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Active Calculus: Our Goals

Several fundamental ideas in calculus are more than 2000 years old. As a formal subdisci-
pline of mathematics, calculus was first introduced and developed in the late 1600s, with key
independent contributions from Sir Isaac Newton and Gottfried Wilhelm Leibniz. Mathe-
maticians agree that the subject has been understood rigorously since the work of Augustin
Louis Cauchy and Karl Weierstrass in the mid 1800s when the field of modern analysis was
developed, in part to make sense of the infinitely small quantities on which calculus rests.
As a body of knowledge, calculus has been completely understood for at least 150 years.
The discipline is one of our great human intellectual achievements: among many spectacu-
lar ideas, calculus models how objects fall under the forces of gravity and wind resistance,
explains how to compute areas and volumes of interesting shapes, enables us to work rig-
orously with infinitely small and infinitely large quantities, and connects the varying rates
at which quantities change to the total change in the quantities themselves.

While each author of a calculus textbook certainly offers her own creative perspective on
the subject, it is hardly the case that many of the ideas she presents are new. Indeed, the
mathematics community broadly agrees on what the main ideas of calculus are, as well as
their justification and their importance; the core parts of nearly all calculus textbooks are
very similar. As such, it is our opinion that in the 21st century—an age where the internet
permits seamless and immediate transmission of information—no one should be required to
purchase a calculus text to read, to use for a class, or to find a coherent collection of problems
to solve. Calculus belongs to humankind, not any individual author or publishing company.
Thus, a main purpose of this work is to present a new calculus text that is free. In addition,
instructors who are looking for a calculus text should have the opportunity to download
the source files and make modifications that they see fit; thus this text is open-source. Since
August 2013, Active Calculus has been endorsed by the American Institute of Mathematics
and its Open Textbook Initiative.

In Active Calculus, we endeavor to actively engage students in learning the subject through
an activity-driven approach in which the vast majority of the examples are completed by
students. Where many texts present a general theory of calculus followed by substantial
collections of worked examples, we instead pose problems or situations, consider possibili-
ties, and then ask students to investigate and explore. Following key activities or examples,
the presentation normally includes some overall perspective and a brief synopsis of general
trends or properties, followed by formal statements of rules or theorems. While we often
offer plausibility arguments for such results, rarely do we include formal proofs. It is not
the intent of this text for the instructor or author to demonstrate to students that the ideas of
calculus are coherent and true, but rather for students to encounter these ideas in a support-
ive, leading manner that enables them to begin to understand for themselves why calculus
is both coherent and true. This approach is consistent with the growing body of scholarship
that calls for students to be interactively engaged in class.
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Moreover, this approach is consistent with the following goals:

¢ To have students engage in an active, inquiry-driven approach, where learners strive
to construct solutions and approaches to ideas on their own, with appropriate support
through questions posed, hints, and guidance from the instructor and text.

¢ To build in students intuition for why the main ideas in calculus are natural and true.
Often, we do this through consideration of the instantaneous position and velocity of
a moving object, a scenario that is common and familiar.

¢ To challenge students to acquire deep, personal understanding of calculus through
reading the text and completing preview activities on their own, through working on
activities in small groups in class, and through doing substantial exercises outside of
class time.

¢ To strengthen students” written and oral communicating skills by having them write
about and explain aloud the key ideas of calculus.



Features of the Text

Instructors and students alike will find several consistent features in the presentation, in-
cluding:

Motivating Questions At the start of each section, we list 2-3 motivating questions that pro-
vide motivation for why the following material is of interest to us. One goal of each
section is to answer each of the motivating questions.

Preview Activities Each section of the text begins with a short introduction, followed by a
preview activity. This brief reading and the preview activity are designed to foreshadow
the upcoming ideas in the remainder of the section; both the reading and preview
activity are intended to be accessible to students in advance of class, and indeed to be
completed by students before a day on which a particular section is to be considered.

Activities A typical section in the text has three activities. These are designed to engage
students in an inquiry-based style that encourages them to construct solutions to key
examples on their own, working individually or in small groups.

Exercises There are dozens of calculus texts with (collectively) tens of thousands of exer-
cises. Rather than repeat standard and routine exercises in this text, we recommend the
use of WeBWorK with its access to the Open Problem Library and around 20,000 cal-
culus problems. In this text, each section includes a small number of anonymous WeB-
WorK exercises, as well as 3—4 challenging problems per section. The WeBWorK exer-
cises are best completed in the .html version of the text. Almost every non-WeBWorK
problem has multiple parts, requires the student to connect several key ideas, and
expects that the student will do at least a modest amount of writing to answer the
questions and explain their findings. For instructors interested in a more conventional
source of exercises, consider the freely available APEX Calculus text by Greg Hartmann
et al., available from www.apexcalculus.com.

Graphics As much as possible, we strive to demonstrate key fundamental ideas visually,
and to encourage students to do the same. Throughout the text, we use full-color!
graphics to exemplify and magnify key ideas, and to use this graphical perspective
alongside both numerical and algebraic representations of calculus.

Links to interactive graphics Many of the ideas of calculus are best understood dynami-
cally; java applets offer an often ideal format for investigations and demonstrations.
Relying primarily on the work of David Austin of Grand Valley State University and
Marc Renault of Shippensburg University, each of whom has developed a large li-
brary of applets for calculus, we frequently point the reader (through active links in
the electronic versions of the text) to applets that are relevant for key ideas under con-

1To keep cost low, the graphics in the print-on-demand version are in black and white. When the text itself refers
to color in images, one needs to view the .html or .pdf electronically.
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sideration.

Summary of Key Ideas Each section concludes with a summary of the key ideas encoun-
tered in the preceding section; this summary normally reflects responses to the moti-
vating questions that began the section.

xii



How to Use this Text

Because the text is free, any professor or student may use the electronic version of the text for
no charge. For reading on laptops or mobile devices, the best electronic version to use is the
.html one at gvsu.edu/s/0uo, but you may also download a full .pdf copy of the text from
gvsu.edu/s/0vM, where there is also a link to a print-on-demand option for purchasing a
bound, softcover version for under $25. Other ancillary materials, such as WeBWorK .def
files, an activities-only workbook, and sample computer laboratory activities are available
upon direct request to the author via email at boelkinm@gvsu.edu. Furthermore, because the
text is open-source, any instructor may acquire the full set of source files, which are available
on GitHub.

This text may be used as a stand-alone textbook for a standard first semester college calculus
course or as a supplement to a more traditional text. Chapters 14 address the typical topics
for differential calculus, while Chapters 5-8 provide the standard topics of integral calculus,
including a chapter on differential equations (Chapter 7) and on infinite series (Chapter 8).

Electronic Edition Because students and instructors alike have access to the book in elec-
tronic format, there are several advantages to the text over a traditional print text. One
is that the text may be projected on a screen in the classroom (or even better, on a
whiteboard) and the instructor may reference ideas in the text directly, add comments
or notation or features to graphs, and indeed write right on the text itself. Students
can do likewise, choosing to print only whatever portions of the text are needed for
them. In addition, the electronic versions of the text includes live .html links to java
applets, so student and instructor alike may follow those links to additional resources
that lie outside the text itself. Finally, students can have access to a copy of the text
anywhere they have a computer. The .html version is far superior to the .pdf version;
this is especially true for viewing on a smartphone.

Note.In the .pdf version, there is not an obvious visual indicator of the live .html links,
so some availalable information is suppressed. If you are using the text electronically
in a setting with internet access, please know that it is assumed you are using the .html
version.

Activities Workbook Each section of the text has a preview activity and at least three in-
class activities embedded in the discussion. As it is the expectation that students will
complete all of these activities, it is ideal for them to have room to work on them adja-
cent to the problem statements themselves. As a separate document, we have compiled
a workbook of activities that includes only the individual activity prompts, along with
space provided for students to write their responses. This workbook is the one printing
expense that students will almost certainly have to undertake, and is available upon
request.
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Community of Users Because this text is free and open-source, we hope that as people use
the text, they will contribute corrections, suggestions, and new material. The best way
to communicate such feedback is by email to Matt Boelkins. I also have a blog at open-
calculus.wordpress.com, at which we post new developments, other free resources,
feedback, and other points of discussion.
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2.8 Using Derivatives to Evaluate Limits

2.8 Using Derivatives to Evaluate Limits

Motivating Questions

* How can derivatives be used to help us evaluate indeterminate limits of the form §?
* What does it mean to say that lim,_, f(x) = L and lim,_,, f(x) = 00?

¢ How can derivatives assist us in evaluating indeterminate limits of the form 2?

Because differential calculus is based on the definition of the derivative, and the definition
of the derivative involves a limit, there is a sense in which all of calculus rests on limits.
In addition, the limit involved in the limit definition of the derivative is one that always
generates an indeterminate form of g. If f is a differentiable function for which f’(x) exists,
then when we consider
fa+h) - flx)
P ’

f'(x) = lim

it follows that not only does # — 0 in the denominator, but also (f(x + k) — f(x)) = 01in
the numerator, since f is continuous. Thus, the fundamental form of the limit involved in
the definition of f’(x) is 3. Remember, saying a limit has an indeterminate form only means
that we don't yet know its value and have more work to do: indeed, limits of the form § can
take on any value, as is evidenced by evaluating f’(x) for varying values of x for a function

such as f’(x) = x2.

Of course, we have learned many different techniques for evaluating the limits that result
from the derivative definition, and including a large number of shortcut rules that enable
us to evaluate these limits quickly and easily. In this section, we turn the situation upside-
down: rather than using limits to evaluate derivatives, we explore how to use derivatives
to evaluate certain limits. This topic will combine several different ideas, including limits,
derivative shortcuts, local linearity, and the tangent line approximation.

Preview Activity 2.8.1. Let & be the function given by h(x) = Yixd

x2-1
a. What is the domain of h?

5

x?+x—2
b. Explain why lin} 1 results in an indeterminate form.
xX— X< —

c. Next we will investigate the behavior of both the numerator and denominator of
h near the point where x = 1. Let f(x) = x° + x — 2 and g(x) = x> — 1. Find the
local linearizations of f and g ata = 1, and call these functions L¢(x) and L,(x),
respectively.

d. Explain why h(x) ~ Z—g; for x neara = 1.
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Chapter 2 Computing Derivatives

e. Using your work from (c) and (d), evaluate

L¢(x)
w1 Ly(x)

What do you think your result tells us about lim,_,; h(x)?

f. Investigate the function /(x) graphically and numerically near x = 1. What do you
think is the value of lim,_,1 h1(x)?

2.8.1 Using derivatives to evaluate indeterminate limits of the form %.

Figure 2.8.1: At left, the graphs of f and g near the value a, along with their tangent line
approximations Ly and L, at x = a. Atright, zooming in on the point a and the four graphs.

