tions.

Example 9.4.18 Finding the Vertex andAxis of Symmetry. Algebraically find the vertex of the parabola
described by the quadratic function f (x) � 3x2 + 8x − 7.

Explanation. To find the vertex of a parabola algebraically, we use the formula h � − b
2a to find the axis

of symmetry first. For our equation, a � 3 and b � 8, so:

h � − 8
2(3) � −

4
3

Next, we evaluate f
(
− 4

3
)
to find the y-coordinate of the vertex.

f
(
−4

3

)
� 3

(
−4

3

)2

+ 8
(
−4

3

)
− 7
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� 3
(
16
9

)
− 32

3 − 7

�
16
3 −

32
3 −

21
3

�
37
3

So, the parabola has its axis of symmetry at x � − 4
3 and has its vertex at the point

(
− 4

3 ,− 37
3
)
.

Example 9.4.19 Properties of Quadratic Functions.

Identify the key features of the quadratic func-
tion y � −2x2 − 4x + 6 shown in Figure 9.4.20.

−8 −6 −4 −2 2 4 6 8

−10

−8

−6

−4

−2

2

4

6

8

x

y

Figure 9.4.20: Graph of y � −2x2 − 4x + 6

Explanation.

First, we see that this parabola opens downward
because the leading coefficient is negative.

Then we locate the vertex which is the point
(−1, 8). The axis of symmetry is the vertical line
x � −1.

The vertical intercept or y-intercept is the point
(0, 6).
The horizontal intercepts are the points (−3, 0)
and (1, 0).

−8 −6 −4 −2 2 4 6 8

−10

−8

−6

−4

−2

2

4

6

8

x

y

Figure 9.4.21: Graph of y � −2x2 − 4x + 6
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Example 9.4.22 Graphing Quadratic Functions by Making a Table. Determine the vertex and axis of
symmetry for the quadratic function 1(x) � 2x2 + 8x + 2. Then make a table of values and sketch the
graph of the function.

Explanation. To determine the vertex of 1(x) � 2x2 + 8x + 2, we want to find the x-value of the vertex
first. We will use h � − b

2a for a � 2 and b � 8:

h � − b
2a

h � − 8
2(2)

h � −2

To find the vertex, we evaluate 1(−2).

1(−2) � 2(−2)2 + 8(−2) + 2
� 2(4) − 16 + 2
� 8 − 16 + 2
� −6

Now we know that our axis of symmetry is the line x � −2 and the vertex is the point (−2,−6). We will
set up our table with two values on each side of x � −2. We choose x � −4,−3,−2,−1, and 0. Then, we’ll
determine the y-coordinates by replacing x with each value and we have the complete table as shown in
Table 9.4.23. Notice that each pair of y-values on either side of the vertex match. This helps us to check
that our vertex and y-values are correct.

x 1(x) � 2x2 + 8x + 2 Point
−4 1(−4) � 2(−4)2 + 8(−4) + 2 � 2 (−4, 2)
−3 1(−3) � 2(−3)2 + 8(−3) + 2 � −4 (−3,−4)
−2 1(−2) � 2(−2)2 + 8(−2) + 2 � −6 (−2,−6)
−1 1(−1) � 2(−1)2 + 8(−1) + 2 � −4 (−1,−4)

0 1(0) � 2(0)2 + 8(0) + 2 � 2 (0, 2)

Table 9.4.23: Function values and points for 1(x) � 2x2 + 8x + 2

Now that we have our table, we
will plot the points and draw in
the axis of symmetry as shown
in Figure 9.4.24. We complete
the graph by drawing a smooth
curve through the points and
drawing an arrow on each end as
shown in Figure 9.4.25

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 9.4.24: Plot of the points
and axis of symmetry

Figure 9.4.25: Graph of 1(x) �

2x2 + 8x + 2
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Example 9.4.26 The Domain and Range of Quadratic Functions. Use the graph of 1(x) � 2x2 + 8x + 2
in from Example 9.4.22 shown in Figure 9.4.25 to identify the domain and range of 1 in set-builder and
interval notation.

Explanation. For the domain, we look horizontally and see the graph is a continuous curve and one
arrow points to the left and the other arrow points to the right. The domain is {x | x is a real number}
which is equivalent to (−∞,∞).
For the range we look up and down on the graph, which opens upward. Both arrows point upward and
the lowest point on the graph is the vertex at the point (−2,−6). The range is {y | y ≥ −6} which is
equivalent to [−6,∞).

Example 9.4.27 Applications of Quadratic Functions Involving the Vertex. The value of FedEx stock,
in dollars, between December 28, 2017 and February 9, 2018 can be very closely approximated by a
quadratic function, F(x) � −0.07x2 + 2.7x + 248. Find the vertex of this parabola and interpret it in the
context of the situation.

Explanation. To find the vertex of F(x) � −0.07x2 +2.7x+248, we first find the axis of symmetry using
the formula h � − b

2a . For our equation, a � −0.07 and b � 2.7, so:

h � − 2.7
2(−0.07)

h � − 2.7
−0.14

h ≈ 19.3

Next, we substitute the value of the axis of symmetry, 19.3, into the formula for the parabola.

F(x) � −0.07x2
+ 2.7x + 248

F(19.3) � −0.07 (19.3)2 + 2.7 (19.3) + 248
≈ 274

So, the parabola has its axis of symmetry at x � 19.3 and has its vertex at about the point (19.3, 274). In
addition, since a � −0.07, the parabola will be opening downward. Given this information, the vertex
of this parabola is its maximum.

In the reality of the situation, the 19.3 indicates the number of days after December 28, 2017whichwould
be sometime on January 16. The 274 indicates the stock price in dollars. In conclusion, FedEx’s stock
peaked (between December 28, 2017 and February 9, 2018) on January 16 at a value of $274.

9.4.3 Graphing Quadratic Functions

In Section 9.3 we covered how to find the vertical and horizontal intercepts of a quadratic function alge-
braically, how to make a graph of a parabola using key features, applications of quadratic functions and
what their real world domains and ranges mean, and how to tell a quadratic function from other types of
functions.

Example 9.4.28 Finding the Vertical and Horizontal Intercepts Algebraically.

a. Algebraically determine the vertical and horizontal intercepts of the quadratic function h(x) �
6x2 − 13x + 6.
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b. Algebraically determine the vertical and horizontal intercepts of the quadratic function k(x) �
2x2 − 2x − 5.

Explanation.

a. To find the vertical intercept, we evaluate the function when x � 0.

h(0) � 6(0)2 − 13(0) + 6
� 6

So, the vertical intercept of h is (0, 6).
Next, to find the horizontal intercepts, we set the function equal to zero. To solve that equation
we will use Algorithm 8.6.2. For this particular example, we will practice factoring using the AC
method. Here, ac � 36 and factor pairs that add up to −13 are −9 and −4, as you will see.

h(x) � 6x2 − 13x + 6
0 � 6x2 − 13x + 6
0 � 6x2 − 9x − 4x + 6
0 � 3x(2x − 3) − 2(2x − 3)
0 � (3x − 2)(2x − 3)

0 � 3x − 2 or 0 � 2x − 3

x �
2
3 or x �

3
2

So, the horizontal intercepts are
( 2

3 , 0
)
and

( 3
2 , 0

)
.

b. To find the vertical intercept, we have to evaluate the function when x � 0.

k(0) � 2(0)2 − 2(0) − 5
� −5

So, the vertical intercept of k is (0,−5).
Next, to find the horizontal intercepts, we set the function equal to zero. To solve that equation we
will use Algorithm 8.6.2. For this particular example, we will use the quadratic formula because
the square root method will not work (because there is a linear term) and factoring fails.

k(x) � 2x2 − 2x − 5
0 � 2x2 − 2x − 5

We identify that a � 2, b � −2, and c � −5

x �
−b ±

√
b2 − 4ac

2a

x �
−(−2) ±

√
(−2)2 − 4(2)(−5)
2(2)

x �
2 ±
√

4 + 40
4
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x �
2 ±
√

44
4

x �
2 ±
√

4 · 11
4

x �
2 ± 2
√

11
4

x �
2
4 ±

2
√

11
4

x �
1
2 ±
√

11
2

x �
1 ±
√

11
2

So, the horizontal intercepts are
(

1+
√

11
2 , 0

)
and

(
1−
√

11
2 , 0

)
. If you wanted to graph these points,

you would need to approximate them as (2.16, 0) and (−1.16, 0).

Example 9.4.29 Graphing Quadratic Functions Using Their Key Features. Graph the function j(x) �
−2x2 + 6x + 8 by algebraically determining its key features.

Explanation. To start, we’ll note that this function will open downward, as the leading coefficient is
negative.

To find the y-intercept, we’ll evaluate j(0):

j(0) � −2(0)2 + 6(0) + 8
� 8

The y-intercept is (0, 8).
Next, we’ll find the horizontal intercepts by setting j(x) � 0 and solving for x:

−2x2
+ 6x + 8 � 0

−2(x2 − 3x − 4) � 0
2(x − 4)(x + 1) � 0

x − 4 � 0 or x + 1 � 0
x � 4 or x � −1

The x-intercepts are (4, 0) and (−1, 0).
Lastly, we’ll determine the vertex. Noting that a � −2 and b � 6, we have:

x � − b
2a

x � − 6
2(−2)

� 1.5
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Using the x-value 1.5 to find the y-coordinate, we have:

j(1.5) � −2(1.5)2 + 6(1.5) + 8
� 12.5

The vertex is the point (1.5, 12.5), and the axis of symmetry is the line x � 1.5.

We’re now ready to graph this function. We’ll start by drawing and scaling the axes so all of our key
features will be displayed as shown in Figure 9.4.30. Next, we’ll plot these key points as shown in
Figure 9.4.31. Finally, we’ll note that this parabola opens downward and connect these points with a
smooth curve, as shown in Figure 9.4.32.

−4 −3 −2 −1 1 2 3 4 5 6

−12

−8

−4

4

8
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y

−4 −3 −2 −1 1 2 3 4 5 6

−12

−8

−4

4

8

12

x

y

−4 −3 −2 −1 1 2 3 4 5 6

−12

−8

−4

4

8

12

y � j(x)

x

y

Figure 9.4.30: Setting up the
grid.

Figure 9.4.31: Marking key
features.

Figure 9.4.32: Completing the
graph.

Example 9.4.33Applications ofQuadratic Functions. The Five-hundred-meterAperture Spherical Tele-
scopea (fast) located in SW China is the worlds largest radio telescope. The name is actually incorrect
because it is not spherical: it is parabolic! Parabolic telescopic dishes are very common because parabo-
las have the unique feature that they focus light coming in at a single point where a collecting instrument
is placed.

If a scientist somehow managed to climb to the rim of the dish and roll a ball from the top down toward
the center, her ball would travel along the parabola h(x) � 0.0018x2 − 0.9x, where x is the horizontal
distance from the rim of the dish where the ball was released, in meters, and h(x) is the height of the
ball above above the rim, in meters (so negative height would mean below the rim). Note that this is an
approximation based on real data.

a. Find and interpret the vertical intercept of the graph.

b. Find and interpret the horizontal intercepts of the graph.

c. Find and interpret the vertex of the graph.

Explanation.

a. The vertical intercept is found when x � 0.

h(x) � 0.0018x2 − 0.9x

h(0) � 0.0018(0)2 − 0.9(0)
� 0
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So the vertical intercept is (0, 0)which means that the ball was released 0 meters from the rim (on
the rim) at a height of 0 meters above the rim (again, on the rim).

b. The horizontal intercepts are found when h(x) � 0. This will be a quadratic equation that we can
solve using factoring.

h(x) � 0
0.0018x2 − 0.9x � 0

x (0.0018x − 0.9) � 0

x � 0 or 0.0018x − 0.9 � 0
x � 0 or 0.0018x � 0.9
x � 0 or x � 500

The horizontal intercepts are (0, 0) and (500, 0). The interpretation of (0, 0) is the same as before.
The interpretation of (500, 0) is that the other side of the rim of the dish is 500 meters away. If the
ball were to somehow roll all the way down, and then back up the other side, it would pop up at
the opposite rim exactly 500 meters horizontally away.

c. The vertex is found when the x-value is at the axis of symmetry. To find that, we use the formula
x � − b

2a where a � 0.0018 and b � −0.9

x � − b
2a

x � − −0.9
2(0.0018)

� 250

Then, to find the y-value, we substitute that x-value, 250 into the original function.

h(x) � 0.0018x2 − 0.9x

h(250) � 0.0018(250)2 − 0.9(250)
� −112.5

The vertex is the point (250,−112.5). Since the vale of a is positive, we know that this parabola
opens upward. This means that the vertex is the lowest point on the graph. So the lowest point of
the telescope dish is 250 meters from the rim (horizontally) and 112.5 meters below the height of
the rim. That is one big dish!

aen.wikipedia.org/wiki/Five_hundred_meter_Aperture_Spherical_Telescope

Example 9.4.34 The Domain and Range of Quadratic Applications. In the FAST telescope example,
find the real world domain and range of the function h.

Explanation. Real world domain and range problems are sometimes subjective. The domain in this
case would represent all possible x-values that make sense in the reality of the situation. Recall that x is
the horizontal distance from the rim of the dish where the ball was released, in meters. Since we found
out that the dish is 500 meters across we could say that the domain is [0, 500].
The range will represent all possible y values, that make sense in reality. Recall that h(x) is the height
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above above the rim, in meters. Since the ball won’t roll any higher than the rim of the dish, 0 will be
the largest y-value. We found out that the lowest point on the graph is −112.5 meters below the rim. So
the range is [-112.5,0].

50 100 150 200 250 300 350 400 450 500

−200

−150

−100

−50

50

100

150

200

(250,−112.5)
y � h(x)

x

y

Figure 9.4.35: A diagram of the parabolic function representing the telescope’s dish

Example 9.4.36 Distinguishing Quadratic Functions from Other Functions and Relations. Decide if
the equations represent quadratic functions or something else.

a. y − 1 � 3(x − 2) − 5 b. y � 3(x − 2)2 − 5 c. y �
√

x − 2 − 5 d. y2 � x2 − 5

Explanation. Recall that Definition 9.2.2 says that a quadratic function has the form f (x) � ax2+bx+ c
where a, b, and c are real numbers, and a , 0.

a. The equation y − 1 � 3(x − 2) − 5 is not quadratic. It is in fact a linear equation.

b. The equation y � 3(x − 2)2 − 5 is quadratic. We could simplify the right hand side and would have
something of the form y � ax2 + bx + c.

c. The equation y �
√

x − 2− 5 is not quadratic. The x is inside a radical, not squared, so it cannot be
converted into the form y � ax2 + bx + c.

d. The equation y2 � x2 − 5 is not quadratic. It cannot be re-written in the form y � ax2 + bx + c (due
to the y2 term).
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Exercises

Introduction to Functions

Which of the following graphs show y as a function of x?
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Which of the following graphs show y as a function of x?
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Evaluate the function at the
given values.

F(x) � −5x + 4

a. F(1) �

b. F(−3) �

c. F(0) �

3. Evaluate the function at the
given values.

G(x) � −3x + 8

a. G(5) �

b. G(−3) �

c. G(0) �

4. Evaluate the function at the
given values.

H(x) � 7x
−6x + 3

a. H(4) � .

b. H(−6) � .

5.

Evaluate the function at the
given values.

K(x) � 2x
3x − 3

a. K(4) � .

b. K(−1) � .

6. Evaluate the function at the
given values.

K(x) � −2x2 − 5x − 6

a. K(2) �

b. K(−4) �

7. Evaluate the function at the
given values.

f (x) � −3x2 + 3x − 1

a. f (4) �

b. f (−5) �

8.

Solve for x, where 1(x) �

x2 − 2x − 82.

If 1(x) � −2, then x � .

9. Solve for x, where h(x) �

x2 − x − 17.

If h(x) � −5, then x � .

10. A function is graphed.

This function has domain

and range .

11.
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A function is graphed.

This function has domain

and range .

12. Function f is graphed.

a. f (2) �
b. Solve f (x) � 1.

13. Function f is graphed.

a. f (0) �
b. Solve f (x) � 1.

14.

Heather started saving in a piggy bank on her birthday. The function f (x) � 5x + 3 models the
amount of money, in dollars, in Heather’s piggy bank. The independent variable represents the
number of days passed since her birthday.

Interpret the meaning of f (2) � 13.

⊙ A. Two days after Heather started her piggy bank, there were $13 in it.

⊙ B. The piggy bank started with $2 in it, and Heather saves $13 each day.

⊙ C. Thirteen days after Heather started her piggy bank, there were $2 in it.

⊙ D. The piggy bank started with $13 in it, and Heather saves $2 each day.

15.

Haley started saving in a piggy bank on her birthday. The function f (x) � 4x + 3 models the amount
ofmoney, in dollars, inHaley’s piggy bank. The independent variable represents the number of days
passed since her birthday.

Interpret the meaning of f (4) � 19.

⊙ A. Nineteen days after Haley started her piggy bank, there were $4 in it.

⊙ B. The piggy bank started with $4 in it, and Haley saves $19 each day.

⊙ C. Four days after Haley started her piggy bank, there were $19 in it.

⊙ D. The piggy bank started with $19 in it, and Haley saves $4 each day.

16.

The following figure has the graph y � d(t), whichmodels a particle’s distance from the starting line in feet,
where t stands for time in seconds since timing started.
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a. d(2) �
b. Interpret the meaning of d(2):

⊙ A. In the first 8 seconds, the parti-
cle moved a total of 2 feet.

⊙ B. In the first 2 seconds, the parti-
cle moved a total of 8 feet.

⊙ C. The particlewas 8 feet away from
the starting line 2 seconds since tim-
ing started.

⊙ D. The particlewas 2 feet away from
the starting line 8 seconds since tim-
ing started.

c. Solve d(t) � 4 for t. t �

d. Interpret themeaning of part c’s solution(s):

⊙ A. The article was 4 feet from the
starting line 1 seconds since tim-
ing started, or 8 seconds since tim-
ing started.

⊙ B. The article was 4 feet from the
starting line 8 seconds since tim-
ing started.

⊙ C. The article was 4 feet from the
starting line 1 seconds since tim-
ing started.

⊙ D. The article was 4 feet from the
starting line 1 seconds since tim-
ing started, and again 8 seconds since
timing started.

17.

a. d(5) �
b. Interpret the meaning of d(5):

⊙ A. The particlewas 5 feet away from
the starting line 7.5 seconds since
timing started.

⊙ B. The particle was 7.5 feet away
from the starting line 5 seconds since
timing started.

⊙ C. In the first 7.5 seconds, the par-
ticle moved a total of 5 feet.

⊙ D. In the first 5 seconds, the parti-
cle moved a total of 7.5 feet.

c. Solve d(t) � 3 for t. t �

d. Interpret themeaning of part c’s solution(s):

⊙ A. The article was 3 feet from the
starting line 8 seconds since tim-
ing started.

⊙ B. The article was 3 feet from the
starting line 1 seconds since tim-
ing started, and again 8 seconds since
timing started.

⊙ C. The article was 3 feet from the
starting line 1 seconds since tim-
ing started, or 8 seconds since tim-
ing started.

⊙ D. The article was 3 feet from the
starting line 1 seconds since tim-
ing started.

18.
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The function C models the the number of customers in a store t hours since the store opened.

t 0 1 2 3 4 5 6 7
C(t) 0 41 75 97 97 73 48 0

a. C(1) �
b. Interpret the meaning of C(1):

⊙ A. There were 41 customers in the
store 1hour after the store opened.

⊙ B. In 1hour since the store opened,
the store had an average of 41 cus-
tomers per hour.

⊙ C. In 1hour since the store opened,
there were a total of 41 customers.

⊙ D. Therewas 1 customer in the store
41 hours after the store opened.

c. Solve C(t) � 97 for t. t �

d. Interpret themeaning of Part c’s solution(s):

⊙ A. There were 97 customers in the
store 3hours after the store opened.

⊙ B. There were 97 customers in the
store 4hours after the store opened.

⊙ C. There were 97 customers in the
store either 4 hours after the store
opened, or 3 hours after the store
opened.

⊙ D. There were 97 customers in the
store 4hours after the store opened,
and again 3 hours after the store
opened.

19. t 0 1 2 3 4 5 6 7
C(t) 0 43 78 97 95 81 43 0

a. C(3) �
b. Interpret the meaning of C(3):

⊙ A. There were 97 customers in the
store 3hours after the store opened.

⊙ B. There were 3 customers in the
store 97hours after the store opened.

⊙ C. In 3hours since the store opened,
there were a total of 97 customers.

⊙ D. In 3hours since the store opened,
the store had an average of 97 cus-
tomers per hour.

c. Solve C(t) � 43 for t. t �

d. Interpret themeaning of Part c’s solution(s):

⊙ A. There were 43 customers in the
store 1hours after the store opened,
and again 6 hours after the store
opened.

⊙ B. There were 43 customers in the
store either 1 hours after the store
opened, or 6 hours after the store
opened.

⊙ C. There were 43 customers in the
store 1hours after the store opened.

⊙ D. There were 43 customers in the
store 6hours after the store opened.

20.

Properties of Quadratic Functions

Find the axis of symmetry
and vertex of the quadratic
function.

y � 4x2 + 32x − 3

Axis of symmetry:

Vertex:

21. Find the axis of symmetry
and vertex of the quadratic
function.

y � x2 − 4x + 5

Axis of symmetry:

Vertex:

22. Find the axis of symmetry
and vertex of the quadratic
function.

y � 3x2 − 15x + 2

Axis of symmetry:

Vertex:

23.
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Find the axis of symmetry
and vertex of the quadratic
function.

y � 4x2 + 12x − 4

Axis of symmetry:

Vertex:

24. For y � 4x2 − 8x + 5, de-
termine the vertex, create a
table of ordered pairs, and
then graph the function.

25. For y � 2x2 + 4x + 7, de-
termine the vertex, create a
table of ordered pairs, and
then graph the function.

26.

For y � −x2 + 4x + 2, de-
termine the vertex, create a
table of ordered pairs, and
then graph the function.

27. For y � −x2 + 2x − 5, de-
termine the vertex, create a
table of ordered pairs, and
then graph the function.

28.

You will build a rectangular sheep enclosure next to a river. There is no need to build a fence along
the river, so you only need to build on three sides. You have a total of 500 feet of fence to use. Find
the dimensions of the pen such that you can enclose the maximum possible area. One approach is
to let x represent the length of fencing that runs perpendicular to the river, and write a formula for
a function of x that outputs the area of the enclosure. Then find its vertex and interpret it.

The length of the pen (parallel to the river) should be , the width (perpendicular

to the river) should be , and the maximum possible area is .

29.

You will build a rectangular sheep enclosure next to a river. There is no need to build a fence along
the river, so you only need to build on three sides. You have a total of 400 feet of fence to use. Find
the dimensions of the pen such that you can enclose the maximum possible area. One approach is
to let x represent the length of fencing that runs perpendicular to the river, and write a formula for
a function of x that outputs the area of the enclosure. Then find its vertex and interpret it.

The length of the pen (parallel to the river) should be , the width (perpendicular

to the river) should be , and the maximum possible area is .

30.

Graphing Quadratic Functions

Find the y-intercept and any
x-intercept(s) of the quadratic
function y � x2 + 4x + 3.

y-intercept:

x-intercept(s):

31. Find the y-intercept and any
x-intercept(s) of the quadratic
function y � −x2 − 3x − 2.

y-intercept:

x-intercept(s):

32. Find the y-intercept and any
x-intercept(s) of the quadratic
function y � x2 + x + 5.

y-intercept:

x-intercept(s):

33.
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Find the y-intercept and any
x-intercept(s) of the quadratic
function y � x2 + 8x + 4.

y-intercept:

x-intercept(s):

34. Find the y-intercept and any
x-intercept(s) of the parabola
with equation y � 16x2 − 8x + 1.

y-intercept:

x-intercept(s):

35. Find the y-intercept and any
x-intercept(s) of the parabola
with equation y � 25x2 − 1.

y-intercept:

x-intercept(s):

36.

Graph each curve by algebraically determining its key features.

y � x2 − 7x + 1237. y � x2 + 5x − 1438. y � −x2 − x + 2039. y � −x2 + 4x + 2140.

y � x2 + 6x41. y � x2 − 8x42. y � x2 + 4x + 743. y � x2 − 2x + 644.

y � 2x2 − 4x − 3045. y � 3x2 + 21x + 3646.

47. From a clifftop over the ocean 170 m above sea level, an object was shot into the air with an initial
vertical speed of 264.6 m

s . On its way down it fell into the ocean. Its height (above sea level) as time passes
can be modeled by the quadratic function f , where f (t) � −4.9t2 + 264.6t + 170. Here t represents the
number of seconds since the object’s release, and f (t) represents the object’s height (above sea level) in
meters.

a. After , this object reached its maximum height of .

b. This object flew for before it landed in the ocean.

c. This object was above sea level 47 s after its release.

d. This object was 3663.7 m above sea level twice: once after its release, and

again later after its release.

48. From a clifftop over the ocean 130 m above sea level, an object was shot into the air with an initial
vertical speed of 294 m

s . On its way down it fell into the ocean. Its height (above sea level) as time passes can
be modeled by the quadratic function f , where f (t) � −4.9t2 + 294t + 130. Here t represents the number
of seconds since the object’s release, and f (t) represents the object’s height (above sea level) in meters.

a. After , this object reached its maximum height of .

b. This object flew for before it landed in the ocean.

c. This object was above sea level 18 s after its release.

d. This object was 967.9 m above sea level twice: once after its release, and again

later after its release.
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CHAPTER 10
Functions and Their Representations

10.1 Function Basics

In Section 9.1 there is a light introduction to functions. This chapter introduces functions more thoroughly,
and is independent from Section 9.1.

10.1.1 Informal Definition of a Function

We are familiar with the
√

symbol. This symbol is used to turn num-
bers into their square roots. Sometimes it’s simple to do this on paper
or in our heads, and sometimes it helps to have a calculator. We can
see some calculations in Table 10.1.2.

√
9 � 3√
1/4 � 1/2√
2 ≈ 1.41

Table 10.1.2: Values of
√

x

The
√

symbol represents a process; it’s a way for us to turn numbers into other numbers. This idea of
having a process for turning numbers into other numbers is the fundamental topic of this chapter.

Definition 10.1.3 Function (Informal Definition). A function is a process for turning numbers into (poten-
tially) different numbers. The process must be consistent, in that whenever you apply it to some particular
number, you always get the same result.

Section 10.5 covers a more technical definition for functions, and gets into some topics that are more ap-
propriate when using that definition. Definition 10.1.3 is so broad that you probably use functions all the
time.

Example 10.1.4 Think about each of these examples, where someprocess is used for turning one number
into another.

• If you convert a person’s birth year into their age, you are using a function.

• If you look up the Kelly Blue Book value of a Honda Odyssey based on how old it is, you are using
a function.

• If you use the expected guest count for a party to determine how many pizzas you should order,
you are using a function.
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The process of using
√

to change numbers might feel more “math-
ematical” than these examples. Let’s continue thinking about

√
for

now, since it’s a formula-like symbol that we are familiar with. One
concernwith

√
is that althoughwe live in themodern age of comput-

ers, this symbol is not found on most keyboards. And yet computers
still tend to be capable of producing square roots. Computer techni-
cians write sqrt( ) when they want to compute a square root, as we
see in Table 10.1.5.

sqrt(9) � 3
sqrt(1/4) � 1/2
sqrt(2) ≈ 1.41

Table 10.1.5: Values of sqrt(x)

The parentheses are very important. To see why, try to put yourself in the “mind” of a computer, and look
closely at sqrt49. The computer will recognize sqrt and know that it needs to compute a square root. But
computers have myopic vision and they might not see the entire number 49. A computer might think that
it needs to compute sqrt4 and then append a 9 to the end, which would produce a final result of 29. This
is probably not what was intended. And so the purpose of the parentheses in sqrt(49) is to denote exactly
what number needs to be operated on.

This demonstrates the standard notation that is used worldwide to write down most functions. By hav-
ing a standard notation for communicating about functions, people from all corners of the earth can all
communicate mathematics with each other more easily, even when they don’t speak the same language.

Functions have their own names. We’ve seen a function named sqrt, but any name you can imagine is
allowable. In the sciences, it is common to name functionswithwholewords, likeweight or health_index. In
mathematics, we often abbreviate such function names to w or h. And of course, since the word “function”
itself starts with “f,” we will often name a function f .

It’s crucial to continue reminding ourselves that functions are processes for changing numbers; they are not
numbers themselves. And that means that we have a potential for confusion that we need to stay aware of.
In some contexts, the symbol t might represent a variable—a number that is represented by a letter. But
in other contexts, t might represent a function—a process for changing numbers into other numbers. By
staying conscious of the context of an investigation, we avoid confusion.

Next we need to discuss how we go about using a function’s name.

Definition 10.1.6 Function Notation. The standard notation for referring to functions involves giving the
function itself a name, and then writing:

name
of

function

©«inputª®¬
Example 10.1.7 f (13) is pronounced “f of 13.” The word “of” is very important, because it reminds us
that f is a process and we are about to apply that process to the input value 13. So f is the function, 13
is the input, and f (13) is the output we’d get from using 13 as input.

f (x) is pronounced “f of x.” This is just like the previous example, except that the input is not any
specific number. The value of x could be 13 or any other number. Whatever x’s value, f (x) means the
corresponding output from the function f .

BudgetDeficit(2017) is pronounced “BudgetDeficit of 2017.” This is probably about a function that takes
a year as input, and gives that year’s federal budget deficit as output. The process here of changing a year
into a dollar amount might not involve any mathematical formula, but rather looking up information
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from the Congressional Budget Office’s website.

Celsius(F) is pronounced “Celsius of F.” This is probably about a function that takes a Fahrenheit tem-
perature as input and gives the corresponding Celsius temperature as output. Maybe a formula is used
to do this; maybe a chart or some other tool is used to do this. Here, Celsius is the function, F is the
input variable, and Celsius(F) is the output from the function.

Note 10.1.8. While a function has a name like f , and the input to that function often has a variable name
like x, the expression f (x) represents the output of the function. To be clear, f (x) is not a function. Rather,
f is a function, and f (x) its output when the number x was used as input.

Checkpoint 10.1.9. Suppose you see the sentence, “If x is the number of software licenses you buy for
your office staff, then c(x) is the total cost of the licenses.”

a. In the function notation, what represents input? .

b. What is the function here? .

c. What represents output? .

Explanation. The input is x, the function is c, and c(x) is the output from c when the input is x.
Warning 10.1.10 Notation Ambiguity. Asmentioned earlier, we need to remain conscious of the context of
any symbol we are using. It’s possible for f to represent a function (a process), but it’s also possible for f to
represent a variable (a number). Similarly, parentheses might indicate the input of a function, or they might
indicate that two numbers need to be multiplied. It’s up to our judgment to interpret algebraic expressions
in the right context. Consider the expression a(b). This could easily mean the output of a function a with
input b. It could also mean that two numbers a and b need to be multiplied. It all depends on the context
in which these symbols are being used.

Sometimes it’s helpful to think of a function as a
machine, as in Figure 10.1.11. This illustrates how
complicated functions can be. A number is just
a number. But a function has the capacity to take
in all kinds of different numbers into it’s hopper
(feeding tray) as inputs and transform them into
their outputs.

Figure 10.1.11: Imagining a function as a ma-
chine. (Image by Duane Nykamp using Mathe-
matica.)
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10.1.2 Tables and Graphs

Since functions are potentially complicated, we want ways to understand them more easily. Two basic tools
for understanding a function better are tables and graphs.

Example 10.1.12 A Table for the Budget Deficit Function. Consider the function BudgetDeficit, that
takes a year as its input and outputs the US federal budget deficit for that year. For example, the Con-
gressional Budget Office’s website tells us that BudgetDeficit(2009) is $1.41 trillion. If we’d like to un-
derstand this function better, we might make a table of all the inputs and outputs we can find. Using
the CBO’s website (www.cbo.gov/topics/budget), we can put together Table 10.1.13.

input
x (year)

output
BudgetDeficit(x) ($trillion)

2007 0.16
2008 0.46
2009 1.4
2010 1.3
2011 1.3
2012 1.1
2013 0.68
2014 0.48
2015 0.44
2016 0.59

How is this table helpful? There are things about
the function that we can see now by looking at the
numbers in this table.

• We can see that the budget deficit had a spike
between 2008 and 2009.

• And it fell again between 2012 and 2013.

• It appears to stay roughly steady for several
years at a time, with occasional big jumps or
drops.

These observations help us understand the function
BudgetDeficit a little better.

Table 10.1.13

Checkpoint 10.1.14. According to Table 10.1.13, what is the value of BudgetDeficit(2015)?

Explanation. Table 10.1.13 shows that when the input is 2015, the output is 0.44. So BudgetDeficit(2015) �
0.44. In context, that means that in 2015 the budget deficit was $0.44 trillion.

Example 10.1.15 A Table for the Square Root Function. Let’s return to our example of the function sqrt.
Tabulating some inputs and outputs reveals 10.1.16

input, x output, sqrt(x)
0 0
1 1
2 ≈ 1.41
3 ≈ 1.73
4 2
5 ≈ 2.24
6 ≈ 2.45
7 ≈ 2.65
8 ≈ 2.83
9 3

How is this table helpful? Here are some observations that
we can make now.

• We can see that when input numbers increase, so do
output numbers.

• We can see even though outputs are increasing, they
increase by less and less with each step forward in x.

These observations help us understand sqrt a little bet-
ter. For instance, based on these observations which do
you think is larger: the difference between sqrt(23) and
sqrt(24), or the difference between sqrt(85) and sqrt(86)?

Table 10.1.16
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Checkpoint 10.1.17. According to Table 10.1.16, what is the value of sqrt(6)?

Explanation. Table 10.1.16 shows that when the input is 6, the output is about 2.45. So sqrt(6) ≈ 2.45.

Another powerful tool for understanding functions better is a graph. Given a function f , one way to make
its graph is to take a table of input and output values, and read each row as the coordinates of a point in the
x y-plane.

Example 10.1.18 AGraph for the BudgetDeficit Function. Returning to the function BudgetDeficit that
we studied in Example 10.1.12, in order to make a graph of this function we view Table 10.1.13 as a list
of points with x and y coordinates, as in Table 10.1.19. We then plot these points on a set of coordinate
axes, as in Figure 10.1.20. The points have been connected with a curve so that we can see the overall
pattern given by the progression of points. Since there was not any actual data for inputs in between
any two years, the curve is dashed. That is, this curve is dashed because it just represents someone’s
best guess as to how to connect the plotted points. Only the plotted points themselves are precise.

(input, output)
(x , BudgetDeficit(x))
(2007, 0.16)
(2008, 0.46)
(2009, 1.4)
(2010, 1.3)
(2011, 1.3)
(2012, 1.1)
(2013, 0.68)
(2014, 0.48)
(2015, 0.44)
(2016, 0.59)

2008 2010 2012 2014 2016

1

2

x (year)

y ($trillion)

Table 10.1.19 Figure 10.1.20: y � BudgetDeficit(x)

How has this graph helped us to understand the function better? All of the observations that we made
in Example 10.1.12 are perhaps even more clear now. For instance, the spike in the deficit between 2008
and 2009 is now visually apparent. Seeking an explanation for this spike, we recall that there was a
financial crisis in late 2008. Revenue from income taxes dropped at the same time that federal money
was spent to prevent further losses.

Example 10.1.21 A Graph for the Square Root Function. Let’s now construct a graph for sqrt. Tab-
ulating inputs and outputs gives the points in Table 10.1.22, which in turn gives us the graph in Fig-
ure 10.1.23.
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(input, output)
(x , sqrt(x))
(0, 0)
(1, 1)

≈ (2, 1.41)
≈ (3, 1.73)
(4, 2)

≈ (5, 2.24)
≈ (6, 2.45)
≈ (7, 2.65)
≈ (8, 2.83)
(9, 3)

1 2 3 4 5 6 7 8 9

1

2

3

x

y

Table 10.1.22 Figure 10.1.23: y � sqrt(x)

Just as in the previous example, we’ve plotted points where we have concrete coordinates, and then we
have made our best attempt to connect those points with a curve. Unlike the previous example, here
we believe that points will continue to follow the same pattern indefinitely to the right, and so we have
added an arrowhead to the graph.

What has this graph done to improve our understanding of sqrt? As inputs (x-values) increase, the
outputs (y-values) increase too, although not at the same rate. In fact we can see that our graph is steep
on its left, and less steep aswemove to the right. This confirms our earlier observation in Example 10.1.15
that outputs increase by smaller and smaller amounts as the input increases.

Note 10.1.24 Graph of a Function. Given a function f , when we refer to a graph of f we are not referring
to an entire picture, like Figure 10.1.23. A graph of f is only part of that picture—the curve and the points
that it connects. Everything else: axes, tick marks, the grid, labels, and the surrounding white space is just
useful decoration, so that we can read the graph more easily.

It is also common to refer to the graph of f as the graph of the equation y � f (x). However, we should
avoid saying “the graph of f (x).” That would indicate a fundamental misunderstanding of our notation.
We have decided that f (x) is the output for a certain input x. That means that f (x) is just a number; a
relatively uninteresting thing compared to f the function, and not worthy of a two-dimensional picture.

While it is important to be able to make a graph of a function f , we also need to be capable of looking at
a graph and reading it well. A graph of f provides us with helpful specific information about f ; it tells us
what f does to its input values. When we were making graphs, we plotted points of the form

(input, output)

Now given a graph of f , we interpret coordinates in the same way.

Example 10.1.25 In Figure 10.1.26 we have a graph of a function f . If we wish to find f (1), we recognize
that 1 is being used as an input. So we would want to find a point of the form (1, ). Seeking out x-
coordinate 1 in Figure 10.1.26, we find that the only such point is (1, 2). Therefore the output for 1 is 2;
in other words f (1) � 2.
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1 2 3 4

1

2

3

x

y

Figure 10.1.26: y � f (x)

Checkpoint 10.1.27. Use the graph of f in Figure 10.1.26 to find f (0), f (3), and f (4).

a. f (0) � b. f (3) � c. f (4) �

Explanation.

a. f (0) � 0.5, since (0, 0.5) is on the graph.

b. f (3) � 3, since (3, 3) is on the graph.

c. f (4) � 2, since (4, 2) is on the graph.

Suppose that u is the unemployment function
of time. That is, u(t) is the unemployment rate
in the United States in year t. The graph of
the equation y � u(t) is given in Figure 10.1.29
(data.bls.gov/timeseries/LNS14000000).

2008 2010 2012 2014 2016 2018

2

4

6

8

10

t

y (%)

Figure 10.1.29: Unemployment in the United
States
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Example 10.1.28 Unemployment Rates. What was the unemployment in 2008? It is a straightforward
matter to use Figure 10.1.29 to find that unemployment was about 6% in 2008. Asking this question is
exactly the same thing as asking to find u(2008). That is, we have one question that can either be asked
in an everyday-English way or which can be asked in a terse, mathematical notation-heavy way:

“What was unemployment in 2008?” “Find u(2008).”

If we use the table to establish that u(2009) ≈ 9.25, then we should be prepared to translate that into
everyday-English using the context of the function: In 2009, unemployment in the u.s. was about 9.25%.

If we ask the question “when was unemployment at 5%,” we can read the graph and see that there were
two such times: mid-2007 and about 2016. But there is again a more mathematical notation-heavy way
to ask this question. Namely, since we are being told that the output of u is 5, we are being asked to
solve the equation u(t) � 5. So the following communicate the same thing:

“When was unemployment at 5%?” “Solve the equation u(t) � 5.”

And our answer to this question is:

“Unemployment was at 5% in mid-2007 and
about 2016.”

“t ≈ 2007.5 or t ≈ 2016.”

Checkpoint 10.1.30. Use the graph of u in Figure 10.1.29 to answer the following.

a. Find u(2011) and interpret it.

u(2011) ≈
Interpretation:

b. Solve the equation u(t) � 6 and interpret your solution(s).

t ≈ or t ≈
Interpretation:

Explanation.

a. u(2011) ≈ 9; In 2011 the US unemployment rate was about 9%.

b. t ≈ 2008 or t ≈ 2014; The points at which unemployment was 6% were in early 2008 and early 2014.

10.1.3 Translating Between Four Descriptions of the Same Function

We have noted that functions are complicated, and we want ways to make them easier to understand. It’s
common to find a problem involving a function and not know how to find a solution to that problem. Most
functions have at least four standard ways to think about them, and if we learn how to translate between
these four perspectives, we often find that one of them makes a given problem easier to solve.
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The four modes for working with a given function are

• a verbal description

• a table of inputs and outputs

• a graph of the function

• a formula for the function

This has been visualized in Figure 10.1.31.

A function, f

Verbal
Description

Table of
Inputs and
Outputs

Graph

Formula

Figure 10.1.31: Function Perspectives

Example 10.1.32 Consider a function f that squares its input and then adds 1. Translate this verbal
description of f into a table, a graph, and a formula.

Explanation.

To make a table for f , we’ll have to select some
input x-values. These choices are left entirely up
to us, so we might as well choose small, easy-
to-work-with values. However we shouldn’t shy
away from negative input values. Given the ver-
bal description, we should be able to compute
a column of output values. Table 10.1.33 is one
possible table that we might end up with.

x f (x)
−2 (−2)2 + 1 � 5
−1 (−1)2 + 1 � 2
0 02 + 1 � 1
1 12 + 1 � 2
2 5
3 10
4 17

Table 10.1.33

Once we have a table for f , we can make a graph
for f as in Figure 10.1.34, using the table to plot
points.

−2 −1 1 2 3 4

5

10

15

x

y

Figure 10.1.34: y � f (x)
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Lastly, we must find a formula for f . This means we need to write an algebraic expression that says the
same thing about f as the verbal description, the table, and the graph. For this example, we can focus
on the verbal description. Since f takes its input, squares it, and adds 1, we have that

f (x) � x2
+ 1.

Example 10.1.35 Let F be the function that takes a Celsius temperature as input and outputs the cor-
responding Fahrenheit temperature. Translate this verbal description of F into a table, a graph, and a
formula.

Explanation. Tomake a table for F, wewill need to rely onwhatwe knowabout Celsius and Fahrenheit
temperatures. It is a fact that the freezing temperature of water at sea level is 0 ◦C, which equals 32 °F.
Also, the boiling temperature of water at sea level is 100 ◦C, which is the same as 212 °F. One more piece
of information we might have is that standard human body temperature is 37 ◦C, or 98.6 °F. All of this
is compiled in Table 10.1.36. Note that we tabulated inputs and outputs by working with the context of
the function, not with any computations.

C F(C)
0 32
37 98.6
100 212

Once a table is established,
making a graph by plotting
points is a simple matter, as
in Figure 10.1.37. The three
plotted points seem to be in a
straight line, so we think it is
reasonable to connect them in
that way.

20 40 60 80 100

50

100

150

200

32

212

98.6

C

y

Table 10.1.36 Figure 10.1.37: y � F(C)

To find a formula for F, the verbal definition is not of much direct help. But F’s graph does seem to be
a straight line. And linear equations are familiar to us. This line has a y-intercept at (0, 32) and a slope
we can calculate: 212−32

100−0 �
180
100 �

9
5 . So the equation of this line is y �

9
5 C + 32. On the other hand, the

equation of this graph is y � F(C), since it is a graph of the function F. So evidently,

F(C) � 9
5 C + 32.

Exercises

Review and Warmup

Evaluate 9r − 1
r

for r � −6.1. Evaluate 3r − 4
r

for r � 8.2.
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Evaluate the following expressions.

a. Evaluate 2t2 when t � 3. 2t2
�

b. Evaluate (2t)2 when t � 3. (2t)2 �

3. Evaluate the following expressions.

a. Evaluate 2t2 when t � 5. 2t2
�

b. Evaluate (2t)2 when t � 5. (2t)2 �

4.

Locate each point in the graph:

Write each point’s position as an ordered pair,
like (1, 2).

A � B �

C � D �

5. Locate each point in the graph:

Write each point’s position as an ordered pair,
like (1, 2).

A � B �

C � D �

6.

Function Formulas and Evaluation Evaluate the function at the given values.

1(x) � x − 4

a. 1(1) �

b. 1(−4) �

c. 1(0) �

7. K(x) � x − 2

a. K(4) �

b. K(−2) �

c. K(0) �

8. F(x) � 6x

a. F(1) �

b. F(−2) �

c. F(0) �

9. G(x) � 2x

a. G(3) �

b. G(−3) �

c. G(0) �

10.

H(x) � −2x + 10

a. H(1) �

b. H(−1) �

c. H(0) �

11. H(x) � −4x + 4

a. H(5) �

b. H(−1) �

c. H(0) �

12. K(x) � −x + 1

a. K(5) �

b. K(−2) �

c. K(0) �

13. f (x) � −x + 8

a. f (2) �

b. f (−4) �

c. f (0) �

14.

741



Chapter 10 Functions and Their Representations

1(y) � y2 + 3

a. 1(1) �

b. 1(−1) �

c. 1(0) �

15. h(x) � x2 − 9

a. h(4) �

b. h(−1) �

c. h(0) �

16. h(r) � −r2 − 1

a. h(3) �

b. h(−1) �

c. h(0) �

17. F(y) � −y2 + 8

a. F(2) �

b. F(−2) �

c. F(0) �

18.

G(t) � −4

a. G(5) �

b. G(−4) �

c. G(0) �

19. H(r) � 5

a. H(4) �

b. H(5) �

c. H(0) �

20. H(x) � 3x
−8x − 2

a. H(7) � .

b. H(−3) � .

21. K(x) � 8x
x − 8

a. K(6) � .

b. K(−7) � .

22.

f (x) � 20
x + 7 .

a. f (3) � .

b. f (−7) � .

23. 1(x) � 12
x + 1 .

a. 1(−3) � .

b. 1(−1) � .

24. 1(x) � −x + 5

a. 1(3) �

b. 1(−3) �

25. h(x) � −4x − 5

a. h(8) �

b. h(−3) �

26.

F(x) � x2 − 3x + 2

a. F(4) �

b. F(−2) �

27. G(x) � x2 + 4x − 6

a. G(2) �

b. G(−2) �

28. H(x) � −3x2 − 4x + 2

a. H(3) �

b. H(−3) �

29. H(x) � −3x2 + 4x + 5

a. H(3) �

b. H(−5) �

30.

K(x) �
√

x.

a. K(81) �

b. K
( 16

49
)
�

c. K(−4) �

31. f (x) �
√

x.

a. f (36) �

b. f
( 64

25
)
�

c. f (−4) �

32. 1(x) � 3√x

a. 1(−125) �

b. 1
( 1

8
)
�

33. 1(x) � 3√x

a. 1(−8) �

b. 1
( 27

125
)
�

34.

h(x) � −4

a. h(8) �

b. h(−4) �

35. F(x) � −18

a. F(4) �

b. F(−7) �

36.
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Function Formulas and Solving Equations

Solve for x, where G(x) � 20x + 2.

a. If G(x) � −78, then x � .

b. If G(x) � 7, then x � .

37. Solve for x, where H(x) � 6x − 9.

a. If H(x) � −27, then x � .

b. If H(x) � −7, then x � .

38.

Solve for x, where H(x) � x2 − 10.

a. If H(x) � 6, then x � .

b. If H(x) � −17, then x � .

39. Solve for x, where K(x) � x2 + 4.

a. If K(x) � 5, then x � .

b. If K(x) � −5, then x � .

40.

Solve for x, where f (x) � x2 + 3x − 26.

If f (x) � 2, then x � .

41. Solve for x, where 1(x) � x2 + 18x + 81.

If 1(x) � 1, then x � .

42.

If G is a function defined by G(y) � −3y − 5,

Find G(0).
Solve G(y) � 0.

43. If 1 is a function defined by 1(y) � 4y − 11,

Find 1(0).
Solve 1(y) � 0.

44.

If K is a function defined by K(y) � y2 − 9,

Find K(0).
Solve K(y) � 0.

45. If G is a function defined by G(r) � 3r2 − 6,

Find G(0).
Solve G(r) � 0.

46.

If 1 is a function defined by 1(r) � r2+2r−35,

Find 1(0).
Solve 1(r) � 0.

47. If K is a function defined by K(t) � t2−11t+18,

Find K(0).
Solve K(t) � 0.

48.
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Functions and Points on a Graph

If K(6) � 9, then the point
is on the graph of K.

If (7, 6) is on the graph of K, then K(7) � .

49. If f (2) � −1, then the point
is on the graph of f .

If (4, 3) is on the graph of f , then f (4) � .

50.

If 1(t) � r, then the point
is on the graph of 1.

The answer is not a specific numerical point,
but one with variables for coordinates.

51. If 1(y) � x, then the point
is on the graph of 1.

The answer is not a specific numerical point,
but one with variables for coordinates.

52.

If
(
x , y

)
is on the graph of h, then h(x) � .53. If (t , x) is on the graph of F, then F(t) � .54.

For the function G(x), when x � −2, its y-
value is 9.

Choose all true statements.

□ The function’s value is 9 at −2. □ The
point (9,−2) is on the graph of the function.
□ G(9) � −2 □ The point (−2, 9) is on
the graph of the function. □ G(−2) � 9
□ The function’s value is −2 at 9.

55. For the function H(x), when x � 2, its y-value
is −5.

Choose all true statements.

□ H(2) � −5 □ H(−5) � 2 □ The
function’s value is 2 at−5. □ The function’s
value is −5 at 2. □ The point (−5, 2) is on
the graph of the function. □ The point
(2,−5) is on the graph of the function.

56.

Function Graphs

Use the graph of H below
to evaluate the given expres-
sions. (Estimates are OK.)

H(−2) �

H(2) �

57. Use the graph of K below
to evaluate the given expres-
sions. (Estimates are OK.)

K(−3) �

K(2) �

58. Use the graph of f below
to evaluate the given expres-
sions. (Estimates are OK.)

f (0) �

f (12) �

59.
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Use the graph of 1 below to
evaluate the given expressions.
(Estimates are OK.)

1(−1) �

1(2) �

60. Use the graph of 1 below to
evaluate the given expressions.
(Estimates are OK.)

1(3) �

1(5) �

61. Use the graph of h below to
evaluate the given expressions.
(Estimates are OK.)

h(−2) �

h(−1) �

62.

Function f is graphed.

a. f (0) �
b. Solve f (x) � −1.

63. Function f is graphed.

a. f (−3) �
b. Solve f (x) � −2.

64. Function f is graphed.

a. f (1) �
b. Solve f (x) � −2.

65.

Function f is graphed.

a. f (2) �
b. Solve f (x) � 3.

66. Function f is graphed.

a. f (−3) �
b. Solve f (x) � −2.

67. Function f is graphed.

a. f (3) �
b. Solve f (x) � −1.

68.
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Function Tables

Use the table of values for 1 below to evaluate
the given expressions.

x −4 −1 2 5 8
1(x) −1 −0.5 4.1 9.9 −0.4

1(−4) �

1(5) �

69. Use the table of values for 1 below to evaluate
the given expressions.

x −1 1 3 5 7
1(x) 7.7 −0.6 −2 −1.1 4.5

1(1) �

1(7) �

70.

Make a table of values for the function 1, de-
fined by 1(x) � −2x2. Based on values in the
table, sketch a graph of 1.

x 1(x)

71. Make a table of values for the function K, de-

fined by K(x) � 2x − 2
x2 + 3

. Based on values in the
table, sketch a graph of K.

x K(x)

72.

Translating Between Different Representations of a Function

Here is a verbal representation of a function
G.

Square the input x to obtain the output y.Give
a numeric representation of G:

x 0 1 2 3 4
G(x)

Give a symbolic representation of G:

G(x) �

73. Here is a verbal representation of a function
G.

Cube the input x to obtain the output y.Give
a numeric representation of G:

x 0 1 2 3 4
G(x)

Give a symbolic representation of G:

G(x) �

74.
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Here is a verbal representation of a function
H.

Triple the input x and then subtract nine to ob-
tain the output y.Give a numeric representa-
tion of H:

x 0 1 2 3 4
H(x)

Give a symbolic representation of H:

H(x) �

75. Here is a verbal representation of a function
K.

Double the input x and then subtract two to
obtain the output y.Give a numeric represen-
tation of K:

x 0 1 2 3 4
K(x)

Give a symbolic representation of K:

K(x) �

76.

Express the function f numerically with the
table.

f (x) � 2x2 − 1
3 x

x −3 −2 −1 0 1 2 3
f (x)

On graphing paper, you should be able to give
a graphical representation of f too.

77. Express the function 1 numerically with the
table.

1(x) � x3 − 1
3 x2

x −3 −2 −1 0 1 2 3
1(x)

On graphing paper, you should be able to give
a graphical representation of 1 too.

78.

Express the function 1 numerically with the
table.

1(x) � 1 − x
5 + x

x −3 −2 −1 0 1 2 3
1(x)

On graphing paper, you should be able to give
a graphical representation of 1 too.

79. Express the function h numerically with the
table.

h(x) � 7 − x
7 + x

x −3 −2 −1 0 1 2 3
h(x)

On graphing paper, you should be able to give
a graphical representation of h too.

80.
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Functions in Context

Virginia started saving in a piggy bank on her birthday. The function f (x) � 3x + 1 models the
amount of money, in dollars, in Virginia’s piggy bank. The independent variable represents the
number of days passed since her birthday.

Interpret the meaning of f (1) � 4.

⊙ A. The piggy bank started with $4 in it, and Virginia saves $1 each day.

⊙ B. Four days after Virginia started her piggy bank, there were $1 in it.

⊙ C. The piggy bank started with $1 in it, and Virginia saves $4 each day.

⊙ D. One days after Virginia started her piggy bank, there were $4 in it.

81.

Timothy started saving in a piggy bank on his birthday. The function f (x) � 2x + 2 models the
amount of money, in dollars, in Timothy’s piggy bank. The independent variable represents the
number of days passed since his birthday.

Interpret the meaning of f (3) � 8.

⊙ A. Eight days after Timothy started his piggy bank, there were $3 in it.

⊙ B. Three days after Timothy started his piggy bank, there were $8 in it.

⊙ C. The piggy bank started with $8 in it, and Timothy saves $3 each day.

⊙ D. The piggy bank started with $3 in it, and Timothy saves $8 each day.

82.

An arcade sells multi-day passes. The function 1(x) � 1
4 x models the number of days a pass will

work, where x is the amount of money paid, in dollars.

Interpret the meaning of 1(16) � 4.

⊙ A. Each pass costs $16, and it works for 4 days.

⊙ B. If a pass costs $4, it will work for 16 days.

⊙ C. If a pass costs $16, it will work for 4 days.

⊙ D. Each pass costs $4, and it works for 16 days.

83.

An arcade sells multi-day passes. The function 1(x) � 1
4 x models the number of days a pass will

work, where x is the amount of money paid, in dollars.

Interpret the meaning of 1(12) � 3.

⊙ A. If a pass costs $12, it will work for 3 days.

⊙ B. Each pass costs $3, and it works for 12 days.

⊙ C. Each pass costs $12, and it works for 3 days.

⊙ D. If a pass costs $3, it will work for 12 days.

84.
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Kayla will spend $270 to purchase some bowls and some plates. Each bowl costs $1, and each plate
costs $6. The function p(b) � − 1

6 b + 45 models the number of plates Kayla will purchase, where b
represents the number of bowls Kayla will purchase.

Interpret the meaning of p(180) � 15.

⊙ A. If 180 bowls are purchased, then 15 plates will be purchased.

⊙ B. $180 will be used to purchase bowls, and $15 will be used to purchase plates.

⊙ C. If 15 bowls are purchased, then 180 plates will be purchased.

⊙ D. $15 will be used to purchase bowls, and $180 will be used to purchase plates.

85.

Aleric will spend $210 to purchase some bowls and some plates. Each bowl costs $5, and each plate
costs $6. The function p(b) � − 5

6 b + 35 models the number of plates Aleric will purchase, where b
represents the number of bowls Aleric will purchase.

Interpret the meaning of p(6) � 30.

⊙ A. If 30 bowls are purchased, then 6 plates will be purchased.

⊙ B. If 6 bowls are purchased, then 30 plates will be purchased.

⊙ C. $6 will be used to purchase bowls, and $30 will be used to purchase plates.

⊙ D. $30 will be used to purchase bowls, and $6 will be used to purchase plates.

86.

Kara will spend $400 to purchase some bowls and some plates. Each plate costs $1, and each bowl
costs $8. The function q(x) � − 1

8 x + 50 models the number of bowls Kara will purchase, where x
represents the number of plates to be purchased.

Interpret the meaning of q(24) � 47.

⊙ A. $47 will be used to purchase bowls, and $24 will be used to purchase plates.

⊙ B. 47 plates and 24 bowls can be purchased.

⊙ C. $24 will be used to purchase bowls, and $47 will be used to purchase plates.

⊙ D. 24 plates and 47 bowls can be purchased.

87.

Cheryl will spend $160 to purchase some bowls and some plates. Each plate costs $9, and each bowl
costs $8. The function q(x) � − 9

8 x + 20 models the number of bowls Cheryl will purchase, where x
represents the number of plates to be purchased.

Interpret the meaning of q(16) � 2.

⊙ A. 2 plates and 16 bowls can be purchased.

⊙ B. 16 plates and 2 bowls can be purchased.

⊙ C. $2 will be used to purchase bowls, and $16 will be used to purchase plates.

⊙ D. $16 will be used to purchase bowls, and $2 will be used to purchase plates.

88.
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Find the rule of the linear function f that gives the number of minutes in x weeks.

f (x) �

89.

Find the rule of the linear function f that gives the number of seconds in x weeks.

f (x) �

90.

Suppose that M is the function that computes how many miles are in x feet. Find the algebraic rule
for M. (If you do not know how many feet are in one mile, you can look it up on Google.)

M(x) �
Evaluate M(22000) and interpret the result:

There are about miles in feet.

91.

Suppose that K is the function that computes how many kilograms are in x pounds. Find the
algebraic rule for K. (If you do not know how many pounds are in one kilogram, you can look it up
on Google.)

K(x) �
Evaluate K(241) and interpret the result.

Something that weighs pounds would weigh about kilograms.

92.

Suppose that f is the function that the phone company uses to determine what your bill will be (in
dollars) for a long-distance phone call that lasts t minutes. Each call costs a fixed price of $4.95 plus
10 cents per minute. Write a formula for this linear function f .

93.

Suppose that f is the function that gives the total cost (in dollars) of downhill skiing x times during
a season with a $500 season pass. Write a formula for f .

94.

Suppose that f is the function that tells you how many dimes are in x dollars. Write a formula for
f .

95.
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The following figure has the graph y � d(t), whichmodels a particle’s distance from the starting line in feet,
where t stands for time in seconds since timing started.

a. d(3) �
b. Interpret the meaning of d(3):

⊙ A. The particlewas 3 feet away from
the starting line 6 seconds since tim-
ing started.

⊙ B. The particlewas 6 feet away from
the starting line 3 seconds since tim-
ing started.

⊙ C. In the first 6 seconds, the parti-
cle moved a total of 3 feet.

⊙ D. In the first 3 seconds, the parti-
cle moved a total of 6 feet.

c. Solve d(t) � 2 for t. t �

d. Interpret themeaning of part c’s solution(s):

⊙ A. The article was 2 feet from the
starting line 9 seconds since tim-
ing started.

⊙ B. The article was 2 feet from the
starting line 1 seconds since tim-
ing started, and again 9 seconds since
timing started.

⊙ C. The article was 2 feet from the
starting line 1 seconds since tim-
ing started, or 9 seconds since tim-
ing started.

⊙ D. The article was 2 feet from the
starting line 1 seconds since tim-
ing started.

96.

a. d(4) �
b. Interpret the meaning of d(4):

⊙ A. The particlewas 4 feet away from
the starting line 10 seconds since
timing started.

⊙ B. In the first 10 seconds, the par-
ticle moved a total of 4 feet.

⊙ C. The particle was 10 feet away
from the starting line 4 seconds since
timing started.

⊙ D. In the first 4 seconds, the parti-
cle moved a total of 10 feet.

c. Solve d(t) � 5 for t. t �

d. Interpret themeaning of part c’s solution(s):

⊙ A. The article was 5 feet from the
starting line 1 seconds since tim-
ing started.

⊙ B. The article was 5 feet from the
starting line 1 seconds since tim-
ing started, and again 8 seconds since
timing started.

⊙ C. The article was 5 feet from the
starting line 1 seconds since tim-
ing started, or 8 seconds since tim-
ing started.

⊙ D. The article was 5 feet from the
starting line 8 seconds since tim-
ing started.

97.
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The function C models the the number of customers in a store t hours since the store opened.

t 0 1 2 3 4 5 6 7
C(t) 0 43 81 102 98 83 43 0

a. C(2) �
b. Interpret the meaning of C(2):

⊙ A. There were 81 customers in the
store 2 hours after the store opened.

⊙ B. There were 2 customers in the
store 81 hours after the store opened.

⊙ C. In 2 hours since the store opened,
the store had an average of 81 cus-
tomers per hour.

⊙ D. In 2 hours since the store opened,
there were a total of 81 customers.

c. Solve C(t) � 43 for t. t �

d. Interpret themeaning of Part c’s solution(s):

⊙ A. There were 43 customers in the
store 1 hours after the store opened.

⊙ B. There were 43 customers in the
store either 1 hours after the store
opened, or 6 hours after the store
opened.

⊙ C. There were 43 customers in the
store 6 hours after the store opened.

⊙ D. There were 43 customers in the
store 1 hours after the store opened,
and again 6 hours after the store
opened.

98.

Chicago’s average monthly rainfall, R � f (t) inches, is given as a function of the month, t, where
January is t � 1, in the table below.

t, month 1 2 3 4 5 6 7 8
R, inches 1.8 1.8 2.7 3.1 3.5 3.7 3.5 3.4

(a) Solve f (t) � 3.1.

t �

The solution(s) to f (t) � 3.1 can be interpreted
as saying

⊙ Chicago’s average rainfall in the month of
April is 3.1 inches.

⊙ Chicago’s average rainfall is greatest in
the month of February.

⊙ Chicago’s average rainfall increases by 3.1
inches in the month of February.

⊙ Chicago’s average rainfall is least in the
month of April.

⊙ None of the above

(b) Solve f (t) � f (5).

t �

The solution(s) to f (t) � f (5) can be interpreted
as saying

⊙ Chicago’s average rainfall is 3.5 inches in
the months of May and July.

⊙ Chicago’s average rainfall is 3.5 inches in
the month of July.

⊙ Chicago’s average rainfall is greatest in
the month of May.

⊙ Chicago’s average rainfall is 3.5 inches in
the month of May.

⊙ None of the above

99.
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Let f (t) denote the number of people eating in a restaurant t minutes after 5 PM. Answer the fol-
lowing questions:

a) Which of the following statements best describes the significance of the expression f (4) � 19?

⊙ There are 19 people eating at 9:00 PM

⊙ Every 4 minutes, 19 more people are eating

⊙ There are 19 people eating at 5:04 PM

⊙ There are 4 people eating at 5:19 PM

⊙ None of the above

b) Which of the following statements best describes the significance of the expression f (a) � 30?

⊙ At 5:30 PM there are a people eating

⊙ Every 30 minutes, the number of people eating has increased by a people

⊙ a hours after 5 PM there are 30 people eating

⊙ a minutes after 5 PM there are 30 people eating

⊙ None of the above

c) Which of the following statements best describes the significance of the expression f (30) � b?

⊙ b hours after 5 PM there are 30 people eating

⊙ Every 30 minutes, the number of people eating has increased by b people

⊙ At 5:30 PM there are b people eating

⊙ b minutes after 5 PM there are 30 people eating

⊙ None of the above

d) Which of the following statements best describes the significance of the expression n � f (t)?

⊙ n hours after 5 PM there are t people eating

⊙ t hours after 5 PM there are n people eating

⊙ Every t minutes, n more people have begun eating

⊙ n minutes after 5 PM there are t people eating

⊙ None of the above

100.
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Let s(t) � 12t2 − 2t + 300, where s is the position (in mi) of a car driving on a straight road at time
t (in hr). The car’s velocity (in mi/hr) at time t is given by v(t) � 24t − 2.

a. Using function notation, express the car’s position after 2.5 hours. The answer here is not a
formula, it’s just something using function notation like f(8).

b. Where is the car then? The answer here is a number with units.

c. Use function notation to express the question, “When is the car going 65 mi
hr ?” The answer is

an equation that uses function notation; something like f(x)=23. You are not being asked to
actually solve the equation, just to write down the equation.

d. Where is the car when it is going 22 mi
hr ? The answer here is a number with units. You are being

asked a question about its position, but have been given information about its speed.

101.

Let s(t) � 13t2 − 3t + 300, where s is the position (in mi) of a car driving on a straight road at time
t (in hr). The car’s velocity (in mi/hr) at time t is given by v(t) � 26t − 3.

a. Using function notation, express the car’s position after 3.9 hours. The answer here is not a
formula, it’s just something using function notation like f(8).

b. Where is the car then? The answer here is a number with units.

c. Use function notation to express the question, “When is the car going 61 mi
hr ?” The answer is

an equation that uses function notation; something like f(x)=23. You are not being asked to
actually solve the equation, just to write down the equation.

d. Where is the car when it is going 75 mi
hr ? The answer here is a number with units. You are being

asked a question about its position, but have been given information about its speed.

102.

Describe your own example of a function that has real context to it. You will need some kind of
input variable, like “number of years since 2000” or “weight of the passengers in my car.” You will
need a process for using that number to bring about a different kind of number. The process does
not need to involve a formula; a verbal description would be great, as would a formula.

Give your function a name. Write the symbol(s) that you would use to represent input. Write the
symbol(s) that you would use to represent output.