The fundamental idea of Preview Activity 2.8.1 — that we can evaluate an indeterminate
limit of the form 8 by replacing each of the numerator and denominator with their local
linearizations at the point of interest — can be generalized in a way that enables us to easily

evaluate a wide range of limits. We begin by assuming that we have a function /(x) that can
be written in the form h(x) = Jg% where f and g are both differentiable at x = 4 and for
which f(a) = g(a) = 0. We are interested in finding a way to evaluate the indeterminate limit
given by lim,_,, hi(x). In Figure 2.8.1, we see a visual representation of the situation involving
such functions f and g. In particular, we see that both f and g have an x-intercept at the
point where x = a. In addition, since each function is differentiable, each is locally linear,

and we can find their respective tangent line approximations Ly and L, at x = a, which are

also shown in the figure. Since we are interested in the limit of % as x — a, the individual
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2.8 Using Derivatives to Evaluate Limits

behaviors of f(x) and g(x) as x — a are key to understand. Here, we take advantage of
the fact that each function and its tangent line approximation become indistinguishable as
X = a.

First, let’s reall that L¢(x) = f'(a)(x —a) + f(a) and L,(x) = g’(a)(x — a) + g(a). The critical
observation we make is that when taking the limit, because x is getting arbitrarily close to
a, we can replace f with Ly and replace g with L, and thus we observe that

tim £ =y )

x—a g(x) x—a Lg(x)
3 f'@)(x —a)+ f(a)
o g@)x —a) + g(@)

Next, we remember a key fundamental assumption: that both f(a) = 0 and g(a) = 0, as this
is precisely what makes the original limit indeterminate. Substituting these values for f(a)
and g(a) in the limit above, we now have

md® _ oy f@E&=a)
lim 7(x) = lim 7@)(x—-a)
_ f(a)
ron g'(a)’

where the latter equality holds since x is approaching (but not equal to) a, so 1=¢ = 1. Finally,
f/
g'@a)

we note that is constant with respect to x, and thus

f(x) _ f'a)

o g(x)  g(@)

We have, of course, implicitly made the assumption that g’(a) # 0, which is essential to the

f'@@)

overall limit having the value 7@ We summarize our work above with the statement of

L'Hopital’s Rule, which is the formal name of the result we have shown.

L’'Hopital’s Rule
Let f and g be differentiable at x = a, and suppose that f(a) = g(a) = 0 and that
g’(a) # 0. Then lim,_,, Jg% = %;

In practice, we typically work with a slightly more general version of L'H6pital’s Rule, which
states that (under the identical assumptions as the boxed rule above and the extra assump-
tion that g’ is continuous at x = a)

ORI (C)
x%u g(x) x—a g (x)

provided the righthand limit exists. This form reflects the fundamental benefit of L'H6pital’s

Rule: if f ) + produces an indeterminate limit of form 3 as x — a, it is equivalent to consider
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Chapter 2 Computing Derivatives

the limit of the quotient of the two functions’ derivatives, J; :g; For example, if we consider
the limit from Preview Activity 2.8.1,
X +x-2
lim —————,
x—1 X 2 1
by L’'Hopital’s Rule we have that
limx5+x—2 —lim5x4+1 _§_3
=1 x2-1  x51 2x 20 7

By being able to replace the numerator and denominator with their respective derivatives,
we often move from an indeterminate limit to one whose value we can easily determine.

Activity 2.8.2. Evaluate each of the following limits. If you use L'Hopital’s Rule, indicate
where it was used, and be certain its hypotheses are met before you apply it.

. In(1+x . 2In(x
a. lim,_, % c. limy_,q 1_6,((,3

. cos(x) . sin(x)—x
b. limy—z Tx d. limyo cos((ZJZ)—l

While L'Hopital’s Rule can be applied in an entirely algebraic way,

Figure 2.8.2: Two functions f and g that satisfy L'Hopital’s Rule.

it is important to remember that the genesis of the rule is graphical: the main idea is that
&)

the slopes of the tangent lines to f and g at x = a determine the value of the limit of el

as
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2.8 Using Derivatives to Evaluate Limits

x — a. We see this in Figure 2.8.2, which is a modified version of Figure 2.8.1, where we can
see from the grid that f’(a) = 2 and ¢’(a) = —1, hence by L'Hopital’s Rule,

@ _f@_2

an g(x) ~ g'a) -1

Indeed, what we observe is that it’s not the fact that f and g both approach zero that matters
most, but rather the rate at which each approaches zero that determines the value of the limit.
This is a good way to remember what L'Hopital’s Rule says: if f(a) = g(a) = 0, the the limit

of f®

o) A8 X — ais given by the ratio of the slopes of f and g at x = a.

Activity 2.8.3. In this activity, we reason graphically from the following figure to eval-
uate limits of ratios of functions about which some information is known.

Figure 2.8.3: Three graphs referenced in the questions of Activity 2.8.3.

a. Use the left-hand graph to determine the values of f(2), f'(2), g(2), and g’(2).

fx)
Then, evaluate hin 7

b. Use the middle graph to find p(2), p’(2), 9(2), and 4’(2). Then, determine the value

p(x)
of ,lcl_,n} ()"

c. Use the right-hand graph to compute r(2) r'(2), 5(2), s'(2). Explain why you can-

not determine the exact value of hm ( ) ) without further information being pro-

vided, but that you can deterrmne the sign of hm rEx; In addition, state what the

sign of the limit will be, with justification.
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Chapter 2 Computing Derivatives

2.8.2 Limits involving oo

The concept of infinity, denoted oo, arises naturally in calculus, like it does in much of math-
ematics. It is important to note from the outset that co is a concept, but not a number itself.
Indeed, the notion of oo naturally invokes the idea of limits. Consider, for example, the
function f(x) = 1, whose graph is pictured in Figure 2.8.4.

We note that x = 0 is not in the domain of
f, so we may naturally wonder what hap-
pens as x — 0. As x — 0%, we observe that
f (x) increases without bound. That is, we can
make the value of f(x) aslarge as we like by
taking x closer and closer (but not equal) to
0, while keeping x > 0. This is a good way 11
to think about what infinity represents: a —_— ;
quantity is tending to infinity if there is no 1
single number that the quantity is always T
less than.

Figure 2.8.4: The graph of f(x) = 1.

Recall that when we write lim,_,, f(x) = L, this means that can make f(x) as close to L as
we’d like by taking x sufficiently close (but not equal) to a. We thus expand this notation and
language to include the possibility that either L or a can be co. For instance, for f(x) = 1,
we now write

by which we mean that we can make 1 as large as we like by taking x sufficiently close (but
not equal) to 0. In a similar way, we naturally write

1
lim — =0,
x—oo X
since we can make % as close to 0 as we’d like by taking x sufficiently large (i.e., by letting x
increase without bound).

In general, we understand the notation limy_,, f(x) = co to mean that we can make f(x)
as large as we’d like by taking x sufficiently close (but not equal) to 4, and the notation
lim,—e f(x) = L to mean that we can make f(x) as close to L as we’d like by taking x
sufficiently large. This notation applies to left- and right-hand limits, plus we can also use
limits involving —co. For example, returning to Figure 2.8.4 and f(x) = 1, we can say that
lim 1 =—oco and lim 1 =0.
x—0" X X——00 X
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2.8 Using Derivatives to Evaluate Limits

Finally, we write
lim f(x) =00

X—00
when we can make the value of f(x) as large as we’d like by taking x sufficiently large. For
example,
lim x? = oo.

X—00

Note particularly that limits involving infinity identify vertical and horizontal asymptotes of a
function. If lim,_,,; f(x) = oo, then x = a is a vertical asymptote of f, while if limy_, f(x) =
L, then y = L is a horizontal asymptote of f. Similar statements can be made using —oo, as
well as with left- and right-hand limitsas x - a~ or x — a™.

In precalculus classes, it is common to study the end behavior of certain families of functions,
by which we mean the behavior of a function as x — oo and as x — —co. Here we briefly
examine a library of some familiar functions and note the values of several limits involving
0.

64
y=f(x)
2 2
8
641
y=2gx)

Figure 2.8.5: Graphs of some familiar functions whose end behavior as x — *oo is known.
In the middle graph, f(x) = x3 — 16x and g(x) = x* — 16x> - 8.

For the natural exponential function e*, we note that lim,_,.c ¢* = o0 and limy_,_ e* = 0,
while for the related exponential decay function e™*, observe that these limits are reversed,
with limy_,e 6™ = 0 and limy_,_o €™ = oo. Turning to the natural logarithm function, we
have limy_,o+ In(x) = —oo0 and lim,_, In(x) = co. While both ¢* and In(x) grow without
bound as x — oo, the exponential function does so much more quickly than the logarithm
function does. We’ll soon use limits to quantify what we mean by “quickly.”

For polynomial functions of the form p(x) = a,x" + Ap_1x" 1+ a1x + ap, the end behavior
depends on the sign of 4, and whether the highest power #n is even or odd. If n is even
and a, is positive, then limy_,co p(x) = o0 and lim,,_ p(x) = oo, as in the plot of g in

Figure 2.8.5. If instead a, is negative, then limy_,c, p(x) = —oc0 and limy_,_ p(x) = —co. In
the situation where # is odd, then either limy_,. p(x) = c0 and lim,,_ p(x) = —co (which
occurs when a, is positive, as in the graph of f in Figure 2.8.5), or limy_,. p(x) = —co and

limy_,_c p(x) = oo (When a,, is negative).
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Chapter 2 Computing Derivatives

A function can fail to have a limit as x — oo. For example, consider the plot of the sine
function at right in Figure 2.8.5. Because the function continues oscillating between —1 and
1 as x — oo, we say that lim,_, sin(x) does not exist.

Finally, it is straightforward to analyze the behavior of any rational function as x — oo.
Consider, for example, the function

(x) = 3x2—4x+5
I = T fox—10

Note that both (3x% — 4x +5) — oo as x — oo and (7x% + 9x — 10) — oo as x — oo. Here

o0

we say that lim,_, §(x) has indeterminate form £, much like we did when we encountered

limits of the form g. We can determine the value of this limit through a standard algebraic
approach. Multiplying the numerator and denominator each by xl—z, we find that

3x2—4x+5 =
lim g(x) = lim -2 — X772 2
dfm g = Im oy 10 1

3-41+5%

= lim —>—* =
x=e 7491 10

N W

since % — 0and 1 — 0as x — oo. This shows that the rational function ¢ has a horizontal

asymptote at y = 2. A similar approach can be used to determine the limit of any rational
function as x — co.

But how should we handle a limit such as

Here, both x? — oo and e* — oo, but there is not an obvious algebraic approach that enables
us to find the limit’s value. Fortunately, it turns out that L'Hopital’s Rule extends to cases
involving infinity.

— L'Hopital’s Rule (c0)

If f and g are differentiable and both approach zero or both approach +coas x — a
(where a is allowed to be ) , then

f) L f)
T e )

(To be technically correct, we need to the additional hypothesis that g’(x) # 0 on an open
interval that contains a or in every neighborhood of infinity if a is co; this is almost always
met in practice.)

To evaluate lim, ’e‘—i, we observe that we can apply L'Hopital’s Rule, since both x? — o
and e* — co. Doing so, it follows that
x2 2x

lim — = lim —.
x—oo X x—oo X
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2.8 Using Derivatives to Evaluate Limits

This updated limit is still indeterminate and of the form Z, but it is simpler since 2x has
replaced x2. Hence, we can apply I’Hopital’s Rule again, by which we find that
x? 2x 2

lim — = lim — = lim —.
x—oo X x—oo X x—o0 eX

Now, since 2 is constant and ¢* — oo as x — oo, it follows that e% — 0 as x — oo, which
shows that

Activity 2.8.4. Evaluate each of the following limits. If you use LHopital’s Rule, indicate
where it was used, and be certain its hypotheses are met before you apply it.

: X . tan(x
a. limy_,e INE) d. limy_,z- x_(ﬂ)
2
. e +x . -
b. limy e 55777 e. limy_e xe™
. i
c. limy o+ n(x)

1
X

When we are considering the limit of a quotient of two functions % that results in an in-

determinate form of 22, in essence we are asking which function is growing faster without
bound. We say that the function g dominates the function f as x — oo provided that

f
m o T

whereas f dominates g provided that lim, % = co. Finally, if the value of lim,_,« %

0,

is finite and nonzero, we say that f and g grow at the same rate. For example, from earlier

3x2—4x+5 _ 3

X
7x2+9x—10 — 7 50

work we know that lim,_, e—f = 0, so ¢* dominates x2, while limy_c
f(x) =3x? —4x + 5and g(x) = 7x? + 9x — 10 grow at the same rate.

Summary

* Derivatives be used to help us evaluate indeterminate limits of the form 3 through
L'Hoépital’s Rule, which is developed by replacing the functions in the numerator and
denominator with their tangent line approximations. In particular, if f(a) = g(a) = 0
and f and g are differentiable at a, LH6pital’s Rule tells us that

lim M = lim £
x5a g(x)  xoa g'(x)’

¢ When we write x — oo, this means that x is increasing without bound. We thus use co
along with limit notation to write limy_,., f(x) = L, which means we can make f(x) as
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Chapter 2 Computing Derivatives

close to L as we like by choosing x to be sufficiently large, and similarly lim,_,, f(x) =
oo, which means we can make f(x) as large as we like by choosing x sufficiently close
toa.

¢ A version of L'Hopital’s Rule also allows us to use derivatives to assist us in evaluating
indeterminate limits of the form 2. In particular, If f and g are differentiable and both
approach zero or both approach +co as x — a (where a is allowed to be o), then

S G0
x—a g(x) x—mg(x)

Exercises

1. For the figures below, determine the nature of hm %
e and g(x) as the black curve.

if f(x)is shown as the blue curve

_flx) , N . _fl) , N .
lim =—— =[Choose: positive | negative | | lim =——= =[Choose: positive | negative |
x—a g(x) x—a g(x)

zero | undefined] zero | undefined]

1 4
2. Find the limit: lim n(x/4) ‘ ‘
x—4 x2 - 16

(Enter undefined if the limit does not exist.)

I.I.leBILlan(

3. Compute the following limits using 1"'Hopital’s rule if appropriate. Use INF to denote co

o and MINF to denote —co.

lim 1 — cos(7x) ‘ ‘
x>0 1 — cos(6x)

-6 -1
;l(lir} x2-1 :‘ ‘

4. Evaluate the limit using L'Hopital’s rule.

I.l.leBILlan 2
lim 13« —‘ thelp (limits)

xX—00 eSx

5. Let f and g be differentiable functions about which the following information is known:
f(3)=93)=0,f(3)=9'(3) =0, f"(3) = -2, and g”(3) = 1. Let a new function / be given
by the rule h(x) = %. On the same set of axes, sketch possible graphs of f and g near x = 3,
and use the provided information to determine the value of

Tim f(x).
i k()
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2.8 Using Derivatives to Evaluate Limits

Provide explanation to support your conclusion.

6. Find all vertical and horizontal asymptotes of the function

_3(x-a)(x-b)

R(x) = 5(x —a)(x —c)’

where 4, b, and c are distinct, arbitrary constants. In addition, state all values of x for which
R is not continuous. Sketch a possible graph of R, clearly labeling the values of 4, b, and c.

7. Consider the function g(x) = x2*, which is defined for all x > 0. Observe that limy_,+ g(x)
is indeterminate due to its form of 0°. (Think about how we know that 0k =0forallk >0,
while b° = 1 for all b # 0, but that neither rule can apply to 0°.)
a. Let h(x) = In(g(x)). Explain why h(x) = 2x In(x).
b. Next, explain why it is equivalent to write h(x) = 2n(x),

x

c. Use L'Hopital’s Rule and your work in (b) to compute limy_,o+ h(x).

d. Based on the value of lim,_,¢+ i(x), determine lim, o+ g(x).

8. Recall we say that function g dominates function f provided that limy_,. f(x) = oo,
o _
glx) =

Which function dominates the other: In(x) or vx?

limy e g(x) = 00, and lim, e

a.
b. Which function dominates the other: In(x) or {/x? (n can be any positive integer)

0

Explain why e* will dominate any polynomial function.

&

Explain why x" will dominate In(x) for any positive integer .

e. Give any example of two nonlinear functions such that neither dominates the other.
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CHAPTER 3 I

Using Derivatives

3.1 Using derivatives to identify extreme values

Motivating Questions

¢ Whatare the critical numbers of a function f and how are they connected to identifying
the most extreme values the function achieves?

* How does the first derivative of a function reveal important information about the
behavior of the function, including the function’s extreme values?

e How can the second derivative of a function be used to help identify extreme values
of the function?

In many different settings, we are interested in knowing where a function achieves its least
and greatest values. These can be important in applications — say to identify a point at
which maximum profit or minimum cost occurs — or in theory to understand how to char-
acterize the behavior of a function or a family of related functions. Consider the simple and
familiar example of a parabolic function such as s(t) = —16t> + 32t + 48 (shown at left in
Figure 3.1.1) that represents the height of an object tossed vertically: its maximum value
occurs at the vertex of the parabola and represents the highest value that the object reaches.
Moreover, this maximum value identifies an especially important point on the graph, the
point at which the curve changes from increasing to decreasing.

More generally, for any function we consider, we can investigate where its lowest and highest
points occur in comparison to points nearby or to all possible points on the graph. Given a
function f, we say that f(c) is a global or absolute maximum provided that f(c) > f(x)forall x
in the domain of f, and similarly call f(c) a global or absolute minimum whenever f(c) < f(x)
for all x in the domain of f. For instance, for the function g given at right in Figure 3.1.1, g
has a global maximum of g(c), but g does not appear to have a global minimum, as the graph
of g seems to decrease without bound. We note that the point (¢, g(c)) marks a fundamental
change in the behavior of g, where g changes from increasing to decreasing; similar things
happen at both (4, g(a)) and (b, g(b)), although these points are not global mins or maxes.
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\% y:s(t) (C,g(C))

401

301

201

10¢

Figure 3.1.1: At left, s(t) = —16t> + 24t + 32 whose vertex is (%, 41); at right, a function g that
demonstrates several high and low points.

For any function f, we say that f(c) is a local maximum or relative maximum provided that
f(c) = f(x) for all x near ¢, while f(c) is called a local or relative minimum whenever f(c) <
f(x) for all x near c. Any maximum or minimum may be called an extreme value of f. For
example, in Figure 3.1.1, g has a relative minimum of g(b) at the point (b, g(b)) and a relative
maximum of g(a) at (a, g(a)). We have already identified the global maximum of g as g(c);
this global maximum can also be considered a relative maximum.

We would like to use fundamental calculus ideas to help us identify and classify key function
behavior, including the location of relative extremes. Of course, if we are given a graph
of a function, it is often straightforward to locate these important behaviors visually. We
investigate this situation in the following preview activity.

Preview Activity 3.1.1. Consider the function h given by the graph in Figure 3.1.2. Use
the graph to answer each of the following questions.

a. Identify all of the values of ¢ for which h(c) is a local maximum of h.
b. Identify all of the values of ¢ for which h(c) is a local minimum of h.

¢. Does I have a global maximum on the interval [-3, 3]? If so, what is the value of
this global maximum?

d. Does h have a global minimum on the interval [-3, 3]? If so, what is its value?

e. Identify all values of ¢ for which h’(c) = 0.
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3.1 Using derivatives to identify extreme values

f. Identify all values of ¢ for which
h’(c) does not exist. 24 y = h(x)

g. True or false: every relative maxi-
mum and minimum of / occurs at 11
a point where h’(c) is either zero or
does not exist. i i i i

h. True or false: at every point where
h’(c) is zero or does not exist, i has
a relative maximum or minimum.

Figure 3.1.2: The graph of a function & on
the interval [-3, 3].

3.1.1 Critical numbers and the first derivative test

If a function has a relative extreme value at a point (¢, f(c)), the function must change its
behavior at ¢ regarding whether it is increasing or decreasing before or after the point.

s MY

Figure 3.1.3: From left to right, a function with a relative maximum where its derivative is
zero; a function with a relative maximum where its derivative is undefined; a function with
neither a maximum nor a minimum at a point where its derivative is zero; a function with
a relative minimum where its derivative is zero; and a function with a relative minimum
where its derivative is undefined.

For example, if a continuous function has a relative maximum at ¢, such as those pictured
in the two leftmost functions in Figure 3.1.3, then it is both necessary and sufficient that the
function change from being increasing just before ¢ to decreasing just after c. In the same
way, a continuous function has a relative minimum at c if and only if the function changes
from decreasing to increasing at c. See, for instance, the two functions pictured at right in
Figure 3.1.3. There are only two possible ways for these changes in behavior to occur: either
f'(c) =0or f’(c) is undefined.
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Because these values of ¢ are so important, we call them critical numbers. More specifically,
we say that a function f has a critical number at x = ¢ provided that c is in the domain of
f,and f’(c) = 0 or f’(c) is undefined. Critical numbers provide us with the only possi-
ble locations where the function f may have relative extremes. Note that not every critical
number produces a maximum or minimum; in the middle graph of Figure 3.1.3, the function
pictured there has a horizontal tangent line at the noted point, but the function is increas-
ing before and increasing after, so the critical number does not yield a location where the
function is greater than every value nearby, nor less than every value nearby.

We also sometimes use the terminology that, when c is a critical number, that (c, f(c)) is a
critical point of the function, or that f(c) is a critical value .