103.
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Use the graph of h in the figure to fill in the table.

x −2 −1 0 1 2
h(x)

a. Evaluate h(3) − h(0).

b. Evaluate h(2) − h(−1).

c. Evaluate 2h(−1).

d. Evaluate h(0) + 3.

104.

Use the given graph of a function f , along with a , b , c , d , e, and h to answer the following questions.
Some answers are points, and should be entered as ordered pairs. Some answers ask you to solve
for x, so the answer should be in the form x=...

a. What are the coordinates of the point P?

b. What are the coordinates of the point Q?

c. Evaluate f (b). (The answer is symbolic, not a specific number.)

d. Solve f (x) � e for x. (The answer is symbolic, not a specific number.)

e. Suppose c � f (z). Solve the equation z � f (x) for x.

105.
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10.2 Domain and Range

A function is a process for turning input values into output values. Occasionally a function f will have
input values for which the process breaks down.

10.2.1 Domain

Example 10.2.2 Let P be the population of Portland as a function of the year. According to Googlea we
can say that:

P(2016) � 639863 P(1990) � 487849

But what if we asked to find P(1600)? The question doesn’t really make sense anymore. TheMultnomah
tribe lived in villages in the area, but the city of Portland was not incorporated until 1851. We say that
P(1600) is undefined.
ahttps://www.google.com/publicdata/explore?ds=kf7tgg1uo9ude_&met_y=population&hl=en&dl=en#!ctype=l&strail=false
&bcs=d&nselm=h&met_y=population&scale_y=lin&ind_y=false&rdim=country&idim=place:4159000&ifdim=country
&hl=en_US&dl=en&ind=false

Example 10.2.3 If m is a person’s mass in kg, let w(m) be their weight in lb. There is an approximate
formula for w:

w(m) ≈ 2.2m

From this formula we can find:

w(50) ≈ 110 w(80) ≈ 176

which tells us that a 50-kg person weighs 110 lb, and an 80-kg person weighs 176 lb.

What if we asked for w(−100)? In the context of this example, we would be asking for the weight of a
person whose mass is −100 kg. This is clearly nonsense. That means that w(−100) is undefined. Note that
the context of the example is telling us that w(−100) is undefined even though the formula alone might
suggest that w(−100) � −220.

Example 10.2.4 Let 1 have the formula
1(x) � x

x − 7 .

For most x-values, 1(x) is perfectly computable:

1(2) � −2
5 1(14) � 2.

But if we try to compute 1(7), we run into an issue of arithmetic.

1(7) � 7
7 − 7

�
7
0

The expression 7
0 is undefined. There is no number that this could equal.
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Checkpoint 10.2.5. If f (x) � x + 2
x + 8 , find an input for f that would cause an undefined output.

The number would cause an undefined output.

Explanation. Trying −8 as an input value would not work out; it would lead to division by 0.

These examples should motivate the following definition.

Definition 10.2.6 Domain. The domain of a function f is the collection of all of its valid input values.

Example 10.2.7 Referring to the functions from Examples 10.2.2–10.2.4

• The domain of P is all years starting from 1851 and later. It would also be reasonable to say that
the domain is actually all years from 1851 up to the current year, since we cannot guarantee that
Portland will exist forever.

• The domain of w is all positive real numbers. It is nonsensical to have a person with negative mass
or even one with zero mass. While there is some lower bound for the smallest mass a person could
have, and also an upper bound for the largest mass a person could have, these boundaries are gray.
We can say for sure that non-positive numbers should never be used as inputs for w.

• The domain of 1 is all real numbers except 7. This is the only number that causes a breakdown in
1’s formula.

10.2.2 Interval, Set, and Set-Builder Notation

Communicating the domain of a function can be wordy. In mathematics, we can communicate the same
information using concise notation that is accepted for use almost everywhere. Table 10.2.8 contains ex-
ample functions from this section and their domains, and demonstrates interval notation for these domains.
Basic interval notation is covered in Section 1.6, but some of our examples here go beyond what that section
covers.

Function Verbal Domain Number Line Illustration Interval Notation

P from Ex-
ample 10.2.2

all years 1851
and greater

1000 2000 3000

1851
0 t [1851,∞)

w from Ex-
ample 10.2.3

all real numbers
greater than 0

−10 −5 5 10

0
0 m (0,∞)

1 from Exam-
ple 10.2.4

all real numbers
except 7

−10 −5 5 10

7
0 x (−∞, 7) ∪ (7,∞)

Table 10.2.8: Domains from Earlier Examples

Again, basic interval notation is covered in Section 1.6, but one thing appears in Table 10.2.8 that is not
explained in that earlier section: the ∪ symbol, which we see in the domain of 1.

Occasionally there is a need to consider number line pictures such as Figure 10.2.9, where two or more
intervals appear.
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−10 −5 5 100 x

Figure 10.2.9: A number line with a union of two intervals

This picture is trying to tell you to consider numbers that are between −5 and 1, together with numbers that
are between 4 and 7. That word “together” is related to the word “union,” and in math the union symbol,
∪, captures this idea. So we can write the numbers in this picture as

[−5, 1] ∪ (4, 7]

(which uses interval notation).

With the domain of 1 in Table 10.2.8, the number line picture shows us another “union” of two intervals.
They are very close together, but there are still two separated intervals in that picture: (−∞, 7) and (7,∞).
Their union is represented by (−∞, 7) ∪ (7,∞).

Checkpoint 10.2.10. What is the domain of the function sqrt , where sqrt(x) �
√

x, using interval nota-
tion?

Explanation. The function sqrt cannot take a negative number as an input. It can however take any positive
number as input, or the number 0 as input. Representing this on a number line, we find the domain is [0,∞)
in interval notation.

Checkpoint 10.2.11. What is the domain of the function ℓ where ℓ(x) � 2
x−3 , using interval notation?

Explanation. The function ℓ cannot take a 3 as an input. It can however take any other number as input.
Representing this on a number line, we have an interval (−∞, 3) to the left of 3, and (3,∞) to the right of 3.
So we find the domain is (−∞, 3) ∪ (3,∞).

Sometimes we will consider collections of only a short list of numbers. In those cases, we use set notation
(first introduced in Section 1.5). With set notation, we have a list of numbers in mind, and we simply list all
of those numbers. Curly braces are standard for surrounding the list. Table 10.2.12 illustrates set notation
in use.

Picture of Set Set Notation

−10 −5 5 10

−2 3
0 x {−2, 3}

−10 −5 5 10

−5 1 3 5
0 x {−5, 1, 3, 5}

−10 −5 5 10

−2 5
0 x {−2} ∪ (5,∞)

Table 10.2.12: Set Notation

Checkpoint 10.2.13. A change machine lets you put in an x-dollar bill, and gives you f (x) nickels in
return equal in value to x dollars. Any current, legal denomination of US paper money can be fed to the
change machine. What is the domain of f ?

Explanation. The current, legal denominations of US paper money are $1, $2, $5, $10, $20, $50, and $100.
So the domain of f is the set {1, 2, 5, 10, 20, 50, 100}.
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While most collections of numbers that we will encounter can be described using a combination of interval
notation and set notation, there is another commonly used notation that is very useful in algebra: set-builder
notation, which was introduced in Section 1.6. Set-builder notation also uses curly braces. Set-builder
notation provides a template for what a number that is under consideration might look like, and then it
gives you restrictions on how to use that template. A very basic example of set-builder notation is

{x | x ≥ 3}.

Verbally, this is “the set of all x such that x is greater than or equal to 3.” Table 10.2.14 gives more examples
of set-builder notation in use.

Picture of Set Set Notation

−10 −5 5 10

−2 3
0 x {x | −2 < x ≤ 3}

−10 −5 5 10

1 3
0 x {x | x < 1 or x > 3}

Table 10.2.14: Set-Builder Notation

Checkpoint 10.2.15. What is the domain of the function sqrt , where sqrt(x) �
√

x, using set-builder
notation?

Explanation. The function sqrt cannot take a negative number as an input. It can however take any positive
number as input, or the number 0 as input. Representing this on a number line, we find the domain is
{x | x ≥ 0} in set-builder notation.

Example 10.2.16 What is the domain of the function A, where A(x) � 2x+1
x2−2x−8?

Note that if you plugged in some value for x, the only thing that might go wrong is if the denominator
equals 0. So a bad value for x would be when

x2 − 2x − 8 � 0
(x + 2)(x − 4) � 0

Here, we used a basic factoring technique from Section 7.3. To continue, either

x + 2 � 0 or x − 4 � 0
x � −2 or x � 4.

These are the bad x-values because they lead to division by 0 in the formula for A. So on a number line,
if we wanted to picture the domain of A, we would make a sketch like:

−10 −5 5 10

−2 4
0 x

So the domain is the union of three intervals: (−∞,−2) ∪ (−2, 4) ∪ (4,∞).
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Example 10.2.17 What is the domain of the function B, where B(x) �
√

7 − x + 3?

Note that if you plugged in some value for x, the only thing that might go wrong is if the value in the
radical is negative. So the good values for x would be when

7 − x ≥ 0
7 ≥ x
x ≤ 7

So on a number line, if we wanted to picture the domain of B, we would make a sketch like:

−10 −5 5 10

7
0 x

So the domain is the interval (−∞, 7].

There are three main properties of algebraic functions that cause numbers to be excluded from a domain,
which are summarized here.

Denominators Division by zero is undefined. So if a function contains an expression in a de-
nominator, it will only be defined where that expression is not equal to zero.
Example 10.2.16 demonstrates this.

Square Roots The square root of a negative number is undefined. So if a function contains a
square root, it will only be definedwhen the expression inside that radical is greater than
or equal to zero. (This is actually true for any even nth radical.)
Example 10.2.17 demonstrates this.

Context Some numbers are nonsensical in context. If a function has real-world context, then
this may add additional restrictions on the input values.
Example 10.2.3 demonstrates this.

List 10.2.18: Summary of Algebraic Domain Restrictions

10.2.3 Range

The domain of a function is the collection of its valid inputs; there is a similar notion for output.

Definition 10.2.19 Range. The range of a function f is the collection of all of its possible output values.

Example 10.2.20 Let f be the function defined by the formula f (x) � x2. Finding f ’s domain is straight-
forward. Any number anywhere can be squared to produce an output, so f has domain (−∞,∞). What
is the range of f ?
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Explanation. We would like to describe the collection of possible numbers that f can give as output.
Wewill use a graphical approach. Figure 10.2.21 displays a graph of f , and the visualization that reveals
f ’s range.

−6 −4 −2 2 4 6
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−6 −4 −2 2 4 6

−6

−4

−2

2

4
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Figure 10.2.21: y � f (x) where f (x) � x2. The second graph illustrates how to visualize the range. In
the third graph, the range is marked as an interval on the y-axis.

Output values are the y-coordinates in a graph. If we “slide the ink” left and right over to the y-axis to
emphasize what the y-values in the graph are, we have y-values that start from 0 and continue upward
forever. Therefore the range is [0,∞).

Warning 10.2.22 Finding range from a formula. Sometimes it is possible to compute a range without the
aid of a graph. However, doing so can often require techniques covered in calculus. Therefore when you
are asked to find the range of a function based on its formula, your approach will most often need to be a
graphical one.

Example 10.2.23 Given the function 1 graphed in Figure 10.2.24, find the domain and range of 1.

−1 1

1

2

3

x

y

Figure 10.2.24: y � 1(x)
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Explanation. To find the domain, we can visualize all of the x-values that are valid inputs for this
function by “sliding the ink” down onto the x-axis. The arrows at the far left and far right of the curve
indicate that whatever pattern we see in the graph continues off to the left and right. Here, we see that
the arms of the graph appear to be tapering down to the x-axis and extending left and right forever.
Every x-value can be used to get an output for the function, so the domain is (−∞,∞).
If we visualize the possible outputs by “sliding the ink” sideways onto the y-axis, we find that outputs
as high as 3 are possible (including 3 itself). The outputs appear to get very close to 0 when x is large,
but they aren’t quite equal to 0. So the range is (0, 3].

−1 1

1

2

3

x

y

−1 1

1

2

3

x

y

Figure 10.2.25: Domain of 1 Figure 10.2.26: Range of 1

Checkpoint 10.2.27. Given the function h graphed below, find the domain and range of h. Note there
is an invisible vertical line at x � 2, and the two arms of the graph are extending downward (and upward)
forever, getting arbitrarily close to that vertical line, but never touching it. Also note that the two arms
extend forever to the left and right, getting arbitrarily close to the y-axis, but never touching it.

The domain of h is and the range of h is .

762



10.2 Domain and Range

Explanation. To find the domain, we try to visualize all of the x-values that are valid inputs for this func-
tion. The arrows pointing left and right on the curve indicate that whatever pattern we see in the graph
continues off to the left and right. So for x-values far to the right or left, we will be able to get an output for
h.

The arrows pointing up and down are supposed to indicate that the curve will get closer and closer to the
vertical line x � 2 after the curve leaves the viewing windowwe are using. So even when x is some number
very close to 2, we will be able to get an output for h.

The one x-value that doesn’t behave is x � 2. If we tried to use that as an input, there is no point on the
graph directly above or below that on the x-axis. So the domain is (−∞, 2) ∪ (2,∞).
To find the range, we try to visualize all of the y-values that are possible outputs for this function. Sliding
the ink of the curve left/right onto the y-axis reveals that y � 0 is the only y-value that we could never
obtain as an output. So the range is (−∞, 0) ∪ (0,∞).

The examples of finding domain and range so far have all involved either a verbal description of a function,
a formula for that function, or a graph of that function. Recall that there is a fourth perspective on functions:
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a table. In the case of a table, we have very limited information about the function’s inputs and outputs. If
the table is all that we have, then there are a handful of input values listed in the table for which we know
outputs. For any other input, the output is undefined.

Example 10.2.28 Consider the function k given in Table 10.2.29. What is the domain and range of k?

x k(x)
3 4
8 5
10 5

Table 10.2.29

Explanation. All that we know about k is that k(3) � 4, k(8) � 5, and k(10) � 5. Without any other
information such as a formula for k or a context for k that tells us its verbal description, we must assume
that its domain is {3, 8, 10}; these are the only valid input for k. Similarly, k’s range is {4, 5}.
Note that we have used set notation, not interval notation, since the answers here were lists of x-values
(for the domain) and y-values (for the range). Also note that we could graph the information that we
have about k in Figure 10.2.30, and the visualization of “sliding ink” to determine domain and range
still works.

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

(3, 4)

(3, 4) (3, 4)

x

y

Figure 10.2.30
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Exercises

Review and Warmup

Here is an interval:

Write the interval using set-builder notation.

Write the interval using interval notation.

1. Here is an interval:

Write the interval using set-builder notation.

Write the interval using interval notation.

2.

Here is an interval:

Write the interval using set-builder notation.

Write the interval using interval notation.

3. Here is an interval:

Write the interval using set-builder notation.

Write the interval using interval notation.

4.

Solve this compound inequality, andwrite your
answer in interval notation.

x ≥ 0 and x ≤ 2

5. Solve this compound inequality, andwrite your
answer in interval notation.

x ≥ −3 and x < −2

6.

Solve this compound inequality, andwrite your
answer in interval notation.

x ≥ 6 or x ≤ 3

7. Solve this compound inequality, andwrite your
answer in interval notation.

x > 2 or x < −2

8.

Domain and Range From a Graph A function is graphed.

This function has domain

and range .

9.

This function has domain

and range .

10.

This function has domain

and range .

11.
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This function has domain

and range .

12.

This function has domain

and range .

13.

This function has domain

and range .

14.

This function has domain

and range .

15.

This function has domain

and range .

16.

This function has domain

and range .

17.

This function has domain

and range .

18.

This function has domain

and range .

19.

This function has domain

and range .

20.
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This function has domain

and range .

21.

This function has domain

and range .

22.

The function has domain

and range .

23.

The function has domain

and range .

24.

The function has domain

and range .

25.

The function has domain

and range .

26.

The function has domain

and range .

27.

The function has domain

and range .

28.

The function has domain

and range .

29.
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The function has domain

and range .

30.

The function has domain

and range .

31.

The function has domain

and range .

32.

The function has domain

and range .

33.

The function has domain

and range .

34.

The function has domain

and range .

35.

The function has domain

and range .

36.
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Domain From a Formula

Find the domain of H where
H(x) � −x + 4.

37. Find the domain of K where
K(x) � −8x − 9.

38. Find the domain of f where

f (x) � 8
7 x4.

39.

Find the domain of f where

f (x) � 5
7 x2.

40. Find the domain of 1 where
1(x) � |−9x − 3|.

41. Find the domain of h where
h(x) � |5x + 5|.

42.

Find the domain of F where

F(x) � 2x
x + 2 .

43. Find the domain of F where

F(x) � 5x
x + 10 .

44. Find the domain of G where
G(x) � x

7x − 4 .
45.

Find the domain of H where

H(x) � 4x
7x + 3 .

46. Find the domain of K where

K(x) � 10x + 7
x2 + 14x + 40

.

47. Find the domain of f where

f (x) � 3x − 5
x2 + 8x − 20

.

48.

Find the domain of f where

f (x) � 4 − 4x
x2 − 7x

.

49. Find the domain of 1 where

1(x) � 9x − 9
x2 + 8x

.

50. Find the domain of h where

h(x) � 2x + 2
x2 − 1

.

51.

Find the domain of F where

F(x) � 9 − 5x
x2 − 49

.

52. Find the domain of F where

F(x) � 9x − 3
16x2 − 25

.

53. Find the domain of G where

G(x) � x + 5
64x2 − 25

.

54.

Find the domain of H where

H(x) � −6x + 7
x2 + 5

.

55. Find the domain of K where

K(x) � 8x + 2
x2 + 3

.

56. Find the domain of the func-
tion.

f (x) � − 10√
x+9

57.

Find the domain of the func-
tion.

f (x) � − 7√
x−2

58. Find the domain of the func-
tion.

1(x) �
√

9 − x

59. Find the domain of the func-
tion.

h(x) �
√

6 − x

60.

Find the domain of the func-
tion.

F(x) �
√

3 + 14x

61. Find the domain of the func-
tion.

F(x) �
√

9 + 16x

62. Find the domain of A where

A(x) � x + 14
x2 − 81

.

63.

Find the domain of p where

p(x) � x + 16
x2 − 4

.

64. Find the domain of a where

a(x) � 16x + 6
x2 + 7x − 98

.

65. Find the domain of m where

m(x) � 16x − 3
x2 + 2x − 8

.

66.

Find the domain of r where

r(x) �
√

3 + x
1 − x

.

67. Find the domain of B where

B(x) �
√

5 + x
7 − x

.

68.
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Domain and Range Using Context

Ross bought a used car for $9,000. The car’s
value decreases at a constant rate each year.
After 7 years, the value decreased to $6,900.

Use a function to model the car’s value as the
number of years increases. Find this function’s
domain and range in this context.

The function’s domain in this context is .

The function’s range in this context is .

69. Michael bought a used car for $8,400. The
car’s value decreases at a constant rate each
year. After 7years, the value decreased to $5,600.

Use a function to model the car’s value as the
number of years increases. Find this function’s
domain and range in this context.

The function’s domain in this context is .

The function’s range in this context is .

70.

Assume a car uses gas at a constant rate. After
driving 25 miles since a full tank of gas was
purchased, there was 15.75 gallons of gas left;
after driving 50 miles since a full tank of gas
was purchased, there was 13.5 gallons of gas
left.

Use a function to model the amount of gas in
the tank (in gallons). Let the independent vari-
able be the number of miles driven since a full
tank of gas was purchased. Find this func-
tion’s domain and range in this context.

The function’s domain in this context is .

The function’s range in this context is .

71. Assume a car uses gas at a constant rate. Af-
ter driving 20 miles since a full tank of gas was
purchased, there was 7.2 gallons of gas left; af-
ter driving 60 miles since a full tank of gas was
purchased, there was 5.6 gallons of gas left.

Use a function to model the amount of gas in
the tank (in gallons). Let the independent vari-
able be the number of miles driven since a full
tank of gas was purchased. Find this func-
tion’s domain and range in this context.

The function’s domain in this context is .

The function’s range in this context is .

72.

Henry inherited a collection of coins when
he was 14 years old. Ever since, he has been
adding into the collection the same number of
coins each year. When he was 21 years old,
there were 580 coins in the collection. When
hewas 29 years old, therewere 900 coins in the
collection. At the age of 51, Henry donated all
his coins to a museum.

Use a function to model the number of coins
inHenry’s collection, starting in the year he in-
herited the collection, and ending in the year
the collectionwasdonated. Find this function’s
domain and range in this context.

The function’s domain in this context is .

The function’s range in this context is .

73. Scot inherited a collection of coins when he
was 15years old. Ever since, he has been adding
into the collection the same number of coins
each year. When he was 21 years old, there
were 380 coins in the collection. When he was
29 years old, there were 540 coins in the col-
lection. At the age of 57, Scot donated all his
coins to a museum.

Use a function tomodel the number of coins in
Scot’s collection, starting in the year he inher-
ited the collection, and ending in the year the
collection was donated. Find this function’s
domain and range in this context.

The function’s domain in this context is .

The function’s range in this context is .

74.
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Assume a tree grows at a constant rate. When
the tree was planted, it was 4 feet tall. After 8
years, the tree grew to 6.4 feet tall.

Use a function to model the tree’s height as
years go by. Assume the tree can live 200years,
find this function’s domain and range in this
context.

The function’s domain in this context is .

The function’s range in this context is .

75. Assume a tree grows at a constant rate. When
the tree was planted, it was 2.2 feet tall. After
10 years, the tree grew to 10.2 feet tall.

Use a function to model the tree’s height as
years go by. Assume the tree can live 180years,
find this function’s domain and range in this
context.

The function’s domain in this context is .

The function’s range in this context is .

76.

An object was shot up into the air at an ini-
tial vertical speed of 384 feet per second. Its
height as time passes can be modeled by the
quadratic function f , where f (t) � −16t2 + 384t.
Here t represents the number of seconds since
the object’s release, and f (t) represents the ob-
ject’s height in feet.

Find the function’s domain and range in this
context.

The function’s domain in this context is .

The function’s range in this context is .

77. An object was shot up into the air at an ini-
tial vertical speed of 416 feet per second. Its
height as time passes can be modeled by the
quadratic function f , where f (t) � −16t2 + 416t.
Here t represents the number of seconds since
the object’s release, and f (t) represents the ob-
ject’s height in feet.

Find the function’s domain and range in this
context.

The function’s domain in this context is .

The function’s range in this context is .

78.

From a clifftop over the ocean 421.89 m above
sea level, an object was shot straight up into
the airwith an initial vertical speed of 125.93 m

s .
On itswaydown itmissed the cliff and fell into
the ocean. Its height (above sea level) as time
passes can be modeled by the quadratic func-
tion f , where f (t) � −4.9t2 + 125.93t + 421.89.
Here t represents the number of seconds since
the object’s release, and f (t) represents the ob-
ject’s height (above sea level) in meters.

Find the function’s domain and range in this
context.

The function’s domain in this context is .

The function’s range in this context is .

79. From a clifftop over the ocean 370.44 m above
sea level, an object was shot straight up into
the airwith an initial vertical speed of 108.78 m

s .
On itswaydown itmissed the cliff and fell into
the ocean. Its height (above sea level) as time
passes can be modeled by the quadratic func-
tion f , where f (t) � −4.9t2 + 108.78t + 370.44.
Here t represents the number of seconds since
the object’s release, and f (t) represents the ob-
ject’s height (above sea level) in meters.

Find the function’s domain and range in this
context.

The function’s domain in this context is .

The function’s range in this context is .

80.
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Youwill build a rectangular sheep pen next to
a river. There is no need to build a fence along
the river, so you only need to build three sides.
You have a total of 470 feet of fence to use. Find
the dimensions of the pen such that you can
enclose the maximum area.

Use a function to model the area of the rect-
angular pen, with respect to the length of the
width (the two sides perpendicular to the river).
Find the function’s domain and range in this
context.

The function’s domain is .

The function’s range is .

81. Youwill build a rectangular sheep pen next to
a river. There is no need to build a fence along
the river, so you only need to build three sides.
You have a total of 480 feet of fence to use. Find
the dimensions of the pen such that you can
enclose the maximum area.

Use a function to model the area of the rect-
angular pen, with respect to the length of the
width (the two sides perpendicular to the river).
Find the function’s domain and range in this
context.

The function’s domain is .

The function’s range is .

82.

A student’s first name is a function of their
student identification number.

(a) Describe the domain for this function in
a sentence. Specifics are not needed.

(b) Describe the range for this function in a
sentence. Specifics are not needed.

83. The year a car was made is a function of its
VIN (Vehicle Identification Number).

(a) Describe the domain for this function in
a sentence. Specifics are not needed.

(b) Describe the range for this function in a
sentence. Specifics are not needed.

84.

Challenge

For each part, sketch the graph of a function with the given domain and range.

a. The domain is (0,∞) and the range is (−∞, 0).
b. The domain is (1, 2) and the range is (3, 4).
c. The domain is (0,∞) and the range is [2, 3].
d. The domain is (1, 2) and the range is (−∞,∞).
e. The domain is (−∞,∞) and the range is (−1, 1).
f. The domain is (0,∞) and the range is [0,∞).

85.
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10.3 Using Technology to Explore Functions

Graphing technology allows us to explore the properties of functions more deeply than we can with only
pencil and paper. It can quickly create a table of values, and quickly plot the graph of a function. Such tech-
nology can also evaluate functions, solve equations with functions, find maximum and minimum values,
and explore other key features.

There are many graphing technologies currently available, including (but not limited to) physical (hand-
held) graphing calculators, Desmos, GeoGebra, Sage, and WolframAlpha.

This section will focus on how technology can be used to explore functions and their key features. Although
the choice of particular graphing technology varies by each school and curriculum, the main ways in which
technology is used to explore functions is the same and can be done with each of the technologies above.

10.3.1 Finding an Appropriate Window

With a simple linear equation like y � 2x + 5, most graphing technologies will show this graph in a good
window by default. A common default window goes from x � −10 to x � 10 and y � −10 to y � 10.

What if we wanted to graph something with a much larger magnitude though, such as y � 2000x + 5000?
If we tried to view this for x � −10 to x � 10 and y � −10 to y � 10, the function would appear as an almost
vertical line since it has such a steep slope.

Using technology, wewill create a table of values for this function as shown in Figure 10.1a. Thenwewill set
the x-values for which we view the function to go from x � −5 to x � 5 and the y-values from y � −20,000
to y � 20,000. The graph is shown in Figure 10.1b.

x y � 2000x + 5000
−5 −5000
−4 −3000
−3 −1000
−2 1000
−1 3000
0 5000
1 7000
2 9000
3 11000
4 13000
5 15000

−4 −3 −2 −1 1 2 3 4

-15000

-10000

-5000

5000

10000

15000

x

y

(a) A table of values (b) Graphed with an appropriate window

Figure 10.3.1: Creating a table of values to determine an appropriate graphing window

Now let’s practice finding an appropriate viewing window with a less familiar function.
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Example 10.3.2 Find an appropriate window for q(x) � x3

100 − 2x + 1.

Entering this function into graphing technology,
we input q(x)=(x^3)/100-2x+1. A default win-
dow will generally give us something like this:

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

x

y

Figure 10.3.3: Function q graphed in the de-
fault window.

We can tell from the lower right corner of Fig-
ure 10.3.3 that we’re not quite viewing all of the
important details of this function. To determine a
better window, we could use technology tomake
a table of values. Another more rudimentary op-
tion is to double the viewing constraints for x
and y, as shown in Figure 10.3.4. Many graph-
ing technologies have the ability to zoom in and
out quickly.

−16 −12 −8 −4 4 8 12 16

−16

−12

−8

−4

4

8

12

16

x

y

Figure 10.3.4: Function q graphed in an ex-
panded window.

10.3.2 Using Technology to Determine Key Features of a Graph

The key features of a graph can be determined using graphing technology. Here, we’ll show how to deter-
mine the x-intercepts, y-intercepts, maximum/minimum values, and the domain and range using technol-
ogy.

Example 10.3.5 Graph the function given by p(x) � −1000x2 − 100x + 40. Determine an appropriate
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viewing window, and then use graphing technology to determine the following:

a. Determine the x-intercepts of the function.

b. Determine the y-intercept of the function.

c. Determine the maximum function value and where it occurs.

d. State the domain and range of this function.

Explanation.

To start, we’ll take a quick view of this function
in a default window. We can see that we need to
zoom in on the x-values, but we need to zoom
out on the y-values.

From the graphwe see that the x-valuesmight as
well run from about −0.5 to 0.5, so we will look
at x-values in that window in increments of 0.1,
as shown in Table 10.2a. This table allows us to
determine an appropriate viewing window for
y � p(x) which is shown in Figure 10.2b. The
table suggests we should go a little higher than
40 on the y-axis, and it would be OK to go the
same distance in the negative direction to keep
the x-axis centered.

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

x

y

Figure 10.3.6: Graph of y � p(x) in an inappro-
priate window

x p(x)
−0.5 −160
−0.4 −80
−0.3 −20
−0.2 20
−0.1 40

0 40
0.1 20
0.2 −20
0.3 −80
0.4 −160
0.5 −260

−0.4 −0.3 −0.2 −0.1 0.1 0.2 0.3 0.4

−40

−20

20

40

(−0.2562, 0) (0.1562, 0)

(0, 40)(−0.05, 42.5)

x

y

(a) Function values for y � p(x) (b) Graph of y � p(x) in an appropriate window
showing key features

Figure 10.3.6: Creating a table of values to determine an appropriate graphing window
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We can now use Figure 10.2b to determine the x-intercepts, the y-intercept, the maximum function
value, and the domain and range.

a. To determine the x-intercepts, we will find the points where y is zero. These are about (−0.2562, 0)
and (0.1562, 0).

b. To determine the y-intercept, we need the point where x is zero. This point is (0, 40).
c. The highest point on the graph is the vertex, which is about (−0.05, 42.5). So themaximum function

value is 42.5 and occurs at −0.05.

d. We can see that the function is defined for all x-values, so the domain is (−∞,∞). The maximum
function value is 42.5, and there is no minimum function value. Thus the range is (−∞, 42.5].

If we use graphing technology to graph the func-
tion 1 where 1(x) � 0.0002x2 + 0.00146x +

0.00266, we may be mislead by the way values
are rounded. Without technology, we know that
this function is a quadratic function and there-
fore has at most two x-intercepts and has a ver-
tex that will determine the minimum function
value. However, using technology we could ob-
tain a graph with the following key points:

1 2 3

−0.04

−0.02

0.02

0.04

(−3.8, 0)
(−3.65, 0)

(−3.5, 0)
x

y

Figure 10.3.8: Misleading graph

Example 10.3.7 This looks like there are three x-intercepts, whichwe know is not possible for a quadratic
function. We can evaluate 1 at x � −3.65 and determine that 1(−3.65) � −0.0000045, which is approxi-
mately zero when rounded. So the true vertex of this function is (−3.65,−0.0000045), and the minimum
value of this function is −0.0000045 (not zero).

Every graphing tool generally has some type of limitation like this one, and it’s good to be aware that
these limitations exist.

10.3.3 Solving Equations and Inequalities Graphically Using Technology

To algebraically solve an equation like h(x) � v(x) for

h(x) � −0.01(x − 90)(x + 20) and v(x) � −0.04(x − 10)(x − 80),

we’d start by setting up
−0.01(x − 90)(x + 20) � −0.04(x − 10)(x − 80)
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To solve this, we’d then simplify each side of the equation, set it equal to zero, and finally use the quadratic
formula.

An alternative is to graphically solve this equation, which is done by graphing

y � −0.01(x − 90)(x + 20) and y � −0.04(x − 10)(x − 80).

−40 −20 20 40 60 80

−30

−20

−10

10

20

30

40

50

(22.46, 28.677)

(74.207, 14.878)
x

y The points of intersection, (22.46, 28.677) and
(74.207, 14.878), show where these functions are
equal. This means that the x-values give the so-
lutions to the equation −0.01(x − 90)(x + 20) �

−0.04(x−10)(x−80). So the solutions are approxi-
mately 22.46 and 74.207, and the solution set is ap-
proximately {22.46, 74.207}.

Figure 10.3.9: Points of intersection for
h(x) � v(x)

Similarly, to graphically solve an equation like h(x) � 25 for

h(x) � −0.01(x − 90)(x + 20),
we can graph

y � −0.01(x − 90)(x + 20) and y � 25

−40 −20 20 40 60 80

−30

−20

−10

10

20

30

40

50

(12.807, 25)
(57.913, 25)

x

y The points of intersection are (12.807, 25) and
(57.913, 25), which tells us that the solutions to
h(x) � 25 are approximately 12.807 and 57.913.
The solution set is approximately {12.807, 57.913}.

Figure 10.3.10: Points of intersection for h(x) �

25
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Example 10.3.11 Use graphing technology to solve the following inequalities:

a. −20t2 − 70t + 300 ≥ −5t + 300 b. −20t2 − 70t + 300 < −5t + 300

Explanation. To solve these inequalities graphically, we will start by graphing the equations y �

−20t2 − 70t + 300 and y � −5t + 300 and determining the points of intersection:

−6 −4 −2 2 4 6

−100

100

200

300

(−3.25, 316.25)

(0, 300)

x

y

Figure 10.3.12: Points of intersection for y � −20t2 − 70t + 300 and y � −5t + 300

To solve −20t2 − 70t + 300 ≥ −5t + 300, we need
to determine where the y-values of the graph of
y � −20t2−70t+300 are greater than the y-values
of the graph of y � −5t + 300 in addition to the
values where the y-values are equal. This region
is highlighted in Figure 10.3.13.
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Figure 10.3.13
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a. We can see that this region includes all values of t between, and including, t � −3.25 and t � 0. So
the solutions to this inequality include all values of t for which −3.25 ≤ t ≤ 0. We can write this
solution set in interval notation as [−3.25, 0] or in set-builder notation as {t | −3.25 ≤ t ≤ 0}.

b. To now solve −20t2 − 70t + 300 < −5t + 300, we will need to determine where the y-values of the
graph of y � −20t2 − 70t + 300 are less than the y-values of the graph of y � −5t + 300. This region
is highlighted in Figure 10.3.14.
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(0, 300)

t

y

Figure 10.3.14

We can see that −20t2 − 70t + 300 < −5t + 300 for all values of t where t < −3.25 or t > 0. We
can write this solution set in interval notation as (−∞,−3.25) ∪ (0,∞) or in set-builder notation as
{t | t < −3.25 or t > 0}.

Exercises

Using Technology to Create a Table of Function Values Use technology to make a table of values for
the function.

K(x) � −4x2 + 15x − 4

x K(x)

1. K(x) � −3x2 + 18x + 3

x K(x)

2.
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f (x) � 2.25x2 + 70x − 67

x f (x)

3. 1(x) � −0.5x2 − 170x + 79

x 1(x)

4.

h(x) � −10x3 + 10x + 23

x h(x)

5. F(x) � 6x3 + 180x − 33

x F(x)

6.

Determining Appropriate Windows

Let f (x) � −5943x − 4132. Choose an appro-
priate window for graphing f that shows its
key features.

The x-interval could be and

the y-interval could be .

7. Let f (x) � −663x + 767. Choose an appropri-
ate window for graphing f that shows its key
features.

The x-interval could be and

the y-interval could be .

8.

Let f (x) � 772x2 + 189x − 4162. Choose an
appropriatewindow for graphing f that shows
its key features.

The x-interval could be and

the y-interval could be .

9. Let f (x) � −882x2 − 602x + 4033. Choose an
appropriatewindow for graphing f that shows
its key features.

The x-interval could be and

the y-interval could be .

10.
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Let f (x) � −0.0005x2 + 0.001x − 0.41. Choose
an appropriate window for graphing f that
shows its key features.

The x-interval could be and

the y-interval could be .

11. Let f (x) � 0.00014x2 + 0.0027x + 0.4. Choose
an appropriate window for graphing f that
shows its key features.

The x-interval could be and

the y-interval could be .

12.

Finding Points of Intersection

Use technology to determine howmany times
the equations y � (350 − 12x)(−102 − 8x) and
y � −6000 intersect. They intersect (□ zero
times □ one time □ two times □ three times)
.

13. Use technology to determine howmany times
the equations y � (−234 − 7x)(−380 + 19x) and
y � −6000 intersect. They intersect (□ zero
times □ one time □ two times □ three times)
.

14.

Use technology to determine howmany times
the equations y � −x3 + x2 + 3x and y � 7x − 3
intersect. They intersect (□ zero times □ one
time □ two times □ three times) .

15. Use technology to determine howmany times
the equations y � x3 − 2x2 − 8x and y � x − 3
intersect. They intersect (□ zero times □ one
time □ two times □ three times) .

16.

Use technology to determine howmany times the equations y � −0.7
(
6x2 − 4

)
and y � −0.11(9x − 4)

intersect. They intersect (□ zero times □ one time □ two times □ three times) .
17.

Use technology to determine howmany times the equations y � −0.4
(
7x2 + 8

)
and y � 0.19(6x − 9)

intersect. They intersect (□ zero times □ one time □ two times □ three times) .
18.

Use technology to determine howmany times
the equations y � 1.55(x + 5)2 − 2.7 and y �

0.95x − 1 intersect. They intersect (□ zero
times □ one time □ two times □ three times)
.

19. Use technology to determine howmany times
the equations y � 2(x − 7)2 + 4.85 and y �

−0.15x − 1 intersect. They intersect (□ zero
times □ one time □ two times □ three times)
.

20.
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Using Technology to Find Key Features of a Graph

For the function j defined by

j(x) � −2
5 (x − 3)2 + 6,

use technology to determine the following. Round
answers as necessary.

a. Any intercepts.

b. The vertex.

c. The domain.

d. The range.

21. For the function k defined by

k(x) � 2(x + 1)2 + 10,

use technology to determine the following. Round
answers as necessary.

a. Any intercepts.

b. The vertex.

c. The domain.

d. The range.

22.

For the function L defined by

L(x) � 3000x2
+ 10x + 4,

use technology to determine the following. Round
answers as necessary.

a. Any intercepts.

b. The vertex.

c. The domain.

d. The range.

23. For the function M defined by

M(x) � −(300x − 2950)2,

use technology to determine the following. Round
answers as necessary.

a. Any intercepts.

b. The vertex.

c. The domain.

d. The range.

24.

For the function N defined by

N(x) � (300x − 1.05)2,

use technology to determine the following. Round
answers as necessary.

a. Any intercepts.

b. The vertex.

c. The domain.

d. The range.

25. For the function B defined by

B(x) � x2 − 0.05x + 0.0006,

use technology to determine the following. Round
answers as necessary.

a. Any intercepts.

b. The vertex.

c. The domain.

d. The range.

26.
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Solving Equations and Inequalities Graphically Using Technology

Let s(x) � 1
5 x2 − 2x + 10 and

t(x) � −x + 40. Use graphing technology to
determine the following.

a. What are the points of intersection for these
two functions?

b. Solve s(x) � t(x).
c. Solve s(x) > t(x).
d. Solve s(x) ≤ t(x).

27. Let w(x) � 1
4 x2−3x−8 and m(x) � x+12. Use

graphing technology to determine the follow-
ing.

a. What are the points of intersection for these
two functions?

b. Solve w(x) � m(x).
c. Solve w(x) > m(x).
d. Solve w(x) ≤ m(x).

28.

Let f (x) � 4x2 + 5x − 1 and 1(x) � 5. Use
graphing technology to determine the follow-
ing.

a. What are the points of intersection for these
two functions?

b. Solve f (x) � 1(x).
c. Solve f (x) < 1(x).
d. Solve f (x) ≥ 1(x).

29. Let p(x) � 6x2 − 3x + 4 and k(x) � 7. Use
graphing technology to determine the follow-
ing.

a. What are the points of intersection for these
two functions?

b. Solve p(x) � k(x).
c. Solve p(x) < k(x).
d. Solve p(x) ≥ k(x).

30.

Let q(x) � −4x2 − 24x + 10 and
r(x) � 2x + 22. Use graphing technology to
determine the following.

a. What are the points of intersection for these
two functions?

b. Solve q(x) � r(x).
c. Solve q(x) > r(x).
d. Solve q(x) ≤ r(x).

31. Let h(x) � −10x2 − 5x + 3 and
j(x) � −3x − 9. Use graphing technology to
determine the following.

a. What are the points of intersection for these
two functions?

b. Solve h(x) � j(x).
c. Solve h(x) > j(x).
d. Solve h(x) ≤ j(x).

32.

Use graphing technology to solve the equa-
tion 0.4x2 + 0.5x − 0.2 � 2.4. Approximate the
solution(s) if necessary.

33. Use graphing technology to solve the equa-
tion −0.25x2 − 2x + 1.75 � 4.75. Approximate
the solution(s) if necessary.

34.

Use graphing technology to solve the equa-
tion (200+5x)(100−2x) � 15000. Approximate
the solution(s) if necessary.

35. Use graphing technology to solve the equa-
tion (200 − 5x) (100 + 10x) � 20000. Approxi-
mate the solution(s) if necessary.

36.
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Use graphing technology to solve the equa-
tion 2x3 − 5x + 1 � − 1

2 x + 1. Approximate the
solution(s) if necessary.

37. Use graphing technology to solve the equa-
tion −x3 + 8x � −4x + 16. Approximate the
solution(s) if necessary.

38.

Use graphing technology to solve the equa-
tion −0.05x2 − 2.03x − 19.6 � 0.05x2 + 1.97x +

19.4. Approximate the solution(s) if necessary.

39. Use graphing technology to solve the equa-
tion −0.02x2 + 1.97x − 51.5 � 0.05 (x − 50)2 −
0.03 (x − 50) . Approximate the solution(s) if nec-
essary.

40.

Use graphing technology to solve the equa-
tion −200x2 + 60x − 55 � −20x − 40. Approxi-
mate the solution(s) if necessary.

41. Use graphing technology to solve the equa-
tion 150x2−20x+50 � 100x+40. Approximate
the solution(s) if necessary.

42.

Use graphing technology to solve the inequal-
ity 2x2 + 5x − 3 > −5. State the solution set us-
ing interval notation, and approximate if nec-
essary.

43. Use graphing technology to solve the inequal-
ity−x2+4x−7 > −12. State the solution set us-
ing interval notation, and approximate if nec-
essary.

44.

Use graphing technology to solve the inequal-
ity 10x2−11x+7 ≤ 7. State the solution set us-
ing interval notation, and approximate if nec-
essary.

45. Use graphing technology to solve the inequal-
ity−10x2−15x+4 ≤ 9. State the solution set us-
ing interval notation, and approximate if nec-
essary.

46.

Use graphing technology to solve the inequal-
ity −x2 − 6x + 1 > x + 5. State the solution
set using interval notation, and approximate
if necessary.

47. Use graphing technology to solve the inequal-
ity 3x2 + 5x − 4 > −2x + 1. State the solution
set using interval notation, and approximate if
necessary.

48.

Use graphing technology to solve the inequal-
ity −10x+4 ≤ 20x2−34x+6. State the solution
set using interval notation, and approximate if
necessary.

49. Use graphing technology to solve the inequal-
ity−15x2−6 ≤ 10x−4. State the solution set us-
ing interval notation, and approximate if nec-
essary.

50.

Use graphing technology to solve the inequal-
ity 1

2 x2+ 3
2 x ≥ 1

2 x− 3
2 . State the solution set us-

ing interval notation, and approximate if nec-
essary.

51. Use graphing technology to solve the inequal-
ity 3

4 x ≥ 1
4 x2 − 3x. State the solution set us-

ing interval notation, and approximate if nec-
essary.

52.
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10.4 Simplifying Expressions with Function Notation

In this section, we will discuss algebra simplification that will appear in many facets of education. Simpli-
fication is a skill, like cooking noodles or painting a wall. It may not always be exciting, but it does serve a
purpose. Also like cooking noodles or painting a wall, it isn’t usually difficult, and yet there are common
avoidable mistakes that people make. With practice from this section, you’ll have experience to prevent
yourself from overcooking the noodles or ruining your paintbrush.

10.4.1 Negative Signs in and out of Function Notation

Let’s start by reminding ourselves about the meaning of function notation. When we write f (x), we have a
process f that is doing something to an input value x. Whatever is inside those parentheses is the input to
the function. What if we use something for input that is not quite as simple as “x?”

Example 10.4.2 Find and simplify a formula for f (−x), where f (x) � x2 + 3x − 4.

Explanation. Those parentheses encase “−x,” so we are meant to treat “−x” as the input. The rule that
we have been given for f is

f (x) � x2
+ 3x − 4.

But the x’s that are in this formula are just place-holders. What f does to a number can just as easily be
communicated with

f ( ) � ( )2 + 3( ) − 4.

So now that we are meant to treat “−x” as the input, we will insert “−x” into those slots, after which we
can do more familiar algebraic simplification:

f ( ) � ( )2 + 3( ) − 4
f (−x) � (−x)2 + 3(−x) − 4

� x2 − 3x − 4

The previous example contrasts nicely with this one:

Example 10.4.3 Find and simplify a formula for − f (x), where f (x) � x2 + 3x − 4.

Explanation. Here, the parentheses only encase “x.” The negative sign is on the outside. So the way
to see this expression is that first f will do what it does to x, and then that result will be negated:

− f (x) � −(x2
+ 3x − 4)

� −x2 − 3x + 4

Note that the answer to this exercise, which was to simplify − f (x), is different from the answer to Ex-
ample 10.4.2, which was to simplify f (−x). In general you cannot pass a negative sign in and out of
function notation and still have the same quantity.

In Example 10.4.2 and Example 10.4.3, we are working with the expressions f (−x) and − f (x), and trying to
find “simplified” formulas. If it seems strange to be doing these things, perhaps this applied example will
help.

Checkpoint 10.4.4. The NASDAQ Composite Index measures how well a portion of the stock market

785



Chapter 10 Functions and Their Representations

is doing. Suppose N(t) is the value of the index t days after January 1, 2018. A formula for N is N(t) �
3.34t2 + 26.2t + 6980.

What if you wanted a new function, B, that gives the value of the NASDAQ index t days before January 1,
2018? Technically, t days before is the same as negative t days after. So B(t) is the same as N(−t), and now
the expression N(−t)means something. Find a simplified formula for N(−t).

N(−t) �

Explanation.
N( ) � 3.34( )2 + 26.2( ) + 6980
N(−t) � 3.34(−t)2 + 26.2(−t) + 6980

� 3.34t2 − 26.2t + 6980

10.4.2 Other Nontrivial Simplifications

Example 10.4.5 Find and simplify a formula for h(5x), where h(x) � x
x−2 .

Explanation. The parentheses encase “5x,” so we are meant to treat “5x” as the input.

h( ) � ( )
( ) − 2

h(5x) � 5x
5x − 2

�
5x

5x − 2

Example 10.4.6 Find and simplify a formula for 1
31(3x), where 1(x) � 2x2 + 8.

Explanation. Do the 1
3 and the 3 cancel each other? No. The 3 is part of the input, affecting x right

away. Then 1 does whatever it does to 3x, and thenwemultiply the result by 1
3 . Since the function 1 acts

“in between,” we don’t have the chance to cancel the 3 with the 1
3 . Let’s see what actually happens:

Those parentheses encase “3x,” so we are meant to treat “3x” as the input. We will keep the 1
3 where it

is until it is possible to simplify:

1
31( ) �

1
3

(
2( )2 + 8

)
1
31(3x) � 1

3
(
2(3x)2 + 8

)
�

1
3

(
2
(
9x2)

+ 8
)

�
1
3

(
18x2

+ 8
)

� 6x2
+

8
3

Example 10.4.7 If k(x) � x2 − 3x, find and simplify a formula for k(x − 4).

Explanation. This type of exercise is often challenging for algebra students. But let’s focus on those
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parentheses one more time. They encase “x − 4,” so we are meant to treat “x − 4” as the input.

k( ) � ( )2 − 3( )
k(x − 4) � (x − 4)2 − 3(x − 4)

� x2 − 8x + 16 − 3x + 12
� x2 − 11x + 28

Checkpoint 10.4.8. If q(x) � x +
√

x + 8, find and simplify a formula for q(x + 5).

q(x + 5) �

Explanation. Starting with the generic formula for q:

q( ) � ( ) +
√
( ) + 8

q(x + 5) � x + 5 +
√

x + 5 + 8

� x + 5 +
√

x + 13

Example 10.4.9 If f (x) � 1
x , find and simplify a formula for f (x + 3) + 2.

Explanation. Do not be tempted to add the 3 and the 2. The 3 is added to input before the function f
does its work. The 2 is added to the result after f has done its work.

f ( ) + 2 �
1

( ) + 2

f (x + 3) + 2 �
1

x + 3 + 2

This last expression is considered fully simplified. However you might combine the two terms using a
technique from Section 13.3.

The tasks we have practiced in this section are the kind of tasks that will make it easier to understand
interesting and useful material in college algebra and calculus.

Exercises

Review and Warmup

Use the distributive property
towrite an equivalent expres-
sion to 8

(
p + 5

)
that has no

grouping symbols.

1. Use the distributive property
towrite an equivalent expres-
sion to 5

(
q + 8

)
that has no

grouping symbols.

2. Use the distributive property
towrite an equivalent expres-
sion to −10

(
y − 6

)
that has

no grouping symbols.

3.

Use the distributive property
towrite an equivalent expres-
sion to −5(r + 2) that has no
grouping symbols.

4. Multiply the polynomials.

2
(
y + 4

)2
�

5. Multiply the polynomials.

4
(
y + 10

)2
�

6.
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Expand the square of a binomial.

(7r + 9)2 �

7. Expand the square of a binomial.

(4r + 3)2 �

8.

Simplifying Function Expressions

Simplify K(r + 7), where K(r) � 4 + r.9. Simplify G(t + 2), where G(t) � 3 − 4t.10.

Simplify 1(−t), where 1(t) � 3 + 8t.11. Simplify K(−x), where K(x) � 4 + 8x.12.

Simplify F(x + 4), where F(x) � 3 − 1.1x.13. Simplify 1(y + 8), where 1(y) � 2 − 5.5y.14.

Simplify H(y − 2
3 ), where H(y) � − 8

3 +
2
9 y.15. Simplify F(r + 1

3 ), where F(r) � − 7
6 +

2
5 r.16.

Simplify f (r) + 1, where f (r) � −3r + 2.17. Simplify H(r) + 5, where H(r) � −8r + 2.18.

Simplify F(t) + 8, where F(t) � 1 + 4.4t.19. Simplify f (t) + 3, where f (t) � 1 − 0.1t.20.

Simplify H(7x), where H(x) � −5x2 + x + 8.21. Simplify h(2x), where h(x) � 7x2 + x − 1.22.

Simplify f (−y), where f (y) � y2 + 3y + 7.23. Simplify G(−y), where G(y) � 8y2 − 2y − 1.24.

Simplify 4h(r), where h(r) � −7r2 + 7r + 8.25. Simplify 8 f (r), where f (r) � 6r2 − r − 8.26.

Simplify G(r − 6), where G(r) � 0.9r2 + 7r − 6.27. Simplify h(t + 2), where h(t) � −3.6t2 − t − 1.28.

Simplify K(t) + 2, where K(t) � −8t2 − t + 7.29. Simplify G(x) + 5, where G(x) � 4x2 − x − 1.30.

Simplify 1(x + 3), where 1(x) �
√
−1 − 7x.31. Simplify h(x + 9), where h(x) �

√
−2 − 2x.32.

Simplify h(x) + 6, where h(x) �
√
−2 + 6x.33. Simplify F(x) + 3, where F(x) �

√
−2 + x.34.

Simplify G(x + 8), where G(x) � 8x +
√
−2 − 5x.35. Simplify H(x + 5), where H(x) � −2x +

√
−2 − 7x.36.

Simplify 1(t + 4), where 1(t) � 8
5t−3 .37. Simplify HK(t + 8), where HK(t) � − 7

−3t−2 .38.

Simplify F(−3x), where F(x) � 2x
−3x2+7 .39. Simplify 1(6x), where 1(x) � 3x

−3x2−2 .40.
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Let f be a function given by f (x) � 4x − 9.
Find and simplify the following:

a. f (x)+7 �

b. f (x+7) �

c. 7 f (x) �

d. f (7x) �

41. Let f be a function given by f (x) � −5x − 1.
Find and simplify the following:

a. f (x)+5 �

b. f (x+5) �

c. 5 f (x) �

d. f (5x) �

42.

Let f be a function given by f (x) � −4x2 + 4x.
Find and simplify the following:

a. f (x)−5 �

b. f (x−5) �

c. −5 f (x) �

d. f (−5x) �

43. Let f be a function given by f (x) � 4x2 − 2x.
Find and simplify the following:

a. f (x)−2 �

b. f (x−2) �

c. −2 f (x) �

d. f (−2x) �

44.

Applications

A circular oil slick is expanding with radius, r in feet, at time t in hours given by r � 18t − 0.3t2 , for
t in hours, 0 ≤ t ≤ 10.

Find a formula for A � f (t), the area of the oil slick as a function of time.

A � f (t) �

45.

Suppose T(t) represents the temperature outside, in Fahrenheit, at t hours past noon, and a formula
for T is T(t) � 20t

t2+1 + 58.

If we introduce F(t) as the temperature outside, in Fahrenheit, at t hours past 1:00pm, then F(t) �
T(t + 1). Find a simplified formula for T(t + 1).

T(t + 1) �

46.

Suppose G(t) represents how many gigabytes of data has been downloaded t minutes after you
started a download.

If we introduce M(t) as how many megabytes of data has been downloaded t minutes after you
started a download, then M(t) � 1024G(t). Find a simplified formula for 1024G(t).

1024G(t) �

47.
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10.5 Technical Definition of a Function

In Section 10.1, we discussed a conceptual understanding of functions and Definition 10.1.3. In this section
we’ll start with a more technical definition of what is a function, consistent with the ideas from Section 10.1.

10.5.1 Formally Defining a Function

Definition 10.5.2 Function (Technical Definition). A function is a collection of ordered pairs (x , y) such
that any particular value of x is paired with at most one value for y.

How is this definition consistent with the informal Definition 10.1.3, which describes a function as a process?
Well, if you have a collection of ordered pairs (x , y), you can choose to view the left number as an input, and
the right value as the output. If the function’s name is f and you want to find f (x) for a particular number
x, look in the collection of ordered pairs to see if x appears among the first coordinates. If it does, then f (x)
is the (unique) y-value it was paired with. If it does not, then that x is just not in the domain of f , because
you have no way to determine what f (x)would be.

Example 10.5.3 Using Definition 10.5.1, a function f could be given by

{(1, 4), (2, 3), (5, 3), (6, 1)} .

a. What is f (1)? Since the ordered pair (1, 4) appears in the collection of ordered pairs, we would say
that f (1) � 4.

b. What is f (2)? Since the ordered pair (2, 3) appears in the collection of ordered pairs, we would say
that f (2) � 3.

c. What is f (3)? None of the ordered pairs in the collection start with 3, so f (3) is undefined, and we
would say that 3 is not in the domain of f .

Let’s spend some time seeing how this new definition applies to things that we already understand as
functions from Section 10.1.

Consider the function 1 expressed by Ta-
ble 10.5.5. How is this “a collection of ordered
pairs?” With tables the connection is most easily
apparent. Pair off each x-value with its y-value.

x 1(x)
12 0.16
15 3.2
18 1.4
21 1.4
24 0.98

Table 10.5.5

Example 10.5.4 A Function Given as a Table. In this case, we can view this function as:

{(12, 0.16), (15, 3.2), (18, 3.2), (21, 1.4), (24, 0.98)} .
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Example 10.5.6 A Function Given as a Formula. Consider the function h expressed by the formula
h(x) � x2. How is this “a collection of ordered pairs?”

This time, the collection is really big. Imagine an x-value, like x � 2. We can calculate that f (2) � 22 � 4.
So the input 2 pairs with the output 4 and the ordered pair (2, 4) is part of the collection.

You could move on to any x-value, like say x � 2.1. We can calculate that f (2.1) � 2.12 � 4.41. So the
input 2.1 pairs with the output 4.41 and the ordered pair (2.1, 4.41) is part of the collection.

The collection is so large that we cannot literally list all the ordered pairs as was done in Example 10.5.3
and Example 10.5.4. We just have to imagine this giant collection of ordered pairs. And if it helps to
conceptualize it, we know that the ordered pairs (2, 4) and (2.1, 4.41) are included.

Example 10.5.7 A FunctionGiven as aGraph. Consider the functions p and q expressed in Figure 10.5.8
and Figure 10.5.9. How is each of these “a collection of ordered pairs?”

−6 −4 −2 2 4 6

−6

−4

−2

2
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6

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 10.5.8: y � p(x) Figure 10.5.9: y � q(x)

In Figure 10.5.8, we see that p(1) � 4, p(2) � 3, p(5) � 3, and p(6) � 1. The graph literally is the collection

{(1, 4), (2, 3), (5, 3), (6, 1)} .

In Figure 10.5.9, we can see a fewwhole number function values, like q(0) � 0 and q(1) � 2. But the entire
curve has infinitely many points on it and we’d never be able to list them all. We just have to imagine
the giant collection of ordered pairs. And if it helps to conceptualize it, we know that the ordered pairs
(0, 0) and (1, 2) are included.

Try it yourself in the following exercise.
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Checkpoint 10.5.10. The graph below is of y � f (x).

Write the function f as a set of ordered pairs.

Explanation. The function can be expressed as the set {(−5, 2), (−2,−3), (4, 3)}.

10.5.2 Identifying What is Not a Function

Just because you have a set of order pairs, a table, a graph, or an equation, it does not necessarily mean that
you have a function. Conceptually, whatever you have needs to give consistent outputs if you feed it the
same input. More technically, the set of ordered pairs is not allowed to have two ordered pairs that have the
same x-value but different y-values.

Example 10.5.11 Consider each set of ordered pairs. Does it make a function?

a.
{
(5, 9) , (3, 2) ,

( 1
2 , 0.6

)
, (5, 1)

}
b.

{
(−5, 12) , (3, 7) ,

(√
2, 1

)
, (−0.9, 4)

} c.
{
(5, 9) , (3, 9) ,

(
4.2,
√

2
)
,
( 4

3 ,
1
2
)}

d.
{
(5, 9) , (0.7, 2) ,

(√
25, 3

)
,
( 2

3 ,
3
2
)}

Explanation.

a. This set of ordered pairs is not a function. The problem is that it has both (5, 9) and (5, 1). It uses
the same x-value paired with two different y-values. We have no clear way to turn the input 5 into
an output.

b. This set of ordered pairs is a function. It is a collection of ordered pairs, and the x-values are never
reused.

c. This set of ordered pairs is a function. It is a collection of ordered pairs, and the x-values are never
reused. You might note that the output value 9 appears twice, but that doesn’t matter. That just
tells us that the function turns 5 into 9 and it also turns 3 into 9.

d. This set of ordered pairs is not a function, but it’s a little tricky. One of the ordered pairs uses
√

25
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as an input value. But that is the same as 5, which is also used as an input value.

Now that we understand how some sets of ordered pairs might not be functions, what about tables, graphs,
and equations? If we are handed one of these things, can we tell whether or not it is giving us a function?

Checkpoint 10.5.12 Does This Table Make a Function? Which of these tables make y a function of x?

x y
2 1
3 1
4 2
5 2
6 2

a. This table (□ does
□ does not) make y a func-
tion of x.

x y
8 3
9 2
5 1
2 0
8 1

b. This table (□ does
□ does not) make y a func-
tion of x.

x y
5 9
5 9
6 2
6 2
6 2

c. This table (□ does
□ does not) make y a func-
tion of x.

Explanation.

a. This table does make y a function of x. In the table, no x-value is repeated.

b. This table does not make y a function of x. In the table, the x-value 8 is repeated, and it is paired with
two different y-values, 3 and 1.

c. This table does make y a function of x, but you have to think carefully. It’s true that the x-value 5
is used more than once in the table. But in both places, the y-value is the same, 9. So there is no
conceptual issue with asking for f (5); it would definitely be 9. Similarly, the repeated use of 6 as an
x-value is not a problem since it is always paired with output 2.

Example 10.5.13 Does This Graph Make a Function? Which of these graphs make y a function of x?
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Figure 10.5.14 Figure 10.5.15 Figure 10.5.16
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Figure 10.5.17 Figure 10.5.18 Figure 10.5.19

Explanation. The graph in Figure 10.5.14 does not make y a function of x. Two ordered pairs on that
graph are (−3, 1) and (−3,−2), so an input value is used twice with different output values.

The graph in Figure 10.5.15 does not make y a function of x. There are many ordered pairs with the
same input value but different output values. For example, (2,−2) and (2, 4).
The graph in Figure 10.5.16 does make y a function of x. It appears that no matter what x-value you
choose on the x-axis, there is exactly one y-value paired up with it on the graph.

The graph in Figure 10.5.17 does make y a function of x, but we should discuss. The hollow dots
on the line indicate that the line goes right up to that point, but never reaches it. We say there is a
“hole” in the graph at these places. For two of these holes, there is a separate ordered pair immedi-
ately above or below the hole. The graph has the ordered pair (−4, 4). It also has ordered pairs like
(very close to −4, very close to 0), but it does not have (−4, 0). Overall, there is no x-value that is used
twice with different y-values, so this graph does make y a function of x

The graph in Figure 10.5.15 does not make y a function of x. There are many ordered pairs with the
same input value but different output values. For example, (0, 1), (0, 3), (0,−1), (0, 5), and (0,−6) all use
x � 0.

The graph in Figure 10.5.15 does notmake y a function of x. There aremany ordered pairs with the same
input value but different output values. For example at x � 2, there is both a positive and a negative
associated y-value. It’s hard to say exactly what these y-values are, but we don’t have to.

This last set of examples might reveal something to you. For instance in Figure 10.5.15, the issue is that there
are places on the graph with the same x-value, but different y-values. Visually, what that means is there are
places on the graph that are directly above/below each other. Thinking about this leads to a quick visual
“test” to determine if a graph gives y as a function of x.

Fact 10.5.20 Vertical Line Test. Given a graph in the x y-plane, if a vertical line ever touches it in more than one
place, the graph does not give y as a function of x. If vertical lines only ever touch the graph once or never at all, then
the graph does give y as a function of x.

Example 10.5.21 In each graph from Example 10.5.13, we can apply the Vertical Line Test.
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Figure 10.5.22: A vertical line
touching the graph twice
makes this graph not give y
as a function of x.

Figure 10.5.23: A vertical line
touching the graph twice
makes this graph not give y
as a function of x.

Figure 10.5.24: All vertical lines
only touch the graph once, so
this graph does give y as a
function of x.
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Figure 10.5.25: All vertical lines
only touch the graph once, or
not at all, so this graph does
give y as a function of x.

Figure 10.5.26: A vertical line
touching the graph more than
once makes this graph not give
y as a function of x.

Figure 10.5.27: A vertical line
touching the graph more than
once makes this graph not give
y as a function of x.

Lastly, we come to equations. Certain equations with variables x and y clearly make y a function of x. For
example, y � x2 + 1 says that if you have an x-value, all you have to do is substitute it into that equation
and you will have determined an output y-value. You could then name the function f and give a formula
for it: f (x) � x2 + 1.

With other equations, it may not be immediately clear whether or not they make y a function of x.

Example 10.5.28 Do each of these equations make y a function of x?

a. 2x + 3y � 5 b. y � ±
√

x + 4 c. x2 + y2 � 9

Explanation.

a. The equation 2x + 3y � 5 does make y a function of x. Here are three possible explanations.

i. You recognize that the graph of this equation would be a non-vertical line, and so it would
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pass the Vertical Line Test.

ii. Imagine that you have a specific value for x and you substitute it in to 2x + 3y � 5. Will you
be able to use algebra to solve for y? All you will need is to simplify, subtract from both sides,
and divide on both sides, so you will be able to determine y.

iii. Can you just isolate y in terms of x? Yes, a few steps of algebra can turn 2x + 3y � 5 into
y �

5−2x
3 . Now you have an explicit formula for y in terms of x, so y is a function of x.

b. The equation y � ±
√

x + 4 does notmake y a function of x. Just having the ± (plus orminus) in the
equation immediately tells you that for almost any valid x-value, there would be two associated
y-values.

c. The equation x2 + y2 � 9 does not make y a function of x. Here are three possible explanations.

i. Imagine that you have a specific value for x and you substitute it in to x2 + y2 � 9. Will you
be able to use algebra to solve for y? For example, if you substitute in x � 1, then you have
1 + y2 � 9, which simplifies to y2 � 8. Can you really determine what y is? No, because it
could be

√
8 or it could be −

√
8. So this equation does not provide you with a way to turn

x-values into y-values.

ii. Can you just isolate y in terms of x? Youmight get started and use algebra to convert x2+ y2 �

9 into y2 � 9 − x2. But what now? The best you can do is acknowledge that y is either the
positive or the negative square root of 9 − x2. You might write y � ±

√
9 − x2. But now for

almost any valid x-value, there are two associated y-values.

iii. You recognize that the graph of this equation would be a circle with radius 3, and so it would
not pass the Vertical Line Test.

Checkpoint 10.5.29. Do each of these equations make y a function of x?

a. 5x2 − 4y � 12

This equation (□ does
□ does not) make y a func-
tion of x.

b. 5x − 4y2 � 12

This equation (□ does
□ does not) make y a func-
tion of x.

c. x �
√

y

This equation (□ does
□ does not) make y a func-
tion of x.

Explanation.

a. The equation 5x2 − 4y � 12 doesmake y a function of x. You can isolate y in terms of x. A few steps of
algebra can turn 5x2 − 4y � 12 into y �

5x2−12
4 . Now you have an explicit formula for y in terms of x,

so y is a function of x.

b. The equation 5x − 4y2 � 12 does not make y a function of x. You cannot isolate y in terms of x. You
might get started and use algebra to convert 5x − 4y2 � 12 into y2 �

5x−12
4 . But what now? The best

you can do is acknowledge that y is either the positive or the negative square root of 5x−12
4 . You might

write y � ±
√

5x−12
4 . But now for almost any valid x-value, there are two associated y-values.

c. The equation x �
√

y does make y a function of x. If you try substituting a non-negative x-value, then
you can square both sides and you know exactly what the value of y is.