The first derivative test summarizes how sign changes in the first derivative indicate the pres-
ence of a local maximum or minimum for a given function.

First Derivative Test

If p is a critical number of a continuous function f that is differentiable near p (except
possibly at x = p), then f has a relative maximum at p if and only if f’ changes sign from
positive to negative at p, and f has a relative minimum at p if and only if f’ changes
sign from negative to positive at p.

We consider an example to show one way the first derivative test can be used to identify the
relative extreme values of a function.

Example 3.1.4. Let f be a function whose derivative is given by the formula f’(x) = e 2*(3 -
x)(x + 1)?. Determine all critical numbers of f and decide whether a relative maximum,
relative minimum, or neither occurs at each.

Solution. Since we already have f’(x) written in factored form, it is straightforward to find
the critical numbers of f. Since f’(x) is defined for all values of x, we need only determine
where f’(x) = 0. From the equation

e B -x)(x+1)2=0

and the zero product property, it follows that x = 3 and x = -1 are critical numbers of f.
(Note particularly that there is no value of x that makes e™>* = 0.)

Next, to apply the first derivative test, we’d like to know the sign of f’(x) at inputs near the
critical numbers. Because the critical numbers are the only locations at which f’ can change
sign, it follows that the sign of the derivative is the same on each of the intervals created
by the critical numbers: for instance, the sign of f” must be the same for every x < —1. We
create a first derivative sign chart to summarize the sign of f’ on the relevant intervals along
with the corresponding behavior of f.
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f'x) =e (@3 -x)(x+1)?

4+ 4+ -+
sign(f')  + + -
1 1
1 1

Figure 3.1.5: The first derivative sign chart for a function f whose derivative is given by the
formula f’(x) = e72*(3 — x)(x + 1)%.

The first derivative sign chart in Figure 3.1.5 comes from thinking about the sign of each of
the terms in the factored form of f’(x) at one selected point in the interval under consider-
ation. For instance, for x < —1, we could consider x = -2 and determine the sign of e 2%,
(3 — x), and (x + 1) at the value x = —2. We note that both e=>* and (x + 1)? are positive
regardless of the value of x, while (3 — x) is also positive at x = —2. Hence, each of the three
terms in f’ is positive, which we indicate by writing “+ + +.” Taking the product of three
positive terms obviously results in a value that is positive, which we denote by the “+” in
the interval to the left of x = —1 indicating the overall sign of f’. And, since f’ is positive on
that interval, we further know that f is increasing, which we summarize by writing “INC”
to represent the corresponding behavior of f. In a similar way, we find that f’ is positive
and f is increasing on —1 < x < 3, and f’ is negative and f is decreasing for x > 3.

Now, by the first derivative test, to find relative extremes of f we look for critical numbers
at which f’ changes sign. In this example, f” only changes sign at x = 3, where f’ changes
from positive to negative, and thus f has a relative maximum at x = 3. While f has a
critical number at x = -1, since f is increasing both before and after x = —1, f has neither a
minimum nor a maximum at x = —1.

Activity 3.1.2. Suppose that g(x) is a function continuous for every value of x # 2 whose
first derivative is g’(x) = m?(fxz_l)z

asymptote at x = 2.

. Further, assume that it is known that g has a vertical

a. Determine all critical numbers of g.

b. By developing a carefully labeled first derivative sign chart, decide whether g has
as a local maximum, local minimum, or neither at each critical number.

c. Does g have a global maximum? global minimum? Justify your claims.

d. Whatis the value of lim, . g'(x)? What does the value of this limit tell you about
the long-term behavior of g?
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I e. Sketch a possible graph of y = g(x).

3.1.2 The second derivative test

Recall that the second derivative of a function tells us several important things about the
behavior of the function itself. For instance, if f” is positive on an interval, then we know
that f’ is increasing on that interval and, consequently, that f is concave up, which also
tells us that throughout the interval the tangent line to y = f(x) lies below the curve at
every point. In this situation where we know that f’(p) = 0, it turns out that the sign of
the second derivative determines whether f has a local minimum or local maximum at the
critical number p.

\ / \

Figure 3.1.6: Four possible graphs of a function f with a horizontal tangent line at a critical
point.

In Figure 3.1.6, we see the four possibilities for a function f that has a critical number p at
which f’(p) = 0, provided f”(p) is not zero on an interval including p (except possibly at p).
On either side of the critical number, f” can be either positive or negative, and hence f can
be either concave up or concave down. In the first two graphs, f does not change concavity
at p, and in those situations, f has either a local minimum or local maximum. In particular, if
f'(p) =0and f”(p) < 0, then we know f is concave down at p with a horizontal tangent line,
and this guarantees f has a local maximum there. This fact, along with the corresponding
statement for when f”(p) is positive, is stated in the second derivative test.

Second Derivative Test
If p is a critical number of a continuous function f such that f’(p) = 0 and f”(p) #
0, then f has a relative maximum at p if and only if f”(p) < 0, and f has a relative
minimum at p if and only if f”(p) > 0.

In the event that f”(p) = 0, the second derivative test is inconclusive. Thatis, the test doesn’t
provide us any information. This is because if f”(p) = 0, it is possible that f has a local
minimum, local maximum, or neither.!

1Consider the functions f(x) = x*, g(x) = —x*, and h(x) = x3 at the critical point p = 0.
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3.1 Using derivatives to identify extreme values

Just as a first derivative sign chart reveals all of the increasing and decreasing behavior of
a function, we can construct a second derivative sign chart that demonstrates all of the im-
portant information involving concavity.

Example 3.1.7. Let f(x) be a function whose first derivative is f’(x) = 3x* — 9x2. Construct
both first and second derivative sign charts for f, fully discuss where f is increasing and de-
creasing and concave up and concave down, identify all relative extreme values, and sketch
a possible graph of f.

Solution. Since we know f’(x) = 3x*-9x2, we can find the critical numbers of f by solving
3x* — 9x2 = 0. Factoring, we observe that

0 = 3x2(x% = 3) = 3x%(x + V3)(x — V3),

so that x = 0, +V3 are the three critical numbers of f. It then follows that the first derivative
sign chart for f is given in Figure 3.1.8.

f1(0) =32 (x +V3)(x— V3)

- - 4 4
sign(f") + - - n
l l l
1 1 1
behav(f) INC _. 3 DEC 0 DEC v3 INC

Figure 3.1.8: The first derivative sign chart for f when f’(x) = 3x* — 9x? = 3x%(x? - 3).

Thus, f is increasing on the intervals (—oo, —V3) and (V3, ), while f is decreasing on
(=V3,0) and (0, V3). Note particularly that by the first derivative test, this information tells
us that f has a local maximum at x = —V3 and a local minimum at x = V3. While f also has
a critical number at x = 0, neither a maximum nor minimum occurs there since f’ does not
change sign at x = 0.

Next, we move on to investigate concavity. Differentiating f’(x) = 3x* — 9x2, we see that
f”(x) = 12x3 — 18x. Since we are interested in knowing the intervals on which f” is positive
and negative, we first find where f”(x) = 0. Observe that

3 3 3
= 3— = 2—— = —_ _ -
0=12x 18x = 12x (x 2) 12x (x + \/;) (x \/;),

which implies that x =0, i\/g . Building a sign chart for f” in the exact same way we do for
f’, we see the result shown in Figure 3.1.9.
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- —+- ++— +++
sign(f") - + — +
1 1 1
| | |
behav(f) ccD ; CCU , CCD g ccu
—\2 3

Figure 3.1.9: The second derivative sign chart for f when f”(x) = 12x3 — 18x =

e (12— ).

Therefore, f is concave down on the intervals (—co, —\/g) and (0, \/g), and concave up on
(_ %/0) and( %,OO)

Putting all of the above information together, we now see a complete and accurate possible
graph of f in Figure 3.1.10.

A
B
f
c
D
E
-3 V135 VIS V3

Figure 3.1.10: A possible graph of the function f in Example 3.1.7.

The point A = (—V3, f(—V3)) is a local maximum, as f is increasing prior to A and decreas-
ing after; similarly, the point E = (3, f(V3) is a local minimum. Note, too, that f is concave
down at A and concave up at B, which is consistent both with our second derivative sign
chart and the second derivative test. At points B and D, concavity changes, as we saw in the
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results of the second derivative sign chart in Figure 3.1.9. Finally, at point C, f has a critical
point with a horizontal tangent line, but neither a maximum nor a minimum occurs there
since f is decreasing both before and after C. It is also the case that concavity changes at C.

While we completely understand where f is increasing and decreasing, where f is concave
up and concave down, and where f has relative extremes, we do not know any specific
information about the y-coordinates of points on the curve. For instance, while we know
that f has a local maximum at x = —V/3, we don’t know the value of that maximum because
we do not know f(—V3). Any vertical translation of our sketch of f in Figure 3.1.10 would
satisfy the given criteria for f.

Points B, C, and D in Figure 3.1.10 are locations at which the concavity of f changes. We
give a special name to any such point: if p is a value in the domain of a continuous function
f atwhich f changes concavity, then we say that (p, f(p)) is an inflection point of f. Justas we
look for locations where f changes from increasing to decreasing at points where f’'(p) =0
or f’(p) is undefined, so too we find where f”(p) = 0 or f”(p) is undefined to see if there
are points of inflection at these locations.

It is important at this point in our study to remind ourselves of the big picture that deriva-
tives help to paint: the sign of the first derivative f’ tells us whether the function f is increas-
ing or decreasing, while the sign of the second derivative f” tells us how the function f is
increasing or decreasing.

Activity 3.1.3. Suppose that g is a function whose second derivative, g”, is given by the
following graph.

a. Find the x-coordinates of all points
of inflection of g.

b. Fully describe the concavity of g by 8
making an appropriate sign chart.

c. Suppose you are given that
9’(-1.67857351) = 0. Is there is a

local maximum, local minimum, t -+
or neither (for the function g) at 2
this critical number of g, or is it

impossible to say? Why?

Figure 3.1.11: The graph of y = g”(x).

d. Assuming that g”(x) is a polynomial (and that all important behavior of g” is seen
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in the graph above), what degree polynomial do you think g(x) is? Why?

As we will see in more detail in the following section, derivatives also help us to understand
families of functions that differ only by changing one or more parameters. For instance, we
might be interested in understanding the behavior of all functions of the form f(x) = a(x —
h)* +k where a, i, and k are numbers that may vary. In the following activity, we investigate
a particular example where the value of a single parameter has considerable impact on how
the graph appears.

a. Use a graphing utility to sketch the

graph of I for several different k-
values, including k = 1,3,5,10.
Plot h(x) = x? + cos(3x) on the
axes provided. What is the small-
est value of k at which you think
you can see (just by looking at the
graph) at least one inflection point
on the graph of h?