If you try substituting a negative x-value, then you are saying that√y is negative which is impossible.
So for negative x, there are no y-values. This is not a problem for the equation giving you a function.
This justmeans that the domain of that function does not include negative numbers. Its domainwould
be [0,∞).
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Exercises

Determining If Sets of Ordered Pairs Are Functions

Do these sets of ordered pairs make functions of x? What are their domains and ranges?

a.
{
(−6, 8), (2, 9)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

b.
{
(−8, 8), (−8, 3), (4, 4)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

c.
{
(9, 7), (−6, 7), (6, 5), (2, 4)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

d.
{
(2, 0), (−5, 1), (−7, 4), (3, 1), (−3, 1)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

1.

Do these sets of ordered pairs make functions of x? What are their domains and ranges?

a.
{
(−5, 8), (−8, 5)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

b.
{
(−7, 6), (2, 9), (10, 6)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

c.
{
(0, 2), (5, 9), (−1, 7), (5, 5)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

d.
{
(7, 6), (−9, 5), (−6, 2), (3, 0), (−10, 2)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of
ordered pairs has domain and range .

2.
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Does the following set of ordered pairs make for a function of x?{
(0, 4), (−1, 1), (−5, 0), (−3, 1), (−1, 9)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of ordered
pairs has domain and range .

3.

Does the following set of ordered pairs make for a function of x?{
(−5, 10), (9, 8), (−3, 10), (−5, 8), (−3, 5)

}
This set of ordered pairs (□ describes □ does not describe) a function of x. This set of ordered
pairs has domain and range .

4.

Domain and Range

Below is all of the information that exists about
a function H.

H(3) � 4 H(5) � −2 H(8) � 4

Write H as a set of ordered pairs.

H has domain

and range .

5. Below is all of the information about a func-
tion K.
K(a) � 3 K(b) � 1
K(c) � 0 K(d) � 3

Write K as a set of ordered pairs.

K has domain

and range .

6.

Determining If Graphs Are Functions

Decide whether each graph shows a relation-
ship where y is a function of x.

The first graph (□ does □ does not) give
a function of x. The second graph (□ does
□ does not) give a function of x.

7. Decide whether each graph shows a relation-
ship where y is a function of x.

The first graph (□ does □ does not) give
a function of x. The second graph (□ does
□ does not) give a function of x.

8.
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The following graphs show two relationships.
Decide whether each graph shows a relation-
ship where y is a function of x.

The first graph (□ does □ does not) give
a function of x. The second graph (□ does
□ does not) give a function of x.

9. The following graphs show two relationships.
Decide whether each graph shows a relation-
ship where y is a function of x.

The first graph (□ does □ does not) give
a function of x. The second graph (□ does
□ does not) give a function of x.

10.

Determining If Tables Are Functions Determine whether or not the following table could be the table of
values of a function. If the table can not be the table of values of a function, give an input that has more than
one possible output.

Input Output
2 0
4 14
6 −5
8 −15
−2 −19

Could this be the table of values for a function?
(□ yes □ no)

If not, which input hasmore than one possible
output? (□ -2 □ 2 □ 4 □ 6 □ 8 □None,
the table represents a function.)

11. Input Output
2 5
4 0
6 12
8 15
−2 −20

Could this be the table of values for a function?
(□ yes □ no)

If not, which input hasmore than one possible
output? (□ -2 □ 2 □ 4 □ 6 □ 8 □None,
the table represents a function.)

12.

Input Output
−4 13
−3 −4
−2 5
−3 13
−1 −19

Could this be the table of values for a function?
(□ yes □ no)

If not, which input hasmore than one possible
output? (□ -4 □ -3 □ -2 □ -1 □ None,
the table represents a function.)

13. Input Output
−4 −7
−3 −2
−2 −19
−3 19
−1 0

Could this be the table of values for a function?
(□ yes □ no)

If not, which input hasmore than one possible
output? (□ -4 □ -3 □ -2 □ -1 □ None,
the table represents a function.)

14.
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Determining If Equations Are Functions

Select all of the following relations that make
y a function of x. There are several correct an-
swers.

□ x2 + y2 � 81 □ y �
6√x □ y � x3

□ y � ±
√

1 − x2 □
��y�� � x □ 4x+3y � 1

□ y �
1
x2 □ y �

√
1 − x2 □ x � y9

□ y �
x+7
8−x □ x � y8 □ y � |x |

15. Select all of the following relations that make
y a function of x. There are several correct an-
swers.

□ y �
4√x □ x � y9 □ x2 + y2 � 16

□ y � x2 □
��y�� � x □ y � ±

√
64 − x2

□ y �
x+2
4−x □ 4x + 5y � 1 □ y �

1
x3

□ y � |x | □ y �
√

64 − x2 □ x � y8

16.

Some equations involving x and y define y
as a function of x, and others do not. For ex-
ample, if x + y � 1, we can solve for y and
obtain y � 1 − x. And we can then think of
y � f (x) � 1 − x. On the other hand, if we
have the equation x � y2 then y is not a func-
tion of x, since for a given positive value of x,
the value of y could equal

√
x or it could equal

−
√

x.

Select all of the following relations that make
y a function of x. There are several correct an-
swers.

□ y2+x2 � 1 □ y−|x | � 0 □ y6+x � 1
□ x+y � 1 □ 3x+8y+8 � 0 □ y+x2 � 1
□ y3 + x4 � 1 □

��y�� − x � 0

On the other hand, some equations involving
x and y define x as a function of y (the other
way round).

Select all of the following relations that make
x a function of y. There are several correct an-
swers.

□
��y��−x � 0 □ y4+x5 � 1 □ y−|x | � 0
□ 3x + 8y + 8 � 0 □ y2 + x2 � 1

17. Some equations involving x and y define y
as a function of x, and others do not. For ex-
ample, if x + y � 1, we can solve for y and
obtain y � 1 − x. And we can then think of
y � f (x) � 1 − x. On the other hand, if we
have the equation x � y2 then y is not a func-
tion of x, since for a given positive value of x,
the value of y could equal

√
x or it could equal

−
√

x.

Select all of the following relations that make
y a function of x. There are several correct an-
swers.

□ 4x+5y+4 � 0 □ y+x2 � 1 □
��y��−x � 0

□ y− |x | � 0 □ y2+x2 � 1 □ x+ y � 1
□ y3 + x4 � 1 □ y6 + x � 1

On the other hand, some equations involving
x and y define x as a function of y (the other
way round).

Select all of the following relations that make
x a function of y. There are several correct an-
swers.

□ 4x+5y+4 � 0 □ y−|x | � 0 □ y2+x2 � 1
□

��y�� − x � 0 □ y4 + x5 � 1

18.
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10.6 Functions and Their Representations Chapter Review

10.6.1 Function Basics

In Section 10.1 we defined functions 10.1.3 informally, as well as function notation 10.1.6. We saw functions
in four forms 10.1.31: verbal descriptions, formulas, graphs and tables.

Example 10.6.1 Informal Definition of a Function. Determine whether each example below describes
a function.

a. The area of a circle given its radius. b. The number you square to get 9.

Explanation.

a. The area of a circle given its radius is a function because there is a set of steps or a formula that
changes the radius into the area of the circle. We could write A(r) � πr2.

b. The number you square to get 9 is not a function because the process we would apply to get the
result does not give a single answer. There are two different answers, −3 and 3. A function must
give a single output for a given input.

Example 10.6.2 Tables and Graphs. Make a table and a graph of the function f , where f (x) � x2.

Explanation.

First we will set up a table
with negative and positive inputs
and calculate the function val-
ues. The values are shown in Ta-
ble 10.6.3, which in turn gives us
the graph in Figure 10.6.4.

input, x output, f(x)
−3 9
−2 4
−1 1
0 0
1 2
2 4
3 9 −6 −4 −2 2 4 6

−2

2

4

6

8

10

x

y

Table 10.6.3 Figure 10.6.4: y � f (x) � x2

Example 10.6.5 Translating between Four Descriptions of the Same Function. Consider a function f
that triples its input and then adds 4. Translate this verbal description of f into a table, a graph, and a
formula.
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Explanation.

Tomake a table for f , we’ll have to select some in-
put x-values so we will choose some small neg-
ative and positive values that are easy to work
with. Given the verbal description, we should be
able to compute a column of output values. Ta-
ble 10.6.6 is one possible table that we might end
up with.

x f (x)
−2 3(−2) + 4 � −2
−1 3(−1) + 4 � 1
0 3(0) + 4 � 4
1 3(1) + 4 � 7
2 3(2) + 4 � 10

Table 10.6.6

Once we have a table for f , we can make a graph
for f as in Figure 10.6.7, using the table to plot
points.

Lastly, we must find a formula for f . This means
we need to write an algebraic expression that
says the same thing about f as the verbal descrip-
tion, the table, and the graph. For this example,
we can focus on the verbal description. Since f
takes its input, triples it, and adds 4, we have the
formula

f (x) � 3x + 4.
−6 −4 −2 2 4 6

−2

2

4

6

8

10

x

y

Figure 10.6.7: y � f (x)

10.6.2 Domain and Range

In Section 10.2 we saw the definition of domain 10.2.6 and range 10.2.19, and three types of domain re-
strictions 10.2.18. We also learned how to write the domain and range in interval and set-builder nota-
tion.

Example 10.6.8 Domain. Determine the domain of p, where p(x) � x
2x − 1 .

Explanation. This is an example of the first type of domain restriction, when you have a variable in
the denominator. The denominator cannot equal 0 so a bad value for x would be when

2x − 1 � 0
2x � 1

x �
1
2

The domain is all real numbers except 1
2 .
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Example 10.6.9 Interval, Set, and Set-Builder Notation. What is the domain of the function C, where
C(x) �

√
2x − 3 − 5?

Explanation. This is an example of the second type of domain restriction where the value inside the
radical cannot be negative. So the good values for x would be when

2x − 3 ≥ 0
2x ≥ 3

x ≥ 3
2

So on a number line, if we wanted to picture the domain of C, we would make a sketch like:

−10 −5 5 10

3/2
0 x

The domain is the interval
[ 3

2 ,∞
)
.

Find the range of the function q using its graph
shown in Figure 10.6.11.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 10.6.11: y � q(x). The range is marked
as an interval on the y-axis.

Example 10.6.10 Range. Explanation. The range is the collection of possible numbers that q can give
for output. Figure 10.6.11 displays a graph of q, with the range shown as an interval on the y-axis.

The output values are the y-coordinates so we can see that the y-values start from 1 and continue down-
ward forever. Therefore the range is (−∞, 1].

10.6.3 Using Technology to Explore Functions

In Section 10.3we coveredhow tofind a goodgraphingwindowanduse it to identify all of the key features of
a function. We also learned how to solve equations and inequalities using a graph. Here are some examples

803



Chapter 10 Functions and Their Representations

for review.

Example 10.6.12 Finding an Appropriate Window. Graph the function t, where t(x) � (x + 10)2 − 15,
using technology and find a good viewing window.

Explanation.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

−18 −16 −14 −12 −10 −8 −6 −4 −2
−10

10

20

30

40

50

60

70

80

90

x

y
After some trial and error we
found this window that goes
from −20 to 2 on the x-axis and
−20 to 100 on the y-axis.

Figure 10.6.13: y � t(x) in the
viewing window of −7 to 7
on the x and y axes. We need
to zoom out and move our
window to the left.

Figure 10.6.14: y � t(x) in a
good viewing window.

Now we can see the vertex and all of the intercepts and we will identify them in the next example.

Example 10.6.15 Using Technology to Determine Key Features of a Graph. Use the previous graph
in figure 10.6.14 to identify the intercepts, minimum or maximum function value, and the domain and
range of the function t, where t(x) � (x + 10)2 − 15.

Explanation.

From our graph we can now identify the ver-
tex at (−10,−15), the y-intercept at (0, 85), and
the x-intercepts at approximately (−13.9, 0) and
(−6.13, 0).

−18 −16 −14 −12 −10 −8 −6 −4 −2
−10

10

20

30

40

50

60

70

80

90

(−10,−15)

(−13.9, 0)

(0, 85)

(−6.13, 0) x

y

Figure 10.6.16: y � t(x) � (x + 10)2 − 15.
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Example 10.6.17 Solving Equations and Inequalities Graphically Using Technology. Use graphing
technology to solve the equation t(x) � 40, where t(x) � (x + 10)2 − 15.

Explanation.

To solve the equation t(x) � 40, we need to graph
y � t(x) and y � 40 on the same axes and find
the x-values where they intersect.

From the graph we can see that the intersec-
tion points are approximately (−17.4, 40) and
(−2.58, 40). The solution set is {−17.4,−2.58}.

−18 −16 −14 −12 −10 −8 −6 −4 −2
−10

10

20

30

40

50

60

70

80

90

(−17.4, 40) (−2.58, 40)

x

y

Figure 10.6.18: y � t(x) where t(x) � (x + 10)2 −
15 and y � 40.

10.6.4 Simplifying Expressions with Function Notation

In Section 10.4 we learned about the difference between f (−x) and − f (x) and how to simplify them. We
also learned how to simplify other changes to the input and output like f (3x) and 1

3 f (x). Here are some
examples.

Example 10.6.19 Negative Signs in and out of Function Notation. Find and simplify a formula for
f (−x) and − f (x), where f (x) � −3x2 − 7x + 1.

Explanation. To find f (−x), we use an input of −x in our function f and simplify to get:

f (−x) � −3(−x)2 − 7(−x) + 1
� −3x2

+ 7x + 1

To find − f (x), we take the opposite of the function f and simplify to get:

− f (x) � −(−3x2 − 7x + 1)
� 3x2

+ 7x − 1

Example 10.6.20 Other Nontrivial Simplifications. If 1(x) � 2x2 − 3x − 5, find and simplify a formula
for 1(x − 1).

Explanation. To find 1(x − 1), we put in (x − 1) for the input. It is important to keep the parentheses
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because we have exponents and negative signs in the function.

1(x − 1) � 2(x − 1)2 − 3(x − 1) − 5
� 2(x2 − 2x + 1) − 3x + 3 − 5
� 2x2 − 4x + 2 − 3x − 2
� 2x2 − 7x

10.6.5 Technical Definition of a Function

In Section 10.5 we gave a formal definition of a function 10.5.2 and learned to identify what is and is not a
function with sets or ordered pairs, tables and graphs. We also used the vertical line test 10.5.20.

Example 10.6.21 FormallyDefining a Function. We learned that sets of ordered pairs, tables and graphs
canmeet the formal definition of a function. Here is an example that shows a function in all three forms.
We can verify that each input has at most one output.

{(1, 4), (2, 4), (3, 3), (4, 6), (5,−2)} x f (x)
1 4
2 4
3 3
4 6
5 −2

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 10.6.22: The function f
represented as a collection of
ordered pairs.

Table 10.6.23: The function f
represented as a table.

Figure 10.6.24: The function f
represented as a graph.

Example 10.6.25 IdentifyingWhat isNot a Function. Identifywhether each graph represents a function
using the vertical line test 10.5.20.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Figure 10.6.26 Figure 10.6.27 Figure 10.6.28
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Explanation.

−6 −4 −2 2 4 6
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y

−6 −4 −2 2 4 6

−6

−4
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−6 −4 −2 2 4 6
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−2

2

4

6

x

y

Figure 10.6.29: A vertical line
touching the graph twice
makes this graph not give y
as a function of x.

Figure 10.6.30: A vertical line
touching the graph twice
makes this graph not give y
as a function of x.

Figure 10.6.31: All vertical lines
only touch the graph once, so
this graph does give y as a
function of x.

Exercises

Function Basics

Samantha will spend $240 to purchase some
bowls and some plates. Each plate costs $1,
and each bowl costs $6. The function q(x) �
− 1

6 x + 40 models the number of bowls Saman-
thawill purchase, where x represents the num-
ber of plates to be purchased.

Interpret the meaning of q(36) � 34.

⊙ A. 34 plates and 36 bowls can be pur-
chased.

⊙ B. 36 plates and 34 bowls can be pur-
chased.

⊙ C. $34 will be used to purchase bowls,
and $36 will be used to purchase plates.

⊙ D. $36 will be used to purchase bowls,
and $34 will be used to purchase plates.

1. Fabrienne will spend $140 to purchase some
bowls and some plates. Each plate costs $8,
and each bowl costs $7. The function q(x) �
− 8

7 x + 20 models the number of bowls Fabri-
ennewill purchase, where x represents the num-
ber of plates to be purchased.

Interpret the meaning of q(14) � 4.

⊙ A. 4 plates and 14 bowls can be pur-
chased.

⊙ B. $4 will be used to purchase bowls,
and $14 will be used to purchase plates.

⊙ C. $14 will be used to purchase bowls,
and $4 will be used to purchase plates.

⊙ D. 14 plates and 4 bowls can be pur-
chased.

2.
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The following figure has the graph y � d(t), whichmodels a particle’s distance from the starting line in feet,
where t stands for time in seconds since timing started.

a. d(8) �
b. Interpret the meaning of d(8):

⊙ A. The particlewas 8 feet away from
the starting line 4 seconds since tim-
ing started.

⊙ B. In the first 4 seconds, the parti-
cle moved a total of 8 feet.

⊙ C. The particlewas 4 feet away from
the starting line 8 seconds since tim-
ing started.

⊙ D. In the first 8 seconds, the parti-
cle moved a total of 4 feet.

c. Solve d(t) � 6 for t. t �

d. Interpret themeaning of part c’s solution(s):

⊙ A. The article was 6 feet from the
starting line 3 seconds since tim-
ing started.

⊙ B. The article was 6 feet from the
starting line 7 seconds since tim-
ing started.

⊙ C. The article was 6 feet from the
starting line 3 seconds since tim-
ing started, or 7 seconds since tim-
ing started.

⊙ D. The article was 6 feet from the
starting line 3 seconds since tim-
ing started, and again 7 seconds since
timing started.

3.

a. d(4) �
b. Interpret the meaning of d(4):

⊙ A. The particlewas 4 feet away from
the starting line 8 seconds since tim-
ing started.

⊙ B. In the first 4 seconds, the parti-
cle moved a total of 8 feet.

⊙ C. In the first 8 seconds, the parti-
cle moved a total of 4 feet.

⊙ D. The particlewas 8 feet away from
the starting line 4 seconds since tim-
ing started.

c. Solve d(t) � 4 for t. t �

d. Interpret themeaning of part c’s solution(s):

⊙ A. The article was 4 feet from the
starting line 2 seconds since tim-
ing started, or 8 seconds since tim-
ing started.

⊙ B. The article was 4 feet from the
starting line 2 seconds since tim-
ing started, and again 8 seconds since
timing started.

⊙ C. The article was 4 feet from the
starting line 8 seconds since tim-
ing started.

⊙ D. The article was 4 feet from the
starting line 2 seconds since tim-
ing started.

4.
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Evaluate the function at the given values.

H(x) � − 12
x + 6 .

a. H(−9) � .

b. H(−6) � .

5. Evaluate the function at the given values.

K(x) � − 24
x + 1 .

a. K(5) � .

b. K(−1) � .

6.

Use the graph of f below to evaluate the given
expressions. (Estimates are OK.)

f (−6) �

f (6) �

7. Use the graph of 1 below to evaluate the given
expressions. (Estimates are OK.)

1(−3) �

1(12) �

8.

Use the table of values for 1 below to evaluate
the given expressions.

x −3 −1 1 3 5
1(x) 6.4 7.9 7.5 4.9 1.8

1(−1) �

1(3) �

9. Use the table of values for h below to evaluate
the given expressions.

x −4 1 6 11 16
h(x) 3.1 7.7 1.4 6 6.8

h(1) �

h(16) �

10.
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Make a table of values for the function h, de-
fined by h(x) � 2x2. Based on values in the
table, sketch a graph of h.

x h(x)

11. Make a table of values for the function H, de-

fined by H(x) � 2x + 2
x2 + 2

. Based on values in the
table, sketch a graph of H.

x H(x)

12.

Domain and Range A function is graphed.

This function has domain

and range .

13.

This function has domain

and range .

14.

The function has domain

and range .

15.

The function has domain

and range .

16.

The function has domain

and range .

17.

The function has domain

and range .

18.
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Find the domain of r where r(x) �
√

8 + x
9 − x

.19. Find the domain of B where B(x) �
√

10 + x
5 − x

.20.

An object was shot up into the air at an ini-
tial vertical speed of 512 feet per second. Its
height as time passes can be modeled by the
quadratic function f , where f (t) � −16t2 + 512t.
Here t represents the number of seconds since
the object’s release, and f (t) represents the ob-
ject’s height in feet.

Find the function’s domain and range in this
context.

The function’s domain in this context is .

The function’s range in this context is .

21. An object was shot up into the air at an ini-
tial vertical speed of 544 feet per second. Its
height as time passes can be modeled by the
quadratic function f , where f (t) � −16t2 + 544t.
Here t represents the number of seconds since
the object’s release, and f (t) represents the ob-
ject’s height in feet.

Find the function’s domain and range in this
context.

The function’s domain in this context is .

The function’s range in this context is .

22.

Using Technology to Explore Functions

Use technology to make a table of values for
the function H definedby H(x) � −4x2 + 4x + 3.

x H(x)

23. Use technology to make a table of values for
the function K definedby K(x) � −2x2 + 16x − 1.

x K(x)

24.

Choose an appropriate window for graphing
the function f defined by f (x) � 1456x − 7423
that shows its key features.

The x-interval could be and

the y-interval could be .

25. Choose an appropriate window for graphing
the function f defined by f (x) � −169x + 139
that shows its key features.

The x-interval could be and

the y-interval could be .

26.

Use technology to determine howmany times
the equations y � −4x3 − 3x2 + x and y � 4x + 2
intersect. They intersect (□ zero times □ one
time □ two times □ three times) .

27. Use technology to determine howmany times
the equations y � −2x3 + x2 + 9x and y � −x + 1
intersect. They intersect (□ zero times □ one
time □ two times □ three times) .

28.
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For the function L defined by

L(x) � 3000x2
+ 10x + 4,

use technology to determine the following. Round
answers as necessary.

a. Any intercepts.

b. The vertex.

c. The domain.

d. The range.

29. For the function M defined by

M(x) � −(300x − 2950)2,

use technology to determine the following. Round
answers as necessary.

a. Any intercepts.

b. The vertex.

c. The domain.

d. The range.

30.

Let f (x) � 4x2 + 5x − 1 and 1(x) � 5. Use
graphing technology to determine the follow-
ing.

a. What are the points of intersection for these
two functions?

b. Solve f (x) � 1(x).
c. Solve f (x) < 1(x).
d. Solve f (x) ≥ 1(x).

31. Let p(x) � 6x2 − 3x + 4 and k(x) � 7. Use
graphing technology to determine the follow-
ing.

a. What are the points of intersection for these
two functions?

b. Solve p(x) � k(x).
c. Solve p(x) < k(x).
d. Solve p(x) ≥ k(x).

32.

Use graphing technology to solve the equa-
tion −0.02x2 + 1.97x − 51.5 � 0.05 (x − 50)2 −
0.03 (x − 50) . Approximate the solution(s) if nec-
essary.

33. Use graphing technology to solve the equa-
tion −200x2 + 60x − 55 � −20x − 40. Approxi-
mate the solution(s) if necessary.

34.

Use graphing technology to solve the inequal-
ity−15x2−6 ≤ 10x−4. State the solution set us-
ing interval notation, and approximate if nec-
essary.

35. Use graphing technology to solve the inequal-
ity 1

2 x2+ 3
2 x ≥ 1

2 x− 3
2 . State the solution set us-

ing interval notation, and approximate if nec-
essary.

36.
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Simplifying Expressions with Function Notation

Let f be a function given by f (x) � 3x2 + 2x.
Find and simplify the following:

a. f (x)−2 �

b. f (x−2) �

c. −2 f (x) �

d. f (−2x) �

37. Let f be a function given by f (x) � −3x2 − 4x.
Find and simplify the following:

a. f (x)−3 �

b. f (x−3) �

c. −3 f (x) �

d. f (−3x) �

38.

Simplify H(r) + 5, where H(r) � −1 − 1.8r.39. Simplify F(r) + 9, where F(r) � −1 − 6.3r.40.

Technical Definition of a Function

Does the following set of ordered pairs make
for a function of x?{
(9, 2), (5, 8), (8, 6), (−3, 3), (−5, 9)

}
This set of orderedpairs (□describes □does
not describe) a function of x. This set of or-
dered pairs has domain

and range .

41. Does the following set of ordered pairs make
for a function of x?{
(5, 8), (−6, 5), (10, 4), (−6, 10), (−7, 5)

}
This set of orderedpairs (□describes □does
not describe) a function of x. This set of or-
dered pairs has domain

and range .

42.

Below is all of the information that exists about
a function f .

f (0) � 2 f (2) � 2 f (3) � 2

Write f as a set of ordered pairs.

f has domain

and range .

43. Below is all of the information about a func-
tion 1.

1(a) � 1 1(b) � 5
1(c) � −5 1(d) � 5

Write 1 as a set of ordered pairs.

1 has domain

and range .

44.
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The following graphs show two relationships.
Decide whether each graph shows a relation-
ship where y is a function of x.

The first graph (□ does □ does not) give
a function of x. The second graph (□ does
□ does not) give a function of x.

45. The following graphs show two relationships.
Decide whether each graph shows a relation-
ship where y is a function of x.

The first graph (□ does □ does not) give
a function of x. The second graph (□ does
□ does not) give a function of x.

46.

Some equations involving x and y define y
as a function of x, and others do not. For ex-
ample, if x + y � 1, we can solve for y and
obtain y � 1 − x. And we can then think of
y � f (x) � 1 − x. On the other hand, if we
have the equation x � y2 then y is not a func-
tion of x, since for a given positive value of x,
the value of y could equal

√
x or it could equal

−
√

x.

Select all of the following relations that make
y a function of x. There are several correct an-
swers.

□
��y��−x � 0 □ y+x2 � 1 □ y2+x2 � 1
□ y−|x | � 0 □ 5x+2y+9 � 0 □ x+y � 1
□ y6 + x � 1 □ y3 + x4 � 1

On the other hand, some equations involving
x and y define x as a function of y (the other
way round).

Select all of the following relations that make
x a function of y. There are several correct an-
swers.

□ y−|x | � 0 □ 5x+2y+9 � 0 □
��y��−x � 0

□ y2 + x2 � 1 □ y4 + x5 � 1

47. Some equations involving x and y define y
as a function of x, and others do not. For ex-
ample, if x + y � 1, we can solve for y and
obtain y � 1 − x. And we can then think of
y � f (x) � 1 − x. On the other hand, if we
have the equation x � y2 then y is not a func-
tion of x, since for a given positive value of x,
the value of y could equal

√
x or it could equal

−
√

x.

Select all of the following relations that make
y a function of x. There are several correct an-
swers.

□ y6+x � 1 □ x+y � 1 □ 6x+7y+4 � 0
□ y3+x4 � 1 □ y+x2 � 1 □ y2+x2 � 1
□ y − |x | � 0 □

��y�� − x � 0

On the other hand, some equations involving
x and y define x as a function of y (the other
way round).

Select all of the following relations that make
x a function of y. There are several correct an-
swers.

□ y4+x5 � 1 □ y−|x | � 0 □ y2+x2 � 1
□

��y�� − x � 0 □ 6x + 7y + 4 � 0

48.
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Determine whether or not the following ta-
ble could be the table of values of a function.
If the table can not be the table of values of a
function, give an input that has more than one
possible output.

Input Output
2 9
4 −5
6 9
8 5
−2 −8

Could this be the table of values for a function?
(□ yes □ no)

If not, which input hasmore than one possible
output? (□ -2 □ 2 □ 4 □ 6 □ 8 □None,
the table represents a function.)

49. Determine whether or not the following ta-
ble could be the table of values of a function.
If the table can not be the table of values of a
function, give an input that has more than one
possible output.

Input Output
2 13
4 −19
6 −15
8 −7
−2 −9

Could this be the table of values for a function?
(□ yes □ no)

If not, which input hasmore than one possible
output? (□ -2 □ 2 □ 4 □ 6 □ 8 □None,
the table represents a function.)

50.

Determine whether or not the following ta-
ble could be the table of values of a function.
If the table can not be the table of values of a
function, give an input that has more than one
possible output.

Input Output
−4 7
−3 −4
−2 −5
−3 13
−1 −3

Could this be the table of values for a function?
(□ yes □ no)

If not, which input hasmore than one possible
output? (□ -4 □ -3 □ -2 □ -1 □ None,
the table represents a function.)

51. Determine whether or not the following ta-
ble could be the table of values of a function.
If the table can not be the table of values of a
function, give an input that has more than one
possible output.

Input Output
−4 −14
−3 −2
−2 12
−3 19
−1 15

Could this be the table of values for a function?
(□ yes □ no)

If not, which input hasmore than one possible
output? (□ -4 □ -3 □ -2 □ -1 □ None,
the table represents a function.)

52.
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CHAPTER 11
Absolute Value Functions

11.1 Introduction to Absolute Value Functions

This section will introduce the basic concepts behind absolute value functions and their graphs. This infor-
mationwill also be useful at the end of this chapterwhenwe solve absolute value equations and inequalities.

11.1.1 Definition of Absolute Value

Recall that in Section 1.3, we defined the absolute value of a number to be the distance between that number
and 0 on a number line. Also recall that this causes the output of the absolute value function to never be a
negative number since we are under the presumption that “distance” is always positive (or zero).

Example 11.1.2

a. Since the number 5 is 5 units from 0, then |5| � 5.

b. Since the number −3 is 3 units from 0, then |−3| � 3.

Example 11.1.3 Yonas takes a 5-block walk north from his home to a food cart. After enjoying dinner,
he then walks 9 blocks south of the food cart to his favorite movie theater.

a. How many blocks has Yonas walked in total when he reaches the theater?

b. How many blocks is Yonas from home when he reaches the theater?

Explanation.

a. Since we only care about total distance, we can ignore the “signs” on the distances walked (either
north or south) and simply add the two values together. Mathematically, if we think of north as
positive values and south as having negative values, this situation is the same as

|5| + |−9| � 5 + 9
� 14

Yonas has walked a total of 14 blocks when he reaches the theater.

b. When he reaches the theater, Yonas’s actual position could be thought of as 5+ (−9). But the actual
distance from the theater to his home is better thought of as:

|5 + (−9)| � |−4|
� 4
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Yonas was 4 blocks from home when he reached the theater.

11.1.2 Evaluating Absolute Value Functions

The formula f (x) � |x | does satisfy the requirements for f to be a function because no matter what number
you put in for x, there is only one measured distance from 0 to that value x.

Example 11.1.4 Let f (x) � |x | and 1(x) � |2x − 5|. Evaluate the following expressions.

a. f (34) b. f (−63) c. f (0) d. 1(13) e. 1(1)

Explanation.

a. f (34) � |34|
� 34

b. f (−63) � |−63|
� 63

c. f (0) � |0|
� 0

d. 1(13) � |2 · 13 − 5|
� |21|
� 21

e. 1(1) � |2 · 1 − 5|
� |−3|
� 3

Checkpoint 11.1.5. Mark each equation as True or False.

a. (□ True □ False) |10| � 10.

b. (□ True □ False) |−3| is both 3 and −3.

c. (□ True □ False) |x + 4| � x + 4.

d. (□ True □ False) |−6| � |6| .
e. (□ True □ False) |x − 3| � |x + 3| .

Explanation. Remember that to be “false” when there is a variable in the equation, all that has to occur is
a single input number that makes the equation false.

a. True: |10| � 10.

b. False: |−3| is only 3.

c. False: |x + 4| , x + 4 for many values of x. When you have to decide whether or not an equation is
true, one good method to help you decide is to plug in a few numbers to see if each number makes
the equation true or false. Be sure to pick a variety and input at least two numbers, if not three. In this
case, we will choose 10 and −20.

When x � 10:

|x + 4| ?
� x + 4

|10 + 4| ?
� 10 + 4

|14| ✓� 14
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When x � −20:

|x + 4| ?
� x + 4

|−20 + 4| ?
� −20 + 4

|−16| no� −16

When we input −20, the equation was false, which indicates that the equation |x + 4| � x + 4 is false
for general x.

d. True: |−6| � |6| . Both |−6| and |6| are equal to 6.

e. False: |x − 3| , |x + 3| . Again we should choose some numbers to check the validity of the equation.
We will choose −12 and 15.

When x � −12:

|x − 3| ?
� |x + 3|

|−12 − 3| ?
� |−12 + 3|

|−15| ?
� |−9|

15 no
� 9

Since we had a false equation for our first value, we don’t need to check the second input. The original
equation is simply false.

11.1.3 Graphs of Absolute Value Functions

Absolute value functions have generally the same shape. They are usually described as “V”-shaped graphs
and the tip of the “V” is called the vertex. A few graphs of various absolute value functions are shown in
Figure 11.1.5. In general, the domain of an absolute value function (where there is a polynomial inside the
absolute value) is (−∞,∞).

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

(a) y � |x | (b) y � − |x + 2| (c) y � |x − 4| − 5

Figure 11.1.5
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Example 11.1.6 Let h(x) � −2 |x − 3|+5. Using technology, create table of values with x-values from −3
to 3, using an increment of 1. Then sketch a graph of y � h(x). State the domain and range of h.

Explanation.

x y
−3 −7
−2 −5
−1 −3

0 −1
1 1
2 3
3 5 −6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Table 11.1.7: Table for y � h(x). Figure 11.1.8: Graph of y � h(x)

The graph indicates that the domain is (∞,∞) as it goes to the right and left indefinitely. The range is
(−∞, 5].

Example 11.1.9 Let j(x) �
��|x + 1| − 2

�� − 1. Using technology, create table of values with x-values from
−5 to 5, using an increment of 1 and sketch a graph of y � j(x). State the domain and range of j.

Explanation. This is a strange one because it has an absolute value within an absolute value.

x y
−5 1
−4 0
−3 −1
−2 0
−1 1

0 0
1 −1
2 0
3 1
4 2
5 3

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Table 11.1.10: A table of values for y � j(x). Figure 11.1.11: y �
��|x + 1| − 2

�� − 1
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The graph indicates that the domain is (∞,∞) as it goes to the right and left indefinitely. The range is
[−1,∞).

11.1.4 Another Definition for Absolute Value

How many definitions do we really need? Bear with us because this one is important.

Example 11.1.12 Consider the function f defined by f (x) �
√

x2. First, we will evaluate this function at
a few arbitrary values: 3, 0, and −5.

f (3) �
√

32 f (0) �
√

02 f (−5) �
√
(−5)2

�
√

9 �
√

0 �
√

25
� 3 � 0 � 5

These results should seem familiar: f (3) � 3, f (0) � 0, and f (−5) � 5. The outputs are the same as the
inputs, except for a missing negative sign on 5. It seems like we’ve seen a function that does that exact
same thing already …

Make a quick graph using technology to see what the graph of y � f (x) looks like.

Explanation. Figure 11.1.13 shows a graph of f where f (x) �
√

x2. It looks just like that of y � |x |.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y
Since the graphs of y �

√
x2 and y � |x | match up exactly,

that must mean that

|x | �
√

x2

This fact will be used later in this chapter and it will con-
tinue to pop up in subsequentmath courses here and there
as important.

Figure 11.1.13: y �
√

x2

Example 11.1.14 Simplify the following expressions using the fact that |x | �
√

x2.

a.
√
(x − 2)2 b.

√
x6 c.

√
x2 + 10x + 25 d.

√
x4

Explanation.

a.
√
(x − 2)2 � |x − 2|. Note that x − 2 might be a negative number depending on the value of x, so

the absolute value will change those negative numbers to be positive values.
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b.
√

x6 �

√
(x3)2

�
��x3��

We know from exponent rules that x6 �
(
x3)2. Note that x3 will be negative whenever x is a

negative number, so the absolute value bars must remain.

c.
√

x2 + 10x + 25 �

√
(x + 5)2

� |x + 5|
Note again that x + 5 can be negative for certain values of x, so the absolute value barsmust remain.

d.
√

x4 �

√
(x2)2

�
��x2��

� x2

Note here that x2 is never negative. No matter what number you substitute in for x in x2, you
always either get a positive result or zero. So the absolute value around x2 doesn’t have any effect.
Absolute values change negative numbers to positive values but leave positive values alone. Thus,
it is OK in this case to drop the absolute value bars.

11.1.5 Applications Involving Absolute Values

Absolute values are quite useful as models in a variety of real world applications. One example is the path
of a billiards (pool) ball: when the ball bounces off one of the side rails, its path is mirrored and creates a “V”
shape. The game gets more complicated when more than the rail is hit, but the fundamental mathematics
doesn’t change: absolute values model the bounces each time.

Here are some more examples. The first one we’ll explore involves light reflecting off of a mirror.

When light reflects off of a mirror, the path it
takes is in the shape of an absolute value graph.
Khenbish was playing with a laser pointer in his
bedroom mirror. He set up the laser pointer on
his windowsill and the light hit the center of the
mirror and reflected onto the corner of his room.
He declared that the laser pointer is sitting at the
origin, and x should stand for the horizontal dis-
tance from the left wall to the light beam. Shown
is a birds-eye view of the situation.

−5

5

x

y

Figure 11.1.16: Birds-Eye View of Khenbish’s
Room with Laser
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Example 11.1.15 After a little bit of work, Khenbish was able to come up with a formula for the light’s
path:

p(x) � 5 − 5
4 |x − 4|

where p(x) stands for the position, in ft, above (for positive values) or below (for negatives) the center
line through his room that represents the x-axis, where x is also measured in ft. Use technology and a
graph of this formula to answer the following questions.

a. Khenbish’s room is 10 ft wide according to Figure 11.1.16 (in the vertical direction in the figure).
What is the room’s length (in the horizontal direction in the figure)?

b. How far along the wall is the mirror centered?

c. If you stood 9 ft from the left wall, how far above or below the room’s center line (x-axis) should
you stand to have the laser pointer hit you?

Explanation.

1 2 3 4 5 6 7 8 9 10 11 12

−5

−4

−3

−2

−1

1

2

3

4

5

x

y

Figure 11.1.17: Detailed Birds-Eye View of Khenbish’s Room

a. To find the room’s length, first note that since the laser hits the corner of the room, the x coordinate
of the lasers position would tell us the room’s width. According to the detailed graph, the x-
coordinate when y � −5 is 12. So the room must be 12 feet wide.

b. The mirror is centered exactly where the laser hits the wall. This is the vertex of the absolute value
graph which, according to the graph, is at the point (4, 5). This tells us that the mirror is centered
4 feet from the left wall.

c. If you are standing 9 feet from the left wall, the laser’s position will be a bit more than one foot
behind the rooms center line, by the diagram. While technology can tell us the exact answer, here
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is how to do this problem algebraically.

d(9) � 5 − 5
4 |9 − 4|

� 5 − 5
4 |5|

� 5 − 5
4 · 5

�
20
4 −

25
4

� −5
4

� −1.25

So, it looks like if you stand 9 feet from the left wall, you need to stand 1.25 feet behind the center
line (which would be 6.25 feet from the wall with the mirror on it) to be hit by the laser.

Absolute value functions are also used when a value must be within a certain distance or tolerance. For
example, a person’s body temperature is considered “normal” if it is within 0.5 degrees of 98.6 °F, so their
temperature could be up to 0.5 degrees less than or greater than that temperature. To be within normal
range, the difference between the two valuesmust be less than or equal to 0.5, and it does notmatterwhether
it is positive or negative. We will introduce a function for measuring this in the next example.

Example 11.1.18 The function D defined by D(T) � |T − 98.6| represents the difference between a per-
son’s temperature, T, in Fahrenheit, and 98.6 °F. A person’s temperature is considered “normal” if D(T)
is less than or equal to 0.5. Use D(T) to determine whether each person’s temperature is within the
normal range.

a. LaShonda has a temperature of 98.3 °F.

b. Castel has a temperature of 99.3 °F.

c. Daniel has a temperature of 97.3 °F.

Explanation.

a. LaShonda has a temperature of 98.3 °F, so we have:

D(98.3) � |98.3 − 98.6|
� |−0.3|
� 0.3

Since the value of D(98.3) is a number smaller than 0.5, her temperature of 98.3 °F is within the
normal range.

b. If Castel has a temperature of 99.3 °F, then we have:

D(99.3) � |99.3 − 98.6|
� |0.7|
� 0.7

Since the value of D(99.3) is a number bigger than 0.5, their temperature of 99.3 °F is not within
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the normal range.

c. Daniel’s temperature is 97.3 °F, so we have:

D(97.3) � |97.3 − 98.6|
� |−1.3|
� 1.3

Since the value of D(97.3) is a number bigger than 0.5, his temperature of 97.3 °F is not within the
normal range.

Example 11.1.19 The entryway to the Louvre Museum in Paris is through I. M. Pei’s metal and glass
Louvre Pyramid. This pyramid has a square base and is 71 feet high and 112 feet wide. The formula
h(x) � 71− 71

56 |x − 56| gives the height above ground level of the pyramid at a distance of x from the left
side of the pyramid base.

20 40 60 80 100

10

20

30

40

50

60

70

x

y

a. If you are 20 feet from the left edge, how
high will the pyramid rise in front of you?
Round your result to the nearest tenth of an
inch.

b. How far from the left edge is the center of
the pyramid?

c. Using your previous answer, check that the
formula gives you the correct height at the
center.

Figure 11.1.20: A Diagram of the Front of the
Louvre Pyramid

Explanation.

a. If you are 20 feet from the left edge, then x is 20. Substituting 20 for x we have

h(20) � 71 − 71
56 |20 − 56|

� 71 − 71
56 |−36|

� 71 − 71
56 · 36

≈ 25.4

The pyramid is about 25.4 feet high at the position 20 feet from the left edge.
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b. The center of the pyramid is 56 feet from the either edge since it’s half of 112 feet.

c. Putting x � 56 into the formula for h gives us

h(56) � 71 − 71
56 |56 − 56|

� 71 − 71
56 |0|

� 71 − 71
56 · 0

� 71

And so the formula does give us the correctmaximumheight of 71 feet at the center of the pyramid.

Exercises

Review and Warmup Evaluate the following.

a. |3| �

b. |−4| �

c. |0| �

d. |18 + (−8)| �

e. |−9 − (−4)| �

1. a. |4| �

b. |−8| �

c. |0| �

d. |12 + (−1)| �

e. |−9 − (−2)| �

2. a. −|5 − 9| �

b. |−5 − 9| �

c. −3|9 − 5| �

3.

a. −|3 − 6| �

b. |−3 − 6| �

c. −3|6 − 3| �

4. a. −3 − 3 |7 − 1| �

b. −3 − 3 |1 − 7| �

5. a. −2 − 8 |9 − 4| �

b. −2 − 8 |4 − 9| �

6.

a. −1 − 5 |6 − 3| �

b. −1 − 5 |3 − 6| �

7. a. −10 − 3 |8 − 2| �

b. −10 − 3 |2 − 8| �

8. 1 − 8 |1 − 2| + 2 �9.

2 − 6 |3 − 8| + 2 �10. 4 − 2
��−1 + (3 − 5)3

�� �11. 5 − 8
��−7 + (2 − 5)3

�� �12.
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Function Notation with Absolute Value

Given H(t) � |t − 296|, find
and simplify H(159).

H(159) �

13. Given 1(r) � |r − 261|, find
and simplify 1(170).

1(170) �

14. Given h(x) � |x + 16|, find
and simplify h(18).

h(18) �

15.

Given f (x) � |−4x − 5|, find
and simplify f (20).

f (20) �

16. Given f (x) � 10 − |3x − 26|,
find and simplify f (10).

f (10) �

17. Given f (r) � 15 − |4r + 14|,
find and simplify f (11).

f (11) �

18.

Given 1(t) � t + |−2t − 7|,
find and simplify 1(12).

1(12) �

19. Given K(t) � t + |2t − 29|,
find and simplify K(14).

K(14) �

20. Given G(t) �
��t2 − 16

��, find
and simplify G(−5).

G(−5) �

21.

Given h(t) �
��t2 − 25

��, find
and simplify h(1).

h(1) �

22. Given f (t) �
��t2 − 2t − 15

��,
find and simplify f (7).

f (7) �

23. Given H(t) �
��t2 − 2t − 24

��,
find and simplify H(−2).

H(−2) �

24.

Domain

Find the domain of K where K(x) � |−4x + 6|.25. Find the domain of f where f (x) � |9x − 6|.26.

Find the domain of f where f (x) � 2x − |2x + 3|.27. Find the domain of 1where 1(x) � 8x − |−5x − 9|.28.

Tables

Make a table of values for the function h de-
fined by h(x) � |3x − 2|.

x h(x)

29. Make a table of values for the function F de-
fined by F(x) � |2x − 3|.

x F(x)

30.
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Make a table of values for the function G de-
fined by G(x) �

��x2 − 2x − 1
��.

x G(x)

31. Make a table of values for the function G de-
fined by G(x) �

��x2 − x − 2
��.

x G(x)

32.

Make a table of values for the function H de-
fined by H(x) � − |2x − 3| + 1.

x H(x)

33. Make a table of values for the function K de-
fined by K(x) � −3|2x − 3| + 2.

x K(x)

34.

Make a table of values for the function f de-
fined by f (x) �

���−2|2x − 3| − 1
���.

x f (x)

35. Make a table of values for the function f de-
fined by f (x) �

���|−x + 2| + 2
���.

x f (x)

36.
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Graphs

Graph y � f (x), where f (x) � |2x − 1|.37. Graph y � f (x), where f (x) � |x − 2|.38.

Graph y � f (x), where f (x) �
��x2 − 2x − 1

��.39. Graph y � f (x), where f (x) �
��x2 + 3x − 2

��.40.

Graph y � f (x), where f (x) � 1
2 |4x − 5| − 3.41. Graph y � f (x), where f (x) � 3

4 |6 + x | + 2.42.

Graph y � f (x), where f (x) �
��2 |3 − x | − 2

��.43. Graph y � f (x), where f (x) �
��3− 2 |2x − 3|

��.44.

Absolute Value and Square Roots

Simplify the expression. Do
not assume the variables take
only positive values.
√

9z2

45. Simplify the expression. Do
not assume the variables take
only positive values.
√

64t2

46. Simplify the expression.√
(r − 43)2

47.

Simplify the expression.√
(m − 8)2

48. Simplify the expression.√
(−13698)2

49. Simplify the expression.√
(−15696)2

50.

Simplify the expression.
√

x2 + 20x + 100

51. Simplify the expression.
√

n2 + 2n + 1

52.

Applications

The height inside a camping tent when you are d feet from the edge of the tent is given by

h � −0.5|d − 4.4| + 5.5

where h stands for height in feet.

Determine the height when you are:

a. 5.9 ft from the edge.

The height inside a camping tent when you 5.9 ft from the edge of the tent is

b. 3.5 ft from the edge.

The height inside a camping tent when you 3.5 ft from the edge of the tent is

53.
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The height inside a camping tent when you are d feet from the edge of the tent is given by

h � −0.5|d − 6.6| + 6.5

where h stands for height in feet.

Determine the height when you are:

a. 11.5 ft from the edge.

The height inside a camping tent when you 11.5 ft from the edge of the tent is

b. 1.2 ft from the edge.

The height inside a camping tent when you 1.2 ft from the edge of the tent is

54.

Challenge

Write two numbers so that

• The first number is less than the second number, and

• The absolute value of the first number is greater than the absolute value of the second number

and

55.
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11.2 Compound Inequalities

On the newest version of the SAT (an exam that often qualifies students for colleges) the minimum score
that you can earn is 400 and the maximum score that you can earn is 1600. This means that only numbers
between 400 and 1600, including these endpoints, are possible scores. To plot all of these values on a number
line would look something like:

400 1,600

possibile SAT scores

0 x

Figure 11.2.1: Possible SAT Scores

Going back to the original statement, “the minimum score that you can earn is 400 and the maximum score
that you can earn is 1600,” this really says two things. First, it says that (a SAT score) ≥ 400, and second,
that (a SAT score) ≤ 1600. When we combine two inequalities like this into a single problem, it becomes a
compound inequality.

Our lives are often constrained by the compound inequalities of reality: you need to buy enough materials
to complete your project, but you can only fit somuch into your vehicle; youwould like to finish your degree
early, but only have somuchmoney and time to put toward your courses; youwould like a vegetable garden
big enough to supply you with veggies all summer long, but your yard or balcony only gets so much sun.
In the rest of the section we hope to illuminate how to think mathematically about problems like these.

Before continuing, a review on how notation for intervals works may be useful, and you may benefit from
revisiting Section 1.6. Then a refresher on solving linear inequalities may also benefit you, which you can
revisit in Section 3.2 and Section 3.3.

11.2.1 Unions of Intervals

Definition 11.2.3. The union of two sets, A and B, is the set of all elements contained in either A or B (or
both). We write A ∪ B to indicate the union of the two sets.

In other words, the union of two sets is what you get if you toss every number in both sets into a bigger set.

Example 11.2.4 The union of sets {1, 2, 3, 4} and {3, 4, 5, 6} is the set of all elements from either set. So
{1, 2, 3, 4} ∪ {3, 4, 5, 6} � {1, 2, 3, 4, 5, 6}. Note that we don’t write duplicates.

Example 11.2.5 Let’s visualize the union of the sets (−∞, 4) and [7,∞). First we make a number line
with both intervals drawn to understand what both sets mean.

4 70 x

Figure 11.2.6: A number line sketch of (−∞, 4) as well as [7,∞)

The two intervals should be viewed as a single object when stating the union, so here is the picture of
the union. It looks the same, but now it is a graph of a single set.
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4 70 x

Figure 11.2.7: A number line sketch of (−∞, 4) ∪ [7,∞)

11.2.2 “Or” Compound Inequalities

Definition 11.2.8. A compound inequality is a grouping of two ormore inequalities into a larger inequality
statement. These usually come in two flavors: “or” and “and” inequalities. For an example of an “or”
compound inequality, you might get a discount at the movie theater if your age is less than 13 or greater
than 64. In general, compound inequalities of the “and” variety currently are beyond the scope of this book.
However a special type of the “and” variety is covered later in Subsection 11.2.3.

In math, the technical term or means “either or both.” So, mathematically, if we asked if you would like
“chocolate cake or apple pie” for dessert, your choices are either “chocolate cake,” “apple pie,” or “both
chocolate cake and apple pie.” This is slightly different than the English “or” which usually means “one or
the other but not both.”

“Or” shows up inmath between equations (as in when solving a quadratic equation, youmight end upwith
“x � 2 or x � −3”) or between inequalities (which is what we’re about to discuss).

Remark 11.2.9. The definition of “or” is very close to the definition of a union where you combine elements
from either or both sets together. In fact, when you have an “or” between inequalities in a compound
inequality, to find the solution set of the compound inequality, you find the union of the the solutions sets
of each of the pieces.

Example 11.2.10 Solve the compound inequality.

x ≤ 1 or x > 4

Explanation.

Writing the solution set to this compound in-
equality doesn’t require any algebra beforehand
because each of the inequalities is already solved
for x. The first thing we should do is understand
what each inequality is saying using a graph.

1 4

x ≤ 1 x > 4

0 x

Figure 11.2.11: A number line sketch of solu-
tions to x ≤ 1 as well as to x > 4

An “or” statement becomes a union of solution sets, so the solution set to the compound inequalitymust
be:

(−∞, 1] ∪ (4,∞).

Example 11.2.12 Solve the compound inequality.

3 − 5x > −7 or 2 − x ≤ −3
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Explanation. First we need to do some algebra to isolate x in each piece. Note that we are going to do
algebra on both pieces simultaneously. Also note that the mathematical symbol “or” should be written
on each line.

3 − 5x > −7 or 2 − x ≤ −3
3 − 5x − 3 > −7 − 3 or 2 − x − 2 ≤ −3 − 2

−5x > −10 or −x ≤ −5
−5x
−5 <

−10
−5 or −x

−1 ≥
−5
−1

x < 2 or x ≥ 5

The solution set for the compound inequality x < 2 is (−∞, 2) and the solution set to x ≥ 5 is [5,∞). To
do the “or” portion of the problem, we need to take the union of these two sets. Let’s first make a graph
of the solution sets to visualize the problem.

2 50 x

Figure 11.2.13: A number line sketch of (−∞, 2) as well as [5,∞)

The union combines both solution sets into one, and so

(−∞, 2) ∪ [5,∞)

We have finished the problem, but for the sake of completeness, let’s try to verify that our answer is
reasonable.

• First, let’s choose a number that is not in our proposed solution set. We will arbitrarily choose 3.

3 − 5x > −7 or 2 − x ≤ −3

3 − 5(3) ?
> −7 or 2 − (3)

?
≤ −3

−9
no
> −7 or −1

no
≤ −3

This value made both inequalities false which is why 3 isn’t in our solution set.

• Next, let’s choose a number that is in our solution region. We will arbitrarily choose 1.

3 − 5x > −7 or 2 − x ≤ −3

3 − 5(1) ?
> −7 or 2 − (1)

?
≤ −3

−12
✓
< −7 or −1

no
≤ −3

This value made one of the inequalities true. Since this is an “or” statement, only one or the other
piece has to be true to make the compound inequality true.
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• Last, what will happen if we choose a value that was in the other solution region in Figure 11.2.13,
like the number 6?

3 − 5x > −7 or 2 − x ≤ −3

3 − 5(6) ?
> −7 or 2 − (6)

?
≤ −3

−27
no
> −7 or −4

✓
≤ −3

This solution made the other inequality piece true.

This completes the check. Numbers from within the solution region make the compound inequality
true and numbers outside the solution region make the compound inequality false.

Example 11.2.14 Solve the compound inequality.

3
4 t + 2 ≤ 5

2 or − 1
2 (t − 3) < −2

Explanation. First we will solve each inequality for t. Recall that we usually try to clear denominators
by multiplying both sides by the least common denominator.

3
4 t + 2 ≤ 5

2 or −1
2 (t − 3) < −2

4 ·
(
3
4 t + 2

)
≤ 4 · 52 or 2 ·

(
−1

2 (t − 3)
)
< 2 · (−2)

3t + 8 ≤ 10 or −t + 3 < −4
3t + 8 − 8 ≤ 10 − 8 or −t + 3 − 3 < −4 − 3

3t ≤ 2 or −t < −7
3t
3 ≤

2
3 or −t

−1 >
−7
−1

t ≤ 2
3 or t > 7

The solution set to t ≤ 2
3 is

(
−∞, 2

3
]
and the solution set to t > 7 is (7,∞). Figure 11.2.15 shows these

two sets.

2
3

70 t

Figure 11.2.15: A number line sketch of
(
−∞, 2

3
]
and also (7,∞)

Note that the two sets do not overlap so there will be no way to simplify the union. Thus the solution
set to the compound inequality is: (

−∞, 23

]
∪ (7,∞)
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Example 11.2.16 Solve the compound inequality.

3y − 15 > 6 or 7 − 4y ≥ y − 3

Explanation. First we solve each inequality for y.

3y − 15 > 6 or 7 − 4y ≥ y − 3
3y − 15 + 15 > 6 + 15 or 7 − 4y − 7 − y ≥ y − 3 − 7 − y

3y > 21 or −5y ≥ −10
3y
3 >

21
3 or

−5y
−5 ≤

−10
−5

y > 7 or y ≤ 2

The solution set to y > 7 is (7,∞) and the solution set to y ≤ 2 is (−∞, 2]. Figure 11.2.17 shows these
two sets.

2 70 y

Figure 11.2.17: A number line sketch of (7,∞) as well as (−∞, 2]

So the solution set to the compound inequality is:

(−∞, 2] ∪ (7,∞)

11.2.3 Three-Part Inequalities

The inequality 1 ≤ 2 < 3 says a lot more than you might think. It actually says four different single inequal-
ities which are highlighted for you to see.

1 ≤ 2 < 3 1 ≤ 2 < 3 1 ≤ 2 < 3 1 ≤ 2 < 3

This might seem trivial at first, but if you are presented with an inequality like −1 < 3 ≥ 2, at first it might
look sensible; however, in reality, you need to check that all four linear inequalities make sense. Those are
highlighted here.

−1 < 3 ≥ 2 −1 < 3 ≥ 2 −1 < 3 ≥ 2 −1 < 3 ≥ 2

One of these inequalities is false: −1 ≱ 2. This implies that the entire original inequality, −1 < 3 ≥ 2, is
nonsense.

Example 11.2.18 Decide whether or not the following inequalities are true or false.

a. True or False: −5 < 7 ≤ 12?

b. True or False: −7 ≤ −10 < 4?

c. True or False: −2 ≤ 0 ≥ 1?

d. True or False: 5 > −3 ≥ −9?

e. True or False: 3 < 3 ≤ 5?

f. True or False: 9 > 1 < 5?

g. True or False: 3 < 8 ≤ −2?

h. True or False: −9 < −4 ≤ −2?
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Explanation. We need to go through all four single inequalities for each. If the inequality is false, for
simplicity’s sake, we will only highlight the one single inequality that makes the inequality false.

a. True: −5 < 7 ≤ 12.

b. False: −7
no
≤ −10 < 4.

c. False: −2 ≤ 0
no
≥ 1.

d. True: 5 > −3 ≥ −9.

e. False: 3
no
< 3 ≤ 5.

f. False: 9 > 1
no
< 5.

g. False: 3 < 8
no
≤ −2.

h. True: −9 < −4 ≤ −2.

As a general hint, no (nontrivial) three-part inequality can ever be true if the inequality signs are not pointing
in the same direction. So no matter what numbers a, b, and c are, both a < b ≥ c and a ≥ b < c cannot
be true! Soon you will be writing inequalities like 2 < x ≤ 4 and you need to be sure to check that your
answer is feasible. You will know that if you get 2 > x ≤ 4 or 2 < x ≥ 4 that something went wrong in the
solving process. The only exception is that something like 1 ≤ 1 ≥ 1 is true because 1 � 1 � 1, although this
shouldn’t come up very often!

Example 11.2.19 Write the solution set to the compound inequality.

−7 < x ≤ 5

Explanation. The solutions to the three-part inequality −7 < x ≤ 5 are those numbers that are trapped
between −7 and 5, including 5 but not −7. Keep in mind that there are infinitely many decimal numbers
and irrational numbers that satisfy this inequality like −2.781828 and π. We will write these numbers
in interval notation as (−7, 5] or in set builder notation as {x | −7 < x ≤ 5}.

Example 11.2.20 Solve the compound inequality.

4 ≤ 9x + 13 < 20

Explanation.

This is a three-part inequality which we can treat just
as a regular inequality with three “sides.” The goal is
to isolate x in the middle and whatever you do to one
“side,” you have to do to the other two “sides.”

The solutions to the three-part inequality −1 ≤ x <
7
9 are those numbers that are trapped between −1 and
7
9 , including −1 but not 7

9 . The solution set in interval
notation is

[
−1, 7

9
)
.

4 ≤ 9x + 13 < 20
4 − 13 ≤ 9x + 13 − 13 < 20 − 13
−9 ≤ 9x < 7
−9
9 ≤

9x
9 <

7
9

−1 ≤ x <
7
9

Example 11.2.21 Solve the compound inequality.

−13 < 7 − 4
3 x ≤ 15

836



11.2 Compound Inequalities

Explanation.

This is a three-part inequality which we can treat just
as a regular inequality with three “sides.” The goal is
to isolate x in the middle and whatever you do to one
“side,” you have to do to the other two “sides.” We
will begin by canceling the fraction bymultiplying each
part by the least common denominator.

At the end we reverse the entire statement to go from
smallest to largest. The solution set is (−6, 15].

−13 < 7 − 4
3 x ≤ 15

−13 · 3 <
(
7 − 4

3 x
)
· 3 ≤ 15 · 3

−39 < 21 − 4x ≤ 45
−39 − 21 < 21 − 4x − 21 ≤ 45 − 21
−60 < −4x ≤ 24
−60
−4 >

−4x
−4 ≥

24
−4

15 > x ≥ −6
−6 ≤ x < 15

11.2.4 Solving Compound Inequalities Graphically

So far we have focused on solving inequalities algebraically. Next, we will describe how to solve compound
inequalities graphically.

Example 11.2.22 Figure 11.2.23 shows a graph of y � f (x). Use the graph to solve the inequality 2 ≤
f (x) < 6.

−6 −4 −2 2 4 6

−4

−2

2

4

6

8

y � f (x)

x

y To solve the inequality 2 ≤ f (x) < 6 means to
find the x-values that give function values be-
tween 2 and 6, not including 6. We draw the hor-
izontal lines y � 2 and y � 6. Then we look for
the points of intersection and find their x-values.
We see that when x is between −4 and 4, not in-
cluding −4, the inequality will be true.

Figure 11.2.23: Graph of y � f (x)

We have drawn the interval (−4, 4] along the x-axis, which is the solution set.
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−6 −4 −2 2 4 6

−4

−2

2

4

6

8

y � f (x)

y � 2

y � 6

x

y

Figure 11.2.24: Graph of y � f (x) and the solution set to 2 ≤ f (x) < 6

Example 11.2.25 Figure 11.2.26 shows a graph of y � 1(x). Use the graph to solve the inequality −4 <
1(x) ≤ 3.

−3 −2 −1 1 2 3

−6

−4

−2

2

4 y � 1(x)

x

y

Figure 11.2.26: Graph of y � 1(x)

Explanation. To solve −4 < 1(x) ≤ 3, we first draw the horizontal lines y � −4 and y � 3. To solve this
inequality we notice that there are two pieces of the function 1 that are trapped between the y-values
−4 and 3.

The solution set is the compound inequality (−2.1, 0.7) ∪ (2.4, 3.2].
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−3 −2 −1 1 2 3

−6

−4

−2

2

4

y � 1(x)

y � −4

y � 3

x

y

Figure 11.2.27: Graph of y � 1(x) and solution set to −4 < 1(x) ≤ 3

11.2.5 Applications of Compound inequalities

Example 11.2.28 Raphael’s friend is getting married and he’s decided to give them some dishes from
their registry. Raphael doesn’t want to seem cheap but isn’t a wealthy man either, so he wants to buy
“enough” but not “too many.” He’s decided that he definitely wants to spend at least $150 on his friend,
but less than $250. Each dish is $21.70 and shipping on an order of any size is going to be $19.99. Given
his budget, set up and algebraically solve a compound inequality to find out what his different options
are for the number of dishes that he can buy.

Explanation. First, we should define our variable. Let x represent the number of dishes that Raphael
can afford. Next we should write a compound inequality that describes this situation. In this case,
Raphael wants to spend between $150 and $250 and, since he’s buying x dishes, the price that he will
pay is 21.70x + 19.99. All of this translates to a triple inequality

150 < 21.70x + 19.99 < 250

Now we have to solve this inequality in the usual way.

150 < 21.70x + 19.99 < 250
150 − 19.99 < 21.70x + 19.99 − 19.99 < 250 − 19.99

130.01 < 21.70x < 230.01
130.01
21.70 <

21.70x
21.70 <

230.01
21.70

5.991 < x < 10.6 (note: these values are approximate)

The interpretation of this inequality is a little tricky. Remember that x represents the number of dishes
Raphael can afford. Since you cannot buy 5.991 dishes (manufacturers will typically only ship whole
number amounts of tableware) his minimum purchase must be 6 dishes. We have a similar problem
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with his maximum purchase: clearly he cannot buy 10.6 dishes. So, should we round up or down? If
we rounded up, that would be 11 dishes and that would cost $21.70 · 11 + $19.99 � $258.69, which is
outside his price range. Therefore, we should actually round down in this case.

In conclusion, Raphael should buy somewhere between 6 and 10 dishes for his friend to stay within his
budget.

Example 11.2.29 Oak Ridge National Laboratory, a renowned scientific research facility, compiled some
data in table 4.28a on fuel efficiency of a mid-size hybrid car versus the speed that the car was driven.
A model for the fuel efficiency e(x) (in miles per gallon, mpg) at a speed x (in miles per hour, mph) is
e(x) � 88 − 0.7x.

a. Evaluate and interpret e(60) in the context of the problem.

b. Note that this model only applies between certain speeds. The maximum fuel efficiency for which
this formula applies is 55 mpg and the minimum fuel efficiency for which it applies is 33 mpg. Set
up and algebraically solve a compound inequality to find the range of speeds for which this model
applies.

Explanation.

a. Let’s evaluate e(60) first.

e(x) � 88 − 0.7x
e(60) � 88 − 0.7(60)

� 46

So, when the hybrid car travels at a speed of 60 mph, it has a fuel efficiency of 46 mpg.

b. In this case, the minimum efficiency is 33 mpg and the maximum efficiency is 55 mpg. We need to
trap our formula between these two values to solve for the respective speeds.

33 < 88 − 0.7x < 55
33 − 88 < 88 − 0.7x − 88 < 55 − 88
−55 < −0.7x < −33
−55
−0.7 >

−0.7x
−0.7 >

−33
−0.7

78.57 > x > 47.14 (note: these values are approximate)

This inequality says that our model is applicable when the car’s speed is between about 47 mph and
about 79 mph.

acta.ornl.gov/data/chapter4.shtml
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Exercises

Review and Warmup

Here is an interval:

Write the interval using set-builder notation.

Write the interval using interval notation.

1. Here is an interval:

Write the interval using set-builder notation.

Write the interval using interval notation.

2.

Here is an interval:

Write the interval using set-builder notation.

Write the interval using interval notation.

3. Here is an interval:

Write the interval using set-builder notation.

Write the interval using interval notation.

4.

Solve this inequality.

5 > x + 10

In set-builder notation, the solution set is .

In interval notation, the solution set is .

5. Solve this inequality.

1 > x + 8

In set-builder notation, the solution set is .

In interval notation, the solution set is .

6.

Solve this inequality.

−2x ≥ 4

In set-builder notation, the solution set is .

In interval notation, the solution set is .

7. Solve this inequality.

−2x ≥ 8

In set-builder notation, the solution set is .

In interval notation, the solution set is .

8.

Solve this inequality.

4 ≥ −5x + 4

In set-builder notation, the solution set is .

In interval notation, the solution set is .

9. Solve this inequality.

2 ≥ −6x + 2

In set-builder notation, the solution set is .

In interval notation, the solution set is .

10.
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Solve this inequality.

8t + 9 < 3t + 34

In set-builder notation, the solution set is .

In interval notation, the solution set is .

11. Solve this inequality.

9t + 6 < 5t + 18

In set-builder notation, the solution set is .

In interval notation, the solution set is .

12.

Check Solutions Decide whether the given value for the variable is a solution.

a. x > 8 and x ≤ 2 x � 4

The given value (□ is □ is not) a so-
lution.

b. x < 8 or x ≥ 5 x � 4

The given value (□ is □ is not) a so-
lution.

c. x ≥ −2 and x ≤ 6 x � 8

The given value (□ is □ is not) a so-
lution.

d. −2 ≤ x ≤ 3 x � 1

The given value (□ is □ is not) a so-
lution.

13. a. x > 9 and x ≤ 7 x � 8

The given value (□ is □ is not) a so-
lution.

b. x < 6 or x ≥ 5 x � 9

The given value (□ is □ is not) a so-
lution.

c. x ≥ −1 and x ≤ 9 x � −5

The given value (□ is □ is not) a so-
lution.

d. −1 ≤ x ≤ 2 x � 1

The given value (□ is □ is not) a so-
lution.

14.

Compound Inequalities and Interval Notation

Solve the compound inequality. Write the so-
lution set in interval notation.

−10 < x ≤ 5

x is in

15. Solve the compound inequality. Write the so-
lution set in interval notation.

−9 < x ≤ 1

x is in

16.

Solve the compound inequality. Write the so-
lution set in interval notation.

−8 > x or x ≥ 8

x is in

17. Solve the compound inequality. Write the so-
lution set in interval notation.

−7 > x or x ≥ 4

x is in

18.

Express the following inequality using inter-
val notation.

x < −6 or x ≤ 1

x is in

19. Express the following inequality using inter-
val notation.

x < −5 or x ≤ 7

x is in

20.
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Solving a Compound Inequality Algebraically Solve the compound inequality algebraically.

−14 < 7 − x ≤ −9

x is in

21. −16 < 20 − x ≤ −11

x is in

22.

19 ≤ x + 13 < 24

x is in

23. 1 ≤ x + 7 < 6

x is in

24.

4 ≤ 5
9 (F − 32) ≤ 50

F is in

25. 8 ≤ 5
9 (F − 32) ≤ 43

F is in

26.

−10x − 11 ≤ −20 and − 2x − 18 < −1027. 17x + 6 ≤ 9 and 18x − 14 ≤ 728.

−9x − 8 ≤ −5 or − 4x − 15 ≥ −1329. −12x − 13 ≥ −11 or − 7x − 1 < −1730.

13x + 13 ≤ −13 or − 5x + 11 ≤ −431. −9x + 13 < 2 or 16x − 2 < −132.

−13x + 10 < −7 and − 3x + 4 < 833. 13x − 14 < −18 and 18x + 8 ≤ −1634.

6 < 2
5 x < 20

In set-builder notation, the solution set is .

In interval notation, the solution set is .

35. 15 < 3
2 x < 54

In set-builder notation, the solution set is .

In interval notation, the solution set is .

36.

5 > −1 − 3
7 x ≥ −10

In set-builder notation, the solution set is .

In interval notation, the solution set is .

37. 20 > 4 − 4
5 x ≥ −8

In set-builder notation, the solution set is .

In interval notation, the solution set is .

38.
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Solving a Compound Inequality Graphically A graph of f is given. Use the graph alone to solve the
compound inequalities.

a. f (x) > 2

b. −2 < f (x) ≤ 2

39.

a. f (x) > −1

b. −1 < f (x) ≤ 3

40.

a. f (x) > 0

b. f (x) ≤ 0

41.

a. f (x) > 5

b. f (x) ≤ 5

42.

a. f (x) > −2

b. f (x) ≤ −2

43.

a. f (x) > 5

b. f (x) ≤ 5

44.

Applications

As dry air moves upward, it expands. In so doing, it cools at a rate of about 1◦C for every 100m
rise, up to about 12km.

a. If the ground temperature is 18◦C, write a formula for the temperature at height x km. T(x) �

b. What range of temperature will a plane be exposed to if it takes off and reaches a maximum
height of 5km? Write answer in interval notation.

The range is

45.
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11.3 Absolute Value Equations and Inequalities

Whether it’s a washer, nut, bolt, or gear, when a machine part is made, it must be made to fit with all of the
other parts of the system. Since no manufacturing process is perfect, there are small deviations from the
norm when each piece is made. In fact, manufacturers have a range of acceptable values for each measure-
ment of every screw, bolt, etc.

Let’s say we were examining some new bolts just out of the factory. The manufacturer specifies that each
bolt should be within a tolerance of 0.04 mm to 10 mm in diameter. So the lowest diameter that the bolt could
be to make it through quality assurance is 0.04 mm smaller than 10 mm, which is 9.96 mm. Similarly, the
largest diameter that the bolt could be is 0.04 mm larger than 10 mm, which is 10.04 mm.

Summarizing, we want the difference between the actual diameter and the specification to be less than or
equal to 0.04 mm. Since absolute values are used to describe distances, we can summarize our thoughts
mathematically as |x − 10| ≤ 0.04, where x represents the diameter of an acceptably sized bolt, in millime-
ters. Since the minimum value is 9.96 mm and the maximum value is 10.04 mm, our range of acceptable
values should be 9.96 ≤ x ≤ 10.04.

In this section we will examine a variety of problems and applications that relate to this sort of math with
absolute values.

11.3.1 Solving Absolute Value Equations

Recall in Section 11.1 that we learned that graphs of absolute value function are in general shaped like “V”s.
We can now solve some absolute value equations graphically.

Example 11.3.2 Solve the equations graphically using the graphs provided.

a. |x | � 3

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1

2

3

4

5

y
�
|x |

x

y

b. |2x + 3| � 5

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1

2

3

4

5

y
�
|2x

+
3|

x

y

Explanation. To solve the equations graphically, first we need to graph the right sides of the equations
also.
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a. |x | � 3

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1

2

3

4

5

y
�
|x |

y � 3

x

y

Since the graph of y � |x | crosses y � 3 at
the x-values −3 and 3, the solution set to the
equation |x | � 3 must be {−3, 3}.

b. |2x + 3| � 5

−5 −4 −3 −2 −1 1 2 3 4 5

−1

1

2

3

4

5

y
�
|2x

+
3|

y � 5

x

y

Since the graph of y � |2x + 3| crosses y � 5
at the x-values −4 and 1, the solution set to
the equation |2x + 3| � 5 must be {−4, 1}.

Remark 11.3.3. At this point, please note that there is a big difference between the expression |3| and the
equation |x | � 3.

1. The expression |3| is describing the distance from 0 to the number 3. The distance is just 3. So |3| � 3.

2. The equation |x | � 3 is asking you to find the numbers that are a distance of 3 from 0. We saw in
Explanation 11.3.2.1 that these two numbers are 3 and −3.

Example 11.3.4

a. Verify that the value 4 is a solution to the absolute value equation |2x − 3| � 5.

b. Verify that the value 3
2 is a solution to the absolute value equation

�� 1
6 x − 1

2
�� � 1

4 .

Explanation.

a. We will substitute the value 4 into the absolute value equation |2x − 3| � 5. We get:

|2x − 3| � 5

|2 · 4 − 3| ?
� 5

|8 − 3| ?
� 5

|5| ✓� 5

b. We will substitute the value 3
2 into the absolute value equation

�� 1
6 x − 1

2
�� � 1

4 . We get:����16 x − 1
2

���� � 1
4����16 · 32 − 1

2

���� ?
�

1
4
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2

���� ?
�

1
4����−1

4

���� ✓� 1
4

Now we will learn to solve absolute value equations algebraically. To motivate this, we will think about
what an absolute value equation means in terms of the “distance from zero” definition of absolute value. If

|X | � n,

where n ≥ 0, then this means that we want all of the numbers, X, that are a distance n from 0. Since we can
only go left or right along the number line, this is describing both X � n as well as X � −n.

n−n

n unitsn units

0 X

Figure 11.3.5: A Numberline with Points a Distance n from 0

Let’s summarize this with a fact.

Fact 11.3.6 Equationswith anAbsoluteValue Expression. Let n be a non-negative number and X be an algebraic
expression. Then the equation

|X | � n

has the same solutions as
X � n or X � −n.

Example 11.3.7 Solve the absolute value equations using Fact 11.3.6. Write solutions in a solution set.

a. |x | � 6

b. |x | � −4

c. |5x − 7| � 23

d. |14 − 3x | � 8

e. |3 − 4x | � 0

Explanation.

a. Fact 11.3.6 says that the equation |x | � 6 is the same as

x � 6 or x � −6.

Thus the solution set is {6,−6}.
b. Fact 11.3.6 doesn’t actually apply to the equation |x | � −4 because the value on the right side is

negative. How often is an absolute value of a number negative? Never! Thus, there are no solutions
and the solution set is the empty set, denoted ∅.

c. The equation |5x − 7| � 23 breaks into two pieces, each of which needs to be solved independently.

5x − 7 � 23 or 5x − 7 � −23
5x � 30 or 5x � −16

x � 6 or x � −16
5
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Thus the solution set is
{
6,− 16

5
}
.

d. The equation |14 − 3x | � 8 breaks into two pieces, each of which needs to be solved independently.

14 − 3x � 8 or 14 − 3x � −8
−3x � −6 or −3x � −22

x � 2 or x �
22
3

Thus the solution set is
{
2, 22

3
}
.

e. The equation |3 − 4x | � 0 breaks into two pieces, each of which needs to be solved independently.

3 − 4x � 0 or 3 − 4x � −0

Since these are identical equations, all we have to do is solve one equation.

3 − 4x � 0
−4x � −3

x �
3
4

Thus, the equation |3 − 4x | � 0 only has one solution, and the solution set is
{ 3

4
}
.

Now we will look at an equation with an absolute value expression on each side, such as |x | � |2x + 6|.
Since |x | � 5 has two solutions, you might be wondering how many solutions |x | � |2x + 6| will have. Let’s
look at a graph to find out.

−6 −4 −2 2
−1

1

2

3

4

5

6

7

y
�
|2x

+
6|

y �
|x |

x

y

Figure 11.3.8: y � |x | and y � |2x + 6|

Figure 11.3.8 shows that there are also two points of intersection between the graphs of y � |x | and y �

|2x + 6|. The solutions to the equation |x | � |2x + 6| are the x-values where the graphs cross. So, the
solution set is {−6,−2}.
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Example 11.3.9 Solve the equation |x + 1| � |2x − 4| graphically.

Explanation.

First break up the equation into the left side and
the right side and graph each separately, as in y �

|x + 1| and y � |2x − 4|. We can see in the graph
that the graphs intersect twice. The x-values of
those intersections are 1 and 5 so the solution set
to the equation |x + 1| � |2x − 4| is {1, 5}.

−2 −1 1 2 3 4 5 6

1

2

3

4

5

6

7

y
�
|2x −

4|

y �
|x +

1|

x

y

Figure 11.3.10: y � |x + 1| and y � |2x − 4|

Fact 11.3.11 Equations with Two Absolute Value Expressions. Let X and Y be linear algebraic expressions.
Then, the equation

|X | � |Y |
has the same solutions as

X � Y or X � −Y.

Remark 11.3.12. Youmight be confused as towhy the negative sign has to go on the right side of the equation
in X � −Y. Well, it doesn’t: it can go on either side of the equation. The equations X � −Y and −X � Y are
equivalent. Similarly, −X � −Y is equivalent to X � Y. That’s why we only need to solve two of the four
possible equations.

Example 11.3.13 Solve the equations using Fact 11.3.11.

a. |x − 4| � |3x − 2|
b.

�� 1
2 x + 1

�� � �� 1
3 x + 2

�� c. |x − 2| � |x + 1|
d. |x − 1| � |1 − x |

Explanation.

a. The equation |x − 4| � |3x − 2| breaks down into two pieces:

x − 4 � 3x − 2 or x − 4 � −(3x − 2)
x − 4 � 3x − 2 or x − 4 � −3x + 2
−2 � 2x or 4x � 6
−2
2 �

2x
2 or 4x

4 �
6
4

−1 � x or x �
3
2
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So, the solution set is
{
−1, 3

2
}
.

b. The equation
�� 1
2 x + 1

�� � �� 1
3 x + 2

�� breaks down into two pieces:

1
2 x + 1 �

1
3 x + 2 or 1

2 x + 1 � −
(
1
3 x + 2

)
1
2 x + 1 �

1
3 x + 2 or 1

2 x + 1 � −1
3 x − 2

6 ·
(
1
2 x + 1

)
� 6 ·

(
1
3 x + 2

)
or 6 ·

(
1
2 x + 1

)
� 6 ·

(
−1

3 x − 2
)

3x + 6 � 2x + 12 or 3x + 6 � −2x − 12
x � 6 or 5x � −18

x � 6 or x � −18
5

So, the solution set is
{
6,− 18

5
}
.

c. The equation |x − 2| � |x + 1| breaks down into two pieces:

x − 2 � x + 1 or x − 2 � −(x + 1)
x − 2 � x + 1 or x − 2 � −x − 1

x � x + 3 or 2x � 1

0 � 3 or x �
1
2

Note that one of the two pieces gives us an equation with no solutions. Since 0 , 3, we can safely
ignore this piece. Thus the only solution is 1

2 .

We should visualize this equation graphically because our previous assumption was that two ab-
solute value graphs would cross twice. The graph shows why there is only one crossing: the left
and right sides of each “V” are parallel.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−1

1

2

3

4

5

6

y
�
|x
+

1|

y
�
|x
− 2
|

x

y
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d. The equation |x − 1| � |1 − x | breaks down into two pieces:

x − 1 � 1 − x or x − 1 � −(1 − x)
x − 1 � 1 − x or x − 1 � −1 + x

2x � 2 or x � 0 + x
x � 1 or 0 � 0

Note that our second equation is an identity so recall from Section 3.6 that the solution set is “all
real numbers.”

So, our two pieces have solutions 1 and “all real numbers.” Since 1 is a real number and we have
an or statement, our overall solution set is (−∞,∞). The graph confirms our answer since the two
“V” graphs are coinciding.

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−1

1

2

3

4

5

6

y
�
|x −

1|
y
�
|1
− x
|

x

y

Figure 11.3.14: y � |x − 1| and y � |1 − x |

11.3.2 Solving Absolute Value Inequalities

Now we turn our attention away from equations and onto absolute value inequalities. Don’t dismiss this
topic as it will actually be used in some capacity in many subsequent math courses. So let’s give these the
full treatment. We start with a graphical interpretation of what |2x − 1| ≤ 5 means.
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Graphically solving the inequality |2x − 1| ≤ 5
means looking for the x-values where the graph of
y � |2x − 1| is below (or touching) the line y � 5.
On the graph the highlighted region of y � |2x − 1|
is the portion that is below the line y � 5, and the
x-values in that region are [−2, 5].

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−1

1

2

3

4

5

6

y
�
|2x
−

1|

y � 5

x

y

Figure 11.3.15: y � |2x − 1| and y � 5

Example 11.3.16 Solve the inequality
�� 2
3 x + 1

�� < 3 graphically.

Explanation. To solve the inequality
�� 2
3 x + 1

�� < 3, we will start by making a graph with both y ��� 2
3 x + 1

�� and y � 3.

−8 −6 −4 −2 2 4 6

1

2

3

4

5

y
� �� 23 x

+
1 ��

y � 3

x

y
The portion of the graph of y �

�� 2
3 x + 1

�� that is
below y � 3 is highlighted and the x-values of
that highlighted region are trapped between −6
and 3: −6 < x < 3. That means that the solution
set is (−6, 3). Note that we shouldn’t include the
endpoints of the interval because at those values,
the two graphs are equal whereas the original in-
equality was only less than and not equal.

Figure 11.3.17: y �
�� 2
3 x + 1

�� and y � 3

For a more verbal approach to understanding the concept, let’s try to describe “values that are less than 4
units from 0.” We would say that those are “numbers between −4 and 4.” Let’s translate each sentence into
math. “Values that are less than 4 units from 0” translates to “|x | < 4,” and the piece “numbers between −4
and 4” translates to be “−4 < x < 4.”

For a graphical interpretation, let’s think in terms of the “distance from zero” definition of absolute value.
If

|X | ≤ n,
where n ≥ 0, then we want all of the numbers, X, that are a distance n or less from 0. Since we can only go
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left or right along the number line, this is describing all numbers from −n to n.

n−n

n unitsn units

0 X

Figure 11.3.18: A Numberline with Points a Distance n or less from 0

Fact 11.3.19 An Absolute Value Expression Less Than a Value. Let n be a non-negative number and X be a
linear algebraic expression.

Then, the inequality |X | < n has the same solutions as the compound inequality −n < X < n.

Likewise, the inequality |X | ≤ n has the same solutions as the compound inequality −n ≤ X ≤ n.

Example 11.3.20 Solve the absolute value inequalities using Fact 11.3.19.

a. |x | ≤ 9

b. |x | < −6

c. |4x + 3| < 9

d. 3 · |3 − x | + 1 ≤ 13

Explanation.

a. The inequality |x | < 9 breaks down into a triple inequality:

−9 ≤ x ≤ 9

This inequality is already written in simplest form and all that remains for us to do is to write the
solution set in interval notation: [−9, 9].

b. Fact 11.3.19 doesn’t apply to the inequality |x | < −6 because the right side is a negative number.
Let’s translate the meaning of the inequality into English. It says, “The distance from 0 to what
numbers is less than −6?” Since we define distance to be non-negative, there are no possible num-
bers that are less than −6 units distance from 0. Thus, the solution set is the empty set, denoted
∅.

c. The inequality |4x + 3| < 9 breaks down into a triple inequality that we can then solve:

−9 < 4x + 3 < 9
−9 − 3 < 4x + 3 − 3 < 9 − 3

−12 < 4x < 6
−12

4 <
4x
4 <

6
4

−3 < x <
3
2

So, the solution set to the inequality is
(
−3, 3

2
)
.

d. The inequality 3 · |3 − x | + 1 ≤ 13 must be simplified into the form that matches Fact 11.3.19, so we
will first isolate the absolute value expression on the left side of the inequality:

3 · |3 − x | + 1 ≤ 13
3 · |3 − x | ≤ 12
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|3 − x | ≤ 4

Now that we have the absolute value isolated, we can split it into a triple inequality that we can
finish solving:

−4 ≤ 3 − x ≤ 4
−4 − 3 ≤ 3 − x − 3 ≤ 4 − 3
−7 ≤ −x ≤ 1
−7
−1 ≥

−x
−1 ≥

1
−1

7 ≥ x ≥ −1

So, the solution set to the inequality is [−1, 7].

Example 11.3.21 If a machined circular washer must have a circumference that is within 0.2 mm of
36 mm, then what is the acceptable range for the radius of the washer? Round your answers to the
nearest hundredth of a millimeter.

Explanation. Wewill first define the radius of thewasher to be r, measured inmillimeters. The formula
C � 2πr gives us the circumference, C, of a circle with radius r. Now we know that “distance” between
the circumference and our preferred circumference of 36 mm must be less than or equal to 0.2 mm. In
math, this translates to

|C − 36| ≤ 0.2

Now we can substitute our formula for circumference and solve for r.

|C − 36| ≤ 0.2
|2πr − 36| ≤ 0.2

To solve this we will use Fact 11.3.19 to break the absolute value inequality into a triple inequality:

−0.2 ≤ 2πr − 36 ≤ 0.2
−0.2 + 36 ≤ 2πr − 36 + 36 ≤ 0.2 + 36

35.8 ≤ 2πr ≤ 36.2
35.8
2π ≤

2πr
2π ≤

36.2
2π

5.70 ≤ r ≤ 5.76 (note: these values are rounded)

This shows that the radius must be somewhere between 5.70 mm and 5.76 mm, inclusive.

The last few examples have all revolved around absolute values being less than some value. We now need
to investigate what happens when we have an absolute value that is greater than a value. We will again start
with a graphical interpretation.

Example 11.3.22 To graphically solve the inequality |x − 1| > 3 would mean looking for the x-values
where the graph of y � |x − 1| is above the line y � 3.
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On the graph the highlighted region of y �

|x − 1| is the portion that is above the line y �

3 and the x-values in that region can be repre-
sented by (−∞,−2) ∪ (4,∞).

−6 −4 −2 2 4 6

−1

1

2

3

4

5

6y
�
|x −

1|

y � 3

x

y

Figure 11.3.23: y � |x − 1| and y � 3

Example 11.3.24 Solve the inequality
�� 1
3 x + 2

�� ≥ 6 graphically.

Explanation. To solve the inequality
�� 1
3 x + 2

�� ≥ 6, we will start by making a graph with both y ��� 1
3 x + 2

�� and y � 6.

−32 −24 −16 −8 8 16
−1

1

2

3

4

5

6

7

8

9

y
� �� 13 x

+
2 ��

y � 6

x

y
The portion of the graph of y �

�� 1
3 x + 2

�� that
is above y � 6 is highlighted and the x-values
of that highlighted region are those below (or
equal to) −24 and those above (or equal to) 12:
x ≤ −24 or x ≥ 12. That means that the solution
set is (−∞,−24) ∪ (12,∞).

Figure 11.3.25: y �
�� 1
3 x + 2

�� and y � 3

Again, for a more verbal approach to understanding the concept, lets try to describe “values that are more
than 4 units from 0.” We would say that those are “numbers below −4 as well as numbers above 4.” We will
again translate each sentence into math. “Values that are more than 4 units from 0” translates to “|x | > 4,”
and the piece “numbers below −4 as well as numbers above 4” translates to be “x < −4 or x > 4.”

For a graphical interpretation, let’s think in terms of the “distance from zero” definition of absolute value.
If

|X | ≥ n,

where n ≥ 0, then we want all of the numbers, X, that are a distance n or more from 0. Since we can only
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go left or right along the number line, this is describing all numbers below −n as well as those above n.

n−n

n unitsn units

0 X

Figure 11.3.26: A Numberline with Points a Distance n or less from 0

Fact 11.3.27 An Absolute Value Expression Greater Than a Value. Let n be a non-negative number and X be
a linear algebraic expression.

Then, the inequality |X | > n has the same solutions as the compound inequality X < −n or X > n.

Likewise, the inequality |X | ≥ n has the same solutions as the compound inequality X ≤ −n or X ≥ n.

Remark 11.3.28. Since Fact 11.3.27 specifies that an “absolute value greater than a number”-type inequality
breaks down into an or statement, we will therefore need to find the union of the solution sets of the pieces.

Example 11.3.29 Solve the absolute value inequalities using Fact 11.3.27.

a. |x | ≥ 4

b. |x | > −2

c. |5x − 7| > 7

d. 2 · |3 − 2x | − 5 ≥ 13

Explanation.

a. The inequality |x | ≥ 4 breaks down into a compound inequality:

x ≤ −4 or x ≥ 4

So, the solution set is (−∞,−4] ∪ [4,∞).
b. Fact 11.3.27 doesn’t apply to the inequality |x | > −2 because the right side is negative. Instead, we

will make sense of it logically. This is asking, “When is an absolute value greater than a negative
number?” The answer is that absolute values are always bigger than negative numbers! So, our
solution set is (−∞,∞).

c. The inequality |5x − 7| > 7 breaks down into a compound inequality:

5x − 7 < −7 or 5x − 7 > 7
5x < 0 or 5x > 14

x < 0 or x >
14
5

We will write the solution set as (−∞, 0) ∪
( 14

5 ,∞
)
.

d. Before we break up the inequality 2 · |3 − 2x | − 5 ≥ 13 into an “or” statement, we must isolate the
absolute value expression:

2 · |3 − 2x | − 5 ≥ 13
2 · |3 − 2x | ≥ 18
|3 − 2x | ≥ 9
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Now that the absolute value expression has been isolated on the left side, we can use Fact 11.3.27
to break it into an “or” statement:

3 − 2x ≤ −9 or 3 − 2x ≥ 9
−2x ≤ −12 or −2x ≥ 6

x ≥ 6 or x ≤ −3

Our final simplified solution set is (−∞, 3] ∪ [6,∞).

Example 11.3.30 Phuong is taking the standard climbing route onMount Hood from Timberline Lodge
up the Southside Hogsback and back down. Her altitude can be very closely modeled by an absolute
value function since the angle of ascent is nearly constant. Let x represent the number of miles walked
from Timberline Lodge, and let f (x) represent the altitude, in miles, after walking for a distance x. The
altitude can bemodeled by f (x) � 2.1−0.3077 · |x − 3.25|. Note that below Timberline Lodge this model
fails to be accurate.

a. Solve the equation f (x) � 1.1 and interpret the results in the context of the problem.

b. Altitude sickness can occur at altitudes above 1.5 miles. Set up and solve an inequality to find out
how far Phuong can walk the trail and still be under 1.5 miles of elevation.

Explanation.

a. First, we substitute the formula for f (x) and simplify the equation.

f (x) � 1.1
2.1 − 0.3077 · |x − 3.25| � 1.1
−0.3077 · |x − 3.25| � −1
−0.3077 · |x − 3.25|

−0.3077 �
−1

−0.3077
|x − 3.25| ≈ 3.25

At this point, we can use Fact 11.3.6 to split apart the equation:

x − 3.25 ≈ 3.25 or x − 3.25 ≈ −3.25
x ≈ 6.5 or x ≈ 0

According to the model, Phuong will be at 1.1 miles of elevation after walking about 0 miles and
about 6.5 miles along the trail. This seems to imply that Timberline Lodge is very close to 1.1 miles
of elevation. In addition, it implies that the entire hike is 6.5 miles round trip, ending at Timberline
Lodge again.

b. The inequality we are looking for will describe when the altitude is below 1.5 miles. Since f (x) is
the altitude, the inequality we need is:

f (x) < 1.5

To solve this, we need to input the formula and simplify before using one of the absolute value
inequality rules.

f (x) < 1.5
2.1 − 0.3077 · |x − 3.25| < 1.5
−0.3077 · |x − 3.25| < −0.6
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−0.3077 · |x − 3.25|
−0.3077 >

−0.6
−0.3077

|x − 3.25| > 1.95 (note: this value is rounded)

At this point, we can use Fact 11.3.27 to split apart the inequality:

x − 3.25 < −1.95 or x − 3.25 > 1.95
x < 1.3 or x > 5.2

1 2 3 4 5 6 7

0.5

1

1.5

2

2.5

y �
f (x
)

x

y The image only shows the portion of the graph
that is above Timberline Lodge, which we
learned was at 1.1 miles in elevation in the previ-
ous part. The highlighted portions of the graph
are those indicated by x > 5.2 or x < 1.3.

Figure 11.3.31: y � f (x), the Graph of the Mt
Hood Ascent and Descent

In conclusion, based both on our math and the reality of the situation, regions of the trail that are
below 1.5 miles are those that are from Timberline Lodge (at 0 miles on the trail), to 1.3 miles along
the trail and then also from 5.2 miles along the trail (and by nowwe are on our way back down) to
6.5 miles along the trail (back at Timberline Lodge). If we wanted to write this in interval notation,
wemight write [0, 1.3)∪(5.2, 6.5]. There is a big portion along the trail (from 1.3 miles to 5.2 miles)
that Phuong will be above the 1.5 mile altitude and should watch for signs of altitude sickness.

Exercises

Review and Warmup

Solve the equation.
c
5 − 6 �

c
7

1. Solve the equation.

A
3 − 10 �

A
8

2. Solve the equation.

−30 � −10(C + 10)
3.

Solve the equation.

−98 � −7(m + 5)
4. Solve the equation.

4p + 9 � 7p + 10

5. Solve the equation.

10x + 4 � 5x + 10

6.
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Solve this inequality.

17 ≥ 3x − 4

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

7. Solve this inequality.

6 ≥ 4x − 2

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

8. Solve this inequality.

−5x − 9 < −39

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

9.

Solve this inequality.

−6x − 6 < −66

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

10. Solve this inequality.

−3 > 3 − x

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

11. Solve this inequality.

−6 > 4 − x

In set-builder notation, the
solution set is .

In interval notation, the so-
lution set is .

12.

Solving Absolute Value Equations Algebraically

a. Write the equation 6 � |3x |−5 as two sep-
arate equations. Neither of your equa-
tions should use absolute value.

b. Solve both equations above.

13. a. Write the equation 7 � |5x |−3 as two sep-
arate equations. Neither of your equa-
tions should use absolute value.

b. Solve both equations above.

14.

a. Write the equation
���8 − r

7

��� � 3 as two sep-
arate equations. Neither of your equa-
tions should use absolute value.

b. Solve both equations above.

15. a. Write the equation
���2 − r

5

��� � 7 as two sep-
arate equations. Neither of your equa-
tions should use absolute value.

b. Solve both equations above.

16.

(a) Verify that the value −1 is a solution to
the absolute value equation

�� x−3
2

�� � 2.

(b) Verify that the value 2
3 is a solution to the

absolute value equation |6x − 5| < 4.

17. (a) Verify that the value 8 is a solution to the
absolute value equation

�� 1
2 x − 2

�� � 2.

(b) Verify that the value 6 is a solution to the
absolute value equation |7 − 2x | ≥ 5.

18.
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Solve the following equation.

|3x − 9| � 9

19. Solve the following equation.

|4x + 5| � 3

20.

Solve the equation |3x − 1| � 17.21. Solve the equation |4x − 4| � 10.22.

Solve: |x | � 923. Solve: |x | � 524. Solve:
��y − 1

�� � 1125.

Solve:
��y − 5

�� � 1526. Solve: |2a + 3| � 927. Solve: |2b + 7| � 1328.

Solve:
����2b − 5

9

���� � 329. Solve:
����2t − 3

5

���� � 130. Solve: |t | � −431.

Solve: |x | � −632. Solve: |x + 2| � 033. Solve:
��y + 4

�� � 034.

Solve:
��4 − 3y

�� � 935. Solve: |2 − 3a | � 1436. Solve:
�� 1
4 b + 3

�� � 137.

Solve:
�� 1
2 b + 5

�� � 138. Solve: |0.2 − 0.1t | � 439. Solve: |0.8 − 0.4t | � 340.

Solve: |x + 5| − 2 � 241. Solve: |x + 1| − 4 � 642. Solve:
��4y − 20

�� + 6 � 643.

Solve:
��3y − 6

�� + 4 � 444. Solve: |a + 1| + 7 � 645. Solve: |b + 7| + 7 � 246.

Solve: |4b + 3| + 7 � 447. Solve: |4t + 1| + 8 � 648.

Solve the equation by inspection (meaning in
your head).

|6x + 18| � 0

49. Solve the equation by inspection (meaning in
your head).

|6x + 12| � 0

50.

The equation |x | � |y | is satisfied if x � y or
x � −y. Use this fact to solve the following
equation.

|2x + 4| � |−3x − 1|

51. The equation |x | � |y | is satisfied if x � y or
x � −y. Use this fact to solve the following
equation.

|3x + 1| � |x − 3|

52.
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The equation |x | � |y | is satisfied if x � y or
x � −y. Use this fact to solve the following
equation.

|x + 6| � |x − 5|

53. The equation |x | � |y | is satisfied if x � y or
x � −y. Use this fact to solve the following
equation.

|x + 2| � |x − 1|

54.

Solve the equation: |2x − 6| � |9x + 4|55. Solve the equation: |4x − 3| � |5x + 2|56.

Solve the following equation.

|3x + 8| � |9x + 6|
57. Solve the following equation.

|3x + 1| � |6x − 4|
58.

Testing Possible Solutions Decide whether the given value for the variable is a solution.

a. |x − 6| ≤ 2 x � 5

The given value (□ is □ is not) a so-
lution.

b.
�� 2
3 x − 1

�� ≥ 7 x � 6

The given value (□ is □ is not) a so-
lution.

c. |8t − 5| > 6 t � 7

The given value (□ is □ is not) a so-
lution.

d. |3(z − 3)| < 8 z � π

The given value (□ is □ is not) a so-
lution.

59. a. |x − 7| ≤ 8 x � 9

The given value (□ is □ is not) a so-
lution.

b.
��3x − 3

8
�� ≥ 2 x � −4

The given value (□ is □ is not) a so-
lution.

c. |4t − 5| > 5 t � 6

The given value (□ is □ is not) a so-
lution.

d. |8(z − 6)| < 6 z � π

The given value (□ is □ is not) a so-
lution.

60.

Solving Absolute Value Equations Graphically

Solve the equations and inequalities graphically. Use interval notation when applicable.

a.
�� 2
3 x + 2

�� � 4 b.
�� 2
3 x + 2

�� > 4 c.
�� 2
3 x + 2

�� ≤ 4

61.

Solve the equations and inequalities graphically. Use interval notation when applicable.

a.
�� 11−2x

5
�� � 4 b.

�� 11−2x
5

�� > 4 c.
�� 11−2x

5
�� ≤ 4

62.
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Solving Absolute Value Inequalities Algebraically Solve the inequality.����7 − x
6

���� ≥ 763.
����8 − x

3

���� ≥ 1264.

|9 − x | ≥ 565. |6 − 2x | ≥ 1066.

|3x − 2| < 367. |4x − 8| < 868.

����x + 5
5

���� ≤ 1369.
����x + 6

2

���� ≤ 670.

|x − 7| > 1371. |x − 7| > 1072.

|2 − 8x | < 973. |7 − x | < 1574.

20 − |3x + 1| ≤ 675. 11 − |4x + 7| ≤ 176.

Challenge

Algebraically, solve for x in the equation:

5 � |x − 5| + |x − 10|

77.
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11.4 Absolute Value Functions Chapter Review

11.4.1 Introduction to Absolute Value Functions

In Section 11.1 we covered the definition of absolute value, what the graphs of absolute value functions look
like, the fact that

√
x2 � |x |, and applications of absolute values.

Example 11.4.1 Evaluating Absolute Value Functions. Given that h(x) � |9 − 4x |, evaluate the follow-
ing expressions.

a. h(−1). b. h(4).

Explanation.

a. h(−1) � |9 − 4(−1)|
� |9 + 4|
� |13|
� 13

b. h(4) � |9 − 4(4)|
� |9 − 16|
� |−7|
� 7

Example 11.4.2GraphingAbsoluteValue Functions. Absolute value functions alwaysmake “V” shaped
graphs. We usually use technology to make graphs to help speed up the process. Use technology to
make a graph of y � |2x − 6| − 4.

Explanation. To make a graph of a function, we often use technology to generate a table of values for
that function. Then we use the graph that the technology creates to thoughtfully connect the points.

x y � |2x − 6| − 4
−1 4
0 2
1 0
2 −2
2 −4
2 −2
2 0

−2 2 4 6 8

−4

−2

2

4

6

y
�
|2x
−

6|
−

4

x

y

Table 11.4.3: A table of values for y �

|2x − 6| − 4
Figure 11.4.4: A graph of y � |2x − 6| − 4
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Example 11.4.5 The Alternate Definition of Absolute Value: |x | �
√

x2. Simplify the following expres-
sions using the fact that |x | �

√
x2.

a.
√

x14 b.
√

x2 − 12x + 36

Explanation.

a.
√

x14 �

√
(x7)2

�
��x7��

We know from exponent rules that
(
x7)2

�

x14. Note that x7 will be negative whenever
x is a negative number, so the absolute value
is meaningful.

b.
√

x2 − 12x + 36 �

√
(x − 6)2

� |x − 6|
Note that x − 6 can be negative for certain
values of x, so the absolute value is meaning-
ful.

Example 11.4.6 An Application of Absolute Value. Mariam arrived at school one day only to realize
that she had left her favorite pencil on her porch at home. She hopped on her bicycle and headed back to
get it. Her distance from her home, d(t) in yards, can be modeled as a function of the time, t in seconds,
since she left school:

d(t) � |5t − 300|
Use this function to answer the following questions.

a. Find and interpret the meaning of d(0).
b. Using technology, make a graph of y � d(t).

c. Using your graph, find out how long it took
Mariam to get to her home to get her pencil
and get back to school.

Explanation.

a. d(0) � |5(0) − 300|
� |−300|
� 300

This means that just as Mariam was leaving her school, she was 300 yards from her home.

20 40 60 80 100 120

50

100

150

200

250

300

y �
|5t −

300
|

t

y

b.
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c. Mariam was back at a y-value of 300 at t � 120. We should assume that she is back at her school
again here. So it took her 120 seconds, which is 2 minutes.

11.4.2 Compound Inequalities

In Section 11.2 we defined the union of intervals, what compound inequalities are, and how to solve both
“or” inequalities and triple inequalities.

Example 11.4.7 Unions of Intervals. Draw a representation of the union of the sets (−∞,−1] and (2,∞).

Explanation. First we make a number line with both intervals drawn to understand what both sets
mean.

−1 20 x

Figure 11.4.8: A number line sketch of (−∞,−1] as well as (2,∞)

The two intervals should be viewed as a single object when stating the union, so here is the picture of
the union. It looks the same, but now it is a graph of a single set.

−1 20 x

Figure 11.4.9: A number line sketch of (−∞,−1] ∪ (2,∞)

Example 11.4.10 “Or” Compound Inequalities. Solve the compound inequality.

5z + 12 ≤ 7 or 3 − 9z < −2

Explanation. First we will solve each inequality for z.

5z + 12 ≤ 7 or 3 − 9z < −2
5z ≤ −5 or −9z < −5

z ≤ −1 or z >
5
9

The solution set to the compound inequality is:

(−∞,−1] ∪
(
5
9 ,∞

)

Example 11.4.11 Three-Part Inequalities. Solve the three-part inequality −4 ≤ 20 − 6x < 32.

Explanation. This is a three-part inequality. The goal is to isolate x in the middle and whatever you
do to one “side,” you have to do to the other two “sides.”

−4 ≤ 20 − 6x < 32
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−4 − 20 ≤ 20 − 6x − 20 < 32 − 20
−24 ≤ −6x < 12
−24
−6 ≥

−6x
−6 >

12
−6

4 ≥ x > −2

The solutions to the three-part inequality 4 ≥ x > −2 are those numbers that are trapped between −2
and 4, including 4 but not −2. The solution set in interval notation is (−2, 4].

Example 11.4.12 Solving Compound Inequalities Graphically. Figure 11.4.13 shows a graph of y �

G(x). Use the graph do the following.

a. Solve G(x) < −2. b. Solve G(x) ≥ 1. c. Solve −1 ≤ G(x) < 1.

−6 −4 −2 2 4 6

−4

−2

2

4

y �
G(x
)

x

y

Figure 11.4.13: Graph of y � G(x)

Explanation.

a. To solve G(x) < −2, we first draw a dotted line (since it’s a less-than, not a less-than-or-equal) at
y � −2. Then we examine the graph to find out where the graph of y � G(x) is underneath the
line y � −2. Our graph is below the line y � −2 for x-values less than −5. So the solution set is
(−∞,−5).

−6 −4 −2 2 4 6

−4

−2

2

4

y �
G(x
)

y � −2

x

y

Figure 11.4.14: Graph of y � G(x) and solution set to G(x) < −2
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b. To solve G(x) ≥ 1, we first draw a solid line (since it’s a greater-than-or-equal) at y � 1. Then we
examine the graph to find out what parts of the graph of y � G(x) are above the line y � 1. Our
graph is above (or on) the line y � 1 for x-values between −2 and 0 as well as x-values bigger than
4. So the solution set is [−2, 0] ∪ [4,∞).

−6 −4 −2 2 4 6

−4

−2

2

4

y �
G(x
)

y � 1

x

y

Figure 11.4.15: Graph of y � G(x) and solution set to G(x) ≥ 1

c. To solve −1 < G(x) ≤ 1, we first draw a solid line at y � 1 and dotted line at y � −1. Then we
examine the graph to find out what parts of the graph of y � G(x) are trapped between the two
lines we just drew. Our graph is between those values for x-values between −4 and −2 as well as
x-values between 0 and 2 as well as as well as x-values between 2 and 4. We use the solid and
hollow dots on the graph to decide whether or not to include those values. So the solution set is
(−4,−2] ∪ [0, 2) ∪ (2, 4].

−6 −4 −2 2 4 6

−4

−2

2

4

y �
G(x
)

y � 1

y � −1

x

y

Figure 11.4.16: Graph of y � G(x) and solution set to −1 < G(x) ≤ 1

Example 11.4.17 Application of Compound Inequalities. Mishel wanted to buy some mulch for their
spring garden. Each cubic yard of mulch cost $27 and delivery for any size load was $40. If they wanted
to spend between $200 and $300, set up and solve a compound inequality to solve for the number of
cubic yards, x, that they could buy.

Explanation. Since the mulch costs $27 per cubic yard and delivery is $40, the formula for the cost of
x yards of mulch is 27x + 40. Since Mishel wants to spend between $200 and $300, we just trap their cost
between these two values.

200 < 27x + 40 < 300
200 − 40 < 27x + 40 − 40 < 300 − 40
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160 < 27x < 260
160
27 <

27x
27 <

260
27

5.93 < x < 9.63
Note: these values are approximate

Most companies will only sell whole number cubic yards of mulch, so we have to round appropriately.
Since Mishel wants to spend more than $200, we have to round our lower value from 5.93 up to 6 cubic
yards.

If we round the 9.63 up to 10, then the total cost will be 27 · 10+40 � 310 (which represents $310), which
is more than Mishel wanted to spend. So we actually have to round down to 9cubic yards to stay below
the $300 maximum.

In conclusion, Mishel could buy 6, 7, 8, or 9 cubic yards of mulch to stay between $200 and $300.

11.4.3 Absolute Value Equations and Inequalities

In Section 11.3 we covered how to solve equations when an absolute value is equal to a number and when
an absolute value is equal to an absolute value. We also covered how to solve inequalities when an absolute
value is less than a number and when an absolute value is greater than a number.

Example 11.4.18 Solving anEquationwith anAbsoluteValue. Solve the absolute value equation |9 − 4x | �
17 using Fact 11.3.6.

Explanation. The equation |9 − 4x | � 17 breaks into two pieces, each of which needs to be solved
independently.

9 − 4x � 17 or 9 − 4x � −17
−4x � 8 or −4x � −26
−4x
−4 �

8
−4 or −4x

−4 �
−26
−4

x � −2 or x �
13
2

The solution set is
{
−2, 13

2
}
.

Example 11.4.19 Solving an Equation with Two Absolute Values. Solve the absolute value equation
|7 − 3x | � |6x − 5| using Fact 11.3.11.

Explanation. The equation |7 − 3x | � |6x − 5| breaks into two pieces, each of which needs to be solved
independently.

7 − 3x � 6x − 5 or 7 − 3x � −(6x − 5)
7 − 3x � 6x − 5 or 7 − 3x � −6x + 5

12 − 3x � 6x or 2 − 3x � −6x
12 � 9x or 2 � −3x
12
9 �

9x
9 or 2

−3 �
−3x
−3
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4
3 � x or −2

3 � x

The solution set is
{ 4

3 ,− 2
3
}
.

Example 11.4.20 Solving an Absolute Value Less-Than Inequality. Solve the absolute value inequality
4 · |7 − 2x | + 1 < 25 using Fact 11.3.19.

Explanation. The inequality 4·|7 − 2x |+1 < 25mustbe simplified into the form thatmatches Fact 11.3.19,
so we will first isolate the absolute value expression on the left side of the equation:

4 · |7 − 2x | + 1 < 25
4 · |7 − 2x | < 24
|7 − 2x | < 6

Now that we have the absolute value isolated, we can us Fact 11.3.19 to split it into a triple inequality
that we can finish solving:

−6 < 7 − 2x < 6
−6 − 7 < 7 − 2x − 7 < 6 − 7
−13 < −2x < −1
−13
−2 >

−2x
−2 >

−1
−2

13
2 > x >

1
2

So, the solution set to the inequality is
( 1

2 ,
13
2
)
.

Example 11.4.21 Solving an Absolute Value Greater-Than Inequality. To solve the absolute value in-
equality

��13 − 3
2 x

�� ≥ 15 using Fact 11.3.27.

Explanation. Using Fact 11.3.27, the inequality
��13 − 3

2 x
�� ≥ 15 breaks down into a compound inequal-

ity:

13 − 3
2 x ≤ −15 or 13 − 3

2 x ≥ 15

−3
2 x ≤ −28 or −3

2 x ≥ 2

−2
3 ·

(
−3

2 x
)
≥ −2

3 · (−28) or −2
3 ·

(
−3

2 x
)
≤ −2

3 · (2)

x ≥ 56
3 or x ≤ −4

3

We will write the solution set as
(
−∞,− 4

3
]
∪

[ 56
3 ,∞

)
.
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Exercises

Introduction to Absolute Value Functions

Evaluate the following.

3 − 5 |3 − 7| + 1 �

1. Evaluate the following.

4 − 9 |1 − 3| + 1 �

2.

Given f (x) � 20 − |−x + 5|, find and simplify
f (18).

f (18) �

3. Given f (r) � 17 − |3r − 16|, find and simplify
f (19).

f (19) �

4.

Find the domain of K where K(x) � |8x − 5|.5. Find the domain of f where f (x) � |x + 4|.6.

Make a table of values for the function 1 de-
fined by 1(x) � |2x − 3|.

x 1(x)

7. Make a table of values for the function h de-
fined by h(x) � |−2x + 1|.

x h(x)

8.

Graph y � f (x), where f (x) � 1
2 |4x − 5| − 3.9. Graph y � f (x), where f (x) � 3

4 |6 + x | + 2.10.

Simplify the expression. Do not assume the
variables take only positive values.
√

36r2

11. Simplify the expression. Do not assume the
variables take only positive values.
√

9m2

12.

Simplify the expression.
√

a2 + 14a + 49

13. Simplify the expression.
√

r2 + 16r + 64

14.
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The height inside a camping tent when you
are d feet from the edge of the tent is given by

h � −0.7|d − 6.6| + 7

where h stands for height in feet.

Determine the height when you are:

a. 7.6 ft from the edge.

The height inside a camping tent when
you 7.6 ft from the edge of the tent is

b. 3.1 ft from the edge.

The height inside a camping tent when
you 3.1 ft from the edge of the tent is

15. The height inside a camping tent when you
are d feet from the edge of the tent is given by

h � −0.5|d − 6| + 4.5

where h stands for height in feet.

Determine the height when you are:

a. 8.3 ft from the edge.

The height inside a camping tent when
you 8.3 ft from the edge of the tent is

b. 1.3 ft from the edge.

The height inside a camping tent when
you 1.3 ft from the edge of the tent is

16.

Compound Inequalities Solve the compound inequality algebraically.

−4x − 3 ≥ 5 and − 14x − 7 ≥ −517. −18x + 14 ≥ −6 and 6x + 4 > 918.

9x − 10 ≥ −17 and − 15x + 7 ≥ −1519. −6x + 7 ≥ 12 and 6x + 11 ≤ 220.

7x + 15 > 11 or x + 15 < −2021. 12x − 2 ≥ 10 or 6x + 6 < 622.

13x + 3 < −20 or 10x + 1 ≥ 823. 19x − 6 ≥ 8 or 5x − 16 ≤ −1424.

A graph of f is given. Use the graph alone to solve the compound inequalities.

a. f (x) > −4

b. f (x) ≤ −4

25.

a. f (x) > 0

b. f (x) ≤ 0

26.
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a. f (x) > 2

b. f (x) ≤ 2

27.

a. f (x) > −2

b. f (x) ≤ −2

28.

Absolute Value Equations and Inequalities

Solve the following equation.

|5x − 6| � 5

29. Solve the following equation.

|6x + 8| � 9

30. Solve the equation |4x − 2| �
18.

31.

Solve the equation |4x − 3| �
17.

32. Solve:
����2y − 7

3

���� � 133. Solve:
����2y − 3

7

���� � 334.

Solve:
�� 1
2 a + 7

�� � 335. Solve:
�� 1
4 a + 5

�� � 336. Solve: |b + 5| − 8 � 237.

Solve: |t + 1| − 2 � 638. Solve: |5t − 20| + 5 � 539. Solve: |3x − 3| + 3 � 340.

The equation |x | � |y | is satisfied if x � y or x � −y. Use this fact to solve the following equation.

|x + 6| � |x − 5|41. |x + 6| � |x − 1|42.

Solve the equation: |8x − 4| � |5x + 5|43. Solve the equation: |2x − 2| � |7x + 3|44.

Solve the following equation.

|x + 4| � |6x + 8|
45. Solve the following equation.

|2x − 4| � |8x + 2|
46.

Solve the inequality.

|10 − 4x | ≥ 1547. |7 − 5x | ≥ 748. |5x − 4| < 1249. |6x − 10| < 550.
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CHAPTER 12
More on Quadratic Functions

12.1 Graphs and Vertex Form

In this section, we will explore quadratic functions using graphing technology and learn the vertex and
factored forms of a quadratic function’s formula. We will also see how parabola graphs can be shifted.

12.1.1 Exploring Quadratic Functions with Graphing Technology

Graphing technology is very important and useful for applications and for finding points quickly. Let’s
explore some quadratic functions with graphing technology.

Example 12.1.2 Use technology to graph andmake a table of the quadratic function f defined by f (x) �
2x2 + 4x − 3 and find each of the key points or features.

a. Find the vertex.

b. Find the vertical intercept (i.e. y-intercept).

c. Find the horizontal or (i.e. x-intercept(s)).

d. Find f (−2).

e. Solve f (x) � 3 using the graph.

f. Solve f (x) ≤ 3 using the graph.

g. State the domain and range of the function.

Explanation.

The specifics of how to use any
one particular technology tool
vary. Whether you use an app, a
physical calculator, or something
else, a table and graph should
look like:

x f (x)
−2 −3
−1 −5

0 −3
1 3
2 13

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y
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Additional features of your technology tool can
enhance the graph to help answer these ques-
tions. Youmay be able to make the graph appear
like:

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6
y � f (x)

y � 3

(−1,−5)

(1, 3)

(0,−3)

(−3, 3)

(−2.6, 0) (0.6, 0) x

y

a. The vertex is (−1,−5).
b. The vertical intercept is (0,−3).
c. The horizontal intercepts are approximately (−2.6, 0) and (0.6, 0).
d. When x � −2, y � −3, so f (−2) � −3.

e. The solutions to f (x) � 3 are the x-values where y � 3. We graph the horizontal line y � 3 and
find the x-values where the graphs intersect. The solution set is {−3, 1}.

f. The solutions are all of the x-values where the function’s graph is below (or touching) the line
y � 3. The interval is [−3, 1].

g. The domain is (−∞,∞) and the range is [−5,∞).

Now we will look at an application with graphing technology and put the points of interest in context.

Example 12.1.3 A reduced-gravity aircrafta is a fixed-wing airplane that astronauts use for training.
The airplane flies up and then down in a parabolic path to simulate the feeling of weightlessness. In one
training flight, the pilot will fly 40 to 60 parabolic maneuvers.

For the first parabolicmaneuver, the altitude of the plane, in feet, at time t, in seconds since themaneuver
began, is given by H(t) � −16t2 + 400t + 30500.

a. Determine the starting altitude of the plane for the first maneuver.

b. What is the altitude of the plane 10 seconds into the maneuver?

c. Determine the maximum altitude of the plane and how long it takes to reach that altitude.

d. The zero-gravity effect is experienced when the plane begins the parabolic path until it gets back
down to 30,500 feet. Write an inequality to express this and solve it using the graph. Write the
times of the zero-gravity effect as an interval and determine how long the astronauts experience
weightlessness during each cycle.

e. Use technology to make a table for H with t-values from 0 to 25 seconds. Use an increment of 5
seconds and then use the table to solve H(t) � 32100.
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f. State the domain and range for this context.

Explanation. We can answer the questions based on the information in the graph.

5 10 15 20 25

28000

29000

30000

31000

32000

33000

34000

y � H(t)

y � 30500

(0, 30500) (25, 30500)

(10, 32900) (12.5, 34000)

t

y

Figure 12.1.4: Graph of H(t) � −16t2 + 400t + 30500 with y � 30500

a. The starting altitude can be read from the vertical intercept, which is (0, 30500). The feeling of
weightlessness begins at 30,500 feet.

b. After 10 seconds, the altitude of the plane is 32,900 feet.

c. For the maximum altitude of the plane we look at the vertex, which is approximately (12.5, 33000).
This tells us that after 12.5 seconds the plane will be at its maximum altitude of 33,000 feet.

d. We can write an inequality to describe when the plane is at or above 30,500 feet and solve it graph-
ically.

H(t) ≥ 30500
−16t2

+ 400t + 30500 ≥ 30500.

We graph the line y � 30500 and find the points of intersection with the parabola. The astronauts
experience weightlessness from 0 seconds to 25 seconds into the maneuver, or [0, 25] seconds.
They experience weightlessness for 25 seconds in each cycle.

e. To solve H(t) � 32100 using the table, we look for where the H-values are equal to 32100.

t 0 5 10 15 20 25
H(t) 30500 32100 32900 32900 32100 30500

There are two solutions, 5 seconds and 20 seconds. The solution set is {5, 20}.
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f. When we use technology we see the entire function but in this context the plane is only on a
parabolic path from t � 0 to t � 25 seconds. So the domain is [0, 25], and the range is the set of
corresponding y-values which is [30500, 33000] feet.

aen.wikipedia.org/wiki/Reduced-gravity_aircraft

Let’s look at the remote-controlled airplane dive from Example 9.3.18. This time we will use technology to
answer the questions.

Example 12.1.5 Maia has a remote-controlled airplane and she is going to do a stunt dive where the
plane dives toward the ground and back up along a parabolic path. The altitude or height of the plane
is given by the function H where H(t) � 0.7t2 − 23t + 200, for 0 ≤ t ≤ 30. The height is measured in feet
and the time, t, is measured in seconds since the stunt began.

a. Determine the starting height of the plane as the dive begins.

b. Determine the height of the plane after 5 seconds.

c. Will the plane hit the ground, and if so, at what time?

d. If the plane does not hit the ground, what is the closest it gets to the ground, and at what time?

e. At what time(s) will the plane have an altitude of 50 feet?

f. State the domain and the range of the function (in context).

Explanation. We have graphed the function andwewill find the key information and put it in context.

5 10 15 20 25 30

80

120

160

200 y � H(t)

y � 50

(0, 200)

(5, 102.5)

(16.43, 11.07)

(30, 140)

(8.97, 50) (23.89, 50)

t

y

Figure 12.1.6: Graph of H(t) � 0.7t2 − 23t + 200

a. The starting altitude can be read from the vertical intercept, which is (0, 200). When the stunt
begins, the plane has a altitude of 200 feet.

b. When x � 5, the y-value is 102.5. So H(5) � 102.5. This means that after 5 seconds, the plane is
102.5 feet above the ground.
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c. From the graph we can see that the parabola does not touch or cross the x-axis, which represents
the ground. This means the plane does not hit the ground and there are no real solutions to the
equation H(t) � 0.

d. The lowest point is the vertex, which is approximately (16.43, 11.07). The minimum altitude of the
plane is about 11 feet, which occurs after about 16.4 seconds.

e. We graph the horizontal line y � 50 and look for the points of intersection. The plane will be
50 feet above the ground about 9 seconds after the plane begins the stunt, and again at about 24
seconds.

f. The domain for this function is given in the problem statement because only part of the parabola
represents the path of the plane. The domain is [0, 30]. For the range we look at the possible
altitudes of the plane and see that it is [11.07 . . . , 200]. The plane is doing this stunt from 0 to 30
seconds and its height ranges from about 11 to 200 feet above the ground.

12.1.2 The Vertex Form of a Parabola

We have learned the standard form of a quadratic function’s formula, which is f (x) � ax2 + bx + c. In this
subsection, we will learn another form called the vertex form.

Using graphing technology, consider the graphs of f (x) � x2 − 6x + 7 and 1(x) � (x − 3)2 − 2 on the same
axes.

We see only one parabola because these are two
different forms of the same function. Indeed, if we
convert 1(x) into standard form:

1(x) � (x − 3)2 − 2
1(x) � x2 − 6x + 9 − 2
1(x) � x2 − 6x + 7

it is clear that f and 1 are the same function.
−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

(3,−2)

x

y

Figure 12.1.7: Graph of f (x) � x2 − 6x + 7 and
1(x) � (x − 3)2 − 2

The formula given for 1 is written in vertex form which is very useful because it allows us to read the
vertex without doing any calculations. The vertex of the parabola is (3,−2). We can see those numbers in
1(x) � (x−3)2−2. The x-value is the solution to (x−3) � 0, and the y-value is the constant added at the end.

Here are the graphs of three more functions with formulas in vertex form. Compare each function with the
vertex of its graph.
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Figure 12.1.8: r(x) � (x − 2)2 + 1 Figure 12.1.9: s(x) � − 1
4 (x+1)2+3 Figure 12.1.10: t(x) � 4(x + 3)2 −

3.5

Notice that the x-coordinate of the vertex has the opposite sign as the value in the function formula. On the
other hand, the y-coordinate of the vertex has the same sign as the value in the function formula. Let’s look
at an example to understand why. We will evaluate r(2).

r(2) � (2 − 2)2 + 1
� 1

The x-value is the solution to (x − 2) � 0, which is positive 2. When we substitute 2 for x we get the value
y � 1. Note that these coordinates create the vertex at (2, 1). Now we can define the vertex form of a
quadratic function.

Fact 12.1.11 Vertex Form of a Quadratic Function. A quadratic function with the vertex at the point (h , k) is
given by f (x) � a(x − h)2 + k.

Checkpoint 12.1.12. Find the vertex of each quadratic function.

a. r(x) � −2(x + 4)2 + 10

b. s(x) � 5(x − 1)2 + 2

c. t(x) � (x − 10)2 − 5

d. u(x) � 3(x + 7)2 − 13

Explanation.

a. The vertex of r(x) � −2(x + 4)2 + 10 is (−4, 10).
b. The vertex of s(x) � 5(x − 1)2 + 2 is (1, 2).
c. The vertex of t(x) � (x − 10)2 − 5 is (10,−5).
d. The vertex of u(x) � 3(x + 7)2 − 13 is (−7,−13).

Now let’s do the reverse. When given the vertex and the value of a, we can write the function in vertex
form.

Example 12.1.13 Write a formula for the quadratic function f with the given vertex and value of a.

a. Vertex (−2, 8), a � 1

b. Vertex (4,−9), a � −4

c. Vertex (−3,−1), a � 2

d. Vertex (5, 12), a � −3
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Explanation.

a. The vertex form is f (x) � (x + 2)2 + 8.

b. The vertex form is f (x) � −4(x − 4)2 − 9.

c. The vertex form is f (x) � 2(x + 3)2 − 1.

d. The vertex form is f (x) � −3(x − 5)2 + 12.

Once we read the vertex we can also state the do-
main and range. All quadratic functions have a do-
main of (−∞,∞) because we can put in any value
to a quadratic function. The range, however, de-
pends on the y-value of the vertex and whether
the parabola opens upward or downward. When
we have a quadratic function in vertex formwe can
read the range from the formula. Let’s look at the
graph of f , where f (x) � 2(x − 3)2 − 5, as an exam-
ple.
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(3,−5)

x

y

Figure 12.1.14: The graph of f (x) � 2(x − 3)2 − 5

The domain is (−∞,∞). The graph of f opens upward (which we know because a � 2 > 0) so the vertex is
the minimum point. The y-value of −5 is the minimum. The range is [−5,∞).

Example 12.1.15 Identify the domain and range of 1, where 1(x) � −3(x + 1)2 + 6.

Explanation.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6(−1, 6)

x

y The domain is (−∞,∞). The graph of 1 opens
downward (which we know because a � −3 < 0)
so the vertex is the maximum point. The y-value
of 6 is the maximum. The range is (−∞, 6].

Figure 12.1.16: 1(x) � −3(x + 1)2 + 6
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Checkpoint 12.1.17. Identify the domain and range of each quadratic function.

a. w(x) � −3(x + 10)2 − 11

The domain is and the range

is .

b. u(x) � 4(x − 7)2 + 20

The domain is and the range

is .

c. y(x) � −(x − 1)2

The domain is and the range

is .

d. z(x) � 3(x + 9)2 − 4

The domain is and the range

is .

Explanation.

a. The domain of w is (−∞,∞). The parabola opens downward so the range is (−∞,−11].
b. The domain of u is (−∞,∞). The parabola opens upward so the range is [20,∞).
c. The domain of y is (−∞,∞). The parabola opens downward so the range is (−∞, 0].
d. The domain of z is (−∞,∞). The parabola opens upward so the range is [−4,∞).

12.1.3 Horizontal and Vertical Shifts

Let f (x) � x2 and 1(x) � (x − 4)2 + 1. The graph of y � f (x) has its vertex at the point (0, 0). Now we will
compare this with the graph of y � 1(x) on the same axes.

−2 2 4 6

2

4

6

8

10

12

y � f (x)
y � 1(x)

(0, 0)
(4, 1)

x

y Both graphs open upward and have the same
shape. Notice that the graph of 1 is the same as
the graph of f but is shifted to the right by 4 units
and up by 1 units because its vertex is (4, 1).

Figure 12.1.18: The graph of f and 1

Let’s look at another graph. Let h(x) � −x2 and let j(x) � −(x + 3)2 + 4.
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y � h(x)

y � j(x)

(0, 0)

(−3, 4)

x

y Both parabolas opendownward andhave the same
shape. The graph of j is the same as the graph of h
but it has been shifted to the left by 3 units and up
by 4 units making its vertex (−3, 4).

Figure 12.1.19: The graph of h and j

To summarize this, when a quadratic function is written in vertex form, the h-value is the horizontal shift
and the k-value is the vertical shift.

Example 12.1.20 Identify the horizontal and vertical shifts compared with f (x) � x2.

a. m(x) � (x + 7)2 + 3

b. n(x) � (x − 1)2 + 6

c. o(x) � (x − 5)2 − 1

d. p(x) � (x + 3)2 − 11

Explanation.

a. The graph of y � m(x) has vertex at (−7, 3). Therefore the graph is the same as y � f (x) shifted to
the left 7 units and up 3 units.

b. The graph of y � n(x) has vertex at (1, 6). Therefore the graph is the same as y � f (x) shifted to
the right 1 unit and up 6 units.

c. The graph of y � o(x) has vertex at (5,−1). Therefore the graph is the same as y � f (x) shifted to
the right 5 units and down 1 unit.

d. The graph of y � p(x) has vertex at (−3,−11). Therefore the graph is the same as y � f (x) shifted
to the left 3 units and down 11 units.

12.1.4 The Factored Form of a Parabola

There is another form of a quadratic function’s formula, called factored form, which we will explore next.
Let’s consider the two functions q(x) � −x2 + 3x + 4 and s(x) � −(x − 4)(x + 1). Using graphing technology,
we will graph y � q(x) and y � s(x) on the same axes.
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These graphs coincide because the functions are
actually the same. We can tell by multiplying out
the formula for 1 to get back to the formula for f .

1(x) � −(x − 4)(x + 1)
1(x) � −(x2 − 3x − 4)
1(x) � −x2

+ 3x + 4

Now we can see that f and 1 are really the same
function.
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Figure 12.1.21: Graph of q and s

Factored form is very useful because we can read the x-intercepts directly from the function, which in this
case are (4, 0) and (−1, 0). We find these by looking for the values that make the factors equal to 0, so the
x-values have the opposite signs as are shown in the formula. To demonstrate this, we will find the roots
by solving 1(x) � 0.

1(x) � −(x − 4)(x + 1)
0 � −(x − 4)(x + 1)

x − 4 � 0 or x + 1 � 0
x � 4 or x � −1

This shows us that the x-intercepts are (4, 0) and (−1, 0).
The x-values of the x-intercepts are also called zeros or roots. The zeros or roots of the function 1 are −1
and 4.

Fact 12.1.22 Factored Form of a Quadratic Function. A quadratic function with horizontal intercepts at (r, 0)
and (s , 0) has the formula f (x) � a(x − r)(x − s).

Checkpoint 12.1.23. Write the horizontal intercepts of each function.

a. t(x) � −(x + 2)(x − 4)
b. u(x) � 6(x − 7)(x − 5)

c. v(x) � −2(x + 1)(x + 4)
d. w(x) � 10(x − 8)(x + 3)

Explanation.

a. The horizontal intercepts of t are (−2, 0) and (4, 0).
b. The horizontal intercepts of u are (7, 0) and (5, 0).
c. The horizontal intercepts of v are (−1, 0) and (−4, 0).
d. The horizontal intercepts of w are (8, 0) and (−3, 0).
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Let’s summarize the three forms of a quadratic function’s formula:

Standard Form f (x) � ax2 + bx + c, with y-intercept (0, c).
Vertex Form f (x) � a(x − h)2 + k, with vertex (h , k).
Factored Form f (x) � a(x − r)(x − s), with x-intercepts (m , 0) and (n , 0).

Exercises

Review and Warmup

Multiply the polynomials.

(x + 6) (x − 2) �

1. Multiply the polynomials.(
y + 2

) (
y − 8

)
�

2. Multiply the polynomials.(
9y − 4

) (
y + 9

)
�

3.

Multiply the polynomials.

(6r − 9) (r + 6) �

4. Factor the givenpolynomial.

r2 + 8r + 12 �

5. Factor the givenpolynomial.

r2 + 19r + 90 �

6.

Factor the givenpolynomial.

2t2 + 20t + 18 �

7. Factor the givenpolynomial.

5t2 + 25t + 20 �

8. Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

9.

Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

10. Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

11. Here is an interval:

Write the interval using set-
builder notation.

Write the interval using in-
terval notation.

12.

883



Chapter 12 More on Quadratic Functions

Technology and Tables

Let F(x) � x2 + 3x − 2. Use
technology to make a table
of values F.

x F(x)

13. Let G(x) � x2 + 2x − 2. Use
technology to make a table
of values G.

x G(x)

14. Let H(x) � −x2 + 2x + 1. Use
technology to make a table
of values H.

x H(x)

15.

Let H(x) � −x2 − 3x + 1. Use
technology to make a table
of values H.

x H(x)

16. Let K(x) � 3x2 + 8x − 4. Use
technology to make a table
of values K.

x K(x)

17. Let f (x) � 3x2 + 3x − 4. Use
technology to make a table
of values f .

x f (x)

18.

Let 1(x) � 3x2 − 8x + 35. Use
technology to make a table
of values 1.

x 1(x)

19. Let 1(x) � 3x2 − 7x + 46. Use
technology to make a table
of values 1.

x 1(x)

20.
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Technology and Graphs

Use technology to make a graph of f where
f (x) � x2 + 3x − 2.

21. Use technology to make a graph of f where
f (x) � x2 − 2x − 1.

22.

Use technology to make a graph of f where
f (x) � −x2 + 3x + 2.

23. Use technology to make a graph of f where
f (x) � −x2 + x + 2.

24.

Use technology to make a graph of f where
f (x) � 3x2 − 6x − 5.

25. Use technology to make a graph of f where
f (x) � −3x2 − 8x + 3.

26.

Use technology to make a graph of f where
f (x) � −3x2 + 4x + 49.

27. Use technology to make a graph of f where
f (x) � 2x2 − 2x + 41.

28.

Technology and Features of Quadratic Function Graphs Use technology to find features of a quadratic
function and its graph.

Let h(x) � −2x2 + 3x − 4. Use technology to
find the following.

a. The vertex is .

b. The y-intercept is .

c. The x-intercept(s) is/are .

d. The domain of h is .

e. The range of h is .

f. Calculate h(1). .

g. Solve h(x) � −9.

h. Solve h(x) ≤ −9.

29. Let F(x) � −x2 + 3x − 1. Use technology to
find the following.

a. The vertex is .

b. The y-intercept is .

c. The x-intercept(s) is/are .

d. The domain of F is .

e. The range of F is .

f. Calculate F(−1). .

g. Solve F(x) � −4.

h. Solve F(x) ≤ −4.

30.
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Let G(x) � −1.4x2 + 1.1x + 0.3. Use technol-
ogy to find the following.

a. The vertex is .

b. The y-intercept is .

c. The x-intercept(s) is/are .

d. The domain of G is .

e. The range of G is .

f. Calculate G(2). .

g. Solve G(x) � −10.

h. Solve G(x) ≥ −10.

31. Let H(x) � 0.3x2 − 0.7x − 5. Use technology
to find the following.

a. The vertex is .

b. The y-intercept is .

c. The x-intercept(s) is/are .

d. The domain of H is .

e. The range of H is .

f. Calculate H(−7). .

g. Solve H(x) � 5.

h. Solve H(x) ≥ 5.

32.

Let H(x) � x2

2 + 4.3x + 2.3. Use technology to
find the following.

a. The vertex is .

b. The y-intercept is .

c. The x-intercept(s) is/are .

d. The domain of H is .

e. The range of H is .

f. Calculate H(−7). .

g. Solve H(x) � −1.

h. Solve H(x) ≥ −1.

33. Let K(x) � x2

4 − 3.8x + 4.6. Use technology to
find the following.

a. The vertex is .

b. The y-intercept is .

c. The x-intercept(s) is/are .

d. The domain of K is .

e. The range of K is .

f. Calculate K(−1). .

g. Solve K(x) � −4.

h. Solve K(x) > −4.

34.

Applications

An object was launched from the top of a hill with an upward vertical velocity of 50 feet per second.
The height of the object can be modeled by the function h(t) � −16t2 + 50t + 200, where t represents
the number of seconds after the launch. Assume the object landed on the ground at sea level. Find
the answer using graphing technology.

The object’s height was feet when it was launched.

35.
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An object was launched from the top of a hill with an upward vertical velocity of 70 feet per second.
The height of the object can be modeled by the function h(t) � −16t2 + 70t + 100, where t represents
the number of seconds after the launch. Assume the object landed on the ground at sea level. Find
the answer using graphing technology.

Use a table to list the object’s height within the first second after it was launched, at an increment of
0.1 second. Fill in the blanks. Round your answers to two decimal places when needed.

Time in Seconds Height in Feet
0.1
0.2
0.3

36.

An object was launched from the top of a hill with an upward vertical velocity of 90 feet per second.
The height of the object can be modeled by the function h(t) � −16t2 + 90t + 300, where t represents
the number of seconds after the launch. Assume the object landed on the ground at sea level. Use
technology to find the answer.

The object was feet in the air 4 seconds after it was launched.

37.

An object was launched from the top of a hill with an upward vertical velocity of 110 feet per second.
The height of the object can bemodeled by the function h(t) � −16t2 + 110t + 200, where t represents
the number of seconds after the launch. Assume the object landed on the ground at sea level. Find
the answer using technology.

seconds after its launch, the object reached its maximum height of feet.

38.

An object was launched from the top of a hill with an upward vertical velocity of 120 feet per second.
The height of the object can bemodeled by the function h(t) � −16t2 + 120t + 100, where t represents
the number of seconds after the launch. Assume the object landed on the ground at sea level. Find
the answer using technology.

seconds after its launch, the object fell to the ground at sea level.

39.

An object was launched from the top of a hill with an upward vertical velocity of 140 feet per second.
The height of the object can bemodeled by the function h(t) � −16t2 + 140t + 250, where t represents
the number of seconds after the launch. Assume the object landed on the ground at sea level. Find
the answer using technology. Round your answers to two decimal places. If there is more than one
answer, use a comma to separate them.

The object was 483 feet high at the following number of seconds after it was launched: .

40.
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In a race, a car drove through the starting line at the speed of 6 meters per second. It was accelerating
at 3.9 meters per second squared. Its distance from the starting position can be modeled by the
function d(t) � 1.95t2 + 6t. Find the answer using technology.

After seconds, the car was 172.8 meters away from the starting position.

41.

In a race, a car drove through the starting line at the speed of 3 meters per second. It was accelerating
at 4.4 meters per second squared. Its distance from the starting position can be modeled by the
function d(t) � 2.2t2 + 3t. Find the answer using technology.

After seconds, the car was 473.2 meters away from the starting position.

42.

A farmer purchased 800 meters of fencing, and will build a rectangular pen with it. To enclose
the largest possible area, what should the pen’s length and width be? Model the pen’s area with a
function, and then find its maximum value.

Use a comma to separate your answers.

To enclose the largest possible area, the pen’s length and width should be meters.

43.

A farmer purchased 210 meters of fencing, and will build a rectangular pen along a river. This
implies the pen has only 3 fenced sides. To enclose the largest possible area, what should the pen’s
length and width be? Model the pen’s area with a function, and then find its maximum value.

To enclose the largest possible area, the pen’s length and width should be meters.

44.

Quadratic Functions in Vertex Form

Find the vertex of the graph
of

y � −7(x + 10)2 + 8

45. Find the vertex of the graph
of

y � −5(x − 4)2 − 5

46. Find the vertex of the graph
of

y � −2(x + 4)2 + 4

47.

Find the vertex of the graph
of

y � 10(x + 8)2 + 1

48. Find the vertex of the graph
of

y � 2.2(x − 2.7)2 + 0.6

49. Find the vertex of the graph
of

y � 4.4(x + 4.3)2 + 9

50.
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A graph of a function f is
given. Use the graph towrite
a formula for f in vertex form.
Youwill need to identify the
vertex and also onemore point
on the graph to find the lead-
ing coefficient a.

f (x) �

51. A graph of a function f is
given. Use the graph towrite
a formula for f in vertex form.
Youwill need to identify the
vertex and also onemore point
on the graph to find the lead-
ing coefficient a.

f (x) �

52. A graph of a function f is
given. Use the graph towrite
a formula for f in vertex form.
Youwill need to identify the
vertex and also onemore point
on the graph to find the lead-
ing coefficient a.

f (x) �

53.

A graph of a function f is
given. Use the graph towrite
a formula for f in vertex form.
Youwill need to identify the
vertex and also onemore point
on the graph to find the lead-
ing coefficient a.

f (x) �

54. A graph of a function f is
given. Use the graph towrite
a formula for f in vertex form.
Youwill need to identify the
vertex and also onemore point
on the graph to find the lead-
ing coefficient a.

f (x) �

55. A graph of a function f is
given. Use the graph towrite
a formula for f in vertex form.
Youwill need to identify the
vertex and also onemore point
on the graph to find the lead-
ing coefficient a.

f (x) �

56.
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Write the vertex form for the
quadratic function f , whose
vertex is (7,−8) andhas lead-
ing coefficient a � 7.

f (x) �

57. Write the vertex form for the
quadratic function f , whose
vertex is (−4, 6) andhas lead-
ing coefficient a � 2.

f (x) �

58. Write the vertex form for the
quadratic function f , whose
vertex is (−6, 4) andhas lead-
ing coefficient a � 4.

f (x) �

59.

Write the vertex form for the
quadratic function f , whose
vertex is (6,−7) andhas lead-
ing coefficient a � 6.

f (x) �

60.

Let K be defined by K(x) � (x + 1)2 + 1.

a. What is the domain of K?

b. What is the range of K?

61. Let f be defined by f (x) � (x + 7)2 + 9.

a. What is the domain of f ?

b. What is the range of f ?

62.

Let 1 be defined by 1(x) � 7.7(x + 3)2 − 2.

a. What is the domain of 1?

b. What is the range of 1?

63. Let 1 be defined by 1(x) � 4.3(x − 5)2 − 7.

a. What is the domain of 1?

b. What is the range of 1?

64.

Let h be defined by h(x) � −8(x + 6)2 + 7.

a. What is the domain of h?

b. What is the range of h?

65. Let F be defined by F(x) � 4(x − 2)2 + 2.

a. What is the domain of F?

b. What is the range of F?

66.

Let G be defined by G(x) � −5
(
x +

4
3
)2 − 1

4 .

a. What is the domain of G?

b. What is the range of G?

67. Let G be defined by G(x) � −2(x − (−3))2 − 7
9 .

a. What is the domain of G?

b. What is the range of G?

68.

Let H be defined by H(x) � 7
(
x − 5

3
)2

+
2
7 .

a. What is the domain of H?

b. What is the range of H?

69. Let K be defined by K(x) � −4
(
x − 2

7
)2

+
5
7 .

a. What is the domain of K?

b. What is the range of K?

70.
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Consider the graph of the equation y � (x − 4)2 − 6.

Compared to the graph of y � x2, the vertex has been shifted units (□ left □ right)

and units (□ down □ up) .

71.

Consider the graph of the equation y � (x + 7)2 + 3.

Compared to the graph of y � x2, the vertex has been shifted units (□ left □ right)

and units (□ down □ up) .

72.

Consider the graph of the equation y � (x + 46.6)2 − 41.2.

Compared to the graph of y � x2, the vertex has been shifted units (□ left □ right)

and units (□ down □ up) .

73.

Consider the graph of the equation y � (x + 24.7)2 + 88.1.

Compared to the graph of y � x2, the vertex has been shifted units (□ left □ right)

and units (□ down □ up) .

74.

Consider the graph of the equation y �
(
x +

1
4
)2

+
1
5 .

Compared to the graph of y � x2, the vertex has been shifted units (□ left □ right)

and units (□ down □ up) .

75.

Consider the graph of the equation y �
(
x +

2
5
)2

+
5
6 .

Compared to the graph of y � x2, the vertex has been shifted units (□ left □ right)

and units (□ down □ up) .

76.

Three Forms of Quadratic Functions

The quadratic expression (x − 2)2 − 1 is writ-
ten in vertex form.

a. Write the expression in standard form.

b. Write the expression in factored form.

77. The quadratic expression (x − 3)2 − 25 is writ-
ten in vertex form.

a. Write the expression in standard form.

b. Write the expression in factored form.

78.
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The quadratic expression (x − 4)2 − 81 is writ-
ten in vertex form.

a. Write the expression in standard form.

b. Write the expression in factored form.

79. The quadratic expression (x − 1)2 − 36 is writ-
ten in vertex form.

a. Write the expression in standard form.

b. Write the expression in factored form.

80.

Factored Form and Intercepts

The formula for a quadratic function h is
h(x) � (x + 7)(x − 7).

a. The y-intercept is .

b. The x-intercept(s) is/are .

81. The formula for a quadratic function h is
h(x) � (x + 5)(x + 6).

a. The y-intercept is .

b. The x-intercept(s) is/are .

82.

The formula for a quadratic function K is
K(x) � −2(x − 6)(x − 4).

a. The y-intercept is .

b. The x-intercept(s) is/are .

83. The formula for a quadratic function F is
F(x) � − (x + 7)(x − 2).

a. The y-intercept is .

b. The x-intercept(s) is/are .

84.

The formula for a quadratic function F is
F(x) � 2x(x + 7).

a. The y-intercept is .

b. The x-intercept(s) is/are .

85. The formula for a quadratic function K is
K(x) � 4(x − 5) x.

a. The y-intercept is .

b. The x-intercept(s) is/are .

86.

The formula for a quadratic function h is
h(x) � 6(x + 1)(x + 1).

a. The y-intercept is .

b. The x-intercept(s) is/are .

87. The formula for a quadratic function H is
H(x) � 8(x + 8)(x + 8).

a. The y-intercept is .

b. The x-intercept(s) is/are .

88.

The formula for a quadratic function h is
h(x) � −9(7x + 6)(3x + 2).

a. The y-intercept is .

b. The x-intercept(s) is/are .

89. The formula for a quadratic function 1 is
1(x) � −7(5x − 2)(8x − 9).

a. The y-intercept is .

b. The x-intercept(s) is/are .

90.
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12.2 Completing the Square

12.2 Completing the Square

In this section, we will learn how to “complete the square” with a quadratic expression. This topic is very
useful for solving quadratic equations and putting quadratic functions in vertex form.

12.2.1 Solving Quadratic Equations by Completing the Square

When we have an equation like (x + 5)2 � 4, we can solve it quickly using the square root property:

(x + 5)2 � 4

x + 5 � −2 or x + 5 � 2
x � −7 or x � −3

Themethod of completing the square allows us to solve any quadratic equation using the square root prop-
erty. The challenge is that most quadratic equations don’t come with a perfect square already on one side.
Let’s explore how to do this by looking at some perfect square trinomials to see the pattern.

(x + 1)2 � x2
+ 2x + 1

(x + 2)2 � x2
+ 4x + 4

(x + 3)2 � x2
+ 6x + 9

(x + 4)2 � x2
+ 8x + 16

(x + 5)2 � x2
+ 10x + 25

...

There is an important pattern here. Notice that with each middle coefficient on the right, you may cut it in
half to get the constant term in the binomial on the left side. And then you may square that number to get
the constant term back on the right side. Mathematically, this says:(

x +
b
2

)2

� x2
+ bx +

(
b
2

)2

We will use this fact to make perfect square trinomials.

Fact 12.2.2 The Term that Completes the Square. For a polynomial x2 + bx, the constant term needed to make a

perfect square trinomial is
(

b
2

)2
.

Example 12.2.3 Solve the quadratic equation x2 + 6x � 16 by completing the square.

Explanation. To solve the quadratic equation x2 + 6x � 16, on the left side we can complete the square

by adding
(

b
2

)2
; note that b � 6 in this case, which makes

(
b
2

)2
�

( 6
2
)2

� 32 � 9. We add it to both sides
to maintain equality.

x2
+ 6x + 9 � 16 + 9

x2
+ 6x + 9 � 25
(x + 3)2 � 25
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Now that we have completed the square, we can solve the equation using the square root property.

x + 3 � −5 or x + 3 � 5
x � −8 or x � 2

The solution set is {−8, 2}.

Now let’s see the process for completing the square when the quadratic equation is given in standard
form.

Example 12.2.4 Solve x2 − 14x + 11 � 0 by completing the square.

Explanation. Wewill solve x2−14x+11 � 0. We see that the polynomial on the left side is not a perfect
square trinomial, so we need to complete the square. We subtract 11 from both sides so we can add the
missing term on the left.

x2 − 14x + 11 � 0
x2 − 14x � −11

Next comes the completing-the-square step. We need to add the correct number to both sides of the
equation to make the left side a perfect square. Remember that Fact 12.2.2 states that we need to use(

b
2

)2
for this. In our case, b � −14, so

(
b
2

)2
�

(−14
2

)2
� 49

x2 − 14x + 49 � −11 + 49
(x − 7)2 � 38

x − 7 � −
√

38 or x − 7 �
√

38

x � 7 −
√

38 or x � 7 +
√

38

The solution set is {7 −
√

38, 7 +
√

38}.

Here are some more examples.

Example 12.2.5 Complete the square to solve for y in y2 − 20y − 21 � 0.

Explanation. To complete the square, we will first move the constant term to the right side of the

equation. Then we will use Fact 12.2.2 to find
(

b
2

)2
to add to both sides.

y2 − 20y − 21 � 0
y2 − 20y � 21

In our case, b � −20, so
(

b
2

)2
�

(−20
2

)2
� 100

y2 − 20y + 100 � 21 + 100
(y − 10)2 � 121
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y − 10 � −11 or y − 10 � 11
y � −1 or y � 21

The solution set is {−1, 21}.

So far, the value of b has been even each time, which makes b
2 a whole number. When b is odd, we will end

up adding a fraction to both sides. Here is an example.

Example 12.2.6 Complete the square to solve for z in z2 − 3z − 10 � 0.

Explanation. We will first move the constant term to the right side of the equation:

z2 − 3z − 10 � 0
z2 − 3z � 10

Next, to complete the square, we will need to find the right number to add to both sides. According to
Fact 12.2.2, we need to divide the value of b by 2 and then square the result to find the right number.
First, divide by 2:

b
2 �
−3
2 � −3

2 (12.2.1)

and then we square that result: (
−3

2

)2

�
9
4 (12.2.2)

Now we can add the 9
4 from Equation (12.2.2) to both sides of the equation to complete the square.

z2 − 3z +
9
4 � 10 +

9
4

Now, to factor the seemingly complicated expression on the left, just know that it should always factor
using the number from the first step in the completing the square process, Equation (12.2.1).(

z − 3
2

)2

�
49
4

z − 3
2 � −7

2 or z − 3
2 �

7
2

z �
3
2 −

7
2 or z �

3
2 +

7
2

z � −4
2 or z �

10
2

z � −2 or z � 5

The solution set is {−2, 5}.

In each of the previous examples, the value of a was equal to 1. This is necessary for our missing term
formula to work. When a is not equal to 1 we will divide both sides by a. Let’s look at an example of
that.

Example 12.2.7 Solve for r in 2r2 + 2r � 3 by completing the square.
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Explanation. Because there is a leading coefficient of 2, we will divide both sides by 2.

2r2
+ 2r � 3

2r2

2 +
2r
2 �

3
2

r2
+ r �

3
2

Next, we will complete the square. Since b � 1, first,

b
2 �

1
2 (12.2.3)

and next, squaring that, we have (
1
2

)2

�
1
4 . (12.2.4)

So we will add 1
4 from Equation (12.2.4) to both sides of the equation:

r2
+ r +

1
4 �

3
2 +

1
4

r2
+ r +

1
4 �

6
4 +

1
4

Here, remember that we always factor with the number found in the first step of completing the square,
Equation (12.2.3). (

r +
1
2

)2

�
7
4

r +
1
2 � −

√
7

2 or r +
1
2 �

√
7

2

r � −1
2 −
√

7
2 or r � −1

2 +

√
7

2

r �
−1 −

√
7

2 or r �
−1 +

√
7

2

The solution set is
{
−1−
√

7
2 , −1+

√
7

2

}
.

12.2.2 Deriving the Vertex Formula and the Quadratic Formula by Completing the
Square

In Section 9.2, we learned a formula to find the vertex. In Section 8.4, we learned the Quadratic Formula.
You may have wondered where they came from, and now that we know how to complete the square, we
can derive them. We will solve the standard form equation ax2 + bx + c � 0 for x.

First, we subtract c from both sides and divide both sides by a.

ax2
+ bx + c � 0
ax2

+ bx � − c
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ax2

a
+

bx
a

� − c
a

x2
+

b
a

x � − c
a

Next, we will complete the square by taking half of the middle coefficient and squaring it. First,

b
a

2 �
b
2a

(12.2.5)

and then squaring that we have (
b
2a

)2

�
b2

4a2 (12.2.6)

We add the b2

4a2 from Equation (12.2.6) to both sides of the equation:

x2
+

b
a

x +
b2

4a2 � +
b2

4a2 −
c
a

Remember that the left side always factors with the value we found in the first step of the completing the
square process from Equation (12.2.5). So we have:(

x +
b
2a

)2

�
b2

4a2 −
c
a

To find a common denominator on the right, we multiply by 4a in the numerator and denominator on the
second term. (

x +
b
2a

)2

�
b2

4a2 −
c
a
· 4a

4a(
x +

b
2a

)2

�
b2

4a2 −
4ac
4a2(

x +
b
2a

)2

�
b2 − 4ac

4a2

Now that we have completed the square, we can see that the x-value of the vertex is − b
2a . That is the vertex

formula. Next, we will solve the equation using the square root property to find the Quadratic Formula.

Note on the ± Form. Because of the
complexity of the formulawe choose to use
the ± symbol rather than write out each
solution separately. An expression of the
form x � A ± B really means “either x �

A − B or x � A + B.”

x +
b
2a

� ±
√

b2 − 4ac
4a2

x +
b
2a

� ±
√

b2 − 4ac
2a

x � − b
2a
±
√

b2 − 4ac
2a

x �
−b ±

√
b2 − 4ac

2a

This shows us that the solutions to the equation ax2 + bx + c � 0 are −b±
√

b2−4ac
2a .
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12.2.3 Putting Quadratic Functions in Vertex Form

In Section 12.1, we learned about the vertex form of a parabola, which allows us to quickly read the coor-
dinates of the vertex. We can now use the method of completing the square to put a quadratic function in
vertex form. Completing the square with a function is a little different than with an equation so we will
start with an example.

Example 12.2.8 Write a formula in vertex form for the function q defined by q(x) � x2 + 8x

Explanation. The formula is in the form x2 + bx, so we will need to add
(

b
2

)2
to complete the square

by Fact 12.2.2. When we had an equation, we could add the same quantity to both sides. But nowwe do
not wish to change the left side, since we are trying to end up with a formula that still says q(x) � . . ..
Instead, we will add and subtract the term from the right side in order to maintain equality. In this case,(

b
2

)2

�

(
8
2

)2

� 42

� 16

Tomaintain equality, wewill both add and subtract 16 on the same side of the equation. It is functionally
the same as adding 0 on the right, but the 16 makes it possible to factor the expression in a particular
way:

q(x) � x2
+ 8x + 16 − 16

�
(
x2

+ 8x + 16
)
− 16

� (x + 4)2 − 16

Now that we have completed the square, our
function is in vertex form. The vertex is (−4,−16).
One way to verify that our work is correct is to
graph the original version of the function and
check that the vertex is where it should be.

−8 −6 −4 −2

−15

−10

−5

5

10

15
y � q(x)

(−4,−16)

x

y

Figure 12.2.9: Graph of y � x2 + 8x

Let’s look at a function that has a constant term and see how to complete the square.
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Example 12.2.10 Write a formula in vertex form for the function f defined by f (x) � x2 − 12x + 3

Explanation. To complete the square, we need to add and subtract
(
− 12

2
)2

� (−6)2 � 36 on the right
side.

f (x) � x2 − 12x + 36 − 36 + 3
�

(
x2 − 12x + 36

)
− 36 + 3

� (x − 6)2 − 33

The vertex is (6,−33).

In the first two examples, a was equal to 1. When a is not equal to one, we have an additional step. Since we
are working with an expression where we intend to preserve the left side as f (x) � . . ., we cannot divide
both sides by a. Instead we will factor a out of the first two terms. Let’s look at an example of that.

Example 12.2.11 Write a formula in vertex form for the function 1 defined by 1(x) � 5x2 + 20x + 25

Explanation. Before we can complete the square, we will factor the 5 out of the first two terms.

1(x) � 5
(
x2

+ 4x
)
+ 25

Now we will complete the square inside the parentheses by adding and subtracting
( 4

2
)2

� 22 � 4.

1(x) � 5
(
x2

+ 4x + 4 − 4
)
+ 25

Notice that the constant that we subtracted is inside the parentheses, but it will not be part of our perfect
square trinomial. In order to bring it outside, we need to multiply it by 5. We are distributing the 5 to
that term so we can combine it with the outside term.

1(x) � 5
( (

x2
+ 4x + 4

)
− 4

)
+ 25

� 5
(
x2

+ 4x + 4
)
− 5 · 4 + 25

� 5 (x + 2)2 − 20 + 25

� 5 (x + 2)2 + 5

The vertex is (−2, 5).

Here is an example that includes fractions.

Example 12.2.12 Write a formula in vertex form for the function h defined by h(x) � −3x2 − 4x − 7
4

Explanation. First, we will factor the leading coefficient out of the first two terms.

h(x) � −3x2 − 4x − 7
4

� −3
(
x2

+
4
3 x

)
− 7

4

Next, we will complete the square for x2 + 4
3 x inside the grouping symbols by adding and subtracting

the right number. To find that number, we divide the value of b by two and square the result. That looks
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like:
b
2 �

4
3
2 �

4
3 ·

1
2 �

2
3 (12.2.7)

and then, (
2
3

)2

�
22

32 �
4
9 (12.2.8)

Adding and subtracting the value from Equation (12.2.8), we have:

h(x) � −3
(
x2

+
4
3 x +

4
9 −

4
9

)
− 7

4

� −3
((

x2
+

4
3 x +

4
9

)
− 4

9

)
− 7

4

� −3
(
x2

+
4
3 x +

4
9

)
−

(
3 · −4

9

)
− 7

4

Remember that when completing the square, the expression should always factor with the number
found in the first step of the completing-the-square process, Equation (12.2.7).

� −3
(
x +

2
3

)2

+
4
3 −

7
4

� −3
(
x +

2
3

)2

+
16
12 −

21
12

� −3
(
x +

2
3

)2

− 5
12

The vertex is
(
− 2

3 ,− 5
12

)
.

Completing the square can also be used to find a minimum or maximum in an application.

Example 12.2.13 In Example 6.4.19, we learned that artist Tyrone’s annual income from paintings can
be modeled by I(x) � −100x2 + 1000x + 20000, where x is the number of times he will raise the price
per painting by $20.00. To maximize his income, how should Tyrone set his price per painting? Find the
maximum by completing the square.

Explanation. To find the maximum is essentially the same as finding the vertex, which we can find by
completing the square. To complete the square for I(x) � −100x2 + 1000x + 20000, we start by factoring
out the −100 from the first two terms:

I(x) � −100x2
+ 1000x + 20000

� −100
(
x2 − 10x

)
+ 20000

Next, we will complete the square for x2 − 10x by adding and subtracting
(
− 10

2
)2

� (−5)2 � 25.

I(x) � −100
(
x2 − 10x + 25 − 25

)
+ 20000

� −100
( (

x2 − 10x + 25
)
− 25

)
+ 20000

� −100
(
x2 − 10x + 25

)
− (100 · −25) + 20000

� −100(x − 5)2 + 2500 + 20000
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� −100(x − 5)2 + 22500

The vertex is the point (5, 22500). This implies Tyrone should raise the price per painting 5 times, which
is 5 · 20 � 100 dollars. He would sell 100 − 5(5) � 75 paintings. This would make the price per painting
200 + 100 � 300 dollars, and his annual income from paintings would become $22500 by this model.

12.2.4 Graphing Quadratic Functions by Hand

Now that we know how to put a quadratic function in vertex form, let’s review how to graph a parabola by
hand.

Example 12.2.14 Graph the function h defined by h(x) � 2x2 + 4x − 6 by determining its key features
algebraically.

Explanation. To start, we’ll note that this function opens upward because the leading coefficient, 2, is
positive.

Now we will complete the square to find the vertex. We will factor the 2 out of the first two terms, and
then add and subtract

( 2
2
)2

� 12 � 1 on the right side.

h(x) � 2
(
x2

+ 2x
)
− 6

� 2
[
x2

+ 2x + 1 − 1
]
− 6

� 2
[ (

x2
+ 2x + 1

)
− 1

]
− 6

� 2
(
x2

+ 2x + 1
)
− (2 · 1) − 6

� 2 (x + 1)2 − 2 − 6

� 2 (x + 1)2 − 8

The vertex is (−1,−8) so the axis of symmetry is the line x � −1.

To find the y-intercept, we’ll replace x with 0 or read the value of c from the function in standard form:

h(0) � 2(0)2 + 2(0) − 6
� −6

The y-intercept is (0,−6) and we will find its symmetric point on the graph, which is (−2,−6).
Next, we’ll find the horizontal intercepts. We see this function factors so we will write the factored form
to get the horizontal intercepts.

h(x) � 2x2
+ 4x − 6

� 2
(
x2

+ 2x − 3
)

� 2(x − 1)(x + 3)

The x-intercepts are (1, 0) and (−3, 0).
Now we will plot all of the key points and draw the parabola.
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−5 −4 −3 −2 −1 1 2 3

−8

−6

−4

−2

2

4

6

8

(−3, 0)

(−2,−6)

(1, 0)

(0,−6)

(−1,−8)

y � h(x)

x

y

Figure 12.2.15: The graph of y � 2x2 + 4x − 6.

Example 12.2.16 Write a formula in vertex form for the function p defined by p(x) � −x2 − 4x − 1, and
find the graph’s key features algebraically. Then sketch the graph.

Explanation. In this function, the leading coefficient is negative so it will open downward. To complete
the square we first factor −1 out of the first two terms.

p(x) � −x2 − 4x − 1
� −

(
x2

+ 4x
)
− 1

Now, we add and subtract the correct number on the right side of the function:
(

b
2

)2
�

( 4
2
)2

� 22 � 4.

p(x) � −
(
x2

+ 4x + 4 − 4
)
− 1

� −
( (

x2
+ 4x + 4

)
− 4

)
− 1

� −
(
x2

+ 4x + 4
)
− (−4) − 1

� − (x + 2)2 + 4 − 1

� − (x + 2)2 + 3

The vertex is (−2, 3) so the axis of symmetry is the line x � −2.

We find the y-intercept by looking at the value of c, which is −1. So, the y-intercept is (0,−1) and we
will find its symmetric point on the graph, (−4,−1).
The original expression,−x2−4x−1, does not factor so to find the x-interceptswe need to set p(x) � 0 and
complete the square or use the quadratic formula. Since we just went through the process of completing
the square above, we can use that result to save several repetitive steps.

p(x) � 0

− (x + 2)2 + 3 � 0
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−(x + 2)2 � −3
(x + 2)2 � 3

x + 2 � −
√

3 or x + 2 �
√

3

x � −2 −
√

3 or x � −2 +
√

3
x ≈ −3.73 or x ≈ −0.268

The x-intercepts are approximately (−3.7, 0) and (−0.3, 0). Now we can plot all of the points and draw
the parabola.

−6 −4 −2 2 4

−6

−4

−2

2

4

(−4,−1) (0,−1)

(−2, 3)

(−3.7, 0) (−0.3, 0)

y � p(x)

x

y

Figure 12.2.17: The graph of y � −x2 − 4x − 1.

Exercises

Review and Warmup

Use a square root to solve
(
y − 9

)2
� 4.1. Use a square root to solve

(
y + 4

)2
� 25.2.

Use a square root to solve
(
4y + 7

)2
� 4.3. Use a square root to solve (9r − 4)2 � 64.4.

Use a square root to solve (r + 3)2 � 14.5. Use a square root to solve (t − 4)2 � 3.6.

Use a square root to solve t2 + 18t + 81 � 36.7. Use a square root to solve x2 + 4x + 4 � 81.8.
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Use a square root to solve 16x2 − 16x + 4 � 25.9. Use a square root to solve 81y2 + 108y + 36 �

9.
10.

Use a square root to solve 36y2 − 72y + 36 �

17.
11. Use a square root to solve 9y2 + 12y + 4 � 13.12.

Completing the Square to Solve Equations Solve the equation by completing the square.

r2 + 2r � 6313. r2 + 10r � −914. t2 − t � 4215. t2 − 3t � 1016.

x2 + 4x � 617. x2 − 8x � 818. y2 − 6y + 5 � 019. y2 − 8y − 9 � 020.

y2 + 15y + 56 � 021. r2 − r − 42 � 022. r2 − 2r − 6 � 023. t2 − 10t + 3 � 024.

12t2 + 28t + 15 � 025. 12x2 + 20x + 7 � 026. 2x2 − x − 5 � 027. 2x2 + 5x + 1 � 028.

Converting to Vertex Form

Consider h(y) � y2 + 4y + 4.

a. Give the formula for h in vertex form.

b. What is the vertex of the parabola graph
of h?

29. Consider F(t) � t2 − 6t + 1.

a. Give the formula for F in vertex form.

b. What is the vertex of the parabola graph
of F?

30.

Consider G(r) � r2 + r − 2.

a. Give the formula for G in vertex form.

b. What is the vertex of the parabola graph
of G?

31. Consider G(y) � y2 + 9y − 5.

a. Give the formula for G in vertex form.

b. What is the vertex of the parabola graph
of G?

32.

Consider H(t) � 5t2 + 25t + 5.

a. Give the formula for H in vertex form.

b. What is the vertex of the parabola graph
of H?

33. Consider K(r) � 8r2 + 64r + 2.

a. Give the formula for K in vertex form.

b. What is the vertex of the parabola graph
of K?

34.
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12.2 Completing the Square

Domain and Range Complete the square to convert the quadratic function from standard form to vertex
form, and use the result to find the function’s domain and range.

f (x) � x2 + 20x + 94

The domain of f is

The range of f is

35. f (x) � x2 + 16x + 72

The domain of f is

The range of f is

36.

f (x) � −x2 − 10x − 34

The domain of f is

The range of f is

37. f (x) � −x2 − 6x − 16

The domain of f is

The range of f is

38.

f (x) � 5x2 + 10x + 12

The domain of f is

The range of f is

39. f (x) � 3x2 − 12x + 11

The domain of f is

The range of f is

40.

f (x) � −4x2 + 32x − 72

The domain of f is

The range of f is

41. f (x) � −2x2 + 24x − 66

The domain of f is

The range of f is

42.

Sketching Graphs of Quadratic Functions Graph each function by algebraically determining its key fea-
tures. Then state the domain and range of the function.

f (x) � x2 − 7x + 1243. f (x) � x2 + 5x − 1444. f (x) � −x2 − x + 2045.

f (x) � −x2 + 4x + 2146. f (x) � x2 − 8x + 1647. f (x) � x2 + 6x + 948.

f (x) � x2 − 449. f (x) � x2 − 950. f (x) � x2 + 6x51.

f (x) � x2 − 8x52. f (x) � −x2 + 5x53. f (x) � −x2 + 1654.

f (x) � x2 + 4x + 755. f (x) � x2 − 2x + 656. f (x) � x2 + 2x − 557.

f (x) � x2 − 6x + 258. f (x) � −x2 + 4x − 159. f (x) � −x2 − x + 360.
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f (x) � 2x2 − 4x − 3061. f (x) � 3x2 + 21x + 3662.

Information from Vertex Form

Find the minimum value of the function

f (x) � 10x2 − x + 1

63. Find the minimum value of the function

f (x) � x2 − 9x + 10

64.

Find the maximum value of the function

f (x) � 5x − 2x2 − 2

65. Find the maximum value of the function

f (x) � 6 −
(
3x2

+ 2x
)66.

Find the range of the function

f (x) � −
(
4x2

+ 10x + 6
)67. Find the range of the function

f (x) � 4x − 5x2
+ 3

68.

Find the range of the function

f (x) � 6x2 − 3x − 9

69. Find the range of the function

f (x) � 7x2
+ 10x − 1

70.

If a ball is throw straight up with a speed of
66 ft

s , its height at time t (in seconds) is given
by

h(t) � −8t2
+ 66t + 2

Find the maximum height the ball reaches.

71. If a ball is throw straight up with a speed of
68 ft

s , its height at time t (in seconds) is given
by

h(t) � −8t2
+ 68t + 2

Find the maximum height the ball reaches.

72.

Challenge

Let f (x) � x2 + bx + c. Let b and c be real numbers. Complete the square to find the vertex of
f (x) � x2 + bx + c. Write f (x) in vertex form and then state the vertex.

73.

906
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12.3 More on Complex Solutions to Quadratic Equations

When we solve a quadratic equation, sometimes there are no real solutions. In this section we will explore
when that happens and what it means on a graph. We will also learn how to handle complex solutions
algebraically.

12.3.1 Applications with Real or Complex Solutions

Let’s look at an application where we will determine whether the solutions are real or complex. Iman is a
pilot and in a stunt plane performance, she plans to dive the plane toward the ground and then back up. The
plane’s height can bemodeled by a quadratic function. If one possible function is h, where h(t) � 1

2 t2−5t+12,
with t standing for time in seconds after the stunt begins, determinewhether the planewould hit the ground
during the stunt.

To check whether the plane on that flight path would hit the ground, we will solve the equation h(t) � 0.
We will solve this equation with the quadratic formula. First, we identify that a �

1
2 , b � −5 and c � 12.

t �
−b ±

√
b2 − 4ac

2a

�
−(−5) ±

√
(−5)2 − 4(1/2)(12)
2(1/2)

�
5 ±
√

25 − 24
1

� 5 ±
√

1
� 5 ± 1

So, either:

t � 6 or t � 4

1 2 3 4 5 6 7

1

2

y � h(t)

t seconds

y feet

Figure 12.3.2: Graph of y � h(t)

This equation has two real solutions and we can see from the graph that the real solutions are the zeros of
h. The solution 4 shows that the plane would hit the ground 4 seconds into the stunt, so this is not a good
flight path.

To avoid hitting the ground, Iman adjusted the function to p, where p(t) � 1
2 t2 − 5t + 12.5. To see whether

the plane on this flight path would hit the ground, we will solve the equation p(t) � 0. We will again use
the quadratic formula to solve this equation. We identify that a �

1
2 , b � −5 and c � 12.5.
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t �
−b ±

√
b2 − 4ac

2a

�
−(−5) ±

√
(−5)2 − 4(1/2)(12.5)

2(1/2)

�
5 ±
√

25 − 25
1

� 5 ±
√

0
� 5 ± 0
� 5

1 2 3 4 5 6 7

1

2

y � p(t)
t seconds

y feet

Figure 12.3.3: Graph of y � p(t)

This equation has one real solution because p has one zero. This time the plane would hit the ground 5
seconds into the stunt. This is also not a good flight path.

Iman again adjusted the flight path to q, where q(t) � 1
2 t2 − 5t + 13. We will solve the equation q(t) � 0

using the quadratic formula. Identify that a �
1
2 , b � −5 and c � 13.

t �
−b ±

√
b2 − 4ac

2a

�
−(−5) ±

√
(−5)2 − 4(1/2)(13)
2(1/2)

�
5 ±
√

25 − 26
1

� 5 ±
√
−1 1 2 3 4 5 6 7

1

2

y � q(t)

t seconds

y feet

Figure 12.3.4: Graph of y � q(t)

Because the radicand is negative, there are no real solutions and the function has no horizontal intercepts.
This means the plane will not touch the ground and Iman can complete her stunt using this path.

In general, the radicand of the quadratic formula, b2 − 4ac is called the discriminant. The sign of the
discriminant will tell us how many horizontal intercepts a quadratic function will have

• When a quadratic function h has twohorizontal intercepts, the equation h(t) � 0has two real solutions.
The discriminant will be a positive number so that the ± from the quadratic formula will provide two
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solutions.

• When a quadratic function p has one horizontal intercept, the equation p(t) � 0 has one real solution.
The discriminant will be zero so that the ± from the quadratic formula will provide only one solution.

• When a quadratic function q has no horizontal intercepts, the equation q(t) � 0 has no real solutions,
but it has two complex solutions. The discriminant will be a negative number so that the

√
from

the quadratic formula will provide imaginary numbers, and then the ± will provide two complex
solutions.

Example 12.3.5 Futsala is a form of what is usually called soccer in the United States. The game is played
on a hard court surface and is usually indoors. The ceiling is out of bounds, so if the ball hits the ceiling
it goes to the opposing team.

Borna kicks the ball from the ground with an upward velocity of 8 meters per second. The ball’s height
in meters can be modeled by the quadratic function h, where h(t) � −4.9t2 +8t, with t standing for time
in seconds after the ball was kicked. If the ceiling height is 4 meters, the minimum height allowed by
regulation, determine whether the ball will hit the ceiling.

Explanation. To see whether their ball will hit the ceiling, we will solve the equation h(t) � 4. We
could complete the square or use the quadratic formula. Because this equation has decimal coefficients
we will use the quadratic formula. We put the equation in standard form and identify that a � −4.9,
b � 8 and c � −4.

−4.9t2
+ 8t � 4

−4.9t2
+ 8t − 4 � 0

t �
−b ±

√
b2 − 4ac

2a

�
−8 ±

√
82 − 4(−4.9)(−4)
2(−4.9)

�
−8 ±

√
64 − 78.4
−9.8

�
−8 ±

√
−14.4

−9.8

The radicand is negative so we can conclude that there are no real solutions to the equation h(t) � 4.
That means the parabola will not cross the line y � 4 and the ball will not hit the ceiling.

aen.wikipedia.org/wiki/Futsal

Example 12.3.6 Emma kicks the ball from the ground with an upward velocity of 10 meters per second.
This gives us the quadratic function for the height of the ball h(t) � −4.9t2 + 10t, with t standing for
time in seconds after the ball was kicked. If the ceiling height is 4.5 meters, determine whether the ball
will hit the ceiling.

Explanation. To see whether her ball will hit the ceiling, we will solve the equation h(t) � 4.5. We
will use the quadratic formula because this equation has decimal coefficients. We put the equation in
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standard form and identify that a � −4.9, b � 10 and c � −4.5.

−4.9t2
+ 10t � 4.5

−4.9t2
+ 10t − 4.5 � 0

t �
−b ±

√
b2 − 4ac

2a

�
−10 ±

√
102 − 4(−4.9)(−4.5)

2(−4.9)

�
−10 ±

√
100 − 88.2
−9.8

�
−10 ±

√
11.8

−9.8

The radicand is positive so there are two real solutions to the equation h(t) � 4.5. That means the
parabola will cross the line y � 4.5 and the ball will hit the ceiling.

12.3.2 Solving Equations with Complex Solutions

In a physical context we may only want to know whether solutions are real or complex. Or we may want to
find the solutions. When the radicand is negative, we need to go into the complex number system. First we
will revisit the definition of complex numbers. Recall that i is defined as

√
−1.

Definition 12.3.7 Complex Number. A complex number¹ is a number that can be expressed in the form
a + bi, where a and b are real numbers and i is the imaginary unit. In this expression, a is the real part and
b (not bi) is the imaginary part.

Here are some examples of solving equations that have complex solutions.

Example 12.3.8 Solve for s in s2 − 10s � −34.

Explanation. We will use the method of completing the square. To do so, we need to add
(

b
2

)2
�

(−5)2 � 25 to both sides to complete the square.

s2 − 10s � −34
s2 − 10s + 25 � −34 + 25

(s − 5)2 � −9

s − 5 � −
√
−9 or s − 5 �

√
−9

s − 5 � −
√

9 ·
√
−1 or s − 5 �

√
9 ·
√
−1

s − 5 � −3i or s − 5 � 3i
s � 5 − 3i or s � 5 + 3i

¹en.wikipedia.org/wiki/Complex_number
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12.3 More on Complex Solutions to Quadratic Equations

The solution set is {5 − 3i , 5 + 3i}.

Checkpoint 12.3.9. Solve for x in 2x2 + 12x + 26 � 0.

Explanation. We will use the completing-the-square method again. To do so, we first need to divide both
sides by the leading coefficient, 2.

2x2
+ 12x � −26

2x2

2 +
12x
2 �

−26
2

x2
+ 6x � −13

Now we can add
(

b
2

)2
� (3)2 � 9 to both sides to complete the square.

x2
+ 6x + 9 � −13 + 9
(x + 3)2 � −4

x + 3 � −
√
−4 or x + 3 �

√
−4

x + 3 � −
√

4 ·
√
−1 or x + 3 �

√
4 ·
√
−1

x + 3 � −2i or x + 3 � 2i
x � −3 − 2i or x � −3 + 2i

The solution set is {−3 − 2i ,−3 + 2i}.

The quadratic formula can also be used to solve for complex solutions. Here is an example where it makes
more sense to use the quadratic formula.

Example 12.3.10 Solve for x in 5x2 − 2x � −3.

Explanation. If we were to complete the square, we would divide both sides by 5 and have lots of
fractions in our equation. Instead, we will put the equation in standard form and use the quadratic
formula.

5x2 − 2x � −3
5x2 − 2x + 3 � 0

We identify that a � 5, b � −2 and c � 3 and substitute them into the Quadratic Formula:

x �
−b ±

√
b2 − 4ac

2a

�
−(−2) ±

√
(−2)2 − 4(5)(3)
2(5)

�
2 ±
√

4 − 60
10

�
2 ±
√
−56

10

�
2 ±
√
−1 · 4 · 14
10
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�
2 ±
√
−1 ·
√

4 ·
√

14
10

�
2 ± i · 2 ·

√
14

10

Now we need to put the solutions in standard form which is a + bi.

x �
2
10 ±

2i
√

14
10

x �
1
5 ±
√

14
5 i

The solution set is
{

1
5 −

√
14
5 i , 1

5 +

√
14
5 i

}
.

Exercises

Review and Warmup Simplify the radical and write it into a complex number.
√
−30 �1.

√
−105 �2.

√
−56 �3.

√
−28 �4.

√
−252 �5.

√
−112 �6.

Real Versus Complex Solutions Determine the nature of the solutions to this quadratic equation.

−7r2 − 18r − 10 � 0

(□ two real solutions □ two non-real solu-
tions □ one doubled real solution □ none
of these)

7. 7x2 − x + 5 � 0

(□ two real solutions □ two non-real solu-
tions □ one doubled real solution □ none
of these)

8.

8x2 − x + 1 � 0

(□ two real solutions □ two non-real solu-
tions □ one doubled real solution □ none
of these)

9. −8y2 − 8y − 6 � 0

(□ two real solutions □ two non-real solu-
tions □ one doubled real solution □ none
of these)

10.

6y2
+ 2y + 9 � 0

(□ two real solutions □ two non-real solu-
tions □ one doubled real solution □ none
of these)

11. −z2 − 4z + 3 � 0

(□ two real solutions □ two non-real solu-
tions □ one doubled real solution □ none
of these)

12.
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−9z2
+ z − 3 � 0

(□ two real solutions □ two non-real solu-
tions □ one doubled real solution □ none
of these)

13. 5t2
+ 5t − 9 � 0

(□ two real solutions □ two non-real solu-
tions □ one doubled real solution □ none
of these)

14.

Solving Equations with Complex Solutions Solve the quadratic equation. Solutions could be complex
numbers.

t2 � −2515. t2 � −416. −4x2 − 1 � 25517.

10x2 − 2 � −25218. −x2 − 8 � 919. −2y2 + 3 � 720.

3(y − 8)2 − 2 � −5021. −9(r + 2)2 − 3 � 89722. 5r2 − 8 � −23323.

−7t2 + 9 � 9324. t2 − 6t + 10 � 025. x2 + 2x + 5 � 026.

x2 − 4x + 7 � 027. x2 + 6x + 16 � 028.

Applications

A remote control aircraft will perform a stunt by flying toward the ground and then up. Its height
can be modeled by the function h(t) � 1.7t2 − 17t + 42.5. The plane (□ will □ will not) hit the
ground during this stunt.

29.

A remote control aircraft will perform a stunt by flying toward the ground and then up. Its height
can be modeled by the function h(t) � 1.2t2 − 14.4t + 39.2. The plane (□ will □ will not) hit
the ground during this stunt.

30.

A submarine is traveling in the sea. Its depth can be modeled by d(t) � −0.2t2 + 2.8t − 5.8, where
t stands for time in seconds. The submarine (□ will □ will not) hit the sea surface along this
route.

31.

A submarine is traveling in the sea. Its depth can be modeled by d(t) � −0.9t2 + 14.4t − 57.6, where
t stands for time in seconds. The submarine (□ will □ will not) hit the sea surface along this
route.

32.
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12.4 Complex Number Operations

Complex numbers¹ are used in many math, science and engineering applications. In this section, we will
learn the basics of complex number operations.

12.4.1 Adding and Subtracting Complex Numbers

Adding and subtracting complex numbers is just like combining like terms. We combine the terms that are
real and the terms that are imaginary. Here are some examples

Example 12.4.2 Simplify the expression (1 − 7i) + (5 + 4i).

(1 − 7i) + (5 + 4i) � 1 + 5 − 7i + 4i
� 6 − 3i

Example 12.4.3 Simplify the expression (3 − 10i) − (4 − 6i).

(3 − 10i) − (4 − 6i) � 3 − 10i − 4 + 6i
� −1 − 4i

Checkpoint 12.4.4. Simplify the expression (8 + 2i) − (5 + 3i).

Explanation.
(8 + 2i) − (5 + 3i) � 8 + 2i − 5 − 3i

� 3 − i

12.4.2 Multiplying Complex Numbers

Now let’s learn how to multiply complex numbers. It is very similar to multiplying polynomials.

Example 12.4.5 Simplify the expression 2i(3 − 2i).
We distribute the 2i to both terms, then we simplify any powers of i.

2i(3 − 2i) � 2i · 3 − 2i · 2i

� 6i − 4i2

� 6i − 4(−1)
� 6i + 4
� 4 + 6i

Note that we always write a complex number in standard form, which is a + bi.

When we multiply two complex numbers we can use the distributive method, foil method, or generic rect-
angles. Here is an example of each method.

¹en.wikipedia.org/wiki/Complex_number#Applications
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Example 12.4.6 Multiply (1 + 5i)(2 − 7i).
We will use the distributive method to multiply the two binomials.

(1 + 5i)(2 − 7i) � 2(1 + 5i) − 7i(1 + 5i)
� 2 + 10i − 7i − 35i2

� 2 + 10i − 7i − 35(−1)
� 2 + 3i + 35
� 37 + 3i

Example 12.4.7 Expand and simplify the expression (3 − 4i)2.

Explanation. We will use the foil method to expand this perfect square.

( 3−4i ) ( 3 −4i)
9 16i2

−12i
−12i

(3 − 4i)2 � (3 − 4i)(3 − 4i)
� 9 − 12i − 12i + 16i2

� 9 − 24i + 16(−1)
� 9 − 24i − 16
� −7 − 24i

Figure 12.4.8: Using the foil method to expand (3 − 4i)2.

Example 12.4.9 Multiply (3 + 4i)(3 − 4i).

Explanation. We will use the Generic Rectangle Method to multiply those two binomials.

3 4i

3

−4i

9 12i

−12i −16i2

(3 + 4i)(3 − 4i) � 9 + 12i − 12i − 16i2

� 9 − 16(−1)
� 9 + 16
� 25

Figure 12.4.10: Using the Generic Rectangle Method to multiply (3 + 4i)(3 − 4i).

As the last example shows, it is possible to multiply two complex numbers and get a real number result.
Notice that the middle terms, 12i and −12i, are opposites, which makes the result a real number. This
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happens when we multiply a sum and difference of the same real and imaginary parts, called complex
conjugates. This pair of factors results in the difference of squares:

(a + b)(a − b) � a2 − b2.

Example 12.4.11 Here is an example using the sum and difference formula to multiply (5 + 2i)(5 − 2i):

(5 + 2i)(5 − 2i) � 52 − (2i)2

� 25 − 4i2

� 25 − 4(−1)
� 25 + 4
� 29

Checkpoint 12.4.12. Multiply (7 − 9i)(7 + 9i).

Explanation.
(7 − 9i)(7 + 9i) � (7)2 − (9i)2

� 49 − 81i2

� 49 − 81(−1)
� 49 + 81
� 130

12.4.3 Dividing Complex Numbers

When we divide by i we use a process that is similar to rationalizing the denominator. We use the property√
x ·
√

x � x whenwe rationalize the denominator, and we use the property i · i � −1 whenwe have complex
numbers. Let’s compare these two problems 2√

2
and 2

i :

2√
2
�

2 ·
√

2√
2 ·
√

2

�
2
√

2
2

�
√

2

2
i
�

2 · i
i · i

�
2i
−1

� −2i

Example 12.4.13 Rationalize the denominator in the expression − 7
4i .

− 7
4i

� − 7 · i
4i · i

� − 7i
4(−1)

�
7i
4
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�
7
4 i

Checkpoint 12.4.14. Rationalize the denominator in the expression 5
3i .

Explanation.
5
3i

�
5 · i
3i · i

�
5i

3(−1)

� −5i
3

� −5
3 i

When the denominator is in the form a + bi, we need to use the complex conjugate to remove the imaginary
terms from the denominator. Here is an example.

Example 12.4.15 Simplify the expression 1
4+3i .

Explanation. To get a real result in the denominator we multiply the numerator and denominator by
4 − 3i, and we have:

1
4 + 3i

�
1

4 + 3i
· (4 − 3i)
(4 − 3i)

�
4 − 3i

16 − 12i + 12i − 9i2

�
4 − 3i

16 − 9(−1)

�
4 − 3i
16 + 9

�
4 − 3i

25

�
4
25 −

3
25 i

Note that we always write complex numbers in standard form which is a + bi.

Now we can divide two complex numbers as in the next example.

Example 12.4.16 Simplify the expression 1+2i
2−4i .

Explanation. To divide complex numbers, we rationalize the denominator using the conjugate 2 + 4i:

1 + 2i
2 − 4i

�
(1 + 2i)
(2 − 4i) ·

(2 + 4i)
(2 + 4i)

�
2 + 4i + 4i + 8i2

4 + 8i − 8i − 16i2

�
2 + 8i + 8(−1)

4 − 16(−1)

�
2 + 8i − 8

4 + 16
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�
−6 + 8i

20

�
−6
20 +

8i
20

� − 3
10 +

2
5 i

Checkpoint 12.4.17. Simplify the expression 4−7i
5+i .

Explanation. To divide, we rationalize the denominator using the conjugate 5 − i:

4 − 7i
5 + i

�
(4 − 7i)
(5 + i) ·

(5 − i)
(5 − i)

�
20 − 4i − 35i + 7i2

25 − 5i + 5i − i2

�
20 − 39i + 7(−1)

25 − 1(−1)

�
20 − 39i − 7

25 + 1

�
13 − 39i

26

�
13
26 −

39i
26

�
1
2 −

3
2 i

Exercises

Adding and Subtracting Complex Numbers

Add up the following complex numbers:

(−7 + 6i) + (2 + 5i) �

1. Add up the following complex numbers:

(−4 − 3i) + (12 − 2i) �

2.

Subtract the following complex numbers:

(−1 − 11i) − (−3 − 8i) �

3. Subtract the following complex numbers:

(1 + 5i) − (8 + 10i) �

4.

Write the complex number in standard form.

(3 − 3i) + (−6 + 2i)

5. Write the complex number in standard form.

(6 − 10i) + (3 − 4i)

6.

Write the complex number in standard form.

(8 + 3i) + (−9 − 9i)

7. Write the complex number in standard form.

(10 − 4i) + (6i)

8.
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Write the complex number in standard form.

(−8 + 10i) − (8)

9. Write the complex number in standard form.

(−6 + 2i) − (−4 − 6i)

10.

Write the complex number in standard form.

(−4 − 5i) − (5 + 9i)

11. Write the complex number in standard form.

(−1 + 9i) − (−7 + 4i)

12.

Multiplying Complex Numbers

Multiply the following complex numbers:

i(1 + 2i) �

13. Multiply the following complex numbers:

i(4 − 7i) �

14.

Multiply the following complex numbers:

(7 + 9i)(−3 + 8i) �

15. Multiply the following complex numbers:

(10 + i)(8 + i) �

16.

Multiply the following complex numbers:

(12 − 8i)2 �

17. Multiply the following complex numbers:

(−10 + 8i)2 �

18.

Multiply the following complex numbers:

(−7 − 11i)(−7 + 11i) �

19. Multiply the following complex numbers:

(−4 − 9i)(−4 + 9i) �

20.

Write the complex number in standard form.

(−1 + 6i)(8 − 7i)

21. Write the complex number in standard form.

(1 − i)(−4 + 8i)

22.

Write the complex number in standard form.

(3 − 8i)(5 + 3i)

23. Write the complex number in standard form.

(6 + 5i)(−7 − 3i)

24.
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Dividing Complex Numbers

Rewrite the following expression into the form
of a+bi:
6
i
�

25. Rewrite the following expression into the form
of a+bi:
2
i
�

26.

Rewrite the following expression into the form
of a+bi:
−8 + 4i
−2 + 6i

�

27. Rewrite the following expression into the form
of a+bi:
−2 + 4i
−4 − 2i

�

28.

Rewrite the following expression into the form
of a+bi:
−3 − 8i
−5 + 8i

�

29. Rewrite the following expression into the form
of a+bi:
3 − 8i
2 + 3i

�

30.

Write the complex number in standard form.

1 − 4i
−9 − 2i

31. Write the complex number in standard form.

3 + 10i
−8i

32.

Write the complex number in standard form.

6 + 3i
8 + 7i

33. Write the complex number in standard form.

8 − 5i
−4 + i

34.
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12.5 More on Quadratic Functions Chapter Review

12.5.1 Graphs and Vertex Form

In Section 12.1 we covered the use of technology in analyzing quadratic functions, the vertex form of a
quadratic function and how it affects horizontal and vertical shifts of the graph of a parabola, and the fac-
tored form of a quadratic function.

Example 12.5.1 Exploring Quadratic Functions with Graphing Technology. Use technology to graph
and make a table of the quadratic function 1 defined by 1(x) � −x2 + 5x − 6 and find each of the key
points or features.

a. Find the vertex.

b. Find the vertical intercept.

c. Find the horizontal intercept(s).

d. Find 1(−1).

e. Solve 1(x) � −6 using the graph.

f. Solve 1(x) ≤ −6 using the graph.

g. State the domain and range of the function.

Explanation.

The specifics of how to use any
one particular technology tool
vary. Whether you use an app, a
physical calculator, or something
else, a table and graph should
look like:

x 1(x)
−1 −12

0 −6
1 −2
2 0
2 0
3 0
4 −2

−1 1 2 3 4 5 6

−8

−6

−4

−2

x

y

Additional features of your technology tool can enhance the graph to help answer these questions. You
may be able to make the graph appear like:
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−1 1 2 3 4 5 6

−8

−6

−4

−2

y � 1(x)

y � −6

(2.5, 0.25)

(0,−6) (5,−6)

(3, 0)(2, 0) x

y

a. The vertex is (2.5, 0.25).
b. The vertical intercept is (0,−6).
c. The horizontal intercepts are (2, 0) and (3, 0).
d. 1(−1) � −2.

e. The solutions to 1(x) � −6 are the x-values where y � 6. We graph the horizontal line y � −6 and
find the x-values where the graphs intersect. The solution set is {0, 5}.

f. The solutions are all x-values where the function below (or touching) the line y � −6. The solution
set is (−∞, 0] ∪ [5,∞).

g. The domain is (−∞,∞) and the range is (−∞, 0.25].

Example 12.5.2 The Vertex Form of a Parabola. Recall that the vertex form of a quadratic function tells
us the location of the vertex of a parabola.

a. State the vertex of the quadratic function
r(x) � −8(x + 1)2 + 7.

b. State the vertex of the quadratic function
u(x) � 5(x − 7)2 − 3.

c. Write the formula for a parabola with vertex
(−5, 3) and a � 2.

d. Write the formula for a parabola with vertex
(1,−17) and a � −4.

Explanation.
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a. The vertex of the quadratic function r(x) �
−8(x + 1)2 + 7 is (−1, 7).

b. The vertex of the quadratic function u(x) �
5(x − 7)2−3 is (7,−3).

c. The formula for a parabolawith vertex (−5, 3)
and a � 2 is y � 2(x + 5)2 + 3.

d. The formula for a parabola with vertex
(1,−17) and a � −4 is y � 4(x − 1)2−17.

Example 12.5.3 Horizontal and Vertical Shifts. Identify the horizontal and vertical shifts compared
with f (x) � x2.

a. s(x) � (x + 1)2 + 7. b. v(x) � (x − 7)2 − 3.

Explanation.

a. The graph of the quadratic function s(x) �
−8(x + 1)2 + 7 is the same as the graph of
f (x) � x2 shifted to the left 1 unit and up 7
units.

b. The graph of the quadratic function v(x) �
5(x − 7)2 − 3 is the same as the graph of
f (x) � x2 shifted to the right 7 units and
down 3 units.

Example 12.5.4 The Factored Form of a Parabola. Recall that the factored form of a quadratic function
tells us the horizontal intercepts very quickly.

a. n(x) � 13(x − 1)(x + 6). b. p(x) � −6(x − 2
3 )(x +

1
2 ).

Explanation.

a. The horizontal intercepts of n are (1, 0) and (−6, 0).
b. The horizontal intercepts of p are ( 23 , 0) and (− 1

2 , 0).

12.5.2 Completing the Square

In Section 12.2 we covered how to complete the square to both solve quadratic equations in one variable and
to put quadratic functions into vertex form.

Example 12.5.5 Solving Quadratic Equations by Completing the Square. Solve the equations by com-
pleting the square.

a. k2 − 18k + 1 � 0 b. 4p2 − 3p � 2

Explanation.

a. To complete the square in the equation k2 − 18k + 1 � 0, we first we will first move the constant

term to the right side of the equation. Thenwewill use Fact 12.2.2 to find
(

b
2

)2
to add to both sides.

k2 − 18k + 1 � 0
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k2 − 18k � −1

In our case, b � −18, so
(

b
2

)2
�

(−18
2

)2
� 81

k2 − 18k + 81 � −1 + 81
(k − 9)2 � 80

k − 9 � −
√

80 or k − 9 �
√

80

k − 9 � −4
√

5 or k − 9 � 4
√

5

k � 9 − 4
√

5 or k � 9 + 4
√

5

The solution set is {9 + 4
√

5, 9 − 4
√

5}.
b. To complete the square in the equation 4p2−3p � 2, we first divide both sides by 4 since the leading

coefficient is 4.

4p2

4 −
3p
4 �

2
4

p2 − 3
4 p �

1
2

p2 − 3
4 p �

1
2

Next, we will complete the square. Since b � − 3
4 , first,

b
2 �
− 3

4
2 � −3

8 (12.5.1)

and next, squaring that, we have (
−3

8

)2

�
9
64 . (12.5.2)

So we will add 9
64 from Equation (12.5.2) to both sides of the equation:

p2 − 3
4 p +

9
64 �

1
2 +

9
64

p2 − 3
4 p +

9
64 �

32
64 +

9
64

p2 − 3
4 p +

9
64 �

41
64

Here, remember that we always factor with the number found in the first step of completing the
square, Equation (12.5.1). (

p − 3
8

)2

�
41
64

p − 3
8 � −

√
41
8 or p − 3

8 �

√
41
8

924



12.5 More on Quadratic Functions Chapter Review

p �
3
8 −
√

41
8 or p �

3
8 +

√
41
8

p �
3 −
√

41
8 or p �

3 +
√

41
8

The solution set is
{

3−
√

41
8 , 3+

√
41

8

}
.

Example 12.5.6 Putting Quadratic Functions in Vertex Form. Write a formula in vertex form for the
function T defined by T(x) � 4x2 + 20x + 24.

Explanation. Before we can complete the square, we will factor the 4 out of the first two terms. Don’t
be tempted to factor the 4 out of the constant term.

T(x) � 4
(
x2

+ 5x
)
+ 24

Now we will complete the square inside the parentheses by adding and subtracting
( 5

2
)2

�
25
4 .

T(x) � 4
(
x2

+ 5x +
25
4 −

25
4

)
+ 24

Notice that the constant that we subtracted is inside the parentheses, but it will not be part of our perfect
square trinomial. In order to bring it outside, we need to multiply it by 4. We are distributing the 4 to
that term so we can combine it with the outside term.

T(x) � 4
((

x2
+ 5x +

25
4

)
− 25

4

)
+ 24

� 4
(
x2

+ 5x +
25
4

)
− 4 · 25

4 + 24

� 4
(
x +

5
2

)2

− 25 + 24

� 4
(
x +

5
2

)2

− 1

Note that The vertex is
(
− 5

2 ,−1
)
.

Example 12.5.7 Graphing Quadratic Functions by Hand. Graph the function H defined by H(x) �
−x2 − 8x − 15 by determining its key features algebraically.

Explanation. To start, we’ll note that this function opens downward because the leading coefficient,
−1, is negative.

Now we will complete the square to find the vertex. We will factor the −1 out of the first two terms, and
then add and subtract

( 8
2
)2

� 42 � 16 on the right side.

H(x) � −
[
x2

+ 8x
]
− 15

� −
[
x2

+ 8x + 16 − 16
]
− 15

� −
[ (

x2
+ 8x + 16

)
− 16

]
− 15
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� −
(
x2

+ 8x + 16
)
− (−1 · 16) − 15

� − (x + 4)2 + 16 − 15

� − (x + 4)2 + 1

The vertex is (−4, 1) so the axis of symmetry is the line x � −4.

To find the y-intercept, we’ll replace x with 0 or read the value of c from the function in standard form:

H(0) � −(0)2 − 8(0) − 15
� −15

The y-intercept is (0,−15) and we will find its symmetric point on the graph, which is (−8,−15).
Next, we’ll find the horizontal intercepts. We see this function factors so we will write the factored form
to get the horizontal intercepts.