. Explain why the graph of & has no

inflection points if k < V2, but
infinitely many inflection points if

k> V2.

. Explain why, no matter the value of

k, h can only have finitely many crit-
ical numbers.

Summary
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Activity 3.1.4. Consider the family of functions given by (x) = x2 + cos(kx), where k is
an arbitrary positive real number.

12+

Figure 3.1.12: Axes for plotting y = h(x).

¢ The critical numbers of a continuous function f are the values of p for which f’(p) =0
or f’(p) does not exist. These values are important because they identify horizontal
tangent lines or corner points on the graph, which are the only possible locations at
which a local maximum or local minimum can occur.

* Given a differentiable function f, whenever f’ is positive, f is increasing; whenever
f' is negative, f is decreasing. The first derivative test tells us that at any point where
f changes from increasing to decreasing, f has a local maximum, while conversely at
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any point where f changes from decreasing to increasing f has a local minimum.

¢ Given a twice differentiable function f, if we have a horizontal tangent line at x = p
and f”(p) is nonzero, then the fact that f” tells us the concavity of f will determine
whether f has a maximum or minimum at x = p. In particular, if f'(p) = 0 and
f"(p) < 0, then f is concave down at p and f has a local maximum there, while if
f'(p) =0and f”(p) > 0, then f has a local minimum at p. If f'(p) = 0and f”(p) =0,
then the second derivative does not tell us whether f has a local extreme at p or not.

Exercises

1. Use a graph below of f(x) = 3¢79* to estimate the x-values of any critical points and
inflection points of f(x).

critical points (enter as a comma-separated list): x = ‘

inflection points (enter as a comma-separated list): x =
Next, use derivatives to find the x-values of any critical points and inflection points exactly.

critical points (enter as a comma-separated list): x = ‘

inflection points (enter as a comma-separated list): x =

2. Find the inflection points of f(x) = 2x*+27x3—21x2+15. (Give your answers as a comma
separated list, e.g., 3,-2.)

inflection points = ‘ ‘

3. The following shows graphs of three functions, A (in black), B (in blue), and C (in green).
If these are the graphs of three functions f, f’, and f”, identify which is which.

(For each enter A, B or C).
f= = 57|

4. This problem concerns a function about which the following information is known:

* f isadifferentiable function defined at every real number x

. f(O0)=-172
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Chapter 3 Using Derivatives

e y = f’(x) has its graph given at center in Figure 3.1.13

f/

Figure 3.1.13: At center, a graph of y = f’(x); at left, axes for plotting y = f(x); at right, axes
for plotting y = f”(x).

a. Construct a first derivative sign chart for f. Clearly identify all critical numbers of f,
where f is increasing and decreasing, and where f has local extrema.

b. On the right-hand axes, sketch an approximate graph of y = f”(x).

c. Construct a second derivative sign chart for f. Clearly identify where f is concave up
and concave down, as well as all inflection points.

d. On the left-hand axes, sketch a possible graph of y = f(x).
5. Suppose that g is a differentiable function and g’(2) = 0. In addition, suppose that on
1 <x <2and?2 < x < 3itis known that g’(x) is positive.

a. Does g have a local maximum, local minimum, or neither at x = 2? Why?

b. Suppose that g”(x) exists for every x such that 1 < x < 3. Reasoning graphically,
describe the behavior of g”(x) for x-values near 2.

c. Besides being a critical number of g, what is special about the value x = 2 in terms of
the behavior of the graph of g?

6. Suppose that & is a differentiable function whose first derivative is given by the graph in
Figure 3.1.14.
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a. How many real number solutions can
the equation /(x) = 0 have? Why?

b. If h(x) = 0 has two distinct real so-
lutions, what can you say about the
signs of the two solutions? Why?

c. Assume that lim,_, h'(x) = 3, as ap-
pears to be indicated in Figure 3.1.14.
How will the graph of y = h(x) appear
as x — co? Why?

d. Describe the concavity of y = h(x) as
fully as you can from the provided in-
formation.

Figure 3.1.14: The graph of y = h’(x).

7. Let p be a function whose second derivative is p”(x) = (x + 1)(x — 2)e™™.

a. Construct a second derivative sign chart for p and determine all inflection points of p.

V5-1

b. Suppose you also know that x = ~=— is a critical number of p. Does p have a local
minimum, local maximum, or neither at x = @? Why?

c. If the point (2, 13) lies on the graph of y = p(x) and p’(2) = -3, find the equation of
the tangent line to y = p(x) at the point where x = 2. Does the tangent line lie above
the curve, below the curve, or neither at this value? Why?
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3.3 Global Optimization

Motivating Questions

e What are the differences between finding relative extreme values and global extreme
values of a function?

¢ How is the process of finding the global maximum or minimum of a function over the
function’s entire domain different from determining the global maximum or minimum
on a restricted domain?

¢ For a function that is guaranteed to have both a global maximum and global minimum
on a closed, bounded interval, what are the possible points at which these extreme
values occur?

We have seen that we can use the first derivative of a function to determine where the func-
tion is increasing or decreasing, and the second derivative to know where the function is
concave up or concave down. Each of these approaches provides us with key information
that helps us determine the overall shape and behavior of the graph, as well as whether the
function has a relative minimum or relative maximum at a given critical number. Remem-
ber that the difference between a relative maximum and a global maximum is that there is
a relative maximum of f at x = p if f(p) > f(x) for all x near p, while there is a global
maximum at p if f(p) > f(x) for all x in the domain of f.

For instance, in Figure 3.3.1, we see a function f that
has a global maximum at x = ¢ and a relative maxi-

mum at x = g, since f(c) is greater than f(x) for every global max
value of x, while f(a) is only greater than the value

of f(x) for x near a. Since the function appears to relative max

decrease without bound, f has no global minimum, o

though clearly f has a relative minimum at x = b. relative min ¥

Our emphasis in this section is on finding the global
extreme values of a function (if they exist). In so do- a b c

ing, we will either be interested in the behavior of the

function over its entire domain or on some restricted
portion. The former situation is familiar and similar to
work that we did in the two preceding sections of the
text. We explore this through a particular example in
the following preview activity.

Figure 3.3.1: A function f witha
global maximum, but no global
minimum.
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Preview Activity 3.3.1. Let f(x) =2+ m
a. Determine all of the critical numbers of f.

b. Construct a first derivative sign chart for f and thus determine all intervals on
which f is increasing or decreasing.

c. Does f have a global maximum? If so, why, and what is its value and where is the
maximum attained? If not, explain why.

d. Determine limy_,o f(x) and lim,,_o f(x).
e. Explain why f(x) > 2 for every value of x.

f. Does f have a global minimum? If so, why, and what is its value and where is the
minimum attained? If not, explain why.

3.3.1 Global Optimization

For the functions in Figure 3.3.1 and Preview Activity 3.3.1, we were interested in finding the
global minimum and global maximum on the entire domain, which turned out to be (—co, o)
for each. At other times, our perspective on a function might be more focused due to some
restriction on its domain. For example, rather than considering f(x) =2 + m for every
value of x, perhaps instead we are only interested in those x for which 0 < x < 4, and we
would like to know which values of x in the interval [0, 4] produce the largest possible and
smallest possible values of f. We are accustomed to critical numbers playing a key role in
determining the location of extreme values of a function; now, by restricting the domain to an
interval, it makes sense that the endpoints of the interval will also be important to consider,
as we see in the following activity. When limiting ourselves to a particular interval, we will
often refer to the absolute maximum or minimum value, rather than the global maximum or
minimum.

Activity 3.3.2. Let g(x) = x5 —2x + 2.
a. Find all critical numbers of g that lie in the interval -2 < x < 3.
b. Use a graphing utility to construct the graph of g on the interval -2 < x < 3.

c. From the graph, determine the x-values at which the absolute minimum and ab-
solute maximum of g occur on the interval [-2, 3].

d. How do your answers change if we instead consider the interval =2 < x < 2?

e. What if we instead consider the interval -2 < x < 1?

In Activity 3.3.2, we saw how the absolute maximum and absolute minimum of a function
on a closed, bounded interval [a, b], depend not only on the critical numbers of the function,
but also on the selected values of a and b. These observations demonstrate several important
facts that hold much more generally. First, we state an important result called the Extreme
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Value Theorem.

—— The Extreme Value Theorem

If f is a continuous function on a closed interval [4, b], then f attains both an absolute
minimum and absolute maximum on [a, b]. That is, for some value x,, such that a <
Xm < b, it follows that f(x,,) < f(x) for all x in [a, b]. Similarly, there is a value xjs in
[a,b] such that f(xpr) > f(x) for all x in [a, b]. Letting m = f(xn,) and M = f(xpm), it
follows that m < f(x) < M for all x in [a, b].

The Extreme Value Theorem tells us that provided a function is continuous, on any closed
interval [a, b] the function has to achieve both an absolute minimum and an absolute maxi-
mum. Note, however, that this result does not tell us where these extreme values occur, but
rather only that they must exist. As seen in the examples of Activity 3.3.2, it is apparent that
the only possible locations for relative extremes are either the endpoints of the interval or
at a critical number (the latter being where a relative minimum or maximum could occur,
which is a potential location for an absolute extreme).

Note 3.3.2. Thus, we have the following approach to finding the absolute maximum and
minimum of a continuous function f on the interval [a, b]:
¢ find all critical numbers of f that lie in the interval;

¢ evaluate the function f at each critical number in the interval and at each endpoint of
the interval;

¢ from among the noted function values, the smallest is the absolute minimum of f on
the interval, while the largest is the absolute maximum.

Activity 3.3.3. Find the exact absolute maximum and minimum of each function on the
stated interval.

a. h(x)=xe™*,[0,3]

b. p(t) = sin(t) + cos(t), [-F, 5]
C. q(x) = %/ [3/ 7]

d. f(x)=4-e2 (o0, 00)
e. h(x) =xe™, ][0, %] (a > 0)

£ f(x)=b—e " (=c0,00),a,b >0

One of the big lessons in finding absolute extreme values is the realization that the interval
we choose has nearly the same impact on the problem as the function under consideration.
Consider, for instance, the function pictured in Figure 3.3.3.
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Figure 3.3.3: A function g considered on three different intervals.

In sequence, from left to right, as we see the interval under consideration change from [-2, 3]
to [-2,2] to [-2, 1], we move from having two critical numbers in the interval with the ab-
solute minimum at one critical number and the absolute maximum at the right endpoint,
to still having both critical numbers in the interval but then with the absolute minimum
and maximum at the two critical numbers, to finally having just one critical number in the
interval with the absolute maximum at one critical number and the absolute minimum at
one endpoint. It is particularly essential to always remember to only consider the critical
numbers that lie within the interval.