H(x) � −x2 − 8x − 15
� −

(
x2

+ 8x + 15
)

� −(x + 3)(x + 5)

The x-intercepts are (−3, 0) and (−5, 0).
Now we will plot all of the key points and draw the parabola.

−8 −6 −4 −2

−18

−15

−12

−9

−6

−3

3

(−3, 0)

(−8,−15)

(−5, 0)

(0,−15)

(−4, 1)

y � H(x)

x

y

Figure 12.5.8: The graph of y � −x2 − 8x − 15.

12.5.3 More on Complex Solutions to Quadratic Equations

In Section 12.3 we covered the definition of a complex number, and discussed both quadratic applications
and equations where complex numbers appear as solutions.

Example 12.5.9 Applications with Real or Complex Solutions. One day, Samar was bouncing a ball
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inside the house. The trajectory of his bounce followed the quadratic function H(t) � −16t2+24t, where
H(t) describes the height of the ball, in feet, at time t seconds after it bounced off the ground. If the
ceilings in Samar’s house were 10 feet tall, find out if the ball will hit the ceiling.

Explanation. To find out if the ball will hit the ceiling, we need to set the formula for the function equal
to 10 and solve.

H(t) � −16t2
+ 24t

10 � −16t2
+ 24t

0 � −16t2
+ 24t − 10

This is a quadratic equation where verything is divisible by 2. We will divide every term by 2 which can
simplify the process.

0
2 �
−16t2

2 +
24t
2 −

10
2

0 � −8t2
+ 12t − 5

Since the equation doesn’t seem to factor easily, we will use the quadratic formula to solve it. Note that
a � −8, b � 12, and c � −5.

t �
−b ±

√
b2 − 4ac

2a

t �
−(12) ±

√
(12)2 − 4(−8)(−5)
2(−8)

t �
−12 ±

√
−16

−16

Note that the discriminant is negative, which means that the equation has no real solutions. Just for
practice, we will finish the simplification process, but we are ready to make our conclusion here.

t �
−12 ±

√
16 · −1

−16

t �
−12 ± 4i
−16

t �
−12
−16 ±

4i
−16

t �
3
4 ∓

i
4

Since the solutions to the equation are complex numbers, the reality of the situation must be that the
ball never does hit the ceiling. Samar’s ceiling lights are safe for now.

Example 12.5.10 Solving Equations with Complex Solutions. Solve for x in 3x2 − 12x + 36 � 0.

Explanation. We will use the completing-the-square method. To do so, we first need to divide both
sides by the leading coefficient, 3.

3x2 − 12x + 36 � 0
3x2 − 12x � −36
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3x2

3 −
12x
3 �

−36
3

x2 − 4x � −12

Now we can add
(

b
2

)2
� (−2)2 � 4 to both sides to complete the square.

x2 − 4x + 4 � −12 + 4
(x − 2)2 � −8

x − 2 � −
√
−8 or x − 2 �

√
−8

x − 2 � −
√

4 · −1 · 2 or x − 2 �
√

4 · −1 · 2
x − 2 � −2i

√
2 or x − 2 � 2i

√
2

x � 2 − 2i
√

2 or x � 2 + 2i
√

2

The solution set is {2 − 2i
√

2, 2 + 2i
√

2}.

12.5.4 Complex Number Operations

In Section 12.4 we covered the essential algebra of complex numbers.

Example 12.5.11 Adding and Subtracting Complex Numbers. Simplify the expression (5−3i)−(1−7i).

Explanation.

(5 − 3i) − (1 − 7i) � 5 − 3i − 1 + 7i
� 4 + 4i

Example 12.5.12 Multiplying Complex Numbers. Multiply (3 + 2i)(5 − 6i).

Explanation. We will use the foil method to multiply the two binomials.

(1 + 5i)(2 − 7i) � 15 − 18i + 10i − 12i2

� 15 − 8i − 12(−1)
� 15 − 8i + 12
� 27 − 8i

Example 12.5.13 Dividing Complex Numbers. Simplify the expression 3+5i
5−6i .

Explanation. To divide complex numbers, we rationalize the denominator using the conjugate 2 + 4i:

3 + 5i
5 − 6i

�
(3 + 5i)
(5 − 6i) ·

(5 + 6i)
(5 + 6i)

�
15 + 18i + 25i + 30i2

25 + 30i − 30i − 36i2
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�
15 + 43i + 30(−1)

25 − 36(−1)

�
15 + 43i − 30

25 + 36

�
−15 + 43i

61

� −15
61 +

43i
61

Exercises

Graphs and Vertex Form

Use technology to make a table of values for
the function K defined by K(x) � 3x2 − 2x − 3.

x K(x)

1. Use technology to make a table of values for
the function f definedby f (x) � −3x2 − 8x + 37.

x f (x)

2.

Use technology to make a graph of f where
f (x) � 3x2 − 6x − 5.

3. Use technology to make a graph of f where
f (x) � −3x2 − 8x + 3.

4.

Let 1(x) � −x2 + x + 3. Use technology to find
the following.

a. The vertex is .

b. The y-intercept is .

c. The x-intercept(s) is/are .

d. The domain of 1 is .

e. The range of 1 is .

f. Calculate 1(3). .

g. Solve 1(x) � 2.

h. Solve 1(x) > 2.

5. Let h(x) � −x2 − 4x − 2. Use technology to
find the following.

a. The vertex is .

b. The y-intercept is .

c. The x-intercept(s) is/are .

d. The domain of h is .

e. The range of h is .

f. Calculate h(−1). .

g. Solve h(x) � −5.

h. Solve h(x) ≥ −5.

6.
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An object was launched from the top of a hill
with an upward vertical velocity of 110 feet
per second. The height of the object can be
modeled by the function h(t) � −16t2 + 110t + 200,
where t represents the number of seconds af-
ter the launch. Assume the object landed on
the ground at sea level. Find the answer using
technology.

seconds after its launch, the object

reached its maximum height of
feet.

7. An object was launched from the top of a hill
with an upward vertical velocity of 130 feet
per second. The height of the object can be
modeled by the function h(t) � −16t2 + 130t + 100,
where t represents the number of seconds af-
ter the launch. Assume the object landed on
the ground at sea level. Find the answer using
technology.

seconds after its launch,
the object fell to the ground at sea level.

8.

Find the vertex of the graph of

y � 3(x − 7)2 − 6

9. Find the vertex of the graph of

y � 6(x − 3)2 − 3

10.

Write the vertex form for the quadratic func-
tion f , whose vertex is (−7,−8) and has lead-
ing coefficient a � 7.

f (x) �

11. Write the vertex form for the quadratic func-
tion f , whose vertex is (6, 6) and has leading
coefficient a � 9.

f (x) �

12.

Agraphof a function f is given. Use the graph
to write a formula for f in vertex form. You
will need to identify the vertex and also one
more point on the graph to find the leading
coefficient a.

f (x) �

13. Agraphof a function f is given. Use the graph
to write a formula for f in vertex form. You
will need to identify the vertex and also one
more point on the graph to find the leading
coefficient a.

f (x) �

14.
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Let h be defined by h(x) � (x − 5)2 + 5.

a. What is the domain of h?

b. What is the range of h?

15. Let h be defined by h(x) � (x + 2)2 − 7.

a. What is the domain of h?

b. What is the range of h?

16.

Consider the graph of the equation y � (x − 1)2 − 8.

Compared to the graph of y � x2, the vertex has been shifted units (□ left □ right)

and units (□ down □ up) .

17.

Consider the graph of the equation y � (x − 3)2 + 4.

Compared to the graph of y � x2, the vertex has been shifted units (□ left □ right)

and units (□ down □ up) .

18.

The quadratic expression (x − 4)2 − 4 is writ-
ten in vertex form.

a. Write the expression in standard form.

b. Write the expression in factored form.

19. The quadratic expression (x − 4)2 − 1 is writ-
ten in vertex form.

a. Write the expression in standard form.

b. Write the expression in factored form.

20.

The formula for a quadratic function 1 is
1(x) � (x − 9)(x − 3).

a. The y-intercept is .

b. The x-intercept(s) is/are .

21. The formula for a quadratic function G is
G(x) � (x + 8)(x + 3).

a. The y-intercept is .

b. The x-intercept(s) is/are .

22.

Completing the Square

Solve x2 − 4x � 5 by completing the square.23. Solve y2 + 8y � −12 by completing the square.24.

Solve y2 + 7y + 6 � 0 by completing the square.25. Solve r2 − 5r − 24 � 0 by completing the square.26.

Solve 12r2 − 4r − 5 � 0 by completing the square.27. Solve 3t2 + 8t + 5 � 0 by completing the square.28.
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Complete the square to convert the quadratic
function from standard form to vertex form,
and use the result to find the function’s do-
main and range.

f (x) � −4x2 + 64x − 248

The domain of f is

The range of f is

29. Complete the square to convert the quadratic
function from standard form to vertex form,
and use the result to find the function’s do-
main and range.

f (x) � −5x2 + 100x − 499

The domain of f is

The range of f is

30.

Graph f (x) � x2 − 7x + 12 by algebraically
determining its key features. Then state the
domain and range of the function.

31. Graph f (x) � −x2 + 4x + 21 by algebraically
determining its key features. Then state the
domain and range of the function.

32.

Graph f (x) � x2 − 8x + 16 by algebraically
determining its key features. Then state the
domain and range of the function.

33. Graph f (x) � x2+6x+9 by algebraically deter-
mining its key features. Then state the domain
and range of the function.

34.

Graph f (x) � x2+4x+7 by algebraically deter-
mining its key features. Then state the domain
and range of the function.

35. Graph f (x) � x2−2x+6 by algebraically deter-
mining its key features. Then state the domain
and range of the function.

36.

Graph f (x) � 2x2 − 4x − 30 by algebraically
determining its key features. Then state the
domain and range of the function.

37. Graph f (x) � 3x2 + 21x + 36 by algebraically
determining its key features. Then state the
domain and range of the function.

38.

Find the minimum value of the function

f (x) � x2 − 7x − 2

39. Find the minimum value of the function

f (x) � 2x2
+ 7x + 7

40.

More on Complex Solutions to Quadratic Equations

Solve the quadratic equation. Solutions could
be complex numbers.

−10(y + 8)2 − 3 � 357

41. Solve the quadratic equation. Solutions could
be complex numbers.

8(y − 3)2 − 4 � −76

42.

Solve the quadratic equation. Solutions could
be complex numbers.

r2 − 10r + 32 � 0

43. Solve the quadratic equation. Solutions could
be complex numbers.

r2 − 8r + 19 � 0

44.

932



12.5 More on Quadratic Functions Chapter Review

A remote control aircraft will perform a stunt
by flying toward the ground and then up. Its
height can be modeled by the function h(t) �
1.7t2 − 30.6t + 133.7. The plane (□will □will
not) hit the ground during this stunt.

45. A remote control aircraft will perform a stunt
by flying toward the ground and then up. Its
height can be modeled by the function h(t) �
0.6t2 − 10.8t + 51.6. The plane (□will □will
not) hit the ground during this stunt.

46.

Complex Number Operations

Write the complex number in standard form.

(10 − 2i) − (5 − 4i)

47. Write the complex number in standard form.

(−9 − 9i) − (−7 − 10i)

48.

Write the complex number in standard form.

(−6 + 4i)(2 + 6i)

49. Write the complex number in standard form.

(−4 − 3i)(10)

50.

Rewrite the following expression into the form
of a+bi:
−1 − 8i
−2 − 5i

�

51. Rewrite the following expression into the form
of a+bi:
3 + 6i
7 − 5i

�

52.
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CHAPTER 13
Rational Functions and Equations

13.1 Introduction to Rational Functions

In this chapterwewill learn about rational functions, which are ratios of two polynomial functions. Creating
this ratio inherently requires division, andwe’ll explore the effect this has on the graphs of rational functions
and their domain and range.

13.1.1 Graphs of Rational Functions

When a drug is injected into a patient, the drug’s concentration in the patient’s bloodstream can bemodeled
by the function C, with formula

C(t) � 3t
t2 + 8

where C(t) gives the drug’s concentration, inmilligrams per liter, t hours since the injection. A new injection
is needed when the concentration falls to 0.35 milligrams per liter. Let’s use graphing technology to explore
this situation.

a. What is the concentration after 10 hours?

b. After how many hours since the first injec-
tion is the drug concentration greatest?

c. After how many hours since the first injec-
tion should the next injection be given?

d. What happens to the drug concentration if
no further injections are given?

Using graphing technology, wewill graph y �
3t

t2+8
and y � 0.35.

1 2 3 4 5 6 7 8 9 10 11 12

0.25

0.5

0.75

y � C(t)

y � 0.35

(1.066,0.35)
(7.506,0.35)

(2.828,0.53)

t, time in hours

y, concentration (mg per liter)

Figure 13.1.2: Graph of C(t) � 3t
t2+8
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To determine the concentration after 10 hours, we
will evaluate C at t � 10. After 10 hours, the con-
centration will be about 0.2777 mg

L . C(10) � 3(10)
102 + 8

�
30
108

�
5
18 ≈ 0.2777

Using the graph, we can see that the maximum concentration of the drug will be 0.53 mg
L and will occur

after about 2.828 hours.

The approximate points of intersection (1.066, 0.35) and (7.506, 0.35) tell us that the concentration of the
drug will reach 0.35 mg

L after about 1.066 hours and again after about 7.506 hours. Given the rising, then
falling shape of the graph, thismeans that another dosewill need to be administered after about 7.506 hours.

From the initial graph, it appears that the concentration of the drug will diminish to zero with enough time
passing. Exploring further, we can see both numerically and graphically that for larger and larger values of
t, the function values get closer and closer to zero. This is shown in Table 13.1.3 and Figure 13.1.4.

t C(t)
24 0.123 . . .
48 0.062 . . .
72 0.041 . . .
96 0.031 . . .
120 0.020 . . .

24 48 72 96 120

0.25

0.5

0.75

y � C(t)

t, time in hours

concentration (mg per liter)

Table 13.1.3: Numerical Values for C(t) � 3t
t2+8 Figure 13.1.4: Graph of C(t) � 3t

t2+8

In Section 13.5, we’ll explore how to algebraically solve C(t) � 0.35. For now, we just relied on technology
to make the graph and determine intersection points.

The function C, where C(t) � 3t
t2+8 , is a rational function, which is a type of function defined as follows.

Definition 13.1.5 Rational Function. A rational function f is a function in the form

f (x) � P(x)
Q(x)

where P and Q are polynomial functions, but Q is not the constant zero function.

Checkpoint 13.1.6. Identify which of the following are rational functions and which are not.

a. f defined by f (x) � 25x2+3
25x2+3 (□ is □ is not) a rational function.
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b. Q defined by Q(x) � 5x2+3
√

x
2x (□ is □ is not) a rational function.

c. 1 defined by 1(t) � t
√

5−t3

2t+1 (□ is □ is not) a rational function.

d. P defined by P(x) � 5x+3
|2x+1| (□ is □ is not) a rational function.

e. h defined by h(x) � 3x+1
x2+1 (□ is □ is not) a rational function.

Explanation.

a. f defined by f (x) � 25x2+3
25x2+3 is a rational function as its formula is a polynomial divided by another

polynomial.

b. Q defined by Q(x) � 5x2+3
√

x
2x is not a rational function because the numerator contains

√
x and is

therefore not a polynomial.

c. 1 defined by 1(t) � t
√

5−t3

2t+1 is a rational function as its formula is a polynomial divided by another
polynomial.

d. P defined by P(x) � 5x+3
|2x+1| is not a rational function because the denominator contains the absolute

value of an expression with variables in it.

e. h defined by h(x) � 3x+1
x2+1 is not a rational function because the numerator contains 3x , which has a

variable in the exponent.

A rational function’s graph is not always smooth like the one shown in Example 13.1.2. It could have breaks,
as we’ll see now.

Example 13.1.7 Build a table and sketch the graph of the function f where f (x) � 1
x−2 . Find the func-

tion’s domain and range.

Since x � 2 makes the denominator 0, the function will be undefined for x � 2. We’ll start by choosing
various x-values and plotting the associated points.

x f (x) Point
−6 1

−6−2 � −0.125 (−6,−0.125)
−4 1

−4−2 ≈ −0.167
(
−4,− 1

6
)

−2 1
−2−2 ≈ −0.25 (−2,−0.25)

0 1
0−2 � −0.5 (0,−0.5)

1 1
1−2 � −1 (1,−1)

2 undefined
3 1

3−2 � 1 (3, 1)
4 1

4−2 � 0.5 (4, 0.5)
−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Table 13.1.8: Initial Values of f (x) � 1
x−2 Figure 13.1.9: Initial Points for f (x) � 1

x−2

Note that extra points were chosen near x � 2 in the Table 13.1.8, but it’s still not clear on the graphwhat
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happens really close to x � 2. It will be essential that we include at least one x-value between 1 and 2
and also between 2 and 3.

Further, we’ll note that dividing one number by a number that is close to 0 yields a large number. For
example, 1

0.0005 � 2000. In fact, the smaller the number is thatwe divide by, the larger our result becomes.
So when x gets closer and closer to 2, then x−2 gets closer and closer to 0. And then 1

x−2 takes very large
values.

When we plot additional points closer and closer to 2, we get larger and larger results. To the left of 2,
the results are negative, so the connected curve has an arrow pointing downward there. The opposite
happens to the right of x � 2, and an arrow points upward. We’ll also draw the vertical line x � 2 as a
dashed line to indicate that the graph never actually touches it.

x f (x) Point
−6 1

−6−2 � −0.125 (−6,−0.125)
−4 1

−4−2 ≈ −0.167
(
−4,− 1

6
)

−2 1
−2−2 ≈ −0.25 (−2,−0.25)

0 1
0−2 � −0.5 (0,−0.5)

1 1
1−2 � −1 (1,−1)

1.5 1
1.5−2 � −2 (1.5,−2)

1.9 1
1.9−2 � −10 (1,−10)

2 undefined
2.1 1

2.1−2 � 10 (2.1, 10)
2.5 1

2.5−2 � 2 (2.5, 2)
3 1

3−2 � 1 (3, 1)
4 1

4−2 � 0.5 (4, 0.5)

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

x

y

Table 13.1.10: Values of f (x) � 1
x−2 Figure 13.1.11: Full Graph of f (x) � 1

x−2

Note that in Figure 13.1.11, the line y � 0 was also drawn as a dashed line. This is because the values of
y � f (x)will get closer and closer to zero as the inputs become more and more positive (or negative).

We know that the domain of this function is (−∞, 2) ∪ (2,∞) as the function is undefined at 2. We can
determine this algebraically, and it is also evident in the graph.

We can see from the graph that the range of the function is (−∞, 0) ∪ (0,∞). See Checkpoint 10.2.27
for a discussion of how to see the range using a graph like this one.

Remark 13.1.12. The line x � 2 in Example 13.1.7 is referred to as a vertical asymptote. The line y � 0
is referred to as a horizontal asymptote. We’ll use this vocabulary when referencing such lines, but the
classification of vertical asymptotes and horizontal asymptotes is beyond the scope of this book.

Example 13.1.13 Algebraically find the domain of 1(x) � 3x2

x2−2x−24 . Use technology to sketch a graph of
this function.

Explanation. To find a rational function’s domain, we set the denominator equal to 0 and solve:

x2 − 2x − 24 � 0
(x − 6)(x + 4) � 0
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x − 6 � 0 or x + 4 � 0
x � 6 or x � −4

Since x � 6 and x � −4 will cause the denominator to be 0, they are excluded from the domain. The
function’s domain is {x | x , 6, x , −4}. In interval notation, the domain is (−∞,−4) ∪ (−4, 6) ∪ (6,∞).
To begin creating this graph, we’ll use technology to create a table of function values, making sure to
include values near both −4 and 6. We’ll sketch an initial plot of these.

x 1(x) � 3x2

x2−2x−24
−10 3.125
−9 3.24
−8 3.428 . . .
−7 3.769 . . .
−6 4.5
−5 6.818 . . .
−4 undefined
−3 −3
−2 −0.75
−1 −0.142 . . .
0 0 . . .
1 −0.12
2 −0.5
3 −1.285
4 −3
5 −8.333 . . .
6 undefined
7 13.363 . . .
8 8
9 6.230 . . .
10 5.357 . . .

−10 −8 −6 −4 −2 2 4 6 8 10

−12

−8

−4

4

8

12

x

y

Table 13.1.14: Numerical Values for 1 Figure 13.1.15: Initial Set-Up to Graph 1

We can now begin to see what happens near x � −4 and x � 6. These are referred to as vertical asymp-
totes and will be graphed as dashed vertical lines as they are features of the graph but do not include
function values.

The last thing we need to consider is what happens for large positive values of x and large negative
values of x. Choosing a few values, we find:
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x 1(x)
1000 3.0060 . . .
2000 3.0030 . . .
3000 3.0020 . . .
4000 3.0015 . . .

x 1(x)
−1000 2.9940 . . .
−2000 2.9970 . . .
−3000 2.9980 . . .
−4000 2.9985 . . .

Table 13.1.16: Values for Large Positive x Table 13.1.17: Values for Large Negative x

Thus for really large positive x and for really large negative x, we see that the function values get closer
and closer to y � 3. This is referred to as the horizontal asymptote, and will be graphed as a dashed
horizontal line on the graph.

Putting all of this together, we can sketch a graph of this function.

−10 −8 −6 −4 −2 2 4 6 8 10

−12

−8

−4

4

8

12

x

y

−10 −8 −6 −4 −2 2 4 6 8 10

−12

−8

−4

4

8

12

x

y

Figure 13.1.18: Asymptotes Added for Graph-
ing 1(x) � 3x2

x2−2x−24

Figure 13.1.19: Full Graph of 1(x) � 3x2

x2−2x−24

Let’s look at another example where a rational function is used to model real life data.

Example 13.1.20 The monthly operation cost of Saqui’s shoe company is approximately $300,000.00.
The cost of producing each pair of shoes is $30.00. As a result, the cost of producing x pairs of shoes is
30x + 300000 dollars, and the average cost of producing each pair of shoes can be modeled by

C̄(x) � 30x + 300000
x

.

Answer the following questions with technology.

a. What’s the average cost of producing 100 pairs of shoes? Of 1,000 pairs? Of 10,000 pairs? What’s
the pattern?

b. To make the average cost of producing each pair of shoes cheaper than $50.00, at least how many
pairs of shoes must Saqui’s company produce?
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c. Assume that her company’s shoes are very popular. What happens to the average cost of producing
shoes if more and more people keep buying them?

Explanation. We will graph the function with technology. After adjusting window settings, we have:

−1,000 1,000

−1,000

1,000

x, pairs of shoes

y, average cost

Figure 13.1.21: Graph of C̄(x) � 30x+300000
x

a. What’s the average cost of producing 100 pairs of shoes? 1,000 pairs? 10,000 pairs? What’s the
pattern?

To answer this question, we locate the points where x values are 100, 1,000 and 10,000. They are
(100, 3030), (1000, 330) and (10000, 60). They imply:

• If the companyproduces 100pairs of shoes, the average cost of producing onepair is $3,030.00.

• If the company produces 1,000 pairs of shoes, the average cost of producing one pair is
$330.00.

• If the company produces 10,000 pairs of shoes, the average cost of producing one pair is
$60.00.

We can see the more shoes her company produces, the lower the average cost.

b. To make the average cost of producing each pair of shoes cheaper than $50.00, at least how many
pairs of shoes must Saqui’s company produce?

To answer this question, we locate the point where its y-value is 50. With technology, we graph
both y � C̄(x) and y � 50, and locate their intersection.
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5,000 10,000 15,000 20,000

−40

−20

20

40

60

80

100

(15000, 50)

x, pairs of shoes

y, average cost

Figure 13.1.22: Intersection of C̄(x) � 30x+300000
x and y � 50

The intersection (15000, 50) implies the average cost of producing one pair is $50.00 if her company
produces 15,000 pairs of shoes.

c. Assume her company’s shoes are very popular. What happens to the average cost of producing
shoes if more and more people keep buying them?

To answer this question, we substitute x with some large numbers, and use technology to create a
table of values:

x 1(x)
100000 33
1000000 31
10000000 30.03
100000000 30.003

Table 13.1.23: Values for Large Positive x

We can estimate that the average cost of producing one pair is getting closer and closer to $30.00
as her company produces more and more pairs of shoes.

Note that the cost of producing each pair is $30.00. This implies, for big companies whose prod-
ucts are very popular, the cost of operations can be ignored when calculating the average cost of
producing each unit of product.
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Exercises

Rational Functions in Context

The population of deer in a forest can bemod-
eled by

P(x) � 3920x + 1540
8x + 7

where x is the number of years in the future.
Answer the following questions.

a. Howmanydeer live in this forest this year?

b. How many deer will live in this forest 9
years later? Round your answer to an in-
teger.

c. After how many years, the deer popula-
tion will be 472? Round your answer to
an integer.

d. Use a calculator to answer this question:
As time goes on, the population levels off
at about how many deer?

1. The population of deer in a forest can bemod-
eled by

P(x) � 2970x + 180
9x + 2

where x is the number of years in the future.
Answer the following questions.

a. Howmanydeer live in this forest this year?

b. How many deer will live in this forest 9
years later? Round your answer to an in-
teger.

c. After how many years, the deer popula-
tion will be 327? Round your answer to
an integer.

d. Use a calculator to answer this question:
As time goes on, the population levels off
at about how many deer?

2.

In a certain store, cashiers can serve 60 cus-
tomers per hour on average. If x customers
arrive at the store in a given hour, then the av-
erage number of customers C waiting in line
can be modeled by the function

C(x) � x2

3600 − 60x

where x < 60.

Answer the following questions with a graph-
ing calculator. Round your answers to inte-
gers.

a. If 44 customers arrived in the store in the
past hour, there are approximately
customers waiting in line.

b. If there are 7 customers waiting in line,
approximately customers
arrived in the past hour.

3. In a certain store, cashiers can serve 55 cus-
tomers per hour on average. If x customers
arrive at the store in a given hour, then the av-
erage number of customers C waiting in line
can be modeled by the function

C(x) � x2

3025 − 55x

where x < 55.

Answer the following questions with a graph-
ing calculator. Round your answers to inte-
gers.

a. If 48 customers arrived in the store in the
past hour, there are approximately
customers waiting in line.

b. If there are 2 customers waiting in line,
approximately customers
arrived in the past hour.

4.
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Identify Rational Functions Select all rational functions. There are several correct answers.

□ n(x) � 3x2+6
√

x−4
3−2x3 □ m(x) � 3x+6

3x+6 □ r(x) � 3x2+6x−4
3−2x−3 □ t(x) � 3−2x3

3x0.7+6x−4

□ b(x) � 3x2+6x−4
3 □ s(x) �

√
3x2+6x−4
3−2x3 □ c(x) � 3x2+6x−4

3+|x | □ a(x) � 3x2+6x−4
3−2x3

□ h(x) � 3
3x2+6x−4

5.

□ t(x) � 8−2x3

3x0.7+3x−7 □ s(x) �
√

3x2+3x−7
8−2x3 □ m(x) � 3x+3

3x+3 □ r(x) � 3x2+3x−7
8−2x−3

□ a(x) � 3x2+3x−7
8−2x3 □ c(x) � 3x2+3x−7

8+|x | □ h(x) � 8
3x2+3x−7 □ b(x) � 3x2+3x−7

8

□ n(x) � 3x2+3
√

x−7
8−2x3

6.

Domain

Find the domain of h where

h(x) � 2x
x − 8 .

7. Find the domain of F where

F(x) � 5x
x − 1 .

8. Find the domain of G where

G(x) � 10 − 6x
x2 − 16x + 63

.

9.

Find the domain of H where

H(x) � 7x − 2
x2 − x − 72

.

10. Find the domain of H where

H(x) � 7x + 2
x2 − 10x

.

11. Find the domain of K where

K(x) � − 7x + 5
x2 − 4x

.

12.

Find the domain of f where

f (x) � 6x + 3
x2 − 100

.

13. Find the domain of 1 where

1(x) � − x + 9
x2 − 9

.

14. Find the domain of the func-

tion c definedby c(x) � x − 4
x2

15.

Find the domain of the func-

tion p definedby p(x) � x − 2
x5

16. Find the domain of the func-

tion q definedby q(x) � x − 2
x2 + 16

17. Find the domain of the func-

tion m definedby m(x) � x + 3
x2 + 81

18.

Find the domain of the func-

tion m definedby m(x) � x + 5
x + 5

19. Find the domain of the func-

tion b definedby b(x) � x + 7
x + 7

20.
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A function is graphed.

What is its domain?

21.

What is its domain?

22.

What is its domain?

23.

What is its domain?

24.

This function has domain

and range .

25.

This function has domain

and range .

26.

This function has domain

and range .

27.

This function has domain

and range .

28.
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Graphing Technology

In a forest, the number of deer can bemodeled by the function f (x) � 180t+270
0.6t+3 , where t stands for the

number of years from now. Answer the question with technology. Round your answer to a whole
number.

After 30 years, there would be approximately deer living in the forest.

29.

In a forest, the number of deer can be modeled by the function f (x) � 180t+900
0.4t+9 , where t stands for

the number of years from now. Answer the question with technology. Round your answer to one
decimal place.

After years, there would be approximately 350 deer living in the forest.

30.

In a forest, the number of deer can be modeled by the function f (x) � 25t+180
0.1t+6 , where t stands for

the number of years from now. Answer the question with technology. Round your answer to one
decimal place.

As time goes on, the population levels off at approximately deer living in the forest.

31.

The concentration of a drug in a patient’s blood stream, in milligrams per liter, can be modeled
by the function C(t) � 3t

t2+6 , where t is the number of hours since the drug is injected. Answer the
following question with technology. Round your answer to two decimal places if needed.

The drug’s concentration after 8 hours is milligrams per liter.

32.

The concentration of a drug in a patient’s blood stream, in milligrams per liter, can be modeled
by the function C(t) � 4t

t2+9 , where t is the number of hours since the drug is injected. Answer the
following question with technology. Round your answer to two decimal places if needed. If there
are more than one answer, use commas to separate them.

hours since injection, the drug’s concentration is 0.22 milligrams per liter.

33.

The concentration of a drug in a patient’s blood stream, in milligrams per liter, can be modeled
by the function C(t) � 5t

t2+7 , where t is the number of hours since the drug is injected. Answer the
following question with technology. Round your answer to two decimal places if needed.

hours since injection, the drug’s concentration is at the maximum value of

milligrams per liter.

34.

The concentration of a drug in a patient’s blood stream, in milligrams per liter, can be modeled
by the function C(t) � 7t

t2+4 , where t is the number of hours since the drug is injected. Answer the
following question with technology. Round your answer to two decimal places if needed.

As time goes on, the drug’s concentration in the patient’s blood stream levels off at approximately
milligrams per liter.

35.
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13.2 Multiplication and Division of Rational Expressions

In the last section, we learned some rational function applications. In this section, we will learn how to
simplify rational expressions, and how to multiply and divide them.

13.2.1 Simplifying Rational Expressions

Consider the two rational functions below. At first glance, which function looks simpler?

f (x) � 8x3 − 12x2 + 8x − 12
2x3 − 3x2 + 10x − 15

1(x) � 4(x2 + 1)
x2 + 5

, for x ,
3
2

It can be argued that the function 1 is simpler, at least with regard to the ease with which we can determine
its domain, quickly evaluate it, and also determine where its function value is zero. All of these things are
considerably more difficult with the function f .

These two functions are actually the same function. Using factoring and the same process of canceling that’s
usedwith numerical ratios, wewill learn how to simplify the function f into the function 1. (The full process
for simplifying f (x) � 8x3−12x2+8x−12

2x3−3x2+10x−15 will be shown in Example 13.2.8.)

To see a simple example of the process for simplifying a rational function or expression, let’s look at simpli-
fying 14

21 and (x+2)(x+7)
(x+3)(x+7) by canceling common factors:

14
21 �

2 · A7
3 · A7

(x + 2)(x + 7)
(x + 3)(x + 7) �

(x + 2)XXXX(x + 7)
(x + 3)XXXX(x + 7)

�
2
3 �

x + 2
x + 3 , for x , −7

The statement “for x , −7” was added when the factors of x + 7 were canceled. This is because (x+2)(x+7)
(x+3)(x+7)

was undefined where x � −7, so the simplified version must also be undefined for x � −7.
Warning 13.2.2 Cancel Factors, not Terms. It may be tempting to want to try to simplify x+2

x+3 into 2
3 by

canceling each x that appears. But these x’s are terms (pieces that are added with other pieces), not factors.
Canceling (an act of division) is only possible with factors.

The process of canceling factors is key to simplifying rational expressions. If the expression is not given in
factored form, then this will be our first step. We’ll now look at a few more examples.

Example 13.2.3 Simplify the rational function formula Q(x) � 3x−12
x2+x−20 and state the domain of Q.

Explanation.

To start, we’ll factor the numerator and denom-
inator. We’ll then cancel any factors common to
both the numerator and denominator.

Q(x) � 3x − 12
x2 + x − 20

Q(x) � 3����(x − 4)
(x + 5)����(x − 4)

Q(x) � 3
x + 5 , for x , 4
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The domain of this function will incorporate the explicit domain restriction x , 4 that was stated when
the factor of x−4 was canceled from both the numerator and denominator. Wewill also exclude−5 from
the domain as this value would make the denominator zero. Thus the domain of Q is {x | x , −5, 4}.

Warning 13.2.4. When simplifying the function Q in Example 13.2.3, we cannot simply write Q(x) � 3
x+5 .

The reason is that this would result in our simplified version of the function Q having a different domain
than the original Q. More specifically, for our original function Q it held that Q(4)was undefined, and this
still needs to be true for the simplified form of Q.

Example 13.2.5 Simplify the rational function formula R(y) � −y−2y2

2y3−y2−y and state the domain of R.

Explanation.

R(y) � −y − 2y2

2y3 − y2 − y

R(y) � −2y2 − y
y(2y2 − y − 1)

R(y) � −Sy����(2y + 1)
Sy����(2y + 1)(y − 1)

R(y) � − 1
y − 1 , for y , 0, y , −1

2

The domain of this function will incorporate the
explicit restrictions y , 0, y , − 1

2 that were
stated when the factors of y and 2y +1 were can-
celed fromboth the numerator and denominator.
Since the factor y − 1 is still in the denominator,
we also need the restriction that y , 1. Therefore
the domain of R is

{
y | y , − 1

2 , 0, 1
}
.

Example 13.2.6 Simplify the expression 9y+2y2−5
y2−25 .

Explanation.

To start, we need to recognize that 9y + 2y2 − 5
is not written in standard form (where terms are
written from highest degree to lowest degree).
Before attempting to factor this expression, we’ll
re-write it as 2y2 + 9y − 5.

9y + 2y2 − 5
y2 − 25

�
2y2 + 9y − 5

y2 − 25

�
(2y − 1)����(y + 5)
����(y + 5)(y − 5)

�
2y − 1
y − 5 , for y , −5

Example 13.2.7 Simplify the expression −48z+24z2−3z3

4−z .

Explanation. To begin simplifying this expression, we will rewrite each polynomial in descending or-
der. Thenwe’ll factor out the GCF, including the constant −1 from both the numerator and denominator
because their leading terms are negative.

−48z + 24z2 − 3z3

4 − z
�
−3z3 + 24z2 − 48z

−z + 4
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13.2 Multiplication and Division of Rational Expressions

�
−3z(z2 − 8z + 16)
−(z − 4)

�
−3z(z − 4)2
−(z − 4)

�
−3z(z − 4)����(z − 4)
−����(z − 4)

�
3z(z − 4)

1 , for z , 4

� 3z(z − 4), for z , 4

Example 13.2.8 Simplify the rational function formula f (x) � 8x3−12x2+8x−12
2x3−3x2+10x−15 and state the domain of f .

Explanation.

To simplify this rational function, we’ll first note
that both the numerator and denominator have
four terms. To factor them we’ll need to use fac-
toring by grouping. (Note that if this technique
didn’twork, very few other approacheswould be
possible.) Once we’ve used factoring by group-
ing, we’ll cancel any factors common to both the
numerator and denominator and state the asso-
ciated restrictions.

f (x) � 8x3 − 12x2 + 8x − 12
2x3 − 3x2 + 10x − 15

f (x) � 4(2x3 − 3x2 + 2x − 3)
2x3 − 3x2 + 10x − 15

f (x) � 4(x2(2x − 3) + (2x − 3))
x2(2x − 3) + 5(2x − 3)

f (x) � 4(x2 + 1)����(2x − 3)
(x2 + 5)����(2x − 3)

f (x) � 4(x2 + 1)
x2 + 5

, for x ,
3
2

In determining the domain of this function, we’ll need to account for any implicit and explicit restric-
tions. When the factor 2x − 3 was canceled, the explicit statement of x , 3

2 was given. The denominator
in the final simplified form of this function has x2 + 5. There is no value of x for which x2 + 5 � 0, so the
only restriction is that x , 3

2 . Therefore the domain is
{

x | x , 3
2
}
.

Example 13.2.9 Simplify the expression 3y−x
x2−x y−6y2 . In this example, there are two variables. It is still pos-

sible that in examples like this, there can be domain restrictions when simplifying rational expressions.
However since we are not studying functions of more than one variable, this textbook ignores domain
restrictions with examples like this one.

Explanation.

3y − x
x2 − x y − 6y2 �

−����(x − 3y)
����(x − 3y)(x + 2y)

�
−1

x + 2y
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13.2.2 Multiplication and Division of Rational Functions and Expressions

Recall the property for multiplying fractions 1.2.16, which states that the product of two fractions is equal
to the product of their numerators divided by the product of their denominators. We will use this same
property for multiplying rational expressions.

When multiplying fractions, one approach is to
multiply the numerator and denominator, and
then simplify the fraction that results by determin-
ing the greatest common factor in both the numer-
ator and denominator, like this:

14
9 ·

3
10 �

14 · 3
9 · 10

�
42
90

�
7 · �6
15 · �6

�
7
15

This approach works great when we can easily identify that 6 is the greatest common factor in both 42 and
90. But in more complicated instances, it isn’t always an easy approach. It also won’t work particularly well
when we have (x + 2) instead of 2 as a factor, as we’ll see shortly.

Another approach to multiplying and simplifying
fractions involves utilizing the prime factorization
of each the numerator and denominator, like this:

14
9 ·

3
10 �

2 · 7
32 ·

3
2 · 5

�
�2 · 7 · �3

�3 · 3 · �2 · 5
�

7
15

The method for multiplying and simplifying rational expressions is nearly identical, as shown here:

x2 + 9x + 14
x2 + 6x + 9

· x + 3
x2 + 7x + 10

�
(x + 2)(x + 7)
(x + 3)2 · x + 3

(x + 2)(x + 5)

�
����(x + 2)(x + 7)����(x + 3)

����(x + 3)(x + 3)����(x + 2)(x + 5)

�
(x + 7)

(x + 3)(x + 5) , for x , −2

This process will be used for both multiplying and dividing rational expressions. The main distinctions in
various examples will be in the factoring methods required.

Example 13.2.10 Multiply the rational expressions: x2−4x
x2−4 ·

4−4x+x2

20−x−x2 .

Explanation. Note that to factor the second rational expression, we’ll want to re-write the terms in
descending order for both the numerator and denominator. In the denominator, we’ll first factor out −1
as the leading term is −x2.

x2 − 4x
x2 − 4

· 4 − 4x + x2

20 − x − x2 �
x2 − 4x
x2 − 4

· x2 − 4x + 4
−x2 − x + 20
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�
x2 − 4x
x2 − 4

· x2 − 4x + 4
−(x2 + x − 20)

�
x����(x − 4)

(x + 2)����(x − 2) ·
(x − 2)����(x − 2)
−(x + 5)����(x − 4)

� − x(x − 2)
(x + 2)(x + 5) , for x , 2, x , 4

Example 13.2.11 Multiply the rational expressions: p2q4

3r · 9r2

pq2 . Note this book ignores domain restrictions
on multivariable expressions.

Explanation. We won’t need to factor anything in this example, and can simply multiply across and
then simplify.

p2q4

3r
· 9r2

pq2 �
p2q2 · 9r2

3r · pq2

�
pq2 · 3r

1
� 3pq2r

We can divide rational expressions using the property for dividing fractions 1.2.18, which simply requires
that we change dividing by an expression to multiplying by its reciprocal. Let’s look at a few examples.

Example 13.2.12 Divide the rational expressions: x+2
x+5 ÷ x+2

x−3 .

Explanation.

x + 2
x + 5 ÷

x + 2
x − 3 �

���x + 2
x + 5 ·

x − 3
���x + 2 , for x , 3

�
x − 3
x + 5 , for x , −2, x , 3

Example 13.2.13 Simplify the rational expression using division:
3x−6
2x+10
x2−4
3x+15

.

Explanation. To begin, we’ll note that the larger fraction bar is denoting division, so we will use mul-
tiplication by the reciprocal. After that, we’ll factor each expression and cancel any common factors.

3x−6
2x+10
x2−4

3x+15

�
3x − 6
2x + 10 ÷

x2 − 4
3x + 15

�
3x − 6
2x + 10 ·

3x + 15
x2 − 4

�
3����(x − 2)
2����(x + 5) ·

3����(x + 5)
(x + 2)����(x − 2)

�
3 · 3

2(x + 2) , for x , −5, x , 2

�
9

2x + 4 , for x , −5, x , 2
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Example 13.2.14 Divide the rational expressions: x2−5x−14
x2+7x+10 ÷

x−7
x+4 .

Explanation.

x2 − 5x − 14
x2 + 7x + 10

÷ x − 7
x + 4 �

x2 − 5x − 14
x2 + 7x + 10

· x + 4
x − 7 , for x , −4

�
����(x − 7)����(x + 2)
(x + 5)����(x + 2) ·

x + 4
���x − 7 , for x , −4

�
x + 4
x + 5 , for x , −4, x , −2, x , 7

Example 13.2.15 Divide the rational expressions: (p4 − 16) ÷ p4−2p3

2p .

Explanation.

(p4 − 16) ÷ p4 − 2p3

2p
�

p4 − 16
1 · 2p

p4 − 2p3

�
(p2 + 4)(p + 2)����(p − 2)

1 · 2p
p3����(p − 2)

�
2(p2 + 4)(p + 2)

p2 , for p , 2

Example 13.2.16 Divide the rational expressions: 3x2

x2−9y2 ÷ 6x3

x2−2x y−15y2 . Note this book ignores domain
restrictions on multivariable expressions.

Explanation.

3x2

x2 − 9y2 ÷
6x3

x2 − 2x y − 15y2 �
3x2

x2 − 9y2 ·
x2 − 2x y − 15y2

6x3

�
3x2

����(x + 3y)(x − 3y) ·
����(x + 3y)(x − 5y)

6x3

�
1

x − 3y
· x − 5y

2x

�
x − 5y

2x(x − 3y)

Example 13.2.17 Divide the rational expressions: m2n2−3mn−4
2mn ÷ (m2n2 − 16). Note this book ignores

domain restrictions on multivariable expressions.

Explanation.

m2n2 − 3mn − 4
2mn

÷ (m2n2 − 16) � m2n2 − 3mn − 4
2mn

· 1
m2n2 − 16

�
����(mn − 4)(mn + 1)

2mn
· 1
(mn + 4)����(mn − 4)
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�
mn + 1
2mn

· 1
mn + 4

�
mn + 1

2mn(mn + 4)

Exercises

Review and Warmup

Multiply: − 6
11 ·

11
211. Multiply: −15

11 ·
11
152. Multiply: −20

17 ·
(
−13

18

)
3.

Multiply: −20
11 ·

(
− 7

24

)
4. Divide: 1

5 ÷
9
45. Divide: 1

2 ÷
8
36.

Divide: 8
15 ÷

(
− 7

20

)
7. Divide: 5

12 ÷
(
− 8

15

)
8.

Factor the given polynomial.

r2 − 1 �9. r2 − 81 �10. r2 + 9r + 20 �11.

t2 + 19t + 90 �12. t2 − 10t + 21 �13. x2 − 10x + 21 �14.

2x2 − 14x + 20 �15. 2y2 − 18y + 28 �16. 2y4 + 16y3 + 30y2 �17.

3r7 + 12r6 + 9r5 �18. 64r2 − 16r + 1 �19. 16r2 − 8r + 1 �20.

Simplifying Rational Expressions with One Variable

Select all correct simplifications, ignoring possible domain restrictions.

□ 7x+9
x+9 � 7 □ x

7x �
1
7 □ 7x+9

7 � x + 9 □ 9
x+9 �

1
x+1 □ x+9

x � 9 □ 9x
x � 9

□ x+9
x+7 �

9
7 □ x+9

9 � x □ x+9
x+9 � 1 □ 7(x−9)

x−9 � 7 □ 9
x+9 �

1
x

21.

Select all correct simplifications, ignoring possible domain restrictions.

□ 9(x−10)
x−10 � 9 □ x+10

x+9 �
10
9 □ x+10

x � 10 □ x+10
10 � x □ 9x+10

9 � x + 10
□ x+10

x+10 � 1 □ 10x
x � 10 □ 9x+10

x+10 � 9 □ 10
x+10 �

1
x □ 10

x+10 �
1

x+1 □ x
9x �

1
9

22.
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Simplify the following expressions, and if ap-
plicable, write the restricteddomain on the sim-
plified expression.

a. x + 3
x + 3 �

b. x + 3
3 + x

�

c. x − 3
x − 3 �

d. x − 3
3 − x

�

23. Simplify the following expressions, and if ap-
plicable, write the restricteddomain on the sim-
plified expression.

a. x + 9
x + 9 �

b. x + 9
9 + x

�

c. x − 9
x − 9 �

d. x − 9
9 − x

�

24.

Simplify the following expression, and if applicable, write the restricted domain on the simplified expres-
sion.

y − 6(
y − 2

) (
y − 6

) �25.
y + 3(

y − 8
) (

y + 3
) �26.

−8(r − 8)
(r − 6)(r − 8) �27.

−3(r + 5)
(r − 3)(r + 5) �28.

(r + 2)(r − 10)
10 − r

�29.
(t − 8)(t − 7)

7 − t
�30.

5t − 25
t − 5 �31. −2x + 4

x − 2 �32.

−9x
x2 + 8x

�33.
−6y

y2 − 5y
�34.

6y − y2

y2 − 9y + 18
�35.

4y − y2

y2 + 2y − 24
�36.

r2 + 2r
4 − r2 �37. r2 − 6r

36 − r2 �38.

−t2 + 4t
−4 + 5t − t2 �39. −t2 − 2t

12 + 4t − t2 �40.
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5x2 + 11x + 6
−7x − 5 − 2x2 �41. 3x2 + x − 2

−2x + 3 − 5x2 �42.

y2 + y − 2
2y − y2 − 1

�43.
y2 − 11y + 30
10y − y2 − 25

�44.

−y2 − y + 12
y2 − 9

�45. −r2 + 3r − 2
r2 − 4

�46.

5r2 + 9r + 4
−7r − 5 − 2r2 �47. 3t2 + t − 2

−11t − 5 − 6t2 �48.

3t2 − t3

t2 − 5t + 6
�49. −2x4 − x5

x2 − 3x − 10
�50.

x5 − x4 − 20x3

x5 − 11x4 + 30x3 �51.
y4 − 5y3 − 6y2

y4 − 4y3 − 5y2 �52.

y3 + 64
y2 − 16

�53.
y3 − 27
y2 − 9

�54.

Simplifying Rational Expressions with More Than One Variable Simplify this expression.

5rx − r2x2

r2x2 − 10rx + 25
�55. 3rx − r2x2

r2x2 − 9rx + 18
�56.

4t + 8y
t2 − 2t y − 8y2 �57. 6t − 36x

t2 − 5tx − 6x2 �58.

−x2 − 9xr − 18r2

x2 − 36r2 �59.
−x2 + 4x y + 12y2

x2 − 4y2 �60.

2y2t2 − yt − 3
−11yt − 6 − 5y2t2 �61.

5y2r2 + 3yr − 2
−7yr − 3 − 4y2r2 �62.
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Simplifying Rational Functions Simplify the function formula, and if applicable, write the restricted do-
main.

1(y) � y + 2
y2 + 12y + 20

Reduced 1(y) �

63. K(r) � r − 6
r2 − 15r + 54

Reduced K(r) �

64.

F(r) � r3 − 100r
r3 + 16r2 + 60r

Reduced F(r) �

65. 1(t) � t3 − 16t
t3 + 11t2 + 28t

Reduced 1(t) �

66.

K(t) � t4 + 6t3 + 9t2

3t4 + 11t3 + 6t2

Reduced K(t) �

67. F(x) � x4 − 6x3 + 9x2

2x4 − 9x3 + 9x2

Reduced F(x) �

68.

1(x) � 3x3 + 5x2

3x3 + 8x2 + 5x

Reduced 1(x) �

69. H(y) � 2y3 + 3y2

2y3 − 7y2 − 15y

Reduced H(y) �

70.

Multiplying and Dividing Rational Expressions with One Variable

Select all correct equations:

□ 5 · x
y �

5x
5y □ 5 · x

y �
x

5y □ 5 · x
y �

5x
y □ − x

y �
−x
−y □ − x

y �
−x
y □ − x

y �
x
−y

71.

Select all correct equations:

□ 6 · x
y �

6x
y □ 6 · x

y �
6x
6y □ 6 · x

y �
x

6y □ − x
y �

−x
y □ − x

y �
x
−y □ − x

y �
−x
−y

72.

Simplify the following expressions, and if ap-
plicable, write the restricted domain.

− r5

r + 5 · r
2
�

− r5

r + 5 ·
1
r2 �

73. Simplify the following expressions, and if ap-
plicable, write the restricted domain.

− y4

y + 4 · y
2
�

− y4

y + 4 ·
1
y2 �

74.
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Simplify this expression, and if applicable, write the restricted domain.

t2 + 3t + 2
t + 5 · 3t + 15

t + 1 �75. t2 + 2t − 24
t − 5 · 4t − 20

t − 4 �76.

x2 − 16x
x2 − 16

· x2 − 4x
x2 − 15x − 16

�77. x2 − 9x
x2 − 9

· x2 − 3x
x2 − 5x − 36

�78.

25y + 25
24 − 2y − 2y2 ·

y2 − 6y + 9
5y2 + 5y

�79.
20y + 20

−135 − 72y − 9y2 ·
y2 + 6y + 9
5y2 + 5y

�80.

6y2 − 13y + 7
36y6 − 24y5 ·

4y5 − 6y6

36y2 − 49
�81. 3r2 + 4r − 7

80r5 − 120r4 ·
15r4 − 10r5

9r2 − 49
�82.

r
r + 15 ÷ 3r4

�83. t
t − 4 ÷ 4t3

�84.

9t ÷ 3
t4 �85. 8x ÷ 4

x4 �86.

(2x + 2) ÷ (12x + 12) �87. (4y + 4) ÷ (16y + 16) �88.

25y2 − 16
5y2 + 9y + 4

÷ (4 − 5y) �89.
9y2 − 4

3y2 + 5y + 2
÷ (2 − 3y) �90.

r5

r2 − 5r
÷ 1

r2 + r + (−30) �91. r5

r2 + 2r
÷ 1

r2 + (−1) r + (−6) �92.

9m+2
m

m+7
m

=93.
6m−10

m
m−9

m

=94.

z
(z−2)2

5z
z2−4

�95.
z

(z−8)2

9z
z2−64

�96.

x2 − 3x
x2 − 1

÷ x2 − 9
x2 − 3x + 2

�97. x2 − 3x
x2 − 25

÷ x2 − 9
x2 − 3x − 10

�98.

957



Chapter 13 Rational Functions and Equations

Multiplying and Dividing Rational Expressions with More Than One Variable Simplify this expression.

6
(
y + r

)
y − r

· y − r
2
(
3y + r

) �99.
8
(
r + y

)
r − y

· r − y
4
(
3r + y

) �100.

5r3x
2r
· 8r3x3

15x5 �101. 2tr
5t3 ·

5t4r3

4r5 �102.

t2 − 8t y + 15y2

t − y
· 6t − 6y

t − 5y
�103. x2 + xt − 2t2

x + 3t
· 2x + 6t

x + 2t
�104.

x2r5

5 ÷ x2r3

30 �105.
y5x4

4 ÷ y5x2

12 �106.

(y3 − 2y2t + yt2) ÷ (y5 − y4t) �107. (y3
+ 10y2r + 25yr2) ÷ (y5

+ 5y4r) �108.

1
r2 − 4r y + 3y2 ÷

r4

r2 − 3r y
�109. 1

r2 + 9rt + 18t2 ÷
r4

r2 + 3rt
�110.

t3

t2r − 5t
÷ 1

t2r2 − 9tr + 20
�111. t5

t2x + 5t
÷ 1

t2x2 + 2tx − 15
�112.

30x3t3

x − 5t
÷ 6x4t

x2 − 25t2 �113. 9x5r5

x − 5r
÷ 3x6r

x2 − 25r2 �114.

a
b
3a
2b2

�115.
a
b
6a
5b2

�116.

st2

6u
s

7tu
�117.

st2

4u
s

2tu
�118.

Challenge

Simplify the following: 1
x+1 ÷ x+2

x+1 ÷ x+3
x+2 ÷ x+4

x+3 ÷ · · · ÷ x+75
x+74 . For this exercise, you do not have to write

the restricted domain of the simplified expression.
119.
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13.3 Addition and Subtraction of Rational Expressions

In the last section, we learned how tomultiply and divide rational expressions. In this section, we will learn
how to add and subtract rational expressions.

13.3.1 Introduction

Example 13.3.2 Julia is taking her family on a boat trip 12 miles down the river and back. The river
flows at a speed of 2 miles per hour and she wants to drive the boat at a constant speed, v miles per hour
downstream and back upstream. Due to the current of the river, the actual speed of travel is v + 2 miles
per hour going downstream, and v − 2 miles per hour going upstream. If Julia plans to spend 8 hours
for the whole trip, how fast should she drive the boat?

We need to review three forms of the formula for movement at a constant rate:

d � vt v �
d
t

t �
d
v

where d stands for distance, v represents speed, and t stands for time. According to the third form, the
time it takes the boat to travel downstream is 12

v+2 , and the time it takes to get back upstream is 12
v−2 .

The function to model the time of the whole trip
is

t(v) � 12
v − 2 +

12
v + 2

where t stands for time in hours, and v is the
boat’s speed in miles per hour. Let’s look at the
graph of this function in Figure 13.3.3. Note that
since the speed v and the time t(v) should be pos-
itive in context, it’s only the first quadrant of Fig-
ure 13.3.3 that matters. −4 −2 2 4 6 8

−4

−2

2

4

6

8
(4, 8)

speed

time

Figure 13.3.3: Graph of t(v) � 12
v−2 +

12
v+2 and t �

8

To find the speed that Julia should drive the boat tomake the round trip last 8 hourswe can use graphing
technology to solve the equation

12
v − 2 +

12
v + 2 � 8

graphically and we see that v � 4. This tells us that a speed of 4 miles per hour will give a total time of
8 hours to complete the trip. To go downstream it would take 12

v+2 �
12

4+2 � 2 hours; and to go upstream
it would take 12

v−2 �
12

4−2 � 6 hours.

The point of this section is toworkwith expressions like 12
v−2 +

12
v+2 , where two rational expressions are added

(or subtracted). There are times when it is useful to combine them into a single fraction. We will learn that
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the expression 12
v−2 +

12
v+2 is equal to the expression 24v

v2−4 , and we will learn how to make that simplification.

13.3.2 Addition and Subtraction of Rational Expressions with the Same Denominator

The process of adding and subtracting rational expressions will be very similar to the process of adding and
subtracting purely numerical fractions.

If the two expressions have the same denominator, then we can rely on the property of adding and sub-
tracting fractions and simplify that result.

Let’s review how to add fractions with the same
denominator:

1
10 +

3
10 �

1 + 3
10

�
4
10

�
2
5

We can add and subtract rational expressions in
the same way:

2
3x
− 5

3x
�

2 − 5
3x

�
−3
3x

� − 1
x

Identify the LCD Determine the least common denominator of all of the denominators.

Build If necessary, build each expression so that the denominators are the same.

Add/Subtract Combine the numerators using the properties of adding and subtracting frac-
tions.

Simplify Simplify the resulting rational expression as much as possible. This may require fac-
toring the numerator.

List 13.3.4: Steps to Adding/Subtracting Rational Expressions

Example 13.3.5 Add the rational expressions: 2x
x + y

+
2y

x + y
.

Explanation. These expressions already have a common denominator:

2x
x + y

+
2y

x + y
�

2x + 2y
x + y

�
2����(x + y)
���x + y

�
2
1

� 2
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Note that we didn’t stop at 2x+2y
x+y . If possible, we must simplify the numerator and denominator. Since

this is a multivariable expression, this textbook ignores domain restrictions while canceling.

13.3.3 Addition and Subtraction of Rational Expressions with Different Denominators

To add rational expressions with different denom-
inators, we’ll need to build each fraction to the
least common denominator, in the same way we
do with numerical fractions. Let’s briefly review
this process by adding 3

5 and 1
6 :

3
5 +

1
6 �

3
5 ·

6
6 +

1
6 ·

5
5

�
18
30 +

5
30

�
18 + 5

30

�
23
30

This exact method can be used when adding rational expressions containing variables. The key is that the
expressions must have the same denominator before they can be added or subtracted. If they don’t have
this initially, then we’ll identify the least common denominator and build each expression so that it has that
denominator.

Let’s apply this to adding the two expressions with denominators that are v − 2 and v + 2 from Exam-
ple 13.3.2.

Example 13.3.6 Add the rational expressions and fully simplify the function given by t(v) � 12
v−2 +

12
v+2 .

Explanation.

t(v) � 12
v − 2 +

12
v + 2

t(v) � 12
v − 2 ·

v + 2
v + 2 +

12
v + 2 ·

v − 2
v − 2

t(v) � 12v + 24
(v − 2)(v + 2) +

12v − 24
(v + 2)(v − 2)

t(v) � (12v + 24) + (12v − 24)
(v + 2)(v − 2)

t(v) � 24v
(v + 2)(v − 2)

Example 13.3.7 Add the rational expressions: 2
5x2 y

+
3

20x y2

Explanation. The least common denominator of 5x2 y and 20x y2 must include two x’s and two y’s, as
well as 20. Thus it is 20x2 y2. We will build both denominators to 20x2 y2 before doing addition.

2
5x2 y

+
3

20x y2 �
2

5x2 y
· 4y

4y
+

3
20x y2 ·

x
x
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�
8y

20x2 y2 +
3x

20x2 y2

�
8y + 3x
20x2 y2

Let’s look at a few more complicated examples.

Example 13.3.8 Subtract the rational expressions:
y

y − 2 −
8y − 8
y2 − 4

Explanation. To start, we’ll make sure each denominator is factored. Then we’ll find the least com-
mon denominator and build each expression to that denominator. Then we will be able to combine the
numerators and simplify the expression.

y
y − 2 −

8y − 8
y2 − 4

�
y

y − 2 −
8y − 8

(y + 2)(y − 2)

�
y

y − 2 ·
y + 2
y + 2 −

8y − 8
(y + 2)(y − 2)

�
y2 + 2y

(y + 2)(y − 2) −
8y − 8

(y + 2)(y − 2)

�
y2 + 2y −

↓
(8y − 8

↓
)

(y + 2)(y − 2)

�
y2 + 2y − 8y + 8
(y + 2)(y − 2)

�
y2 − 6y + 8
(y + 2)(y − 2)

�
����(y − 2)(y − 4)
(y + 2)����(y − 2)

�
y − 4
y + 2 , for y , 2

Note that we must factor the numerator in y2−6y+8
(y+2)(y−2) and try to reduce the fraction (which we did).

Warning 13.3.9. In Example 13.3.8, be careful to subtract the entire numerator of 8y − 8. When this expres-
sion is in the numerator of 8y−8

(y+2)(y−2) , it’s implicitly grouped and doesn’t need parentheses. But once 8y − 8
is subtracted from y2 + 2y, we need to add parentheses so the entire expression is subtracted.

In the next example, we’ll look at adding a rational expression to a polynomial. Much like adding a frac-
tion and an integer, we’ll rely on writing that expression as itself over one in order to build its denomina-
tor.

Example 13.3.10 Add the expressions: − 2
r − 1 + r

Explanation.

− 2
r − 1 + r � − 2

r − 1 +
r
1
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� − 2
r − 1 +

r
1 ·

r − 1
r − 1

�
−2

r − 1 +
r2 − r
r − 1

�
−2 + r2 − r

r − 1

�
r2 − r − 2

r − 1

�
(r − 2)(r + 1)

r − 1

Note that we factored the numerator to reduce the fraction if possible. Even though it was not possible
in this case, leaving it in factored form makes it easier to see that it is reduced.

Example 13.3.11 Subtract the expressions: 6
x2 − 2x − 8

− 1
x2 + 3x + 2

Explanation. To start, we’ll need to factor each of the denominators. After that, we’ll identify the
LCD and build each denominator accordingly. Then we can combine the numerators and simplify the
resulting expression.

6
x2 − 2x − 8

− 1
x2 + 3x + 2

�
6

(x − 4)(x + 2) −
1

(x + 2)(x + 1)

�
6

(x − 4)(x + 2) ·
x + 1
x + 1 −

1
(x + 2)(x + 1) ·

x − 4
x − 4

�
6x + 6

(x − 4)(x + 2)(x + 1) −
x − 4

(x + 2)(x + 1)(x − 4)

�
6x + 6 − (x − 4)
(x − 4)(x + 2)(x + 1)

�
6x + 6 − x + 4

(x − 4)(x + 2)(x + 1)

�
5x + 10

(x − 4)(x + 2)(x + 1)

�
5����(x + 2)

(x − 4)����(x + 2)(x + 1)

�
5

(x − 4)(x + 1) , for x , −2

Exercises

Review and Warmup

Add: 17
24 +

11
241. Add: 7

12 +
7
122. Add: 7

10 +
5
63. Add: 9

10 +
5
64.

Subtract: 23
21 −

20
215. Subtract: 11

14 −
3
146. Subtract: 3

7 −
1
217. Subtract: 3

7 −
19
218.
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Factor the given polynomial.

r2 − 64 �9. t2 − 16 �10. t2 + 11t + 10 �11.

x2 + 12x + 35 �12. x2 − 12x + 27 �13. x2 − 13x + 30 �14.

9y2 − 27y + 18 �15. 8y2 − 24y + 16 �16.

Addition and Subtraction of Rational Expressions with One Variable Add or subtract the rational ex-
pressions to a single rational expression and then simplify. If applicable, state the restricted domain.

4r
r + 2 +

8
r + 2 �17. 6r

r + 6 +
36

r + 6 �18.

3t
t + 5 +

15
t + 5 �19. 6t

t + 3 +
18

t + 3 �20.

1
x2 − x − 30

− x − 5
x2 − x − 30

�21. 6
x2 − 12x + 20

− x − 4
x2 − 12x + 20

�22.

4
x2 − 25

− x − 1
x2 − 25

�23. 5
y2 − 8y + 7

− y − 2
y2 − 8y + 7

�24.

4y
5 +

y
30 �25. 5r

6 +
r

18 �26.

6
r + 2 −

5
r + 4 �27. 5

t − 5 −
2

t − 4 �28.

3
t − 1 −

2
t + 5 �29. 5

x + 6 −
2

x + 2 �30.

1
x + 2 +

4
x2 − 4

�31. 1
x + 3 +

6
x2 − 9

�32.

1
y − 1 −

2
y2 − 1

�33. 1
y − 3 −

6
y2 − 9

�34.
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5
r + 2 −

10r
r2 − 4

�35. 4
r − 3 −

8r
r2 − 9

�36.

5
t + 5 −

10t
t2 − 25

�37. 4
t − 2 −

8t
t2 − 4

�38.

x
x + 2 −

6x + 16
x2 + 2x

�39. x
x + 2 −

4x + 12
x2 + 2x

�40.

x
x − 2 −

3x − 2
x2 − 2x

�41.
y

y − 9 −
15y − 54
y2 − 9y

�42.

6
y2 − 9

+
3

y + 3 −
1

y − 3 �43. 6
r2 − 1

+
5

r + 1 −
3

r − 1 �44.

4r
r2 − 7r + 12

+
4r

r − 3 �45. − 3t
t2 − 5t + 6

− 3t
t − 2 �46.

4t
t2 − 11t + 30

+
4t

t − 5 �47. − 3x
x2 + 5x + 6

− 3x
x + 3 �48.

x2 − 5
x2 + 5x

− x − 1
x

�49. x2 + 15
x2 − 3x

− x − 5
x

�50.

3
y + 5 + 4 �51. − 5

y + 1 − 4 �52.

4r
r + 2 +

r
r − 2 − 5 �53. 6r

r + 1 +
r

r − 1 − 7 �54.

Addition and Subtraction of Rational Expressions with More Than Variable Add or subtract the rational
expressions to a single rational expression and then simplify.

25t2

5t − 8r
− 64r2

5t − 8r
�55. 81t2

9t + 4y
− 16y2

9t + 4y
�56.

5x
18t

+
x
6t

�57. 4x
15r

+
4x
3r

�58.
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2x
3y3 −

2
5x y

�59. − 3y
2t4 +

6
5yt

�60.

3
yr − 6 −

6yr
y2r2 − 36

�61. 3
rx + 2 −

6rx
r2x2 − 4

�62.

− 6rt
r2 + 4rt + 3t2 +

3r
r + t

�63. 6tr
t2 − 13tr + 40r2 −

2t
t − 8r

�64.
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13.4 Complex Fractions

In this section, we will learn how to simplify complex fractions, which have fractions in the numerator
and/or denominator of another fraction.