3.3.2 Moving toward applications

In Section 3.4, we will focus almost exclusively on applied optimization problems: problems
where we seek to find the absolute maximum or minimum value of a function that repre-
sents some physical situation. We conclude this current section with an example of one such
problem because it highlights the role that a closed, bounded domain can play in finding ab-
solute extrema. In addition, these problems often involve considerable preliminary work to
develop the function which is to be optimized, and this example demonstrates that process.

Example 3.3.4. A 20 cm piece of wire is cut into two pieces. One piece is used to form a
square and the other an equilateral triangle. How should the wire be cut to maximize the
total area enclosed by the square and triangle? to minimize the area?

Solution. We begin by constructing a picture that exemplifies the given situation. The
primary variable in the problem is where we decide to cut the wire. We thus label that point
x, and note that the remaining portion of the wire then has length 20 — x
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As shown in Figure 3.3.5, we see
that the x cm of the wire that are

used to form the equilateral triangle * 20—x
result in a triangle with three sides
oflength 3. For the remaining 20—x
cm of wire, the square that results
will have each side of length 22%.
X

Figure 3.3.5: A 20 cm piece of wire cut into two
pieces, one of which forms an equilateral triangle,
the other which yields a square.

At this point, we note that there are obvious restrictions on x: in particular, 0 < x < 20. In
the extreme cases, all of the wire is being used to make just one figure. For instance, if x = 0,
then all 20 cm of wire are used to make a square that is 5 X 5.

Now, our overall goal is to find the absolute minimum and absolute maximum areas that
can be enclosed. We note that the area of the triangle is Ay = 1bh = 1 - % - x—63, since the
height of an equilateral triangle is V3 times half the length of the base. Further, the area of

2
the square is Ag = s> = (22)". Therefore, the total area function is

V3x? +(20—x)2'

A = =3¢ 4

Again, note that we are only considering this function on the restricted domain [0, 20] and
we seek its absolute minimum and absolute maximum.

Differentiating A(x), we have

a= a2 (FE) (-5) = Ter e gx -

2 () () =S

Setting A’(x) = 0, it follows that x = 4\1%39 ~ 11.3007 is the only critical number of A, and

we note that this lies within the interval [0, 20].

Evaluating A at the critical number and endpoints, we see that
180 180

V3( 2 20- 2
180 _ 4V3+9 4\3+9 ~
e A (4\/§+9) = 1 + ( 1 ) ~ 10.8741

e A(0)=25

o A(20) = ¥(400) = 103 ~ 19.2450
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Thus, the absolute minimum occurs when

x =~ 11.3007 and results in the minimum
area of approximately 10.8741 square cen-
timeters, while the absolute maximum oc-
curs when we invest all of the wire in the
square (and none in the triangle), resulting
in 25 square centimeters of area. These re-
sults are confirmed by a plot of y = A(x) on
the interval [0, 20], as shown in Figure 3.3.6.

a.

5 10 15 20

Figure 3.3.6: A plot of the area function
from Example 3.3.4.

Activity 3.3.4. A piece of cardboard that is 10 X 15 (each measured in inches) is being
made into a box without a top. To do so, squares are cut from each corner of the box
and the remaining sides are folded up. If the box needs to be at least 1 inch deep and
no more than 3 inches deep, what is the maximum possible volume of the box? what is
the minimum volume? Justify your answers using calculus.

Draw a labeled diagram that shows the given information. What variable should
we introduce to represent the choice we make in creating the box? Label the dia-
gram appropriately with the variable, and write a sentence to state what the vari-
able represents.

Determine a formula for the function V' (that depends on the variable in (a)) that
tells us the volume of the box.

What is the domain of the function V? That is, what values of x make sense for
input? Are there additional restrictions provided in the problem?

Determine all critical numbers of the function V.

Evaluate V at each of the endpoints of the domain and at any critical numbers that
lie in the domain.

What is the maximum possible volume of the box? the minimum?

The approaches shown in Example 3.3.4 and experienced in Activity 3.3.4 include standard
steps that we undertake in almost every applied optimization problem: we draw a picture to
demonstrate the situation, introduce one or more variables to represent quantities that are
changing, work to find a function that models the quantity to be optimized, and then decide
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an appropriate domain for that function. Once that work is done, we are in the familiar
situation of finding the absolute minimum and maximum of a function over a particular
domain, at which time we apply the calculus ideas that we have been studying to this point
in Chapter 3.

Summary

¢ To find relative extreme values of a function, we normally use a first derivative sign
chart and classify all of the function’s critical numbers. If instead we are interested in
absolute extreme values, we first decide whether we are considering the entire domain
of the function or a particular interval.

¢ In the case of finding global extremes over the function’s entire domain, we again use
a first or second derivative sign chart in an effort to make overall conclusions about
whether or not the function can have a absolute maximum or minimum. If we are
working to find absolute extremes on a restricted interval, then we first identify all
critical numbers of the function that lie in the interval.

¢ For a continuous function on a closed, bounded interval, the only possible points at
which absolute extreme values occur are the critical numbers and the endpoints. Thus,
to find said absolute extremes, we simply evaluate the function at each endpoint and
each critical number in the interval, and then we compare the results to decide which
is largest (the absolute maximum) and which is smallest (the absolute minimum).

Exercises

1. Based on the given information about each function, decide whether the function has
global maximum, a global minimum, neither, both, or that it is not possible to say with-
out more information. Assume that each function is twice differentiable and defined for
all real numbers, unless noted otherwise. In each case, write one sentence to explain your
conclusion.

a. f is a function such that f”(x) < 0 for every x.

b. gisa function with two critical numbers a and b (where a < b), and g’(x) < Ofor x < g,
g'(x) <0fora <x <b,and g’(x) > 0 for x > b.

c. hisafunction with two critical numbers 2 and b (wherea < b), and h’(x) < Ofor x < a,
h(x) > 0fora < x < b, and h’'(x) < 0 for x > b. In addition, lim,_,. h(x) = 0 and
limy—_o h(x) = 0.

d. p is a function differentiable everywhere except at x = a4 and p”(x) > 0 for x < a and
p”(x) < 0for x > a.

2. For each family of functions that depends on one or more parameters, determine the
function’s absolute maximum and absolute minimum on the given interval.

a. p(x) =x%—a%x,[0,a] (a > 0)
b. r(x) = axe b%, [%, bl (a,b > 0)
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c. w(x)=a(l-ebv),

d. s(x) = sin(kx), [

3b] (a, b > 0)
s
3k’ 6

3. For each of the functions described below (each continuous on [a, b]), state the location of
the function’s absolute maximum and absolute minimum on the interval [a, b], or say there
is not enough information provided to make a conclusion. Assume that any critical numbers
mentioned in the problem statement represent all of the critical numbers the function has
in [a, b]. In each case, write one sentence to explain your answer.

a. f'(x) <0forall xin [a, b]

b. g has a critical number at ¢ such thata < ¢ < b and g’(x) > 0 for x < c and ¢g’(x) < 0
forx > ¢

c. h(a) = h(b)and h”’(x) < 0 for all x in [a, b]

d. p(a) > 0, p(b) <0, and for the critical number c such thata < c < b, p’(x) <0forx <c
and p’(x) > 0forx > ¢

4. Lets(t) = 3sin(2(t — %)) +5. Find the exact absolute maximum and minimum of s on the
provided intervals by testing the endpoints and finding and evaluating all relevant critical
numbers of s.

7

[N\E]
I3

]

7

Nl
— o

a. [
b. [0,
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3.4 Applied Optimization

Motivating Questions

¢ In a setting where a situation is described for which optimal parameters are sought,
how do we develop a function that models the situation and use calculus to find the
desired maximum or minimum?

Near the conclusion of Section 3.3, we considered two examples of optimization problems
where determining the function to be optimized was part of a broader question. In Exam-
ple 3.3.4, we sought to use a single piece of wire to build two geometric figures (an equilateral
triangle and square) and to understand how various choices for how to cut the wire led to
different values of the area enclosed. One of our conclusions was that in order to maximize
the total combined area enclosed by the triangle and square, all of the wire must be used to
make a square. In the subsequent Activity 3.3.4, we investigated how the volume of a box
constructed from a piece of cardboard by removing squares from each corner and folding
up the sides depends on the size of the squares removed.

Both of these problems exemplify situations where there is not a function explicitly provided
to optimize. Rather, we first worked to understand the given information in the problem,
drawing a figure and introducing variables, and then sought to develop a formula for a
function that models the quantity (area or volume, in the two examples, respectively) to
be optimized. Once the function was established, we then considered what domain was
appropriate on which to pursue the desired absolute minimum or maximum (or both). At
this point in the problem, we are finally ready to apply the ideas of calculus to determine
and justify the absolute minimum or maximum. Thus, what is primarily different about
problems of this type is that the problem-solver must do considerable work to introduce
variables and develop the correct function and domain to represent the described situation.

Throughout what follows in the current section, the primary emphasis is on the reader solv-
ing problems. Initially, some substantial guidance is provided, with the problems progress-
ing to require greater independence as we move along.

Preview Activity 3.4.1. According to U.S. postal regulations, the girth plus the length of
a parcel sent by mail may not exceed 108 inches, where by “girth” we mean the perimeter
of the smallest end. What is the largest possible volume of a rectangular parcel with a
square end that can be sent by mail? What are the dimensions of the package of largest
volume?

a. Let x represent the length of one side of the square end and y the length of the
longer side. Label these quantities appropriately on the image shown in Figure 3.4.1.

b. What is the quantity to be optimized in this problem? Find a formula for this
quantity in terms of x and y.
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c. The problem statement tells us that the parcel’s girth plus length may not exceed
108 inches. In order to maximize volume, we assume that we will actually need the
girth plus length to equal 108 inches. What equation does this produce involving
x and y?

d. Solve the equation you found in (c) for one of x or y (whichever is easier).

e. Now use your work in (b) and (d) to determine a formula for the volume of the
parcel so that this formula is a function of a single variable.

f. Over what domain should we consider this function? Note that both x and y must
be positive; how does the constraint that girth plus length is 108 inches produce
intervals of possible values for x and y?

g. Find the absolute maximum of the
volume of the parcel on the domain
you established in (f) and hence
also determine the dimensions of
the box of greatest volume. Justify
that you've found the maximum
using calculus.

Figure 3.4.1: A rectangular parcel with a
square end.

3.4.1 More applied optimization problems

Many of the steps in Preview Activity 3.4.1 are ones that we will execute in any applied opti-
mization problem. We briefly summarize those here to provide an overview of our approach
in subsequent questions.

Note 3.4.2.

¢ Draw a picture and introduce variables. It is essential to first understand what quan-
tities are allowed to vary in the problem and then to represent those values with vari-
ables. Constructing a figure with the variables labeled is almost always an essential
first step. Sometimes drawing several diagrams can be especially helpful to get a sense
of the situation. A nice example of this can be seen at http://gvsu.edu/s/99, where
the choice of where to bend a piece of wire into the shape of a rectangle determines
both the rectangle’s shape and area.

¢ Identify the quantity to be optimized as well as any key relationships among the vari-
able quantities. Essentially this step involves writing equations that involve the vari-
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ables that have been introduced: one to represent the quantity whose minimum or
maximum is sought, and possibly others that show how multiple variables in the prob-
lem may be interrelated.

¢ Determine a function of a single variable that models the quantity to be optimized;
this may involve using other relationships among variables to eliminate one or more
variables in the function formula. For example, in Preview Activity 3.4.1, we initially
found that V = x2y, but then the additional relationship that 4x + y = 108 (girth plus
length equals 108 inches) allows us to relate x and y and thus observe equivalently that
y = 108 — 4x. Substituting for y in the volume equation yields V(x) = x2(108 — 4x),
and thus we have written the volume as a function of the single variable x.

® Decide the domain on which to consider the function being optimized. Often the phys-
ical constraints of the problem will limit the possible values that the independent vari-
able can take on. Thinking back to the diagram describing the overall situation and
any relationships among variables in the problem often helps identify the smallest and
largest values of the input variable.

® Use calculus to identify the absolute maximum and/or minimum of the quantity be-
ing optimized. This always involves finding the critical numbers of the function first.
Then, depending on the domain, we either construct a first derivative sign chart (for
an open or unbounded interval) or evaluate the function at the endpoints and critical
numbers (for a closed, bounded interval), using ideas we’ve studied so far in Chapter 3.

e Finally, we make certain we have answered the question: does the question seek the
absolute maximum of a quantity, or the values of the variables that produce the max-
imum? That is, finding the absolute maximum volume of a parcel is different from
finding the dimensions of the parcel that produce the maximum.

Activity 3.4.2. A soup can in the shape of a right circular cylinder is to be made from
two materials. The material for the side of the can costs $0.015 per square inch and the
material for the lids costs $0.027 per square inch. Suppose that we desire to construct
a can that has a volume of 16 cubic inches. What dimensions minimize the cost of the
can?

a. Draw a picture of the can and label its dimensions with appropriate variables.

b. Use your variables to determine expressions for the volume, surface area, and cost
of the can.

c. Determine the total cost function as a function of a single variable. What is the
domain on which you should consider this function?

d. Find the absolute minimum cost and the dimensions that produce this value.

Familiarity with common geometric formulas is particularly helpful in problems like the
one in Activity 3.4.2. Sometimes those involve perimeter, area, volume, or surface area. At
other times, the constraints of a problem introduce right triangles (where the Pythagorean
Theorem applies) or other functions whose formulas provide relationships among variables
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present.

Activity 3.4.3. A hiker starting at a point P on a straight road walks east towards point
Q, which is on the road and 3 kilometers from point P.

Two kilometers due north of point Q is a
cabin. The hiker will walk down the road
for a while, at a pace of 8 kilometers per
hour. At some point Z between P and
Q, the hiker leaves the road and makes
a straight line towards the cabin through
the woods, hiking at a pace of 3 kph, as
pictured in Figure 3.4.3. In order to min-
imize the time to go from P to Z to the
cabin, where should the hiker turn into
the forest?

Figure 3.4.3: A hiker walks from P to Z to
the cabin, as pictured.

In more geometric problems, we often use curves or functions to provide natural constraints.
For instance, we could investigate which isosceles triangle that circumscribes a unit circle has
the smallest area, which you can explore for yourself at http:/ /gvsu.edu/s/9b. Or similarly,
for a region bounded by a parabola, we might seek the rectangle of largest area that fits
beneath the curve, as shown at http://gvsu.edu/s/9c. The next activity is similar to the
latter problem.

Activity 3.4.4. Consider the region in the x-y plane that is bounded by the x-axis and
the function f(x) = 25 — x2. Construct a rectangle whose base lies on the x-axis and is
centered at the origin, and whose sides extend vertically until they intersect the curve
y = 25— x2. Which such rectangle has the maximum possible area? Which such rectan-
gle has the greatest perimeter? Which has the greatest combined perimeter and area?
(Challenge: answer the same questions in terms of positive parameters a and b for the
function f(x) = b —ax?2.)

Activity 3.4.5. A trough is being constructed by bending a 4 X 24 (measured in feet)
rectangular piece of sheet metal.
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Two symmetric folds 2 feet apart will be
made parallel to the longest side of the

rectangle so that the trough has cross-

sections in the shape of a trapezoid, as \ /
pictured in Figure 3.4.4. At what angle 0

should the folds be made to produce the 2

trough of maximum volume?

Figure 3.4.4: A cross-section of the trough
formed by folding to an angle of 6.

Summary

* While there is no single algorithm that works in every situation where optimization
is used, in most of the problems we consider, the following steps are helpful: draw a
picture and introduce variables; identify the quantity to be optimized and find rela-
tionships among the variables; determine a function of a single variable that models
the quantity to be optimized; decide the domain on which to consider the function
being optimized; use calculus to identify the absolute maximum and/or minimum of
the quantity being optimized.

Exercises

1. An open box is to be made out of a 10-inch by 14-inch piece of cardboard by cutting out
wmex - gquares of equal size from the four corners and bending up the sides. Find the dimensions

of the resulting box that has the largest volume.

Dimensions of the bottom of the box: ‘ X ‘

Height of the box:

2. A rectangular storage container with an open top is to have a volume of 22 cubic meters.
vk The length of its base is twice the width. Material for the base costs 14 dollars per square
meter. Material for the sides costs 8 dollars per square meter. Find the cost of materials for

the cheapest such container.

Total cost = ‘ (Round to the nearest penny
and include monetary units. For example, if your answer is 1.095, enter $1.10 including the
dollar sign and second decimal place.)

3. A cattle rancher wants to enclose a rectangular area and then divide it into four pens

wme - with fencing parallel to one side of the rectangle (see the figure below). There are 520 feet
of fencing available to complete the job. What is the largest possible total area of the four
pens?

RN
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Largest area = ‘ (include units)

4. The top and bottom margins of a poster are 8 cm and the side margins are each 2 cm. If the
area of printed material on the poster is fixed at 386 square centimeters, find the dimensions
of the poster with the smallest area.

printed
material

Width = (include units)

Height = ‘ (include units)

5. A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola
y = 12 — x%. What are the dimensions of such a rectangle with the greatest possible area?

Width =
Height =

6. A rectangular box with a square bottom and closed top is to be made from two materials.
The material for the side costs $1.50 per square foot and the material for the bottom costs
$3.00 per square foot. If you are willing to spend $15 on the box, what is the largest volume
it can contain? Justify your answer completely using calculus.

7. A farmer wants to start raising cows, horses, goats, and sheep, and desires to have a rect-
angular pasture for the animals to graze in. However, no two different kinds of animals can
graze together. In order to minimize the amount of fencing she will need, she has decided
to enclose a large rectangular area and then divide it into four equally sized pens by adding
three segments of fence inside the large rectangle that are parallel to two existing sides. She
has decided to purchase 7500 ft of fencing. What is the maximum possible area that each of
the four pens will enclose?

8. Two vertical poles of heights 60 ft and 80 ft stand on level ground, with their bases 100
ft apart. A cable that is stretched from the top of one pole to some point on the ground
between the poles, and then to the top of the other pole. What is the minimum possible
length of cable required? Justify your answer completely using calculus.

9. A company is designing propane tanks that are cylindrical with hemispherical ends. As-
sume that the company wants tanks that will hold 1000 cubic feet of gas, and that the ends
are more expensive to make, costing $5 per square foot, while the cylindrical barrel between
the ends costs $2 per square foot. Use calculus to determine the minimum cost to construct
such a tank.
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CHAPTER 4 I

The Definite Integral

4.1 Determining distance traveled from velocity

Motivating Questions
¢ If we know the velocity of a moving body at every point in a given interval, can we
determine the distance the object has traveled on the time interval?

¢ How is the problem of finding distance traveled related to finding the area under a
certain curve?

e What does it mean to antidifferentiate a function and why is this process relevant to
finding distance traveled?

¢ If velocity is negative, how does this impact the problem of finding distance traveled?

In the very first section of the text, we considered a situation where a moving object had a
known position at time ¢. In particular, we stipulated that a tennis ball tossed into the air had
its height s (in feet) at time ¢ (in seconds) given by s(t) = 64 — 16(t — 1)*. From this starting
point, we investigated the average velocity of the ball on a given interval [a, b], computed
by the difference quotient %:Z(”), and eventually found that we could determine the exact
instantaneous velocity of the ball at time ¢ by taking the derivative of the position function,

s(t+h)—s(t)
s'(t) = lim ————.
( ) h—0 h
Thus, given a differentiable position function, we are able to know the exact velocity of the
moving object at any point in time.

Moreover, from this foundational problem involving position and velocity we have learned
a great deal. Given a differentiable function f, we are now able to find its derivative and use
this derivative to determine the function’s instantaneous rate of change at any point in the
domain, as well as to find where the function is increasing or decreasing, is concave up or
concave down, and has relative extremes. The vast majority of the problems and applications
we have considered have involved the situation where a particular function is known and we
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seek information that relies on knowing the function’s instantaneous rate of change. That
is, we have typically proceeded from a function f to its derivative, f’, and then used the
meaning of the derivative to help us answer important questions.

In a much smaller number of situations so far, we have encountered the reverse situation
where we instead know the derivative, f’, and have tried to deduce information about f.
It is this particular problem that will be the focus of our attention in most of Chapter 4: if
we know the instantaneous rate of change of a function, are we able to determine the func-
tion itself? To begin, we start with a more focused question: if we know the instantaneous
velocity of an object moving along a straight line path, can we determine its corresponding
position function?

Preview Activity 4.1.1. Suppose that a person is taking a walk along a long straight path

and walks at a constant rate of 3 miles per hour.

a. On the left-hand axes provided in Figure 4.1.1, sketch a labeled graph of the ve-
locity function v(t) = 3.

| mph g4 miles

hrs hrs

Figure 4.1.1: At left, axes for plotting y = v(t); at right, for plotting v = s(t).

Note that while the scale on the two sets of axes is the same, the units on the
right-hand axes differ from those on the left. The right-hand axes will be used in
question (d).

b. How far did the person travel during the two hours? How is this distance related
to the area of a certain region under the graph of y = v(t)?

c. Find an algebraic formula, s(t), for the position of the person at time ¢, assuming
that s(0) = 0. Explain your thinking.

210



4.1 Determining distance traveled from velocity

d. On the right-hand axes provided in Figure 4.1.1, sketch a labeled graph of the
position function y = s(t).

e. For what values of t is the position function s increasing? Explain why this is the
case using relevant information about the velocity function v.