13.4.1 Simplifying Complex Fractions

Consider the rational expression
6

x−4
6

x−4 + 3
.

It’s difficult to quickly evaluate this expression, or determine the important information such as its domain.
This type of rational expression, which contains a “fraction within a fraction,” is referred to as a complex
fraction. Our goal is to simplify such a fraction so that it has a single numerator and a single denominator,
neither of which contain any fractions themselves.

A complex fraction may have fractions in its nu-
merator and/or denominator. Here is an example
to show howwe use division to simplify a complex
fraction.

1
2
3 �

1
2 ÷ 3

�
1
2 ÷

3
1

�
1
2 ·

1
3

�
1
6

What if the expression had somethingmore complicated in the denominator, like
1
2

1
3+

1
4
? Wewould no longer

be able to simply multiply by the reciprocal of the denominator, since we don’t immediately know the
reciprocal of that denominator. Instead, we could multiply the “main” numerator and denominator by
something that eliminates all of the “internal” denominators. (We’ll use the LCD to determine this). For
example, with

1
2
3 , we can multiply by 2

2 :

1
2
3 �

1
2
3 ·

2
2

�
1
6

Remark 13.4.2. In the last example, it’s important to identify which fraction bar is the “main” fraction bar,
and which fractions are “internal.” Comparing the two expressions below, both of which are “one over two
over three”, we see that they are not equivalent.

1
2
3 �

1
2
3 ·

2
2 versus 1

2
3
�

1
2
3
· 33

�
1
6 �

3
2

For the first of these, the “main” fraction bar is above the 3, but for the second of these, the “main” fraction
bar is above the 2

3 .
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To attack multiple fractions in a complex fraction, we need to multiply the numerator and denominator by
the LCD of all the internal fractions, as we will show in the next example.

Example 13.4.3 Simplify the complex fraction
1
2

1
3 +

1
4
.

Explanation.

The internal denominators are 2, 3, and 4, so the
LCD is 12. We will thus multiply the main nu-
merator and denominator by 12 and simplify the
result:

1
2

1
3 +

1
4
�

1
2

1
3 +

1
4
· 12

12

�

1
2 · 12( 1

3 +
1
4
)
· 12

�
6

4 + 3

�
6
7

Next we will evaluate a function whose formula is a complex fraction and then simplify the result.

Example 13.4.4 Find each function value for f (x) �
x+2
x+3

2
x+3− 3

x−1
.

a. f (4) b. f (0) c. f (−3) d. f (−11)

Explanation. We will determine each function value by replacing x with the specified number and
then simplify the complex fraction:

a. f (4) �
4+2
4+3

2
4+3 − 3

4−1

�

6
7

2
7 − 3

3

�

6
7

2
7 − 1

· 77

�
6

2 − 7

� −6
5

b. f (0) �
0+2
0+3

2
0+3 − 3

0−1

�

2
3

2
3 − 3

−1

�

2
3

2
3 + 3

· 33

�
2

2 + 9

�
2
11

c. When evaluating
f at −3, we can
quickly see that
this results in di-
vision by zero:

f (−3) �
−3+2
−3+3

2
−3+3 − 3

−3−1

�

2
0

2
0 − 3

−4

Thus f (−3) is un-
defined.

d. f (−11) �
−11+2
−11+3

2
−11+3 − 3

−11−1

�

−8
−9

2
−8 − 3

−12

�

8
9

− 1
4 +

1
4

�

8
9
0

Therefore f (−11)
is undefined.

We have simplified complex fractions involving numbers and now we will apply the same concept to com-
plex fractions with variables.

Example 13.4.5 Simplify the complex fraction 3
1
y +

5
y2

.
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Explanation.

To start, we look at the internal denominators
and identify the LCD as y2. We’ll multiply the
main numerator and denominator by the LCD,
and then simplify. Since we are multiplying by
y2

y2 , it is important to note that y cannot be 0, since
0
0 is undefined.

3
1
y +

5
y2

�
3

1
y +

5
y2

· y2

y2

�
3 · y2

1
y · y2 + 5

y2 · y2

�
3y2

y + 5 , for y , 0

Example 13.4.6 Simplify the complex fraction
5x−6
2x+1
3x+2
2x+1

.

Explanation.

The internal denominators are both 2x+1, so this
is the LCD andwewill multiply themain numer-
ator and denominator by this expression. Since
we are multiplying by 2x+1

2x+1 , what x-value would
cause 2x+1 to equal 0? Solving 2x+1 � 0 leads to
x � − 1

2 . So x cannot be − 1
2 , since

0
0 is undefined.

5x−6
2x+1
3x+2
2x+1

�

5x−6
2x+1
3x+2
2x+1

· 2x + 1
2x + 1

�
5x − 6
3x + 2 , for x , −1

2

Example 13.4.7 Completely simplify the function defined by f (x) �
x+2
x+3

2
x+3− 3

x−1
. Then determine the do-

main of this function.

Explanation. The LCD of the internal denominators is (x + 3)(x − 1). We will thus multiply the main
numerator and denominator by the expression (x + 3)(x − 1) and then simplify the resulting expression.

f (x) �
x+2
x+3

2
x+3 − 3

x−1

f (x) �
x+2
x+3

2
x+3 − 3

x−1
· (x + 3)(x − 1)
(x + 3)(x − 1)

f (x) �
x+2
x+3 · (x + 3)(x − 1)( 2

x+3 − 3
x−1

)
· (x + 3)(x − 1)

f (x) �
x+2
x+3 · (x + 3)(x − 1)

2
x+3 · (x + 3)(x − 1) − 3

x−1 · (x + 3)(x − 1)

f (x) � (x + 2)(x − 1)
2(x − 1) − 3(x + 3) , for x , −3, x , 1

f (x) � (x + 2)(x − 1)
2x − 2 − 3x − 9 , for x , −3, x , 1

f (x) � (x + 2)(x − 1)
−x − 11 , for x , −3, x , 1
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f (x) � (x + 2)(x − 1)
−(x + 11) , for x , −3, x , 1

In the original (unsimplified) function, we could see that x , −3 and x , 1. In the simplified function,
we need x + 11 , 0, so we can also see that x , −11. Therefore the domain of the function f is {x | x ,
−11,−3, 1}.

Example 13.4.8 Simplify the complex fraction
2
(−4x+3

x−2
)
+ 3

−4x+3
x−2 + 4

.

Explanation. The only internal denominator is x−2, so we will begin by multiplying the main numer-
ator and denominator by this. Then we’ll simplify the resulting expression.

2
(−4x+3

x−2
)
+ 3

−4x+3
x−2 + 4

�
2
(−4x+3

x−2
)
+ 3

−4x+3
x−2 + 4

· x − 2
x − 2

�
2
(−4x+3

x−2
)
· (x − 2) + 3 · (x − 2)(−4x+3

x−2
)
· (x − 2) + 4 · (x − 2)

�
2(−4x + 3) + 3(x − 2)
(−4x + 3) + 4(x − 2) , for x , 2

�
−8x + 6 + 3x − 6
−4x + 3 + 4x − 8 , for x , 2

�
−5x
−5 , for x , 2

� x , for x , 2

Example 13.4.9 Simplify the complex fraction
5
x +

4
y

3
x − 2

y

. Recall that with a multivariable expression, this

textbook ignores domain restrictions.

Explanation.

We multiply the numerator and denominator by
the common denominator of x and y, which is
x y:

5
x +

4
y

3
x − 2

y

�

5
x +

4
y

3
x − 2

y

· x y
x y

�

(
5
x +

4
y

)
· x y(

3
x − 2

y

)
· x y

�

5
x · x y +

4
y · x y

3
x · x y − 2

y · x y

�
5y + 4x
3y − 2x
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Example 13.4.10 Simplify the complex fraction
t

t+3 +
2

t−3

1 − t
t2−9

.

Explanation. First, we check all quadratic polynomials to see if they can be factored and factor them:

t
t+3 +

2
t−3

1 − t
t2−9

�

t
t+3 +

2
t−3

1 − t
(t−3)(t+3)

Next, we identify the commondenominator of the three fractions, which is (t+3)(t−3). We thenmultiply
the main numerator and denominator by that expression:

t
t+3 +

2
t−3

1 − t
t2−9

�

t
t+3 +

2
t−3

1 − t
(t−3)(t+3)

· (t + 3)(t − 3)
(t + 3)(t − 3)

�

t
t+3 · (t + 3)(t − 3) + 2

t−3 · (t + 3)(t − 3)
1 · (t + 3)(t − 3) − t

(t−3)(t+3) · (t + 3)(t − 3)

�
t(t − 3) + 2(t + 3)
(t + 3)(t − 3) − t

for t , −3, t , 3

�
t2 − 3t + 2t + 6

t2 − 9 − t
for t , −3, t , 3

�
t2 − t + 6
t2 − t − 9

for t , −3, t , 3

Note that since both the numerator and denominator are prime trinomials, this expression can neither
factor nor simplify any further.

Exercises

Review and Warmup Calculate the following. Use an improper fraction in your answer.

a.
3
7
3
4
�

b.
t
x
r
y
�

1. a.
16
5
4
7

�

b.
t
r
y
x

�

2. a. 3
4
7
�

b.
3
4
7 �

3. a. 2
3
8
�

b.
2
3
8 �

4.

2
3 +

4
5

1
6

�5.
5
4 +

1
5

2
3

�6. 4
1
2 − 2

3
�7. 4

5
4 − 6

5
�8.

Simplifying Complex Fractions with One Variable Simplify this expression, and if applicable, write the
restricted domain.

6p+8
p

p−5
p

=9.
3m−4

m
m+6

m

=10.
k

(k−8)2

8k
k2−64

�11.
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z
(z−4)2

3z
z2−16

�12.
2 +

1
a

a + 6 �13.
7 +

1
a

a + 10 �14.

2
4
y +

3
y+2

�15. 5
1
r − 4

r+4
�16.

7 +
1

q−3
1

q−3 − 1
6
�17.

4 +
1

q−7
1

q−7 − 1
3
�18.

1
k+10 +

1
k−10

10 − 1
k−10

�19.
1

k+6 +
5

k−6

8 − 1
k−6

�20.

1
x−3 +

9
x−3

5 − 1
x+3

�21.
1

a−9 +
4

a−9

3 − 1
a+9

�22.
6

b−1 − 8
1

b−1 +
1

b−9
�23.

2
t−1 − 3
1

t−1 +
1

t−7
�24.

4r
r2−25 − 1
5

r+5 − 6
r−5

�25.
6r

r2−4 + 1
6

r+2 − 5
r−2

�26.

r
r2−4 −

1
r2−4

1
r+4

�27.
k

k2−49 −
1

k2−49
1

k+49
�28.

Simplifying Complex Fractions with More Than One Variable Simplify this expression.
m
n

4m
3n2

�29.
x
y

3x
2y2

�30.
ab2

9c
a

2bc
�31.

ab2

6c
a

6bc
�32. a.

y
x

t
�

b.
y
x
t
�

33. a.
r
y

t
�

b. r
y
t

�

34.

4
r

16 +
4y
5

�35.
2
t

4 +
2x
5

�36.
4
t +

12
r

8
t +

12
r

�37.

3
t +

6
y

9
t +

6
y

�38.
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13.5 Solving Rational Equations

13.5.1 Solving Rational Equations

To start this section, we will use a scenario we have seen before in Example 13.3.2:

Julia is taking her family on a boat trip 12 miles down the river and back. The river flows at a speed of 2
miles per hour and she wants to drive the boat at a constant speed, v miles per hour downstream and back
upstream. Due to the current of the river, the actual speed of travel is v+2 miles per hour going downstream,
and v − 2 miles per hour going upstream. If Julia plans to spend 8 hours for the whole trip, how fast should
she drive the boat?

The time it takes Julia to drive the boat downstream is 12
v+2 hours, and upstream is 12

v−2 hours. The function
to model the whole trip’s time is

t(v) � 12
v − 2 +

12
v + 2

where t stands for time in hours. The trip will take 8 hours, so we substitute t(v)with 8, and we have:

12
v − 2 +

12
v + 2 � 8.

Instead of using the function’s graph, we will solve this equation algebraically. You may wish to review the
technique of eliminating denominators discussed in Subsection 3.3.2. We can use the same technique with
variable expressions in the denominators. To remove the fractions in this equation, we will multiply both
sides of the equation by the least common denominator (v − 2)(v + 2), and we have:

12
v − 2 +

12
v + 2 � 8

(v + 2)(v − 2) ·
(

12
v − 2 +

12
v + 2

)
� (v + 2)(v − 2) · 8

(v + 2)����(v − 2) · 12
���v − 2 +

XXXX(v + 2)(v − 2) · 12
XXXv + 2 � (v + 2)(v − 2) · 8

12(v + 2) + 12(v − 2) � 8(v2 − 4)
12v + 24 + 12v − 24 � 8v2 − 32

24v � 8v2 − 32
0 � 8v2 − 24v − 32
0 � 8(v2 − 3v − 4)
0 � 8(v − 4)(v + 1)

v − 4 � 0 or v + 1 � 0
v � 4 or v � −1

Remark 13.5.2. At this point, logically all that we know is that the only possible solutions are −1 and 4.
Because of the step where factors were canceled, it’s possible that these might not actually be solutions to
the original equation. They each might be what is called an extraneous solution. An extraneous solution
is a number that would appear to be a solution based on the solving process, but actually does not make
the original equation true. Because of this, it is important that these proposed solutions be checked. Note
that we’re not checking to see if we made a calculation error, but are instead checking to see if the proposed
solutions actually solve the original equation.
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We check these values.

12
−1 − 2 +

12
−1 + 2

?
� 8 12

4 − 2 +
12

4 + 2
?
� 8

12
−3 +

12
1

?
� 8 12

2 +
12
6

?
� 8

−4 + 12 ✓� 8 6 + 2 ✓� 8

Algebraically, both values do check out to be solutions. In the context of this scenario, the boat’s speed can’t
be negative, so we only take the solution 4. If Julia drives at 4 miles per hour, the whole trip would take 8
hours. This result matches the solution in Example 13.3.2.

Let’s look at another application problem.

Example 13.5.3 It takes Ku 3 hours to paint a room and it takes Jacob 6 hours to paint the same room.
If they work together, how long would it take them to paint the room?

Explanation. Since it takes Ku 3 hours to paint the room, he paints 1
3 of the room each hour. Similarly,

Jacob paints 1
6 of the room each hour. If they work together, they paint 1

3 +
1
6 of the room each hour.

Assume it takes x hours to paint the room if Ku and Jacob work together. This implies they paint 1
x of

the room together each hour. Now we can write this equation:

1
3 +

1
6 �

1
x
.

To clear away denominators, we multiply both sides of the equation by the common denominator of 3,
6 and x, which is 6x:

1
3 +

1
6 �

1
x

6x ·
(
1
3 +

1
6

)
� 6�x ·

1
�x

6x · 13 + 6x · 16 � 6

2x + x � 6
3x � 6

x � 2

Does the possible solution x � 2 check as an actual solution?

1
3 +

1
6

?
�

1
2

2
6 +

1
6

?
�

1
2

3
6
✓
�

1
2

It does, so it is a solution. If Ku and Jacob work together, it would take them 2 hours to paint the room.

Let’s look at a few more examples of solving rational equations.
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Example 13.5.4 Solve for y in 2
y+1 �

3
y .

Explanation. The common denominator is y(y + 1). We will multiply both sides of the equation by
y(y + 1):

2
y + 1 �

3
y

y����(y + 1) · 2

���y + 1
�Sy(y + 1) · 3

Sy

2y � 3(y + 1)
2y � 3y + 3

0 � y + 3
−3 � y

Does the possible solution y � −3 check as an actual solution?

2
−3 + 1

?
�

3
−3

2
−2

✓
� −1

It checks, so −3 is a solution. We write the solution set as {−3}.

Example 13.5.5 Solve for z in z +
1

z−4 �
z−3
z−4 .

Explanation. The common denominator is z − 4. We will multiply both sides of the equation by z − 4:

z +
1

z − 4 �
z − 3
z − 4

(z − 4) ·
(
z +

1
z − 4

)
�����(z − 4) · z − 3

���z − 4

(z − 4) · z +����(z − 4) · 1
���z − 4 � z − 3

(z − 4) · z + 1 � z − 3
z2 − 4z + 1 � z − 3
z2 − 5z + 4 � 0
(z − 1)(z − 4) � 0

z − 1 � 0 or z − 4 � 0
z � 1 or z � 4

Do the possible solutions z � 1 and z � 4 check as actual solutions?

1 +
1

1 − 4
?
�

1 − 3
1 − 4 4 +

1
4 − 4

?
�

4 − 3
4 − 4

1 − 1
3
✓
�
−2
−3 4 +

1
0

no
�

1
0
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The possible solution z � 4 does not actually work, since it leads to division by 0 in the equation. It is
an extraneous solution. However, z � 1 is a valid solution. The only solution to the equation is 1, and
thus we can write the solution set as {1}.

Example 13.5.6 Solve for p in 3
p−2 +

5
p+2 �

12
p2−4 .

Explanation. To find the common denominator, we need to factor all denominators if possible:

3
p − 2 +

5
p + 2 �

12
(p + 2)(p − 2)

Now we can see the common denominator is (p + 2)(p − 2). We will multiply both sides of the equation
by (p + 2)(p − 2):

3
p − 2 +

5
p + 2 �

12
p2 − 4

3
p − 2 +

5
p + 2 �

12
(p + 2)(p − 2)

(p + 2)(p − 2) ·
(

3
p − 2 +

5
p + 2

)
� (p + 2)(p − 2) · 12

(p + 2)(p − 2)

(p + 2)����(p − 2) · 3

���p − 2
+
XXXX(p + 2)(p − 2) · 5

HHHp + 2
�((((((hhhhhh(p + 2)(p − 2) · 12

((((((hhhhhh(p + 2)(p − 2)
3(p + 2) + 5(p − 2) � 12

3p + 6 + 5p − 10 � 12
8p − 4 � 12

8p � 16
p � 2

Does the possible solution p � 2 check as an actual solution?

3
2 − 2 +

5
2 + 2

?
�

12
22 − 4

3
0 +

5
4

no
�

12
0

The possible solution p � 2 does not actually work, since it leads to division by 0 in the equation. So this
is an extraneous solution, and the equation actually has no solution. We could say that its solution set
is the empty set, ∅.

Example 13.5.7 Solve C(t) � 0.35, where C(t) � 3t
t2+8 gives a drug’s concentration in milligrams per liter

t hours since an injection. (This function was explored in the introduction of Section 13.1.)

Explanation. To solve C(t) � 0.35, we’ll begin by setting up 3t
t2+8 � 0.35. We’ll begin by identifying

that the LCD is t2 + 8, and multiply each side of the equation by this:

3t
t2 + 8

� 0.35

3t
���t2 + 8 ·�

���(
t2

+ 8
)
� 0.35 ·

(
t2

+ 8
)
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3t � 0.35
(
t2

+ 8
)

3t � 0.35t2
+ 2.8

This results in a quadratic equation so we will put it in standard form and use the quadratic formula:

0 � 0.35t2 − 3t + 2.8

t �
−(−3) ±

√
(−3)2 − 4(0.35)(2.8)
2(0.35)

t �
3 ±
√

5.08
0.7

t ≈ 1.066 or t ≈ 7.506

Each of these answers should be checked in the original equation; they bothwork. In context, this means
that the drug concentration will reach 0.35 milligrams per liter about 1.066 hours after the injection was
given, and again 7.506 hours after the injection was given.

13.5.2 Solving Rational Equations for a Specific Variable

Rational equations can contain many variables and constants and we can solve for any one of them. The
process for solving still involves multiplying each side of the equation by the LCD. Instead of having a
numerical answer though, our final result will contain other variables and constants.

Example 13.5.8 In physics, when two resistances, R1 and R2, are connected in a parallel circuit, the
combined resistance, R, can be calculated by the formula

1
R

�
1

R1
+

1
R2

.

Solve for R in this formula.

Explanation. The common denominator is RR1R2. We will multiply both sides of the equation by
RR1R2:

1
R

�
1

R1
+

1
R2

�RR1R2 ·
1
�R

� RR1R2 ·
(

1
R1

+
1

R2

)
R1R2 � R��R1R2 ·

1
��R1

+ RR1ZZR2 ·
1
ZZR2

R1R2 � RR2 + RR1

R1R2 � R (R2 + R1)
R1R2

R2 + R1
� R

R �
R1R2

R1 + R2
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Example 13.5.9 Here is the slope formula

m �
y2 − y1

x2 − x1
.

Solve for x1 in this formula.

Explanation. The common denominator is x2 − x1. We will multiply both sides of the equation by
x2 − x1:

m �
y2 − y1

x2 − x1

(x2 − x1) · m �����(x2 − x1) ·
y2 − y1

����x2 − x1
mx2 − mx1 � y2 − y1

−mx1 � y2 − y1 − mx2
−mx1
−m

�
y2 − y1 − mx2

−m

x1 � − y2 − y1 − mx2

m

Example 13.5.10 Solve the rational equation x �
4y−1
2y−3 for y.

Explanation. Our first step will be to multiply each side by the LCD, which is simply 2y − 3. After
that, we’ll isolate all terms containing y, factor out y, and then finish solving for that variable.

x �
4y − 1
2y − 3

x · (2y − 3) � 4y − 1
���2y − 3 ·����(2y − 3)

2x y − 3x � 4y − 1
2x y � 4y − 1 + 3x

2x y − 4y � −1 + 3x
y(2x − 4) � 3x − 1
y����(2x − 4)
���2x − 4 �

3x − 1
2x − 4

y �
3x − 1
2x − 4

13.5.3 Solving Rational Equations Using Technology

In some instances, it may be difficult to solve rational equations algebraically. We can instead use graphing
technology to obtain approximate solutions. Let’s look at one such example.

Example 13.5.11 Solve the equation 2
x−3 �

x3

8 using graphing technology.

Explanation.
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We will define f (x) � 2
x−3 and 1(x) � x3

8 , and
then look for the points of intersection.

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

(−1.524,−0.442)

(3.405, 4.936)

x

y

Figure 13.5.12: Graph of f (x) � 2
x−3 and 1(x) �

x3

8

Since the two functions intersect at approximately (−1.524,−0.442) and (3.405, 4.936), the solutions to
2

x−3 �
x3

8 are approximately −1.524 and 3.405. We can write the solution set as {−1.524 . . . , 3.405 . . .} or
in several other forms. It may be important to do something to commuincate that these solutions are ap-
proximations. Here we used . . ., but you could also just say in words that the solutions are approximate.

Exercises

Review and Warmup Solve the equation.

10y + 5 � y + 501. 9r + 9 � r + 332. 6 � 3 − 3(a − 9)3.

52 � 10 − 7(b − 8)4. 4(A + 1) − 7(A − 7) � 355. 2(C + 5) − 6(C − 2) � −26.

(x + 5)2 � 1217. (x + 8)2 � 498. x2 + 4x − 96 � 09.

x2 − x − 90 � 010. x2 − 6x + 1 � 811. x2 − 14x + 64 � 1912.

Solving Rational Equations Solve the equation.
−12

y
� 613. −6

r
� −114. r

r + 3 � 415.

t
t − 4 � −316. t + 7

5t + 7 �
1
1917. t − 2

4t − 1 �
1
318.
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−x − 2
x − 1 � − x

x − 619. −x + 10
x − 6 � − x

x − 120. 6
y
� 2 − 4

y
21.

6
y
� −5 +

16
y

22. 4
5A
− 1

4A
� −223. 1

5B
+

5
6B

� 424.

t
2t − 10 +

1
t − 5 � 425. t

6t + 24 −
3

t + 4 � 226. t + 8
t2 + 3

� 027.

x + 2
x2 + 6

� 028. − 5
x
� 029. 7

y
� 030.

y + 1
y2 + 8y + 7

� 031. r − 6
r2 − 10r + 24

� 032. −9
r
− 6

r + 6 � 133.

6
r
+

6
r − 9 � 134. 1

t − 7 −
7

t2 − 7t
�

1
635. 1

t + 6 +
6

t2 + 6t
� −1

936.

1
x − 8 −

6
x2 − 8x

�
1
837. 1

x − 5 −
4

x2 − 5x
�

1
638.

y + 3
y + 7 −

2
y + 5 � −139.

y + 1
y + 3 −

8
y + 6 � −140.

Solve the equation.

− 3
r + 5 � −

(
6

r − 5 +
3

r2 − 25

)
41. − 6

r + 3 � −
(

4
r − 3 +

2
r2 − 9

)
42.

7
r + 4 −

8
r + 1 � − 9

r2 + 5r + 4
43. 9

t + 7 −
7

t + 3 �
4

t2 + 10t + 21
44.

− 2
t − 8 +

2t
t − 6 � − 4

t2 − 14t + 48
45. 2

x − 7 +
2x

x − 5 �
4

x2 − 12x + 35
46.

4
x − 4 +

8x
x + 1 � − 8

x2 − 3x − 4
47. 2

y + 5 +
2y

y + 7 � − 2
y2 + 12y + 35

48.
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Solving Rational Equations for a Specific Variable

Solve this equation for y:

b �
a
y

49. Solve this equation for n:

A �
q
n

50. Solve this equation for t:

B �
t
r

51.

Solve this equation for t:

m �
t
C

52. Solve this equation for n:

1
5n

�
1
p

53. Solve this equation for q:

1
3q

�
1
A

54.

Solve this equation for r:

1
y
�

3
r + 5

55. Solve this equation for n:

1
r
�

9
n + 6

56.

Solving Rational Equations Using Technology Use technology to solve the equation

10
x2 + 3

�
x + 1
x + 5 .

57.
x − 9
x5 + 1

� −3x − 7.

58.
1
x
+

1
x2 �

1
x3 .

59.

12x
x − 5 +

3
x + 1 �

x − 5
x2 .

60.

2x − 1
x + 4 �

3
x + 6 .

61.

1
x2 − 1

− 2
x − 4 �

3
x − 2 .

62.

Application Problems

Jessica and Derick are working together to paint a room. If Jessica paints the room alone, it would
take her 9 hours to complete the job. If Derick paints the room alone, it would take him 18 hours to
complete the job. Answer the following question:

If they work together, it would take them hours to complete the job. Use a decimal
in your answer if needed.

63.

There are three pipes at a tank. To fill the tank, it would take Pipe A 4 hours, Pipe B 12 hours, and
Pipe C 3 hours. Answer the following question:

If all three pipes are turned on, it would take hours to fill the tank.

64.
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Neil and Nathan are working together to paint a room. Neil works 5.5 times as fast as Nathan does.
If they work together, it took them 11 hours to complete the job. Answer the following questions:

If Neil paints the room alone, it would take him hours to complete the job.

If Nathan paints the room alone, it would take him hours to complete the job.

65.

Two pipes are being used to fill a tank. Pipe A can fill the tank 4.5 times as fast as Pipe B does. When
both pipes are turned on, it takes 9 hours to fill the tank. Answer the following questions:

If only Pipe A is turned on, it would take hours to fill the tank.

If only Pipe B is turned on, it would take hours to fill the tank.

66.

Aleric and Carmen worked together to paint a room, and it took them 4 hours to complete the job.
If they work alone, it would take Carmen 6 more hours than Aleric to complete the job. Answer the
following questions:

If Aleric paints the room alone, it would take him hours to complete the job.

If Carmen paints the room alone, it would take her hours to complete the job.

67.

If both Pipe A and Pipe B are turned on, it would take 2 hours to fill a tank. If each pipe is turned
on alone, it takes Pipe B 3 fewer hours than Pipe A to fill the tank. Answer the following questions:

If only Pipe A is turned on, it would take hours to fill the tank.

If only Pipe B is turned on, it would take hours to fill the tank.

68.

Town A and Town B are 720 miles apart. A boat traveled from Town A to Town B, and then back
to Town A. Since the river flows from Town B to Town A, the boat’s speed was 30 miles per hour
faster when it traveled from Town B to Town A. The whole trip took 20 hours. Answer the following
questions:

The boat traveled from Town A to Town B at the speed of miles per hour.

The boat traveled from Town B back to Town A at the speed of miles per hour.

69.

A river flows at 13 miles per hour. A boat traveled with the current from Town A to Town B, which
are 360 miles apart. Then, the boat turned around, and traveled against the current to reach Town C,
which is 100 miles away from Town B. The second leg of the trip (Town B to Town C) took the same
time as the first leg (Town A to Town B). During this whole trip, the boat was driving at a constant
still-water speed. Answer the following question:

During this trip, the boat’s speed on still water was miles.

70.
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A river flows at 8 miles per hour. A boat traveled with the current from Town A to Town B, which
are 130 miles apart. The boat stayed overnight at Town B. The next day, the water’s current stopped,
and boat traveled on still water to reach Town C, which is 200 miles away from Town B. The second
leg of the trip (Town B to Town C) took 5 hours longer than the first leg (Town A to Town B). During
this whole trip, the boat was driving at a constant still-water speed. Find this speed.

Note that you should not consider the unreasonable answer.

During this trip, the boat’s speed on still water was miles per hour.

71.

Town A and Town B are 600 miles apart. With a constant still-water speed, a boat traveled from
Town A to Town B, and then back to Town A. During this whole trip, the river flew from Town A to
Town B at 11 miles per hour. The whole trip took 10 hours. Answer the following question:

During this trip, the boat’s speed on still water was miles per hour.

72.

Town A and Town B are 200 miles apart. With a constant still-water speed of 45 miles per hour, a
boat traveled from Town A to Town B, and then back to Town A. During this whole trip, the river
flew from Town B to TownA at a constant speed. The whole trip took 9 hours. Answer the following
question:

During this trip, the river’s speed was miles per hour.

73.

Suppose that a large pump can empty a swimming pool in 33 hr and that a small pump can empty
the same pool in 49 hr. If both pumps are used at the same time, how long will it take to empty the
pool?

If both pumps are used at the same time, it will take to empty the pool.

74.

The winner of a 6 mi race finishes 15.05 min ahead of the second-place runner. On average, the
winner ran 0.6 mi

hr faster than the second place runner. Find the average running speed for each
runner.

The winner’s average speed was and the second-place runner’s average

speed was .

75.

In still water a tugboat can travel 20 mi
hr . It travels 43 mi upstream and then 43 mi downstream in a

total time of 4.35 hr. Find the speed of the current.

The current’s speed is .

76.
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Without any wind an airplane flies at 246 mi
hr . The plane travels 620 mi into the wind and then

returns with the wind in a total time of 5.07 hr. Find the average speed of the wind.

The wind’s speed is .

77.

When there is a 22.4 mi
hr wind, an airplane can fly 800 mi with the wind in the same time that it can

fly 642 mi against the wind. Find the speed of the plane when there is no wind.

The plane’s airspeed is .

78.

It takes one employee 4.5 hr longer tomowa football field than it does amore experienced employee.
Together they can mow the grass in 2.8 hr. How long does it take each person to mow the football
field working alone?

The more experienced worker takes to mow the field alone, and the

less experienced worker takes .

79.

It takes one painter 19 hr longer to paint a house than it does a more experienced painter. Together
they can paint the house in 25 hr. How long does it take for each painter to paint the house working
alone?

The more experienced painter takes to paint the house alone, and the

less experienced painter takes .

80.
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13.6 Rational Functions and Equations Chapter Review

13.6.1 Introduction to Rational Functions

In Section 13.1 we learned about rational functions and explored them with tables and graphs.

Example 13.6.1 Graphs of Rational Functions. In an apocalypse, a zombie infestation begins with 1
zombie and spreads rapidly. The population of zombies can be modeled by Z(x) � 200000x+100

5x+100 , where
x is the number of days after the apocalypse began. Use technology to graph the function and answer
these questions:

a. How many zombies are there 2 days after the apocalypse began?

b. After how many days will the zombie population be 20,000?

c. As time goes on, the population will level off at about how many zombies?

Explanation. We will graph the function with technology. After adjusting window settings, we have:

10 20 30 40 50 60 70 80 90 100

10000

20000

30000

40000

(2, 3637.27)

(19.999, 20000)

x, days

y, number of zombies

Figure 13.6.2: Graph of y � Z(x) � 200000x+100
5x+100

a. To find the number of zombies after 2 days, we locate the point (2, 3637.27). Since we can only
have a whole number of zombies, we round to 3,637 zombies.

b. To find the number of days it will take for the zombie population reach 20,000, we locate the point
(19.999, 20000) so it will take about 20 days.

c. When we look far to the right on the graph using technology we can see that the population will
level off at about 40,000 zombies.
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13.6.2 Multiplication and Division of Rational Expressions

In Section 13.2 we covered how to simplify rational expressions. It is very important to list any domain
restrictions from factors that are canceled. We also multiplied and divided rational expressions.

Example 13.6.3 Simplifying Rational Expressions. Simplify the expression 8t+4t2−12t3

1−t .

Explanation. To begin simplifying this expression, we will rewrite each polynomial in descending or-
der. Thenwe’ll factor out the GCF, including the constant −1 from both the numerator and denominator
because their leading terms are negative.

8t + 4t2 − 12t3

1 − t
�
−12t3 + 4t2 + 8t
−t + 1

�
−4t(3t2 − t − 2)
−(t − 1)

�
−4t(3t + 2)(t − 1)
−(t − 1)

�
−4t(3t + 2)���(t − 1)
−���(t − 1)

�
−4t(3t + 2)
−1 , for t , 1

� 4t(3t + 2), for t , 1

Example 13.6.4 Multiplication of Rational Functions and Expressions. Multiply the rational expres-
sions: r3s

4t · 2t2

r2s3 .

Explanation. Note that we won’t need to factor anything in this problem, and can simply multiply
across and then simplify. With multivariable expressions, this textbook ignores domain restrictions.

r3s
4t
· 2t2

r2s3 �
r3s · 2t2

4t · r2s3

�
2r3st2

4r2s3t

�
rt
2s2

Example 13.6.5Division ofRational Functions andExpressions. Divide the rational expressions: 2x2+8x y
x2−4x+3÷

x3+4x2 y
x2+4x−5 .

Explanation. To divide rational expressions, wemultiply by the reciprocal of the second fraction. Then
we will factor and cancel any common factors. With multivariable expressions, this textbook ignores
domain restrictions.

2x2 + 8x y
x2 − 4x + 3

÷ x3 + 4x2 y
x2 + 4x − 5

�
2x2 + 8x y
x2 − 4x + 3

· x2 + 4x − 5
x3 + 4x2 y

�
2x����(x + 4y)

����(x − 1)(x − 3) ·
����(x − 1)(x + 5)

x2����(x + 4y)
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�
2x

x − 3 ·
x + 5

x2

�
2(x + 5)
x(x − 3)

13.6.3 Addition and Subtraction of Rational Expressions

In Section 13.3 we covered how to add and subtract rational expressions.

Example 13.6.6 Addition and Subtraction of Rational Expressions with the Same Denominator. Add
the rational expressions: 5x

x + 5 +
25

x + 5 .

Explanation. These expressions already have a common denominator:

5x
x + 5 +

25
x + 5 �

5x + 25
x + 5

�
5����(x + 5)
���x + 5

�
5
1 , for x , −5

� 5, for x , −5

Note that we didn’t stop at 5x+25
x+5 . If possible, we must simplify the numerator and denominator.

Example 13.6.7Addition andSubtraction ofRational ExpressionswithDifferentDenominators. Add

and subtract the rational expressions:
6y

y + 2 +
y

y − 2 − 7

Explanation. The denominators can’t be factored, so we’ll find the least common denominator and
build each expression to that denominator. Thenwewill be able to combine the numerators and simplify
the expression.

6y
y + 2 +

y
y − 2 − 7 �

6y
y + 2 ·

y − 2
y − 2 +

y
y − 2 ·

y + 2
y + 2 − 7 · (y − 2)(y + 2)

(y − 2)(y + 2)

�
6y(y − 2)
(y − 2)(y + 2) +

y(y + 2)
(y − 2)(y + 2) −

7(y − 2)(y + 2)
(y − 2)(y + 2)

�
6y2 − 12y + y2 + 2y −

↓
(7(y2 − 4)

↓
)

(y − 2)(y + 2)

�
6y2 − 12y + y2 + 2y − 7y2 + 28

(y − 2)(y + 2)

�
−10y + 28
(y − 2)(y + 2)

�
−2(5y − 14)
(y − 2)(y + 2)
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13.6.4 Complex Fractions

In Section 13.4 we covered how to simplify a rational expression that has fractions in the numerator and/or
denominator.

Example 13.6.8 Simplifying Complex Fractions. Simplify the complex fraction
2t

t2−9 + 3
6

t+3 +
1

t−3
.

Explanation. First, we check all quadratic polynomials to see if they can be factored and factor them:

2t
t2−9 + 3
6

t+3 +
1

t−3
�

2t
(t−3)(t+3) + 3

6
t+3 +

1
t−3

Next, we identify the commondenominator of the three fractions, which is (t+3)(t−3). We thenmultiply
the main numerator and denominator by that expression:

2t
(t−3)(t+3) + 3

6
t+3 +

1
t−3

�

2t
(t−3)(t+3) + 3

6
t+3 +

1
t−3

· (t − 3)(t + 3)
(t − 3)(t + 3)

�

2t
����XXXX(t−3)(t+3)((((((hhhhhh(t − 3)(t + 3) + 3(t − 3)(t + 3)

6
��t+3 (t − 3)���(t + 3) + 1

HHt−3
XXX(t − 3)(t + 3)

�
2t + 3(t − 3)(t + 3)
6(t − 3) + 1(t + 3) for t , −3, t , 3

�
2t + 3(t2 − 9)
6t − 18 + t + 3 for t , −3, t , 3

�
2t + 3t2 − 27

7t − 15 for t , −3, t , 3

�
3t2 + 2t − 27

7t − 15 for t , −3, t , 3

Both the numerator and denominator are prime polynomials so this expression can neither factor nor
simplify any further.

13.6.5 Solving Rational Equations

In Section 13.5we covered how to solve rational equations. We looked at rate problems, solved for a specified
variable and used technology to solve rational equations.

Example 13.6.9 Solving Rational Equations. Two pipes are being used to fill a large tank. Pipe B can
fill the tank twice as fast as Pipe A can. When both pipes are turned on, it takes 12 hours to fill the tank.
Write and solve a rational equation to answer the following questions:

a. If only Pipe A is turned on, how many hours would it take to fill the tank?

b. If only Pipe B is turned on, how many hours would it take to fill the tank?

Explanation. Since both pipes can fill the tank in 12 hours, they fill 1
12 of the tank together each hour.

We will let a represent the number of hours it takes pipe A to fill the tank alone, so pipe A will fill 1
a of

the tank each hour. Pipe B can fill the tank twice as fast so it fills 2 · 1
a of the tank each hour or 2

a . When
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they are both turned on, they fill 1
a +

2
a of the tank each hour.

Now we can write this equation:
1
a
+

2
a
�

1
12

To clear away denominators, we multiply both sides of the equation by the common denominator of 12
and a, which is 12a:

1
a
+

2
a
�

1
12

12a ·
(
1
a
+

2
a

)
� 12a · 1

12

12a · 1
a
+ 12a · 2

a
� 12a · 1

12
12 + 24 � a

36 � a
a � 36

The possible solution a � 36 should be checked

1
36 +

2
36

?
�

1
12

3
36
✓
�

1
12

So it is a solution.

a. If only Pipe A is turned on, it would take 36 hours to fill the tank.

b. Since Pipe B can fill the tank twice as fast, it would take half the time, or 18 hours to fill the tank.

Example 13.6.10 Solving Rational Equations for a Specific Variable. Solve the rational equation y �
2x+5
3x−1 for x.

Explanation. To get the x out of the denominator, our first step will be to multiply each side by the
LCD, which is 3x − 1. Then we’ll isolate all terms containing x, factor out x, and then finish solving for
that variable.

y �
2x + 5
3x − 1

y · (3x − 1) � 2x + 5
���3x − 1 ·�

���(3x − 1)

3x y − y � 2x + 5
3x y � 2x + 5 + y

3x y − 2x � y + 5
x(3y − 2) � y + 5
x(3y − 2)

3y − 2 �
y + 5

3y − 2

x �
y + 5

3y − 2
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Example 13.6.11 Solving Rational Equations Using Technology. Solve the equation 1
x+2 + 1 �

10x
x2+5

using graphing technology.

Explanation.

We will define f (x) � 1
x+2 + 1 and 1(x) � 10x

x2+5 ,
and then find a window where we can see all of
the points of intersection.

Since the two functions intersect at approx-
imately (−2.309,−2.235), (0.76, 1.362) and
(8.549, 1.095), the solutions to 1

x+2 + 1 �
10x

x2+5
are approximately −2.309, 0.76 and
8.549. The solution set is approximately
{−2.309 . . . , 0.76 . . . , 8.549 . . .}.

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

(−2.309,−2.235)

(0.76, 1.362)

(8.549, 1.095) x

y

Figure 13.6.12: Graph of f (x) �
1

x+2 + 1 and
1(x) � 10x

x2+5

Exercises

Introduction to Rational Functions

A function is graphed.

This function has domain

and range .

1. A function is graphed.

This function has domain

and range .

2.
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The population of deer in a forest can bemod-
eled by

P(x) � 780x + 2660
3x + 7

where x is the number of years in the future.
Answer the following questions.

a. Howmanydeer live in this forest this year?

b. How many deer will live in this forest 24
years later? Round your answer to an in-
teger.

c. After how many years, the deer popula-
tion will be 276? Round your answer to
an integer.

d. Use a calculator to answer this question:
As time goes on, the population levels off
at about how many deer?

3. The population of deer in a forest can bemod-
eled by

P(x) � 400x + 1950
4x + 5

where x is the number of years in the future.
Answer the following questions.

a. Howmanydeer live in this forest this year?

b. How many deer will live in this forest 27
years later? Round your answer to an in-
teger.

c. After how many years, the deer popula-
tion will be 143? Round your answer to
an integer.

d. Use a calculator to answer this question:
As time goes on, the population levels off
at about how many deer?

4.

In a certain store, cashiers can serve 55 cus-
tomers per hour on average. If x customers
arrive at the store in a given hour, then the av-
erage number of customers C waiting in line
can be modeled by the function

C(x) � x2

3025 − 55x

where x < 55.

Answer the following questions with a graph-
ing calculator. Round your answers to inte-
gers.

a. If 42 customers arrived in the store in the
past hour, there are approximately
customers waiting in line.

b. If there are 7 customers waiting in line,
approximately customers
arrived in the past hour.

5. In a certain store, cashiers can serve 60 cus-
tomers per hour on average. If x customers
arrive at the store in a given hour, then the av-
erage number of customers C waiting in line
can be modeled by the function

C(x) � x2

3600 − 60x

where x < 60.

Answer the following questions with a graph-
ing calculator. Round your answers to inte-
gers.

a. If 51 customers arrived in the store in the
past hour, there are approximately
customers waiting in line.

b. If there are 2 customers waiting in line,
approximately customers
arrived in the past hour.

6.
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The concentration of a drug in a patient’s blood
stream, in milligrams per liter, can be mod-
eled by the function C(t) � 6t

t2+4 , where t is
the number of hours since the drug is injected.
Answer the following question with technol-
ogy. Roundyour answer to twodecimal places
if needed.

hours since injection, the
drug’s concentration is at the maximum value
of milligrams per liter.

7. The concentration of a drug in a patient’s blood
stream, in milligrams per liter, can be mod-
eled by the function C(t) � 7t

t2+8 , where t is
the number of hours since the drug is injected.
Answer the following question with technol-
ogy. Roundyour answer to twodecimal places
if needed.

hours since injection, the
drug’s concentration is at the maximum value
of milligrams per liter.

8.

Multiplication and Division of Rational Expressions

Simplify this expression.

−t2 + 6t y − 5y2

t2 − 25y2 �

9. Simplify this expression.

−t2 − 8tx − 15x2

t2 − 25x2 �

10.

Simplify the function formula, and if applica-
ble, write the restricted domain.

G(x) � x4 + 8x3 + 16x2

3x4 + 13x3 + 4x2

Reduced G(x) �

11. Simplify the function formula, and if applica-
ble, write the restricted domain.

h(x) � x4 − 4x3 + 4x2

2x4 − 3x3 − 2x2

Reduced h(x) �

12.

Simplify this expression, and if applicable, write
the restricted domain.
y2 − 16y
y2 − 16

· y2 − 4y
y2 − 19y + 48

�

13. Simplify this expression, and if applicable, write
the restricted domain.
y2 − 4y
y2 − 4

· y2 − 2y
y2 − 3y − 4

�

14.

Simplify this expression, and if applicable, write
the restricted domain.

9r2 − 25
3r2 + 8r + 5

÷ (5 − 3r) �

15. Simplify this expression, and if applicable, write
the restricted domain.

25r2 − 9
5r2 + 8r + 3

÷ (3 − 5r) �

16.

Simplify this expression.

r3

r2 y + 4r
÷ 1

r2 y2 + 5r y + 4
�

17. Simplify this expression.

t4

t2 y + 4t
÷ 1

t2 y2 + 5t y + 4
�

18.
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Addition and Subtraction of Rational Expressions Add or subtract the rational expressions to a single
rational expression and then simplify. If applicable, state the restricted domain.

1
t − 4 −

8
t2 − 16

�19. 1
x + 1 +

2
x2 − 1

�20.

− 5x
x2 − 3x + 2

− 5x
x − 1 �21.

8y
y2 + 2y − 3

+
2y

y + 3 �22.

y2 − 20
y2 + 5y

− y − 4
y

�23.
y2 − 10
y2 − 2y

− y + 5
y

�24.

Add or subtract the rational expressions to a single rational expression and then simplify.

− 4r
3t5 −

6
5rt

�25. − 6r
5y3 +

3
2r y

�26.

6tx
t2 − 4tx − 5x2 −

t
t − 5x

�27. − 6t y
t2 + 14t y + 40y2 −

t
t + 10y

�28.

Complex Fractions

Calculate the following. Use an improper frac-
tion in your answer.

a.
3
7
3
8
�

b.
x
y
r
t
�

29. Calculate the following. Use an improper frac-
tion in your answer.

a.
3
8
3
5
�

b.
x
t
y
r

�

30.

Simplify this expression, and if applicable, write
the restricted domain.

8
b−1 − 4

1
b−1 +

1
b−10

�

31. Simplify this expression, and if applicable, write
the restricted domain.

4
b−1 − 7
1

b−1 +
1

b−8
�

32.

Simplify this expression, and if applicable, write
the restricted domain.

2y
y2−9 − 1
3

y+3 +
2

y−3
�

33. Simplify this expression, and if applicable, write
the restricted domain.

2r
r2−9 + 3
3

r+3 +
1

r−3
�

34.
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Simplify this expression.
p
q

4p
3q2

�

35. Simplify this expression.
m
n

6m
5n2

�

36.

Simplify this expression.
3
t

3 +
3r
2

�

37. Simplify this expression.
2
x

2 − 2y
3

�

38.

Solving Rational Equations Solve the equation.
2

x − 1 +
4

x + 7 � − 2
x2 + 6x − 7

39. 3
y + 7 −

9
y − 4 � − 9

y2 + 3y − 28
40.

1
y − 5 −

5
y2 − 5y

�
1
441. 1

y + 8 +
8

y2 + 8y
� −1

442.

− 6
r + 9 +

2r
r − 3 �

8
r2 + 6r − 27

43. 3
r − 1 +

6r
r − 7 �

9
r2 − 8r + 7

44.

t − 3
t + 1 −

6
t − 4 � 645. t + 7

t − 9 +
6

t + 6 � −146.

Solve this equation for r:

1
x
�

3
r + 4

47. Solve this equation for n:

1
r
�

3
n + 8

48.

Use technology to solve the equation

2x − 1
x + 4 �

3
x + 6 .

49. Use technology to solve the equation

1
x2 − 1

− 2
x − 4 �

3
x − 2 .

50.
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Two pipes are being used to fill a tank. Pipe
A can fill the tank 4.5 times as fast as Pipe B
does. When both pipes are turned on, it takes
18 hours to fill the tank. Answer the following
questions:

If only Pipe A is turned on, it would take
hours to fill the tank.

If only Pipe B is turned on, it would take
hours to fill the tank.

51. Two pipes are being used to fill a tank. Pipe
A can fill the tank 5.5 times as fast as Pipe B
does. When both pipes are turned on, it takes
11 hours to fill the tank. Answer the following
questions:

If only Pipe A is turned on, it would take
hours to fill the tank.

If only Pipe B is turned on, it would take
hours to fill the tank.

52.

Town A and Town B are 360 miles apart. A
boat traveled fromTownA toTownB, and then
back to TownA. Since the river flows fromTown
B to TownA, the boat’s speedwas 15 miles per
hour faster when it traveled from Town B to
Town A. The whole trip took 20 hours. An-
swer the following questions:

The boat traveled from Town A to Town B at
the speed of miles per hour.

The boat traveled from Town B back to Town
A at the speed of miles per hour.

53. Town A and Town B are 560 miles apart. A
boat traveled fromTownA toTownB, and then
back to TownA. Since the river flows fromTown
B to TownA, the boat’s speedwas 30 miles per
hour faster when it traveled from Town B to
Town A. The whole trip took 28 hours. An-
swer the following questions:

The boat traveled from Town A to Town B at
the speed of miles per hour.

The boat traveled from Town B back to Town
A at the speed of miles per hour.

54.

995





CHAPTER 14
Radical Functions and Equations

14.1 Introduction to Radical Functions

We learned the basics of square roots in Section 8.2. The study of radicals is much broader than our first
attempt covered and we need to expand our investigation. To do so, we will first look at an example that
makes use of a topic covered in Section 8.3.

A #10 washer has a 5.6 mm inner diameter and is 1.2 mm thick. We will let d represent the outer diameter,
measured in mm.

1.2mm

outer diameter d

inner diameter 5.6mm

Figure 14.1.2: A Diagram of a #10 Washer

The amount of steel, M, in mg that it takes to make the washer with outer diameter d is approximated by
the formula

M � 7.59d2 − 238

Note that if you know the value of M ahead of time, this is a quadratic equation. We will now solve the
equation for d using the square root method.

M � 7.59d2 − 238
M + 238 � 7.59d2

M + 238
7.59 � d2

d �

√
M + 238

7.59 or d � −
√

M + 238
7.59
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Since we know that the diameter cannot really be
negative, our formula for d must be

d �

√
M + 238

7.59

This formula finds the diameter that the washer
must be when you input the amount of steel used,
M. Figure 14.1.3 shows a graph of this relation-
ship.

−200 200 400 600 800 1,000

3

6

9

12

d �

√ M+238

7.59

M

d

Figure 14.1.3: A Graph of d �

√
M+238

7.59

We also know that M cannot be negative, so we
will cut the graph to begin at M � 0. This for-
mula tells us that if we plan on using, for example,
1000 mg of steel (about as much as in a large paper
clip) that we can find the the outer diameter for the
washer that will be created:

d �

√
1000 + 238

7.59
≈ 12.8

So the washer’s outer diameter must be about
12.8 mm for to have a mass of 1000 mg. 200 400 600 800 1,000

3

6

9

12

d �

√ M+238

7.59

M

d

Figure 14.1.4: A Revised Graph of d �

√
M+238

7.59

Note that the vertical intercept of the graph is (0, 5.6), which says that a washer that uses no steel at all (is
that really a washer?) would have an outer diameter of 5.6 mm. This is the “smallest” possible washer with
an inner diameter of 5.6 mm, even though it would technically be massless. Perhaps the implied domain of
this function should be (0,∞) to exclude 0 mass.

Square roots often appearwhenwe consider formulas fromgeometry like thewasher problem, and they also

show up in topics like in statistics (where σ �

√
1
n

n∑
i�1
(xi − µ)2 finds the standard deviation), in chemistry

(where vrms �

√
3RT
Mm

finds the velocity of a particle), and in physics (where m(v) � m0√
1−v2/c2

finds the mass

of an object as its velocity nears the speed of light). There are many more examples to give, but we need a
firmer understanding of radicals to properly study these things, so it’s time to venture into deeper waters.
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14.1.1 The Square Root Function

Example 14.1.5 Gilberto is an artist who etches designs into square copper plates of different sizes.
Customers can order the size they would like.

a. Build a function that calculates the length of a plate’s side given its area. Explore the function with
a table and graph.

b. One customer ordered a plate with an area of 6.25 square feet. Calculate the length of its side.

c. Find the domain and range of the function from Part a.

Explanation.

a. We know the formula to calculate a square’s area is A � ℓ2, where A stands for a square’s area, and
ℓ is the length of the square’s side. To build a function to calculate ℓ, we solve for ℓ in the formula:

A � ℓ2

ℓ �
√

A or ℓ � −
√

A

The formula is ℓ �
√

A. We don’t consider the negative solution in this context since negative
length doesn’t make sense. Since ℓ depends on A, we can use function notation and write f (A) �√

A. We will make a table, plot points, and look at the graph of ℓ �
√

A.

A f (A) Points on the Curve
0

√
0 � 0 (0, 0)

1
√

1 � 1 (1, 1)
4

√
4 � 2 (4, 2)

6.25
√

6.25 � 2.5 (6.25, 2.5)
9

√
9 � 3 (9, 3)

1 2 3 4 5 6 7 8 9

1

2

3
(6.25, 2.5)

A

ℓ

Table 14.1.6: Values of f (A) �
√

A Figure 14.1.7: Graph of y �
√

A

b. The point (6.25, 2.5) implies that a square platewith an area of 6.25 square feet would have a length
of 2.5 feet on each side.

c. According to the graph, the function’s domain is [0,∞) because the graph goes forever to the right
from A � 0. This should make some sense because you cannot take the square root of a negative
number. The function’s range is [0,∞) because the graph seems to go up forever starting at ℓ � 0.
This should alsomake sense because a square root never gives you a negative number as an answer.

Fact 14.1.8 Domain of a Square Root Functions. To algebraically find the domain of a square root function, set
the radicand (the expression under the radical) greater than or equal to 0 and solve for the variable. The solution set to
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that inequality is the domain of the function.

Example 14.1.9 Algebraically find the domain of the function 1 where 1(x) �
√

2x − 4+ 1 and then find
the range by making a graph.

Explanation. Using Fact 14.1.8 to find the function’s domain, we set the radicand greater than or equal
to zero and solve:

2x − 4 ≥ 0
2x ≥ 4

x ≥ 2

The function’s domain is [2,∞) in interval notation.

To find the function’s range, weuse technology to
look at a graph of the function. The graph shows
that the function’s range is [1,∞). The graph also
verifies the function’s domain is indeed [2,∞).

1 2 3 4 5 6 7 8 9

1

2

3

4

5

(2, 1)
x

y

Figure 14.1.10: Graph of 1(x) �
√

2x − 4 + 1

Example 14.1.11 Algebraically find the domain and graphically find the range of the function h where
h(x) � 2 − 3

√
8 − 5x.

Explanation. To find the function’s domain, we set the radicand to be greater than or equal to zero:

8 − 5x ≥ 0
−5x ≥ −8
−5x
−5 ≤

−8
−5

x ≤ 8
5

So, the function’s domain is
(
−∞, 8

5
]
. The 2 and 3

in the function do not play a role in the domain,
although they do alter the range which we will
find now by making a graph.
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From the graph we can see that the range is all
numbers below (or equal to) the y-value 2. In
interval notation, this would be written (−∞, 2].

−15 −10 −5 5

−25

−20

−15

−10

−5

2
5 (8/5, 2)

x

y

Figure 14.1.12: Graph of h(x) � 2 − 3
√

8 − 5x

Example 14.1.13 When an object is dropped, the time it takes to hit the ground can be modeled by

t �

√
d
16

where t is in seconds, and d is the initial height of the object in feet. Use graphing technology to create
a graph and answer the following questions.

a. In a science experiment, Amaka’s class drops a beanbag from the top of a 100-foot-tall building.
How long will it take for the beanbag to hit the ground?

b. Her class then goes to a second building, drops the beanbag from the top, and uses a stopwatch to
measures the time it takes to hit the ground. If it takes 3 seconds for the beanbag to hit the ground,
how tall is the building?

Explanation.

With graphing technology, and after adjusting
the window settings, we can see the graph of

t �
√

d
16 and some important points.

25 50 75 100 125 150 175

1

2

3

t �

√ d
16

(100, 2.5) (144, 3)

d

t

Figure 14.1.14: Graph of t �
√

d
16
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a. We look for a d-value of 100 feet and find the point (100, 2.5) on the graph. This means it will take
the beanbag 2.5 seconds to hit the ground if it’s released from the top of a 100-foot-tall building.

b. This time we look for a t-value of 3 seconds and find the point (144, 3). This means the beanbag
will fall approximately 144 feet in 3 seconds, so the second building is approximately 144 feet tall.

14.1.2 The Distance Formula

A square root is used in calculating the distance between two points on a coordinate plane. We learned
the Pythagorean Theorem in Section 8.3.2. In a coordinate plane, we can use the Pythagorean Theorem to
calculate the distance between any two points.

Example 14.1.15 Calculate the distance between (2, 3) and (5, 7).

Explanation. First, we will sketch a graph of those two points.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

5 − 2 � 3

7 − 3 � 4d

(2, 3) (5, 3)

(5, 7)

x

y To calculate the distance between (2, 3) and (5, 7),
we sketch a right triangle as in the figure and
then use the Pythagorean Theorem:

d2
� (5 − 2)2 + (7 − 3)2

d2
� 32

+ 42

d2
� 9 + 16

d2
� 25

d �
√

25
d � 5

Figure 14.1.16: Calculating the Distance Be-
tween (2, 3) and (5, 7)

In conclusion, the distance between (2, 3) and (5, 7) is 5. Note that in our calculations, we didn’t need to
show d � ±

√
25 because distance must have positive values.

With the same method, we can derive a formula to calculate the distance between any two points.

Example 14.1.17 With a generic first and second point, we will use subscripts to identify the first pair
(x1 , y1) and the second pair (x2 , y2). Calculate the distance between the generic points (x1 , y1) and
(x2 , y2).

Explanation. First, wewill sketch a graph of those two points. Wewill put the image from last example
side by side with the new image, so it’s clear that we are using the same method.

1002



14.1 Introduction to Radical Functions

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

5 − 2 � 3

7 − 3 � 4d
(2, 3) (5, 3)

(5, 7)

x

y

x2 − x1

y2 − y1d

(x1 , y1) (x2 , y1)

(x2 , y2)

x

y

Figure 14.1.18: Calculating the Distance Be-
tween (2, 3) and (5, 7)

Figure 14.1.19: Calculating the Distance Be-
tween (x1 , y1) and (x2 , y2)

To calculate the distance between (x1 , y1) and (x2 , y2), we sketch a right triangle as in the figure and then
use Pythagorean Theorem:

d2
� (x2 − x1)2 + (y2 − y1)2

d �

√
(x2 − x1)2 + (y2 − y1)2

Fact 14.1.20 TheDistance Formula. The distance between two points (x1 , y1) and (x2 , y2), is given by the formula:

d �

√
(x2 − x1)2 + (y2 − y1)2

With this formula, we can calculate the distance between two points without sketching a graph.

Example 14.1.21 Find the distance between (−2, 4) and (5,−20).

Explanation. To calculate the distance between (−2, 4) and (5,−20), we use the distance formula. It’s
good practice tomark each valuewith the corresponding variables in the formula. Again, (x1 , y1) stands
for the first point’s coordinates, and (x2 , y2) stands for the second point’s coordinates:

(
x1
−2,

y1
4 ), (

x2
5 ,

y2
−20)

We have:

d �

√
(x2 − x1)2 + (y2 − y1)2

d �

√
(5 − (−2))2 + ((−20) − 4)2

d �

√
(7)2 + (−24)2

d �
√

49 + 576

d �
√

625
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d � 25

The distance between (−2, 4) and (5,−20) is 25 units.

Warning 14.1.22. Note that it’s good practice to add parentheses around negative values when we do sub-
stitutions. For example, when we substitute x with −7 in x2, we should write

x2
� (−7)2 � 49 correct ✓

We should not write
x2

� −72
� −49 incorrect

14.1.3 Cube Root Function

The square of 2 is 4, so the square root of 4 is 2.

Similarly, the cube of 2 is 8, so the cube root of 8 is 2. We write

3√8 � 2

It’s helpful to memorize the first few perfect cube numbers and their cube roots:

03
� 0 3√0 � 0

13
� 1 3√1 � 1

23
� 8 3√8 � 2

33
� 27 3√27 � 3

43
� 64 3√64 � 4

53
� 125 3√125 � 5

One major difference between a cube root and a square root is that we can find the cube root of negative
numbers. For example:

(−4)3 � −64, so 3√−64 � −4

However,
√
−64 is non-real and in general we cannot take the square root of a negative number.

Remark 14.1.23. Many calculators don’t have a cube root button. If yours does, it might look like n
√

and
you will tell the calculator both to enter a number for the “n” as well as the radicand. Many calculators also
allow you to type something like root(3,8) for 3√8, for example.

Anotherway to calculate the cube root on a calculator is to use the exponent button (which is usuallymarked
with the caret symbol, ^) with a reciprocal power. For example, to calculate 3√8, you may type 8^(1/3). We
will explain why 3√8 � 8 1

3 in Section 14.2. For now, just learn how to use a calculator to calculate the cube
root of a given number.

We can also estimate the value of a cube root, like 3√10, by knowing the perfect cubes nearby:

3√8 � 2 3√10 � ? 3√27 � 3

Since 10 is between the perfect cubes 8 and 27, 3√10 must be between 2 and 3, and closer to 2. We can use a
calculator to verify 3√10 ≈ 2.154

Let’s build a table and graph the cube root function.
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x 1(x) � 3√x Points on the Curve
−8 3√−8 � −2 (−8,−2)
−1 3√−1 � −1 (−1,−1)
0 3√0 � 0 (0, 0)
1 3√1 � 1 (1, 1)
8 3√8 � 2 (8, 2)

−8 −6 −4 −2 2 4 6 8

−2

−1

1

2

x

y

Table 14.1.24: Values of 1(x) � 3√x Figure 14.1.25: Graph of 1(x) � 3√x

Both the domain and range of the cube root function are (−∞,∞). Compare this with the domain and range
of the square root function, which are each [0,∞). The reason for the difference is that we cannot take the
square root of negative numbers, but we can take the cube root of negative numbers (and when we do, we
get negative numbers as the output).

Remark 14.1.26. It is helpful to be able to quickly sketch the graphs of the following types of basic functions:

f (x) � c f (x) � mx + b f (x) � a(x − h)2 + k f (x) � |x |

f (x) � 1
x

f (x) � 1
x2 f (x) �

√
x f (x) � 3√x

Now with the graph of the cube root function, you have seen all of these shapes in this book.

Example 14.1.27 Nasim makes solid copper spheres for their grounding and healing properties. A

sphere’s radius can be calculated by the formula r(V) � 3
√

3V
4π , where r(V) stands for the sphere’s ra-

dius for a given volume V . If Nasim uses 2 cubic inches of copper per sphere, what diameter should he
list on his website? Round your answer to two decimal places.

Explanation. First, to find the radius we will substitute 2 in for V , and we have:

r(V) � 3

√
3V
4π

r(2) � 3

√
3(2)
4π

≈ 0.78

The spheres will have a radius of approximately 0.78 in.

Whenwe calculate 3
√

3(2)
4π with a calculator, we enter (3*2/(4�))^(1/3). To find the diameter, wemultiply

the radius by 2 to get 1.56 in. Nasim can advertise the spheres to be 1.56 inches in diameter.
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14.1.4 Other Roots

Similar to the cube root, there is the fourth root, and the fifth root, and so on, as in the following examples:

4√16 � 2 because 24
� 16 5√−32 � −2 because (−2)5 � −32 6√64 � 2 because 26

� 64,

To calculate the fifth root of −32 with a calculator, try typing (-32)^(1/5) or root(5,-32).

Definition 14.1.28. The index of a radical is the number “n” in n
√

. The symbol n
√

is read “the nth root.”
The plural of index is indices, as in “we can evaluate radicals of multiple indices in a single expression.”

Fact 14.1.29 Domain of Radical Functions. To find the domain of any even indexed radical function, set the
radicand greater than or equal to zero. The solution set is the domain of the function.

The domain of any odd indexed radical of a polynomial is (−∞,∞).

Example 14.1.30

a. Let 1(x) � 7 − 3 4√10 − 5x. Algebraically find 1’s domain and graphically find 1’s range.

b. Let h(x) � 4 5√2x − 5 + 1. Algebraically find h’s domain and graphically find h’s range.

Explanation.

a. First note that the index of this function is 4. By Fact 14.1.29, to find the domain of this function
we must set the radicand greater or equal to zero and solve.

10 − 5x ≥ 0
−5x ≥ − 10

x ≤ −10
−5

x ≤ 2

So, the domain of 1 must be (−∞, 2].

To find the function’s range, weuse technology to
graph the function. By the graph, the function’s
range is (−∞, 7].

−8 −6 −4 −2 2

−2

−1

1

2

3

4

5

6

7

8

y � 7 − 3 4√10 − 5x

x

y

Figure 14.1.31: Graph of y � 7 − 3 4√10 − 5x
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b. First note that the index of the function h for h(x) � 4 5√2x − 5 + 1 is 5. By Fact 14.1.29, the domain
is (−∞,∞).
To find the function’s range, we use technology to graph the function. According to the graph, the
function’s range is also the set of all real numbers.

−12 −9 −6 −3 3 6 9 12

−8

−6

−4

−2

2

4

6

8

y � 4 5√2x − 5 + 1

x

y

Figure 14.1.32: Graph of y � 4 5√2x − 5 + 1

Exercises

Review and Warmup

Evaluate the following.

−
√

81 � .

1. Evaluate the following.

−
√

121 � .

2. Evaluate the following.
√
−144 � .

3.

Evaluate the following.
√
−4 � .

4. Evaluate the following.√
4
81 � .

5. Evaluate the following.√
9
25 � .

6.

Without using a calculator,
evaluate the expression.

a. 3√8 �

b. 3√−8 �

c. − 3√8 �

7. Without using a calculator,
evaluate the expression.

a. 4√16 �

b. 4√−16 �

c. − 4√16 �

8. Without using a calculator,
estimate the value of

√
65:

(□ 8.94 □ 7.94 □ 7.06 □ 8.06)

9.
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Without using a calculator,
estimate the value of

√
61:

(□ 7.19 □ 7.81 □ 8.81 □ 8.19)

10. Without using a calculator,
estimate the value of 3√68:

(□ 4.08 □ 3.08 □ 3.92 □ 4.92)

11. Without using a calculator,
estimate the value of 3√62:

(□ 3.04 □ 4.96 □ 3.96 □ 4.04)

12.

Domain and Range Find the domain of the function.

f (x) �
√

10 − x13. 1(x) �
√

7 − x14. 1(x) �
√

3 + 20x15. h(x) �
√

9 + 14x16.

F(x) � 3√−9x − 117. G(x) � 3√−7x − 718. G(x) � 4√45 − 5x19. H(x) � 4√−9 − 3x20.

K(x) � − 8√
x+5

21. f (x) � 6√
x−7

22. f (x) �
√

x + 723. f (x) �
√

x + 524.

f (x) �
√
−3 − 7x25. f (x) �

√
−2 − 7x26. f (x) � 1√

18−5x
27. f (x) � 1√

40−56x
28.

f (x) � 1√
29x+62

29. f (x) � 1√
2x+85

30. f (x) � x+75√
53x2+4

31. f (x) � x+28√
26x2+15

32.

f (x) � 11√x + 2633. f (x) � 9√x + 3734. f (x) � 1
7√27x+48

35. f (x) � 1
3√92x+59

36.

f (x) � 1
6√7x+70

37. f (x) � 1
10√3x+81

38.

Use technology to find the range of the func-
tion K defined by K(x) �

√
4 − x − 3.

39. Use technology to find the range of the func-
tion f defined by f (x) �

√
2 − x − 5.

40.

Use technology to find the range of the func-
tion f defined by f (x) � 0.1√

x−4
+ 3.

41. Use technology to find the range of the func-
tion 1 defined by 1(x) � 0.5√

x+1
+ 1.

42.

Applications If an object is dropped with no initial velocity, the time since the drop, in seconds, can be
calculated by the function

T(h) �
√

2h
1

where h is the distance the object traveled in feet. The variable 1 is the gravitational acceleration on earth,
and we can round it to 32 f t

s2 for this problem.
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a. After seconds since the release,
the object would have traveled 24 feet.

b. After 2.9 seconds since the release, the ob-
ject would have traveled
feet.

43. a. After seconds since the release,
the object would have traveled 29 feet.

b. After 2.4 seconds since the release, the ob-
ject would have traveled
feet.

44.

A factory manufactures toy plastic balls. For a ball with a certain volume, V in cubic centimeters, the ball’s
radius can be calculated by the formula

r(V) � 3

√
3V
4π

a. If a ball’s volume is 350 cubic centimeters,
its radius must be
centimeters.

b. If a ball’s radius is 3.2 centimeters, its vol-
ume would be cubic
centimeters.

45. a. If a ball’s volume is 400 cubic centimeters,
its radius must be
centimeters.

b. If a ball’s radius is 2.7 centimeters, its vol-
ume would be cubic
centimeters.

46.

The speed of a tsunami, in meters per second, can be modeled by the function S(d) �
√

9.8d, where d is the
depth of water in meters. Answer the following question with technology.

A tsunami’s speed at 900meters below the sea

level is meters per second.

47. A tsunami’s speed at meters
below the sea level is 80 meters per second.

48.

Distance Formula

Find the distance between the points (−3, 3)
and (−24, 23).

49. Find the distance between the points (14,−9)
and (19, 3).

50.

Find the distance between the points (8,−10)
and (11,−4).

51. Find the distance between the points (−6, 7)
and (−1, 17).

52.
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14.2 Radical Expressions and Rational Exponents

Recall that in Remark 14.1.23, we learned to calculate the cube root of a number, say 3√8, we can type 8^(1/3)
into a calculator. This suggests that 3√8 � 81/3. In this section, we will learn why this is true, and how to
simplify expressions with rational exponents.

Many learners will find a review of exponent rules to be helpful before continuing with the current section.
Section 2.9 covers an introduction to exponent rules, and there is more in Section 6.1. The basic rules are
summarized in List 6.1.15. These rules are still true and we can use them throughout this section whenever
they might help.

14.2.1 Radical Expressions and Rational Exponents

Compare the following calculations:
√

9 ·
√

9 � 3 · 3 91/2 · 91/2
� 91/2+1/2

� 9 � 91

� 9

If we rewrite the above calculations with exponents, we have:(√
9
)2

� 9
(
91/2

)2
� 9

Since
√

9 and 91/2 are both positive, and squaring either of them generates the same number, we conclude
that √

9 � 91/2

We can verify this result by entering 9^(1/2) into a calculator, and we get 3. In general for any non-negative
real number a, we have: √

a � a1/2

Similarly, when a is non-negative we can prove:

3√a � a1/3 4√a � a1/4 5√a � a1/5 · · ·

Let’s summarize this information with a new exponent rule.

Fact 14.2.2 Radicals and Rational Exponents Rule. If n is any natural number, and a is any non-negative real
number or function with non-negative outputs, then

a1/n
�

n
√

a.

Additionally, if n is an odd natural number, then even when a is negative, we still have a1/n � n
√

a.

Warning 14.2.3 Exponents on Negative Bases. Some computers and calculators follow different conven-
tions when there is an exponent on a negative base. To see an example of this, visit WolframAlpha and try
entering cuberoot(-8), and then try (-8)^(1/3), and you will get different results. cuberoot(-8)will come
out as −2, but (-8)^(1/3) will come out as a certain non-real complex number. Most likely, the graphing
technology you are using does behave as in Fact 14.2.2, but you should confirm this.

With this relationship, we can re-write radical expressions as expressions with rational exponents.
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Example 14.2.4 Evaluate 4√9 with a calculator. Round your answer to two decimal places.

Since 4√9 � 91/4, we press the following buttons on a calculator to get the value: 9^(1/4). So, we see that
4√9 ≈ 1.73.

For many examples that follow, we will not need a calculator. We will, however, need to recognize the roots
in Table 14.2.5.

Square Roots Cube Roots 4th-Roots 5th-Roots Roots of Powers of 2√
1 � 1 3√1 � 1 4√1 � 1 5√1 � 1√
4 � 2 3√8 � 2 4√16 � 2 5√32 � 2

√
4 � 2√

9 � 3 3√27 � 3 4√81 � 3 3√8 � 2√
16 � 4 3√64 � 4 4√16 � 2√
25 � 5 3√125 � 5 5√32 � 2√
36 � 6 6√64 � 2√
49 � 7 7√128 � 2√
64 � 8 8√256 � 2√
81 � 9 9√512 � 2√

100 � 10 10√1024 � 2√
121 � 11√
144 � 12

Table 14.2.5: Small Roots of Appropriate Natural Numbers

Example 14.2.6 Convert the radical expression 3√5 into an expression with a rational exponent and sim-
plify it if possible.
3√5 � 51/3. No simplification is possible since the cube root of 5 is not a perfect integer appearing in
Table 14.2.5.

Example 14.2.7 Write the expressions in radical form using Fact 14.2.2 and simplify the results.

a. 41/2

b. (−9)1/2
c. −161/4

d. 64−1/3

e. (−27)1/3

f. 31/2 · 31/2

g. 120

Explanation.

a. 41/2
�
√

4
� 2

b. (−9)1/2 �
√
−9 This value is non-real.

c. Without parentheses around−16, the negative sign in this problem should be left out of the radical.

−161/4
� − 4√16
� −2
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d. 64−1/3
�

1
641/3

�
1

3√64

�
1
4

e. (−27)1/3 � 3√−27
� −3

f. 31/2 · 31/2
�
√

3 ·
√

3

�
√

3 · 3
�
√

9
� 3

g. 120
� 1

Fact 14.2.2 applies to variables in expressions just as much as it does to numbers.

Remark 14.2.8. In general, it is easier to do algebra with rational exponents on variables than with radicals
of variables. You should use Fact 14.2.2 to convert from rational exponents to radicals on variables only as a
last step in simplifying.

Example 14.2.9 Write the expressions as simplified as they can be using radicals.

a. 2x−1/2 b. (5x)1/3 c.
(
−27x12) 1/3

d.
(

16x
81y8

) 1/4

Explanation.

a. Note that in this example the exponent is only applied to the x. Making this type of observation
should be our first step for each of these exercises.

2x−1/2
�

2
x1/2 by the Negative Exponent Rule

�
2√
x

by the Radicals and Rational Exponents Rule

b. In this exercise, the exponent applies to both the 5 and x.

(5x)1/3 � 3√5x by the Radicals and Rational Exponents Rule

We could choose to simplify our answer in a different way. Note that neither one is technically
preferred over the other except that perhaps the first way is simpler.

(5x)1/3 � 51/3x1/3 by the Product to a Power Rule
�

3√5 3√x by the Radicals and Rational Exponents Rule

c. As in the previous exercise, we have a choice as to how to simplify this expression. Here we
should note that we do know what the cube root of −27 is, so we will take the path to splitting up

1012



14.2 Radical Expressions and Rational Exponents

the expression, using the Product to a Power Rule, before applying the root.(
−27x12) 1/3

� (−27)1/3 ·
(
x12) 1/3 by the Product to a Power Rule

� (−27)1/3 ·
(
x12·1/3

)
by the Power to a Power Rule

�
3√−27 · x4 by the Radicals and Rational Exponents Rule

� −3x4

d. We’ll use the exponent rule for a fraction raised to a power.

(
16x
81y8

) 1/4
�
(16x)1/4(
81y8

) 1/4 by the Quotient to a Power Rule

�
161/4 · x1/4

811/4 ·
(
y8

) 1/4 by the Product to a Power Rule

�
161/4 · x1/4

811/4 · y2

�

4√16 · 4√x
4√81 · y2

by the Radicals and Rational Exponents Rule

�
2 4√x
3y2

Fact 14.2.2 describes what can be done when there is a fractional exponent and the numerator is a 1. The
numerator doesn’t have to be a 1 though and we need guidance for that situation.

Fact 14.2.10 Radicals and Rational Exponents Rule. If m and n are natural numbers such that m
n is a reduced

fraction, and a is any non-negative real number or function that takes non-negative values, then

am/n
�

n
√

am �

(
n
√

a
)m

.

Additionally, if n is an odd natural number, then even when a is negative, we still have am/n � n
√

am �
(

n
√

a
)m .

Remark 14.2.11. By Fact 14.2.10, there are two ways to express am/n as a radical, both

am/n
�

n
√

am and am/n
�

(
n
√

a
)m

There are different times to use each formula. In general, use am/n � n
√

am for variables and am/n �
(

n
√

a
)m for

numbers.

Example 14.2.12

a. Consider the expression 274/3. Use both versions of Fact 14.2.10 to explain part of Remark 14.2.11.

b. Consider the expression x4/3. Use both versions of Fact 14.2.10 to explain the other part of Re-
mark 14.2.11.

Explanation.
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a. The expression 274/3 can be evaluated in the following two ways by Fact 14.2.10.

274/3
�

3√274 by the first part of the Radicals and Rational Exponents Rule
�

3√531441
� 81

or

274/3
�

(
3√27

)4
by the second part of the Radicals and Rational Exponents Rule

� 34

� 81

The calculations using am/n �
(

n
√

a
)m worked with smaller numbers and can be done without a

calculator. This is why we made the general recommendation in Remark 14.2.11.

b. The expression x4/3 can be evaluated in the following two ways by Fact 14.2.10.

x4/3
�

3√
x4 by the first part of Radicals and Rational Exponents Rule

or

x4/3
�

(
3√x

)4
by the second part of the Radicals and Rational Exponents Rule

In this case, the simplification using am/n � n
√

am is just shorter looking and easier to write. This is
why we made the general recommendation in Remark 14.2.11.

Example 14.2.13 Simplify the expressions using Fact 14.2.10.

a. 82/3 b. 16−3/2 c. −163/4 d.
(
− 27

64
) 2/3

Explanation.

a.

82/3
�

(
3√8

)2
by the second part of the Radicals and Rational Exponents Rule

� 22

� 4

b.

16−3/2
�

1
163/2 by the Negative Exponent Rule

�
1(√
16

)3 by the second part of the Radicals and Rational Exponents Rule

�
1
43

�
1
64
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c.

−163/4
� −

(
4√16

)3
by the second part of the Radicals and Rational Exponents Rule

� −23

� −8

d. In this problem the negative can be associated with either the numerator or the denominator, but
not both. We choose the numerator.

(
−27

64

) 2/3
�

(
3

√
−27

64

)2

by the second part of the Radicals and Rational Exponents Rule

�

( 3√−27
3√64

)2

�

(
−3
4

)2

�
(−3)2
(4)2

�
9
16

While we are looking at the algebra of xm/n, we
should briefly examine a graph to see what this
type of function can look like. Fractional powers
can make some fairly interesting graphs. We in-
vite you to play with these graphs on your favorite
graphing program.

−1 1

1

2

3

y �
x2/3

x

y

Figure 14.2.14: A Graph of y � x2/3

14.2.2 More Expressions with Rational Exponents

To recap, here is a “complete” list of exponent rules.
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Product Rule an · am � an+m

Power to a Power Rule (an)m � an·m

Product to a Power Rule (ab)n � an · bn

Quotient Rule an

am � an−m , as long as a , 0

Quotient to a Power Rule
( a

b

)n
�

an

bn , as long as b , 0

Zero Exponent Rule a0 � 1 for a , 0

Negative Exponent Rule a−n �
1

an

Negative Exponent Reciprocal Rule 1
a−n � an

Negative Exponent on Fraction Rule
(

x
y

)−n
�

( y
x

)n

Radical and Rational Exponent Rule x1/n � n
√

x

Radical and Rational Exponent Rule xm/n �
(

n
√

x
)m , usually for numbers

Radical and Rational Exponent Rule xm/n � n
√

xm , usually for variables

List 14.2.15: Complete List of Exponent Rules

Example 14.2.16 Convert the following radical expressions into expressions with rational exponents,
and simplify them if possible.

a. 1√
x

b. 1
3√25
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Explanation.

a.

1√
x
�

1
x1/2 by the Radicals and Rational Exponents Rule

� x−1/2 by the Negative Exponent Rule

b.

1
3√25

�
1

251/3 by the Radicals and Rational Exponents Rule

�
1
(52)1/3

�
1

52·1/3 by the Power to a Power Rule

�
1

52/3

� 5−2/3 by the Negative Exponent Rule

Learners of these simplifications often find it challenging, so we now include a plethora of examples of
varying difficulty.

Example 14.2.17 Use exponent properties in List 14.2.15 to simplify the expressions, and write all final
versions using radicals.

a. 2w7/8

b. 1
2 y−1/2

c. (27b)2/3

d.
(
−8p6) 5/3

e.
√

x3 · 4√x

f. h1/3 + h1/3 + h1/3

g.
√

z
3√z

h.
√

4
√

q

i. 3
(
c1/2 + d1/2)2

j. 3
(
4k2/3)−1/2

Explanation.

a.

2w7/8
� 2 8√

w7 by the Radicals and Rational Exponents Rule

b.

1
2 y−1/2

�
1
2

1
y1/2 by the Negative Exponent Rule

�
1
2

1√
y

by the Radicals and Rational Exponents Rule

�
1

2√y
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c.

(27b)2/3 � (27)2/3 · (b)2/3 by the Product to a Power Rule

�

(
3√27

)2
· 3√

b2 by the Radicals and Rational Exponents Rule

� 32 · 3√
b2

� 9 3√
b2

d. (
−8p6) 5/3

� (−8)5/3 ·
(
p6) 5/3 by the Product to a Power Rule

� (−8)5/3 · p6·5/3 by the Power to a Power Rule

�

(
3√−8

)5
· p10 by the Radicals and Rational Exponents Rule

� (−2)5 · p10

� −32p10

e.
√

x3 · 4√x � x3/2 · x1/4 by the Radicals and Rational Exponents Rule
� x3/2+1/4 by the Product Rule
� x6/4+1/4

� x7/4

�
4√
x7 by the Radicals and Rational Exponents Rule

f.

h1/3
+ h1/3

+ h1/3
� 3h1/3

� 3 3√h by the Radicals and Rational Exponents Rule

g.
√

z
3√z

�
z1/2

z1/3 by the Radicals and Rational Exponents Rule

� z1/2−1/3 by the Quotient Rule
� z3/6−2/6

� z1/6

�
6√z by the Radicals and Rational Exponents Rule

h. √
4
√

q �

√
q1/4 by the Radicals and Rational Exponents Rule

�

(
q1/4

) 1/2
by the Radicals and Rational Exponents Rule
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� q1/4·1/2 by the Power to a Power Rule
� q1/8

� 8
√

q by the Radicals and Rational Exponents Rule

i.

3
(
c1/2

+ d1/2
)2

� 3
(
c1/2

+ d1/2
) (

c1/2
+ d1/2

)
� 3

((
c1/2

)2
+ 2c1/2 · d1/2

+

(
d1/2

)2
)

� 3
(
c1/2·2

+ 2c1/2 · d1/2
+ d1/2·2

)
� 3

(
c + 2c1/2 · d1/2

+ d
)

� 3
(
c + 2(cd)1/2 + d

)
by the Product to a Power Rule

� 3
(
c + 2
√

cd + d
)

by the Radicals and Rational Exponents Rule

� 3c + 6
√

cd + 3d

j.

3
(
4k2/3

)−1/2
�

3(
4k2/3) 1/2 by the Negative Exponent Rule

�
3

41/2 (
k2/3) 1/2 by the Product to a Power Rule

�
3

41/2k2/3·1/2 by the Power to a Power Rule

�
3

41/2k1/3

�
3√
4 3√k

by the Radicals and Rational Exponents Rule

�
3

2 3√k

We will end a with a short application on rational exponents. Kepler’s Laws of Orbital Motion¹ describe
how planets orbit stars and how satellites orbit planets. In particular, his third law has a rational exponent,
which we will now explore.

Example 14.2.18 Kepler and the Satellite. Kepler’s third law of motion says that for objects with a
roughly circular orbit that the time (in hours) that it takes to make one full revolution around the planet,
T, is proportional to three-halves power of the distance (in kilometers) from the center of the planet to
the satellite, r. For the Earth, it looks like this:

T �
2π√

G ·ME
r3/2

¹en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion
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In this case, both G and ME are constants. G stands for the universal gravitational constanta where G
is about 8.65 × 10−13 km3

kg h2 and ME stands for the mass of the Earthb where ME is about 5.972 × 1024 kg.
Inputting these values into this formula yields a simplified version that looks like this:

T ≈ 2.76 × 10−6r3/2

Most satellites orbit in what is called low Earth orbitc, including the international space station which
orbits at about 340 km above from Earth’s surface. The Earth’s average radius is about 6380 km. Find
the period of the international space station.

Explanation. The formula has already been identified, but the input takes just a little thought. The
formula uses r as the distance from the center of the Earth to the satellite, so to find r we need to combine
the radius of the Earth and the distance to the satellite above the surface of the Earth.

r � 340 + 6380
� 6720

Now we can input this value into the formula and evaluate.

T ≈ 2.76 · 10−6r3/2

≈ 2.76 · 10−6(6720)3/2

≈ 2.76 · 10−6
(√

6720
)3

≈ 1.52

The formula tells us that it takes a little more than an hour and a half for the ISS to orbit the Earth! That
works out to 15 or 16 sunrises per day.

aen.wikipedia.org/wiki/Gravitational_constant
ben.wikipedia.org/wiki/Earth_mass
cen.wikipedia.org/wiki/Low_Earth_orbit

Exercises

Review and Warmup

Evaluate the following.

a.
√

36 =

b.
√

1 =

c.
√

4 =

1. Evaluate the following.

a.
√

49 =

b.
√

81 =

c.
√

36 =

2. Evaluate the following.

a.
√

81
16 =

b.
√
−144

121 =

3.

1020

https://en.wikipedia.org/wiki/Gravitational_constant
https://en.wikipedia.org/wiki/Earth_mass
https://en.wikipedia.org/wiki/Low_Earth_orbit
https://en.wikipedia.org/wiki/Gravitational_constant
https://en.wikipedia.org/wiki/Earth_mass
https://en.wikipedia.org/wiki/Low_Earth_orbit


14.2 Radical Expressions and Rational Exponents

Evaluate the following.

a.
√

100
49 =

b.
√
−16

9 =

4. Evaluate the following.

Do not use a calculator.

a.
√

144 =

b.
√

1.44 =

c.
√

14400 =

5. Evaluate the following.

Do not use a calculator.

a.
√

4 =

b.
√

0.04 =

c.
√

400 =

6.

Use the properties of expo-
nents to simplify the expres-
sion.

r4 · r19

7. Use the properties of expo-
nents to simplify the expres-
sion.

x6 · x12

8. Use the properties of expo-
nents to simplify the expres-
sion.(
y5)4

9.

Use the properties of expo-
nents to simplify the expres-
sion.(
t7)11

10. Use the properties of expo-
nents to simplify the expres-
sion.(

5x7

8

)3

�

11. Use the properties of expo-
nents to simplify the expres-
sion.(

7x8

6

)2

�

12.

Use the properties of expo-
nents to simplify the expres-
sion.(
−10x10)3

13. Use the properties of expo-
nents to simplify the expres-
sion.(
−6t11)2

14. Use the properties of expo-
nents to simplify the expres-
sion.
t3

t
�

15.

Use the properties of expo-
nents to simplify the expres-
sion.
y5

y4 �

16. Rewrite the expression sim-
plified and using only posi-
tive exponents.

x−10 · x8 �

17. Rewrite the expression sim-
plified and using only posi-
tive exponents.

y−4 · y2 �

18.

Rewrite the expression sim-
plified and using only posi-
tive exponents.

(−6y−16)·(2y10) �

19. Rewrite the expression sim-
plified and using only posi-
tive exponents.

(−3r−10) · (6r2) �

20.
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Calculations Without using a calculator, evaluate the expression.

a. 64
1
2 �

b. (−64) 1
2 �

c. −64
1
2 �

21. a. 81
1
2 �

b. (−81) 1
2 �

c. −81
1
2 �

22. a. 125
1
3 �

b. (−125) 1
3 �

c. −125
1
3 �

23.

a. 8
1
3 �

b. (−8) 1
3 �

c. −8
1
3 �

24. 8−
2
3 �25. 32−

2
5 �26.

(
1
27

)− 2
3

�27.
(

1
27

)− 2
3

�28. 4√163 �29.

4√813 �30. 5√1024 �31. 3√64 �32.

a. 3√1 �

b. 3√−1 �

c. − 3√1 �

33. a. 3√8 �

b. 3√−8 �

c. − 3√8 �

34. a. 4√1 �

b. 4√−1 �

c. − 4√1 �

35.

a. 4√16 �

b. 4√−16 �

c. − 4√16 �

36. 4√103 �37. 3√82 �38.

3

√
−27

64 � .39. 3

√
− 27

125 � .40.

Convert Radicals to Fractional Exponents Use rational exponents to write the expression.
√

b=41. 8√x=42. 5
√

5y + 7 �43.

4√2z + 1 �44. 7√t �45. 4√r �46.
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1√
m3

�47. 1
7√n4

�48.

Convert Fractional Exponents to Radicals Convert the expression to radical notation.

a
3
4 =49. b

5
6 =50. x

5
6 =51.

r
2
3 =52. 16

1
6 z

5
6 =53. 5

1
5 t

4
5 =54.

Convert r
3
7 to a radical.

⊙ 3√r7

⊙ 7√r3

55. Convert m
5
6 to a radical.

⊙ 6√m5

⊙ 5√m6

56. Convert n−
5
8 to a radical.

⊙ 1
5√n8

⊙ − 8√n5

⊙ − 5√n8

⊙ 1
8√n5

57.

Convert a−
4
7 to a radical.

⊙ − 4√a7

⊙ − 7√a4

⊙ 1
4√a7

⊙ 1
7√a4

58. Convert 5 3
7 b

5
7 to a radical.

⊙ 53 · 7√b5

⊙ 3√57 · 5√b7

⊙ 7√53b5

⊙ 57 · 5√b7

59. Convert 2 4
5 x

2
5 to a radical.

⊙ 5√24x2

⊙ 4√25 ·
√

x5

⊙ 24 · 5√x2

⊙ 25 ·
√

x5

60.

Simplifying Expressions with Rational Exponents Simplify the expression, answering with rational ex-
ponents and not radicals.

3
√

y 3
√

y �61. 9√z 9√z �62. 5√32t3 �63.

3√125r �64.
3√8m
6√m5

�65.
√

16n
6√n5

�66.

5√32a4

10√a3
�67.

3√8b2

6√b
�68.

√
c · 6√

c5 �69.
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5
√

y · 10
√

y3 �70. 3
√

4√z �71.
4
√

3√t �72.

√
c 6√c �73.

√
n 7√n �74.
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14.3 More on Rationalizing the Denominator

In Section 8.2, we learned how to rationalize the denominator in simple expressions like 1√
2
. We will briefly

review this topic and then extend the concept to the next level.

14.3.1 A Review of Rationalizing the Denominator

To remove radicals from the denominator of 1√
2
, we multiply the numerator and denominator by

√
2:

1√
2
�

1√
2
·
√

2√
2

�

√
2

2

We used the property: √
x ·
√

x � x , where x is positive

Example 14.3.2 Rationalize the denominator of the expressions.

a. 3√
6 b.

√
5√
72

Explanation.

a. To rationalize the denominator of 3√
6
, we take the expression and multiply by a special version of

1 to make the radical in the denominator cancel.

3√
6
�

3√
6
·
√

6√
6

�
3
√

6
6

�

√
6

2

b. Rationalizing the denominator of
√

5√
72

is slightly trickier. We could go the brute force method and
multiply both the numerator and denominator by

√
72, and it would be effective; however, we

should note that the
√

72 in the denominator can be reduced first. This will simplify future algebra.
√

5√
72

�

√
5√

36 · 2

�

√
5√

36 ·
√

2

�

√
5

6 ·
√

2
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Now all that remains is to multiply the numerator and denominator by
√

2.

�

√
5

6 ·
√

2
·
√

2√
2

�

√
10

6 · 2

�

√
10

12

14.3.2 Rationalize Denominator with Difference of Squares Formula

How can be remove the radical from the denominator of 1√
2+1

? Let’s try multiplying the numerator and
denominator by

√
2:

1√
2 + 1

�
1(√

2 + 1
) · √2√

2

�

√
2√

2 ·
√

2 + 1 ·
√

2

�

√
2

2 +
√

2

We removed one radical from the denominator, but created another. We need to find another method. The
difference of squares formula will help:

(a + b)(a − b) � a2 − b2

Those two squares in a2 − b2 can remove square roots. To remove the radical from the denominator of 1√
2+1

,
we multiply the numerator and denominator by

√
2 − 1:

1√
2 + 1

�
1(√

2 + 1
) ·

(√
2 − 1

)(√
2 − 1

)
�

√
2 − 1(√

2
)2
− (1)2

�

√
2 − 1

2 − 1

�

√
2 − 1
1

�
√

2 − 1

Let’s look at a few more examples.

Example 14.3.3 Rationalize the denominator in
√

7−
√

2√
5+
√

3
.

Explanation. To remove radicals in
√

5+
√

3 with the difference of squares formula, wemultiply it with
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√
5 −
√

3.

√
7 −
√

2√
5 +
√

3
�

√
7 −
√

2√
5 +
√

3
·

(√
5 −
√

3
)(√

5 −
√

3
)

�

√
7 ·
√

5 −
√

7 ·
√

3 −
√

2 ·
√

5 −
√

2 · −
√

3(√
5
)2
−

(√
3
)2

�

√
35 −
√

21 −
√

10 +
√

6
5 − 3

�

√
35 −
√

21 −
√

10 +
√

6
2

Example 14.3.4 Rationalize the denominator in
√

3
3−2
√

3
.

Explanation. To remove the radical in 3 − 2
√

3 with the difference of squares formula, we multiply it
with 3 + 2

√
3.

√
3

3 − 2
√

3
�

√
3

(3 − 2
√

3)
· (3 + 2

√
3)

(3 + 2
√

3)

�
3 ·
√

3 + 2
√

3 ·
√

3

(3)2 −
(
2
√

3
)2

�
3
√

3 + 2 · 3

9 − 22
(√

3
)2

�
3
√

3 + 6
9 − 4(3)

�

3
(√

3 + 2
)

9 − 12

�

3
(√

3 + 2
)

−3

�

√
3 + 2
−1

� −
√

3 − 2

Exercises

Review and Warmup Rationalize the denominator and simplify the expression.
1√
6
�1. 1√

7
�2. 30√

10
�3. 20√

10
�4.
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1√
28

�5. 1√
45

�6. 8√
180

�7. 9√
72

�8.

Further Rationalizing a Denominator Rationalize the denominator and simplify the expression.

3√
m

�9. 1√
n

�10.
√

13
14 �11.

√
14
15 �12.

√
11
72 �13.

√
5
24 �14.

Rationalizing the Denominator Using the Difference of Squares Formula Rationalize the denominator
and simplify the expression.

3√
11 + 8

�15. 4√
2 + 3

�16. 5√
17 + 6

�17. 3√
6 + 5

�18.

√
2 − 12√
11 + 10

�19.
√

5 − 13√
13 + 8

�20.
√

2 − 14√
7 + 5

�21.
√

5 − 15√
13 + 3

�22.
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14.4 Solving Radical Equations

In this section, we will learn how to solve equations involving radicals.

14.4.1 Solving Radical Equations

One common application of radicals is the Pythagorean Theorem. We already saw some examples in earlier
sections. We will look at some other applications of radicals in this section.

The formula T � 2π
√

L
1
is used to calculate the period of a pendulum and is attributed to the scientist

Christiaan Huygens¹. In the formula, T stands for the pendulum’s period (how long one back-and-forth
oscillation takes) in seconds, L stands for the pendulum’s length in meters, and 1 is approximately 9.8 m

s2

which is the gravitational acceleration constant on Earth.

An engineer is designing a pendulum. Its period must be 10 seconds. How long should the pendulum’s
length be?

We will substitute 10 into the formula for T and also the value of 1, and then solve for L:

10 � 2π
√

L
9.8

1
2π · 10 �

1
2π · 2π

√
L

9.8
5
π

�

√
L

9.8(
5
π

)2

�

(√
L

9.8

)2

canceling square root by squaring both sides

25
π2 �

L
9.8

9.8 · 25
π2 � 9.8 · L

9.8
24.82 ≈ L

To build a pendulum with a period of 10 seconds, its length should be approximately 24.82 meters.

Remark 14.4.2. The basic strategy to solve radical equations is to isolate the radical on one side of the equa-
tion and then square both sides to cancel the radical.

Remark 14.4.3. Squaring both sides of an equation is “dangerous,” as it could create extraneous solutions,
which will not make the equation true. For example, if we square both sides of 1 � −1, we have:

1 � −1 false
(1)2 � (−1)2 square both sides . . .

1 � 1 true

By squaring both sides of an equation, we turned a false equation into a true one. This is why wemust check
solutions when we square both sides of an equation.

¹en.wikipedia.org/wiki/Christiaan_Huygens#Pendulums
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Example 14.4.4 Solve the equation 1 +
√

y − 1 � 4 for y.

Explanation. We will isolate the radical first, and then square both sides.

1 +
√

y − 1 � 4√
y − 1 � 3(√

y − 1
)2

� 32

y − 1 � 9
y � 10

Because we squared both sides of an equation, we must check the solution.

1 +
√

10 − 1 ?
� 4

1 +
√

9 ?
� 4

1 + 3 ✓� 4

So, 10 is the solution to the equation 1 +
√

y − 1 � 4.

Example 14.4.5 Solve the equation 5 +
√

q � 3 for q.

Explanation. First, isolate the radical and square both sides.

5 +
√

q � 3
√

q � −2(√
q
)2

� (−2)2

q � 4

Because we squared both sides of an equation, we must check the solution.

5 +
√

4 ?
� 3

5 + 2 ?
� 3

7 no
� 3

Thus, the potential solution −2 is actually extraneous and we have no real solutions to the equation
5 +
√

q � 3. The solution set is the empty set, ∅.

Remark 14.4.6. In the previous example, it would be legitimate to observe that there are no solutions at
earlier stages. From the very beginning, how could 5 plus a positive quantity result in 3? Or at the second
step, since square roots are non-negative, how could a square root equal −2?

You do not have to be able to make these observations. If you follow the general steps for solving radical
equations and you remember to check the possible solutions you find, then that will be enough.

Example 14.4.7 Solve for z in
√

z + 2 � z.
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Explanation. We will isolate the radical first, and then square both sides.
√

z + 2 � z
√

z � z − 2(√
z
)2

� (z − 2)2

z � z2 − 4z + 4
0 � z2 − 5z + 4
0 � (z − 1)(z − 4)

z − 1 � 0 or z − 4 � 0
z � 1 or z � 4

Because we squared both sides of an equation, we must check both solutions.
√

1 + 2 ?
� 1

√
4 + 2 ?

� 4

1 + 2 no
� 1 2 + 2 ✓� 4

It turned out that 1 is an extraneous solution, but 4 is a valid solution. So the equation has one solution:
4. The solution set is {4}.

Sometimes, we need to square both sides of an equation twice before finding the solutions, like in the next
example.

Example 14.4.8 Solve the equation
√

p − 5 � 5 − √p for p.

Explanation. We cannot isolate two radicals, sowewill simply square both sides, and later try to isolate
the remaining radical.√

p − 5 � 5 − √p(√
p − 5

)2
�

(
5 − √p

)2

p − 5 � 25 − 10√p + p after expanding the binomial squared
−5 � 25 − 10√p
−30 � −10√p

3 �
√

p

32
�

(√
p
)2

9 � p

Because we squared both sides of an equation, we must check the solution.
√

9 − 5 ?
� 5 −

√
9

√
4 ?
� 5 − 3

2 ✓� 2
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So 9 is the solution. The solution set is {9}.

Example 14.4.9 Solve the equation
√

2n − 6 � 1 +
√

n − 2 for n.

Explanation. We cannot isolate two radicals, sowewill simply square both sides, and later try to isolate
the remaining radical.

√
2n − 6 � 1 +

√
n − 2(√

2n − 6
)2

�

(
1 +
√

n − 2
)2

2n − 6 � 12
+ 2
√

n − 2 +

(√
n − 2

)2

2n − 6 � 1 + 2
√

n − 2 + n − 2

2n − 6 � 2
√

n − 2 + n − 1

n − 5 � 2
√

n − 2

Note here that we can leave the factor of 2 next to the radical. We will square the 2 also.

(n − 5)2 �

(
2
√

n − 2
)2

n2 − 10n + 25 � 4(n − 2)
n2 − 10n + 25 � 4n − 8
n2 − 14n + 33 � 0
(n − 11)(n − 3) � 0

n − 11 � 0 or n − 3 � 0
n � 11 or n � 3

So our two potential solutions are 11 and 3. We should now verify that they truly are solutions.√
2(11) − 6 ?

� 1 +
√

11 − 2
√

2(3) − 6 ?
� 1 +

√
3 − 2

√
22 − 6 ?

� 1 +
√

9
√

6 − 6 ?
� 1 +

√
1

√
16 ?

� 1 + 3
√

0 ?
� 1 + 1

4 ✓� 4 0 no
� 2

So, 11 is the only solution. The solution set is {11}.

Let’s look at an example of solving an equation with a cube root. There is very little difference between
solving a cube-root equation and solving a square-root equation. Instead of squaring both sides, you cube
both sides.

Example 14.4.10 Solve for q in 3
√

2 − q + 2 � 5.

1032



14.4 Solving Radical Equations

Explanation.

3
√

2 − q + 2 � 5
3
√

2 − q � 3(
3
√

2 − q
)3

� 33

2 − q � 27
−q � 25

q � −25

Unlike squaring both sides of an equation, raising both sides of an equation to the 3rd power will not
create extraneous solutions. It’s still good practice to check solution, though. This part is left as exercise.

14.4.2 Solving a Radical Equation with a Variable

We also need to be able to solve radical equationswith other variables, like in the next example. The strategy
is the same: isolate the radical, and then raise both sides to a certain power to cancel the radical.

Example 14.4.11 The study of black holes has resulted in some interesting science. One fundamental
concept about black holes is that there is a distance close enough to the black hole that not even light can
escape, called the Schwarzschild radiusa or the event horizon radius. To find the Schwarzschild radius,
Rs , we set the formula for the escape velocity equal to the speed of light, c, and we get c �

√
2GM

Rs
which

we need to solve for Rs . Note that G is a constant, and M is the mass of the black hole.

Explanation. We will start by taking the equation c �

√
2GM

Rs
and applying our standard radical-

equation-solving techniques. Isolate the radical and square both sides:

c �

√
2GM

Rs

c2
�

(√
2GM

Rs

)2

c2
�

2GM
Rs

Rs · c2
� Rs ·

2GM
Rs

Rs c2
� 2GM

Rs c2

c2 �
2GM

c2

Rs �
2GM

c2

So, the Schwarzschild radius can be found using the formula Rs �
2GM

c2 .

aen.wikipedia.org/wiki/Schwarzschild_radius
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Example 14.4.12 The term redshifta refers to the Doppler effectb for light. When an object (like a star)
is moving away from Earth at very fast speeds, the wavelength of the light emitted by the star is in-
creased due to the distance between the planets increasing (and the constant speed of light). Increased
wavelength makes light “redder.” The opposite phenomenon is called blueshiftc. It turns out that the
formula to calculate the redshift for a star moving away from the Earth uses square roots:

fr � fs ·
√

c − v
c + v

where c stands for the constant speed of light in a vacuum, fr represents the frequency of the light that
the receiver on Earth sees, fs represents the frequency of light that the source star emits, and v is the
velocity that the star moving away from Earth. Solve this equation for v.

Explanation. We will take the original equation fr � fs ·
√ c−v

c+v and follow the steps to solving a radical
equation. We could isolate the radical and then square both sides, but in this case isolating the radical
is not necessary. If we begin by squaring both sides, that too will eliminate the radical.

fr � fs ·
√

c − v
c + v(

fr
)2

�

(
fs ·

√
c − v
c + v

)2

f 2
r � f 2

s ·
c − v
c + v

f 2
r · (c + v) � f 2

s ·
c − v
c + v

· (c + v)

f 2
r (c + v) � f 2

s (c − v)
f 2
r c + f 2

r v � f 2
s c − f 2

s v

f 2
r v + f 2

s v � f 2
s c − f 2

r c(
f 2
s + f 2

r
)

v �
(

f 2
s − f 2

r
)

c

v �
f 2
s − f 2

r

f 2
s + f 2

r
c

This formulawill tell us the velocity of the star away fromEarth ifwe can know the respective frequencies
of the starlight. This formula is used to demonstrate that the universe is expandingd.

aen.wikipedia.org/wiki/Redshift
ben.wikipedia.org/wiki/Doppler_effect
chttps://en.wikipedia.org/wiki/Blueshift
den.wikipedia.org/wiki/Metric_expansion_of_space

14.4.3 Graphing Technology

We can use technology to solve equations by finding where two graphs intersect.

Example 14.4.13 Solve the equation 1 − x �
√

x + 5 with technology.

Explanation.
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14.4 Solving Radical Equations

We define f (x) � 1 − x and 1(x) �
√

x + 5, and
then look for the intersection(s) of the graphs.
Since the two functions intersect at (−1, 2), the
solution to 1 − x �

√
x + 5 is −1. The solution

set is {−1}.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

1(x) �
√

x + 5

f (x)
� 1 − x

x

y

Figure 14.4.14: Graph of f (x) � 1 − x and
1(x) �

√
x + 5

Before we finish with this example, we would like to illustrate why there are sometimes extraneous
solutions to radical equations. It has to do with the squaring-both-sides step of the solving process.

A graph of a radical, for example y �
√

x + 5, ac-
tually graphs as half of a sideways parabola, as
you can see in Figure 14.4.14. When we square
both sides of that equation, we get y2 � x +

5 which actually graphs as a complete sideways
parabola.

The curve and the line now intersect twice! This
second solution (which is 4, by the way) is the
extraneous solution that we would have found
had we solved 1 − x �

√
x + 5 algebraically.

−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

y2 � x + 5

f (x)
� 1 − x

x

y

Figure 14.4.15: Graph of f (x) � 1 − x and y2 �

x + 5

Example 14.4.16 Solve the equation 3 +
√

x + 4 � x −
√

x − 4 graphically using technology.

Explanation.
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To solve the equation graphically, first we will
assign the left side of the equation the label
m(x) � 3 +

√
x + 4 and the right side n(x) �

x −
√

x − 4. Next we will make graphs of both m
and n on the same grid and look for their inter-
section point(s). Since the two functions intersect
at about (8.75, 6.571), the solution to 3+

√
x + 4 �

x −
√

x − 4 is 8.75. The solution set is {8.75}.

−4 −2 2 4 6 8 10 12 14

1

2

3

4

5

6

7

8

y � m(x)

y �
n(x
)

x

y

Figure 14.4.17: Graph of m(x) � 3 +
√

x + 4 and
n(x) � x −

√
x − 4

Exercises

Review and Warmup Solve the equation.

−7y + 3 � −y − 511. −4r + 6 � −r − 122. −155 � −5(10 − 3a)3. −72 � −4(4 − 2c)4.

−24 � 3 − 9(A − 2)5. 18 � 9 − 3(C − 2)6. (x + 5)2 � 497. (x + 8)2 � 168.

x2 + 21x + 108 � 09. x2 − x − 90 � 010. x2 − 16x + 54 � −911. x2 + 3x − 32 � 812.

Solving Radical Equations Solve the equation.
√

y � 713.
√

r � 314.
√

5r � 2515.
√

3t � 916.

2
√

t � 1017. 4
√

t � 818. −3
√

x � 1219. −2
√

x � 420.

−2
√
−1 − y + 9 � −521. −5

√
8 − y + 9 � −1122.

√
2r + 80 � r23.

√
4r + 21 � r24.

√
t + 6 � t25.

√
t + 72 � t26. t �

√
t + 1 + 527. x �

√
x − 3 + 928.

√
x + 8 �

√
x + 229.

√
y + 3 �

√
y + 130.

√
y + 3 � −1 − √y31.

√
r − 7 � 1 −

√
r32.
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√
6r � 633.

√
3t � 934. 3√t − 9 � 435. 3√t − 6 � 836.

√
3x + 3 + 9 � 1737.

√
8x + 6 + 7 � 1538.

√
y + 42 � y39.

√
y + 12 � y40.

3√r − 9 � 641. 3√r − 5 � −642. r �
√

r + 3 + 943. t �
√

t + 1 + 8944.

√
38 − t � t + 445.

√
148 − x � x + 846.

Solving Radical Equations Using Technology Use technology to solve the equation

√
x − 2.1 �

√
x − 4.

47. √
x − 2 �

√
x − 2.1.

48.

Solving Radical Equations with Variables

Solve the equation for R. Assume that R is
positive.

Z �

√
L2 + R2

R � .

49. According to the Pythagorean Theorem, the
length c of the hypothenuse of a rectangular
triangle can be found through the following
equation:

c �

√
a2 + b2

Solve the equation for the length a of one of
the triangle’s legs.

a � .

50.

In an electric circuit, resonance occurs when
the frequency f , inductance L, and capacitance
C fulfill the following equation:

f �
1

2π
√

LC

Solve the equation for the inductance L.

The frequency is measured in Hertz, the in-
ductance inHenry, and the capacitance in Farad.

L � .

51. A pendulum has the length L. The time pe-
riod T that it takes to once swing back and
forth can be foundwith the following formula:

T � 2π
√

L
32

Solve the equation for the length L.

The length is measured in feet and the time
period in seconds.

L � .

52.
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Radical Equation Applications According to the Pythagorean Theorem, the length c of the hypothenuse
of a rectangular triangle can be found through the following equation.

c �

√
a2 + b2

If a rectangular triangle has a hypothenuse of
41 ft and one leg is 40 ft long, how long is the
third side of the triangle?

The third side of the triangle is
long.

53. If a rectangular triangle has a hypothenuse of
41 ft and one leg is 40 ft long, how long is the
third side of the triangle?

The third side of the triangle is
long.

54.

In a coordinate system, the distance r of a point (x , y) from the origin (0, 0) is given by the following equation.

r �

√
x2 + y2

If a point in a coordinate system is 5 cm away
from the origin and its x coordinate is 4 cm,
what is its y coordinate? Assume that y is pos-
itive.

y � .

55. If a point in a coordinate system is 5 cm away
from the origin and its x coordinate is 4 cm,
what is its y coordinate? Assume that y is pos-
itive.

y � .

56.

A pendulum has the length L ft. The time
period T that it takes to once swing back and
forth is 4 s. Use the following formula to find
its length.

T � 2π
√

L
32

The pendulum is long.

57. A pendulum has the length L ft. The time
period T that it takes to once swing back and
forth is 6 s. Use the following formula to find
its length.

T � 2π
√

L
32

The pendulum is long.

58.

Challenge Solve for x.

√
1 +
√

6 �

√√√
2 +

√
1√
x
− 1

59. √
1 +
√

7 �

√√√
2 +

√
1√
x
− 1

60.
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14.5 Radical Functions and Equations Chapter Review

14.5.1 Introduction to Radical Functions

In Section 14.1 we covered the square root and other root functions. We learned how to find the domain
of radical functions algebraically and the range graphically. We also saw the distance formula which is an
application of square roots.

Example 14.5.1 The Square Root Function. Algebraically find the domain of the function f where
f (x) �

√
3x − 1 + 2 and then find the range by making a graph.

Explanation. Using Fact 14.1.29 to find the function’s domain, we set the radicand greater than or equal
to zero and solve:

3x − 1 ≥ 0
3x ≥ 1

x ≥ 1
3

The function’s domain is
[ 1

3 ,∞
)
in interval notation.

To find the function’s range, weuse technology to
look at a graph of the function. The graph shows
that the function’s range is [2,∞). The graph also
verifies the function’s domain is indeed

[ 1
3 ,∞

)
.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

( 13 , 2)

x

y

Figure 14.5.2: Graph of f (x) �
√

3x − 1 + 2

Example 14.5.3 The Distance Formula. Find the distance between (6,−13) and (−4, 17).

Explanation. To calculate the distance between (6,−13) and (−4, 17), we use the distance formula. It’s
good practice to mark each value with the corresponding variables in the formula:

(
x1
6 ,

y1
−13), (

x2
−4,

y2
17)

We have:

d �

√
(x2 − x1)2 + (y2 − y1)2

1039



Chapter 14 Radical Functions and Equations

d �

√
(−4 − 6)2 + (17 − (−13))2

d �

√
(−10)2 + (30)2

d �
√

100 + 900

d �
√

1000

d �
√

100 ·
√

10

d � 10
√

10

The distance between (6,−13) and (−4, 17) is 10
√

10 or approximately 31.62 units.

Example 14.5.4 The Cube Root Function. Algebraically find the domain and graphically find the range
of the function 1 where 1(x) � −2 3√x + 6 − 1.

Explanation. First note that the index of the function 1 for 1(x) � −2 3√x + 6− 1 is odd. By Fact 14.1.29,
the domain is (−∞,∞).
To find the function’s range, we use technology to graph the function. According to the graph, the
function’s range is also (−∞,∞).

−12 −9 −6 −3 3 6 9 12

−8

−6

−4

−2

2

4

6

8

y � −2 3√x + 6 − 1

x

y

Figure 14.5.5: Graph of y � 1(x) � −2 3√x + 6 − 1

Example 14.5.6 Other Roots. Algebraically find the domain and graphically find the range of the func-
tion h where h(x) � 8 − 5

2
4√6 − 2x.

Explanation. First note that the index of this function is 4, which is even. By Fact 14.1.29, to find the
domain of this function we must set the radicand greater or equal to zero and solve.

6 − 2x ≥ 0
−2x ≥ − 6
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x ≤ −6
−2

x ≤ 3

So, the domain of h is (−∞, 3].
To find the function’s range, we use technology to graph the function. By the graph, the function’s range
is (−∞, 8].

−8 −6 −4 −2 2

−2

−1

1

2

3

4

5

6

7

8

y � 8 − 5
2

4√6 − 2x

x

y

Figure 14.5.7: Graph of y � h(x) � 8 − 5
2

4√6 − 2x

14.5.2 Radical Expressions and Rational Exponents

In Section 14.2 we learned the rational exponent rule and added it to our list of exponent rules.

Example 14.5.8Radical Expressions andRational Exponents. Simplify the expressions using Fact 14.2.2
or Fact 14.2.10.

a. 1001/2 b. (−64)−1/3 c. −813/4 d.
(
− 1

27
) 2/3

Explanation.

a. 1001/2
�

(√
100

)
� 10
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b. (−64)−1/3
�

1
(−64)1/3

�
1(

3
√
(−64)

)
�

1
−4

c. −813/4
� −

(
4√81

)3

� −33

� −27
d. In this problem the negative can be associated with either the numerator or the denominator, but

not both. We choose the numerator.

(
− 1

27

) 2/3
�

(
3

√
− 1

27

)2

�

( 3√−1
3√27

)2

�

(
−1
3

)2

�
(−1)2
(3)2

�
1
9

Example 14.5.9 More Expressions with Rational Exponents. Use exponent properties in List 14.2.15 to
simplify the expressions, and write all final versions using radicals.

a. 7z5/9

b. 5
4 x−2/3

c.
(
−9q5) 4/5

d.
√

y5 · 4
√

y2

e.
√

t3
3√t2

f.
√

3√x

g. 5
(
4 + a1/2)2

h. −6
(
2p−5/2) 3/5

Explanation.
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a. 7z5/9
� 7 9√

z5

b. 5
4 x−2/3

�
5
4 ·

1
x2/3

�
5
4 ·

1
3√x2

�
5

4 3√x2

c.
(
−9q5) 4/5

� (−9)4/5 ·
(
q5) 4/5

� (−9)4/5 · q5·4/5

�

(
5√−9

)4
· q4

�

(
q 5√−9

)4

d.
√

y5 · 4
√

y2 � y5/2 · y2/4

� y5/2+2/4

� y10/4+1/4

� x11/4

�
4√
x11

e.
√

t3

3√t2
�

t3/2

t2/3

� t3/2−2/3

� t9/6−4/6

� t5/6

�
6√
t5

f.
√

3√x �

√
x1/3

�

(
x1/3

) 1/2

� x1/3·1/2

� x1/6

�
6√x

g. 5
(
4 + a1/2

)2
� 5

(
4 + a1/2

) (
4 + a1/2

)
� 5

(
42

+ 2 · 4 · a1/2
+

(
a1/2

)2
)

� 5
(
16 + 8a1/2

+ a1/2·2
)

� 5
(
16 + 8a1/2

+ a
)

� 5
(
16 + 8

√
a + a

)
� 80 + 40

√
a + 5a

h. −6
(
2p−5/2

) 3/5
� −6 · 23/5 · p−5/2·3/5

� −6 · 23/5 · p−3/2

� −6 · 23/5

p3/2

� −6 5√23√
p3

� −6 5√8√
p3

14.5.3 More on Rationalizing the Denominator

In Section 14.3 we covered how to rationalize the denominator when it contains a single square root or a
binomial.

Example 14.5.10 A Review of Rationalizing the Denominator. Rationalize the denominator of the ex-
pressions.

a. 12√
3 b.

√
5√
75

Explanation.

a.

12√
3
�

12√
3
·
√

3√
3
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�
12
√

3
3

� 4
√

3

b. First we will simplify
√

75.
√

5√
75

�

√
5√

25 · 3

�

√
5√

25 ·
√

3

�

√
5

5
√

3

Now we can rationalize the denominator by multiplying the numerator and denominator by
√

3.

�

√
5

5
√

3
·
√

3√
3

�

√
15

5 · 3

�

√
15

15

Example 14.5.11 Rationalize Denominator with Difference of Squares Formula. Rationalize the de-
nominator in

√
6−
√

5√
3+
√

2
.

Explanation. To remove radicals in
√

3+
√

2 with the difference of squares formula, wemultiply it with√
3 −
√

2.

√
6 −
√

5√
3 +
√

2
�

√
6 −
√

5√
3 +
√

2
·

(√
3 −
√

2
)(√

3 −
√

2
)

�

√
6 ·
√

3 −
√

6 ·
√

2 −
√

5 ·
√

3 −
√

5 · −
√

2(√
3
)2
−

(√
2
)2

�

√
18 −
√

12 −
√

15 +
√

10
9 − 4

�
3
√

2 − 2
√

3 −
√

15 +
√

10
5

14.5.4 Solving Radical Equations

In Section 14.4 we covered solving equations that contain a radical. We learned about extraneous solutions
and the need to check our solutions.
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Example 14.5.12 Solving Radical Equations. Solve for r in r � 9 +
√

r + 3.

Explanation. We will isolate the radical first, and then square both sides.

r � 9 +
√

r + 3

r − 9 �
√

r + 3

(r − 9)2 �

(√
r + 3

)2

r2 − 18r + 81 � r + 3
r2 − 19r + 78 � 0
(r − 6)(r − 13) � 0

r − 6 � 0 or r − 13 � 0
r � 6 or r � 13

Because we squared both sides of an equation, we must check both solutions.

6 ?
� 9 +

√
6 + 3 13 ?

� 9 +
√

13 + 3

6 ?
� 9 +

√
9 13 ?

� 9 +
√

16

6 no
� 9 + 3 13 ✓� 9 + 4

It turns out 6 is an extraneous solution and 13 is a valid solution. So the equation has one solution: 13.
The solution set is {13}.

Example 14.5.13 Solving Radical Equations that Require Squaring Twice. Solve the equation
√

t + 9 �

−1 −
√

t for t.

Explanation. We cannot isolate two radicals, sowewill simply square both sides, and later try to isolate
the remaining radical.

√
t + 9 � −1 −

√
t(√

t + 9
)2

�

(
−1 −

√
t
)2

t + 9 � 1 + 2
√

t + t after expanding the binomial squared

9 � 1 + 2
√

t

8 � 2
√

t

4 �
√

t

(4)2 �

(√
t
)2

16 � t

Because we squared both sides of an equation, we must check the solution by substituting 16 into
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√
t + 9 � −1 −

√
t, and we have:

√
t + 9 � −1 −

√
t

√
16 + 9 ?

� −1 −
√

16
√

25 ?
� −1 − 4

5 no
� −5

Our solution did not check so there is no solution to this equation. The solution set is the empty set,
which can be denotes { } or ∅.

Exercises

Introduction to Radical Functions Find the domain of the function.

H(x) �
√

8 − x1. H(x) �
√

5 − x2. K(x) � 3√−9x + 103.

f (x) � 3√5x − 24. 1(x) � 4√18 − 3x5. h(x) � 4√−12 − 2x6.

Use technology to find the range of the func-
tion h defined by h(x) �

√
2 − x + 1.

7. Use technology to find the range of the func-
tion F defined by F(x) �

√
−2 − x − 5.

8.

If an object is dropped with no initial velocity, the time since the drop, in seconds, can be calculated by the
function

T(h) �
√

2h
1

where h is the distance the object traveled in feet. The variable 1 is the gravitational acceleration on earth,
and we can round it to 32 f t

s2 for this problem.

a. After seconds since the release,
the object would have traveled 35 feet.

b. After 5 seconds since the release, the ob-
ject would have traveled
feet.

9. a. After seconds since the release,
the object would have traveled 40 feet.

b. After 3.6 seconds since the release, the ob-
ject would have traveled
feet.

10.

Find the distance between the points (−8,−2)
and (57, 70).

11. Find the distance between the points (−10,−15)
and (45, 33).

12.
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Radical Expressions and Rational Exponents Without using a calculator, evaluate the expression.

4√33 �13. 3√132 �14. 3

√
− 8

125 � .15. 3

√
−1

8 � .16.

Use rational expo-
nents towrite the ex-
pression.
5√3m + 9 �

17. Use rational expo-
nents towrite the ex-
pression.
4√9n + 3 �

18. Convert the expres-
sion to radical nota-
tion.

14
1
5 a

4
5 =

19. Convert the expres-
sion to radical nota-
tion.

3
1
3 b

2
3 =

20.

Convert c−
5
7 to a radical.

⊙ − 7√c5

⊙ 1
5√c7

⊙ 1
7√c5

⊙ − 5√c7

21. Convert x−
3
8 to a radical.

⊙ 1
3√x8

⊙ − 8√x3

⊙ 1
8√x3

⊙ − 3√x8

22.

Simplify the expression, answering with rational exponents and not radicals.√
25y

10
√

y3
�23.

√
9z

6√z5
�24. 5√t · 10√

t3 �25.

5√m · 10√
m3 �26.

√
a 7√a �27.

√
t 8√t �28.

More on Rationalizing the Denominator Rationalize the denominator and simplify the expression.

9√
72

�29. 4√
216

�30.
√

7
12 �31.

√
11
28 �32.

4√
23 + 6

�33. 5√
7 + 9

�34.
√

5 − 10√
7 + 9

�35.
√

3 − 11√
13 + 6

�36.

Solving Radical Equations Solve the equation.

r �
√

r + 2 + 437. t �
√

t + 3 + 338.
√

t + 8 �
√

t − 439.
√

x + 8 �
√

x + 240.

√
x + 110 � x41.

√
y + 56 � y42. y �

√
y + 3 + 1743. r �

√
r + 1 + 10944.
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√
66 − r � r + 645.

√
29 − r � r + 146.

Use technology to solve the equation
√

x − 1.9 �
√

x − 0.2.47.

Use technology to solve the equation
√

x + 2.3 �
√

x − 3.48.

According to the Pythagorean Theorem, the
length c of the hypothenuse of a rectangular
triangle can be found through the following
equation:

c �

√
a2 + b2

Solve the equation for the length a of one of
the triangle’s legs.

a � .

49. In a coordinate system, the distance r from a
point (x , y) to the origin (0, 0) is given by the
following equation:

r �

√
x2 + y2

Solve the equation for the coordinate y. As-
sume that y is positive.

y � .

50.

According to the Pythagorean Theorem, the length c of the hypothenuse of a rectangular triangle can be
found through the following equation.

c �

√
a2 + b2

If a rectangular triangle has a hypothenuse of
13 ft and one leg is 12 ft long, how long is the
third side of the triangle?

The third side of the triangle is
long.

51. If a rectangular triangle has a hypothenuse of
17 ft and one leg is 15 ft long, how long is the
third side of the triangle?

The third side of the triangle is
long.

52.

A pendulum has the length L ft. The time
period T that it takes to once swing back and
forth is 6 s. Use the following formula to find
its length.

T � 2π
√

L
32

The pendulum is long.

53. A pendulum has the length L ft. The time
period T that it takes to once swing back and
forth is 8 s. Use the following formula to find
its length.

T � 2π
√

L
32

The pendulum is long.

54.
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Index

foil, 485

a + bi form, 910
absolute value, 27, 817

as a grouping symbol, 35
formal definition, 27
of a real number, 63
radical definition, 821
solving equations with one absolute value,

847
solving equations with two absolute values,

849
solving greater-than inequalities, 856
solving less-than inequalities, 853

Addition
of fractions with different denominators, 17
of fractions with the same denominator, 17

addition
additive identity, 158
associative property of, 159
commutative property of, 159
inverses, 158
of complex numbers, 914
of polynomials, 473
property of equality, 111
property of inequality, 123

addition method for solving systems of linear
equations, see elimination method for
solving systems of linear equations

area, 80
associative property

of addition, 159
of multiplication, 159

axis
horizontal, 255
vertical, 255

axis of symmetry, 676

base, 153
binomial, 473

Cartesian coodrinate system, 253
Cartesian Coordinate System, 255
circumference, 83
coefficient, 471

common denominator, 17
commutative property

of addition, 159
of multiplication, 159

completing the square, 893
complex fraction, 967
complex number, 625, 910

conjugates, 916
imaginary part, 910
real part, 910

compound inequality, 832
or, 832

conjugates, 497
constant, 279
constant term, 473
coordinate plane, 255
coordinates, 254, 255
cross-multiplication, 227

degree, 472
denominator, 12
difference of squares, 497
discriminant, 616, 908
distributive property, 159
dividing a polynomial by a monomial, 503
division

property of equality, 111
property of inequality, 123

domain, 757

elimination method for solving systems of linear
equations, 423

empty set, 399
equation, 99
equivalent equation, 111
evaluate, 70
exponent, 62, 153

base, 153
introductory rules, 155
negative exponent rule, 453
power, 153
power to a power rule, 154
product rule, 153
product to a power rule, 155
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INDEX

quotient of powers rule, 449
quotient to a power rule, 449
zero power rule, 451

expression, 70
extraneous solution, 973
extraneous solutions, 1029

factor, 96
factored form of a quadratic function, 882
factoring

by grouping, 525
by the AC method, 538
decision tree, 556
difference of squares, 546
in stages, 533
perfect square trinomials, 547
sum and difference of cubes, 549
trinomials with higher powers, 532
with factor pairs, 529

false statement, 239
form

point-slope, 315
slope-intercept, 296
standard, 331

formula, 73
fraction

common denominator, 17
denominator, 12
improper, 19
mixed number, 18
numerator, 12
reduction, 13

fraction bar
as a grouping symbol, 35

function, 650
domain, 658, 757
informal definition, 649, 731
notation, 653
range, 658, 760
technical definition, 790

G.C.F., 517
generic rectangles, 483
graph

of an equation, 260
greater-than symbol, 53
greater-than-or-equal-to symbol, 54
greatest common factor, 517

horizontal asymptote, 938
horizontal intercept, 694
horizontal line, 346

identity, 239
additive, 158
multiplicative, 158

imaginary numbers, 624
imaginary unit, 624
improper fraction, 19
index, 1006
inequality, 99
integers, 45
intercept, 295

horizontal, 694
vertical, 694
x, 694
y, 694

interval notation, 56
inverses

additive, 158
multiplicative, 158

irrational numbers, 45

less-than symbol, 55
like term, 94
linear, 275
linear equation, 99
linear relationship, 279

maximum, 676
minimum, 676
mixed number, 18
monomial, 473
Multiplication

of fractions, 15
multiplication

associative property of, 159
commutative property of, 159
inverses, 158
multiplicative identity, 158
of complex numbers, 914
property of equality, 111
property of inequality, 123

Multiplication Properties of Square Roots, 590

natural numbers, 6, 45
negative, 1
number line, 1
numerator, 12

or, 832
order of magnitude, 463
ordered pair, 254, 255
origin, 255

parabola, 675
axis of symmetry, 676
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horizontal intercept, 676
opening up or down, 676
vertex, 676
vertical intercept, 676

parallel lines, 351
perfect square trinomial, 494
perfect squares, 28
perimeter, 80
perpendicular lines, 352
point-slope form, 315
polynomial, 471

addition and subtraction, 473
binomial, 473
coefficients of, 471
constant term of, 473
degree of a polynomial, 472
degree of a term, 472
divided by a monomial, 503
leading coefficient, 473
leading term, 472
monomial, 473
prime, 521
terms of, 471
trinomial, 473

positive, 1
power, 153
prime polynomial, 521
product of sum and difference of two terms, 497
properties

associative property of addition, 159
associative property of multiplication, 159
commutative property of addition, 159
commutative property of multiplication, 159
distributive property, 159
of equivalent equations, 111
square root property, 602
zero product property, 578

proportion, 226
Pythagorean theorem, 605

quadrant, 255
quadratic, 532

equation, 577
equation in standard form, 577
function, 675
graph, 675
vertex, 679

quadratic function
factored form, 882
forms, 883
vertex form, 878

radical, 28, 589
as a grouping symbol, 35

radicand, 589
range, 760
rate of change, 273
ratio, 226
rational function, 936
rational numbers, 45
rationalizing the denominator, 595
real numbers, 45
reciprocal, 158
reduced fraction, 13
relation, 649

domain, 649
range, 649

relationship
linear, 279

rise over run, 280
root, 589
roots of a function, 882

scientific notation, 463
set, 44
set notation, 44
set-builder notation, 55
signed numbers, 1
slope, 279

formula, 288
given intercepts, 335
review, 377
triangle, 280

slope-intercept form, 296
solution, 100

to a system of linear equations, 393
solving

absolute value equations
with one absolute value, 847
with two absolute values, 849

absolute value inequalities
with greater than, 856
with less than, 853

compound inequalities
graphically, 837
three-part, 835
with or|hyperpage, 832

linear and quadratic equations, 617
linear equations

multi-step, 186
one-step, 112

linear inequalities
multistep, 201
one-step, 123
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quadratic equations
by completing the square, 893
by factoring, 579
factoring, 579
quadratic formula, 613
using the square root property, 602

radical equations, 1029
rational equations, 973
system of linear equations

elimination method, 423
graphing, 393
substitution method, 405

special cases of multiplication formulas, 498
square root, 589

of a real number, 63
square root property, 602
squaring a binomial, 494, 495
standard form, 331
standard form of a quadratic equation, 577
substitution method for solving a system of

linear equations, 405
subtraction

property of equality, 111
property of inequality, 123

system of linear equations, 393

term, 94, 471

trinomial, 473
types of numbers, 45

union, 831

variable, 69
vertex, 676, 819
vertex form of a quadratic function, 878
vertical asymptote, 938
vertical line, 347
vertical line test, 662, 794
vertical-intercept, 694
volume, 85

cylinder, 87
prism, 86

whole numbers, 45

x-axis, 255
x-coordinate, 255
x-intercept, 694

y-axis, 255
y-coordinate, 255
y-intercept, 295, 694

zero product property, 578
zeros of a function, 882
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