4.1.1 Area under the graph of the velocity function

In Preview Activity 4.1.1, we encountered a fundamental fact: when a moving object’s ve-
locity is constant (and positive), the area under the velocity curve over a given interval tells
us the distance the object traveled.

h h
3.. mp 3.. mp
y=v(t)
=2 ” N_
A
1 A 1 2
hrs hrs

1 2 3 1 2 3

Figure 4.1.2: At left, a constant velocity function; at right, a non-constant velocity function.

As seen at left in Figure 4.1.2, if we consider an object moving at 2 miles per hour over the
time interval [1, 1.5], then the area A of the shaded region under y = v(¢) on [1,1.5] is
miles 1

Aq = hour 2 hours = 1mile.

This principle holds in general simply due to the fact that distance equals rate times time,
provided the rate is constant. Thus, if v(t) is constant on the interval [a, b], then the distance
traveled on [a, b] is the area A that is given by

A =0v(a)b—a)=v(a)At,

where At is the change in ¢ over the interval. Note, too, that we could use any value of
v(t) on the interval [a, b], since the velocity is constant; we simply chose v(a), the value at
the interval’s left endpoint. For several examples where the velocity function is piecewise
constant, see http://gvsu.edu/s/9T.1

The situation is obviously more complicated when the velocity function is not constant. At
the same time, on relatively small intervals on which v(t) does not vary much, the area

Marc Renault, calculus applets.
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principle allows us to estimate the distance the moving object travels on that time interval.
For instance, for the non-constant velocity function shown at right in Figure 4.1.2, we see
that on the interval [1, 1.5], velocity varies from v(1) = 2.5 down to v(1.5) =~ 2.1. Hence, one
estimate for distance traveled is the area of the pictured rectangle,

miles . 1hours = 1.25miles.
hour 2

Ay =v(1)At =2.5

Because v is decreasing on [1, 1.5] and the rectangle lies above the curve, clearly A, = 1.25
is an over-estimate of the actual distance traveled.

If we want to estimate the area under the mph
non-constant velocity function on a wider 31
interval, say [0, 3], it becomes apparent that
one rectangle probably will not give a good
approximation. Instead, we could use the
six rectangles pictured in Figure 4.1.3, find
the area of each rectangle, and add up the
total. Obviously there are choices to make 14
and issues to understand: how many rect-
angles should we use? where should we
evaluate the function to decide the rectan- hrs
gle’s height? what happens if velocity is
sometimes negative? can we attain the ex-
act area under any non-constant curve?

Figure 4.1.3: Using six rectangles to esti-
mate the area under y = v(t) on [0, 3].

These questions and more are ones we will study in what follows; for now it suffices to realize
that the simple idea of the area of a rectangle gives us a powerful tool for estimating both
distance traveled from a velocity function as well as the area under an arbitrary curve. To
explore the setting of multiple rectangles to approximate area under a non-constant velocity
function, see the applet found at http://gvsu.edu/s/9U.2

Activity 4.1.2. Suppose that a person is walking in such a way that her velocity varies
slightly according to the information given in Table 4.1.4 and graph given in Figure 4.1.5.

t 0.00 025 050 075 100 125 150 175 2.00
u(t) 1.500 1.789 1.938 1.992 2.000 2.008 2.063 2.211 2.500

Table 4.1.4: Velocity data for the person walking.

2Marc Renault, calculus applets.
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a. Using the grid, graph, and given data appropriately, estimate the distance traveled
by the walker during the two hour interval from f = 0 to t = 2. You should use
time intervals of width At = 0.5, choosing a way to use the function consistently to
determine the height of each rectangle in order to approximate distance traveled.

b. How could you get a better approx-
imation of the distance traveled on m ph
[0,2]? Explain, and then find this 3¢+
new estimate. y= V(t)

c. Now suppose that you know that v
is given by v(t) = 0.5 — 1.5t +

1.5t + 1.5. Remember that v is the 21
derivative of the walker’s position
function, s. Find a formula for s so
thats’ = v. {

d. Based on your work in (c), what is
the value of s(2) — s(0)? What is the

meaning of this quantity? hrs

Figure 4.1.5: The graph of y = v(t).

4.1.2 Two approaches: area and antidifferentiation

When the velocity of a moving object is positive, the object’s position is always increasing.
While we will soon consider situations where velocity is negative and think about the ram-
ifications of this condition on distance traveled, for now we continue to assume that we are
working with a positive velocity function. In that setting, we have established that whenever
v is actually constant, the exact distance traveled on an interval is the area under the velocity
curve; furthermore, we have observed that when v is not constant, we can estimate the total
distance traveled by finding the areas of rectangles that help to approximate the area under
the velocity curve on the given interval. Hence, we see the importance of the problem of
finding the area between a curve and the horizontal axis: besides being an interesting geo-
metric question, in the setting of the curve being the (positive) velocity of a moving object,
the area under the curve over an interval tells us the exact distance traveled on the interval.
We can estimate this area any time we have a graph of the velocity function or a table of data
that tells us some relevant values of the function.
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In Activity 4.1.2, we also encountered an alternate approach to finding the distance traveled.
In particular, if we know a formula for the instantaneous velocity, ¥ = v(t), of the moving
body at time ¢, then we realize that v must be the derivative of some corresponding position
function s. If we can find a formula for s from the formula for v, it follows that we know the
position of the object at time ¢. In addition, under the assumption that velocity is positive,
the change in position over a given interval then tells us the distance traveled on that interval.

For a simple example, consider the situation from Preview Activity 4.1.1, where a person is
walking along a straight line and has velocity function v(f) = 3 mph.

| mph 1 miles

A=3.125=3.75

5(0.25) = 0,75 ,
1 2

Figure 4.1.6: The velocity function v(t) = 3 and corresponding position function s(t) = 3t.

As pictured in Figure 4.1.6, we see the already noted relationship between area and distance
traveled on the left-hand graph of the velocity function. In addition, because the velocity
is constant at 3, we know that if3 s(t) = 3¢, then s’(t) = 3, so s(f) = 3t is a function whose
derivative is v(t). Furthermore, we now observe that s(1.5) = 4.5 and s(0.25) = 0.75, which
are the respective locations of the person at times ¢ = 0.25 and ¢ = 1.5, and therefore

s(1.5) — 5(0.25) = 4.5 — 0.75 = 3.75 miles.

This is not only the change in position on [0.25, 1.5], but also precisely the distance traveled
on [0.25,1.5], which can also be computed by finding the area under the velocity curve over
the same interval. There are profound ideas and connections present in this example that
we will spend much of the remainder of Chapter 4 studying and exploring.

For now, it is most important to observe that if we are given a formula for a velocity function
v, it can be very helpful to find a function s that satisfies s* = v. In this context, we say that

3Here we are making the implicit assumption that s(0) = 0; we will further discuss the different possibilities for
values of s(0) in subsequent study.
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s is an antiderivative of v. More generally, just as we say that f’ is the derivative of f for a
given function f, if we are given a function g and G is a function such that G’ = g, we say
that G is an antiderivative of g. For example, if g(x) = 3x2 + 2x, an antiderivative of g is
G(x) = x% + x2, since G'(x) = g(x). Note that we say “an” antiderivative of g rather than
“the” antiderivative of g because H(x) = x3 + x? + 5 is also a function whose derivative is g,
and thus H is another antiderivative of g.

a.

Activity 4.1.3. A ball is tossed vertically in such a way that its velocity function is given
by v(t) = 32 — 32t, where t is measured in seconds and v in feet per second. Assume
that this function is valid for 0 < t < 2.

For what values of ¢ is the velocity of the ball positive? What does this tell you
about the motion of the ball on this interval of time values?

Find an antiderivative, s, of v that satisfies s(0) = 0.
Compute the value of s(1) — s(%). What is the meaning of the value you find?

Using the graph of y = v(t) provided in Figure 4.1.7, find the exact area of the
region under the velocity curve between ¢ = 1 and = 1. What is the meaning of
the value you find?

Answer the same questions as in (c) ft/sec
and (d) but instead using the inter-
val [0, 1]. 2471
t)=32-32
What is the value of s(2) — s(0)? 124 v(¢)

What does this result tell you about

the flight of the ball? How is this :sec
value connected to the provided 1 2
graph of y = v(t)? Explain. 124

24+

Figure 4.1.7: The graph of y = v(t).

4.1.3 When velocity is negative

Most of our work in this section has occurred under the assumption that velocity is positive.
This hypothesis guarantees that the movement of the object under consideration is always in
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a single direction, and hence ensures that the moving body’s change in position is the same
as the distance it travels on a given interval. As we saw in Activity 4.1.3, there are natural
settings in which a moving object’s velocity is negative; we would like to understand this
scenario fully as well.

Consider a simple example where a person goes for a walk on a beach along a stretch of very
straight shoreline that runs east-west. We can naturally assume that their initial position is
s(0) = 0, and further stipulate that their position function increases as they move east from
their starting location. For instance, a position of s = 1 mile represents being one mile east
of the start location, while s = —1 tells us the person is one mile west of where they began
walking on the beach. Now suppose the person walks in the following manner. From the
outset at t = 0, the person walks due east at a constant rate of 3 mph for 1.5 hours. After 1.5
hours, the person stops abruptly and begins walking due west at the constant rate of 4 mph
and does so for 0.5 hours. Then, after another abrupt stop and start, the person resumes
walking at a constant rate of 3 mph to the east for one more hour. What is the total distance
the person traveled on the time interval ¢t = 0 to t = 3? What is the person’s total change in
position over that time?

On one hand, these are elementary questions to answer because the velocity involved is
constant on each interval. From t = 0 to ¢ = 1.5, the person traveled

Djo,1.5] = 3 miles per hour - 1.5 hours = 4.5 miles.

Similarly, on t = 1.5 to t = 2, having a different rate, the distance traveled is

Dp152] = 4 miles per hour - 0.5 hours = 2 miles.

Finally, similar calculations reveal that in the final hour, the person walked
Dy2,3] = 3 miles per hour - 1 hours = 3 miles,
so the total distance traveled is

D = D[0/1‘5] + D[1.5,2] + D[z,g] =4.5+2+ 3 =9.5 miles.

Since the velocity on 1.5 < t < 2 is actually v = —4, being negative to indicate motion in
the westward direction, this tells us that the person first walked 4.5 miles east, then 2 miles
west, followed by 3 more miles east. Thus, the walker’s total change in position is

change in position = 4.5 — 2 + 3 = 5.5 miles.

While we have been able to answer these questions fairly easily, it is also important to think
about this problem graphically in order that we can generalize our solution to the more
complicated setting when velocity is not constant, as well as to note the particular impact
that negative velocity has.
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(3,5.5)
mph

45¢

y=v(t
3.0 v
1.5+ —4. —
O IR A3 =3 hrs hrs

1 3
-1.5¢
A, =|2

-3.0¢ -3.0¢
451 -4.5¢

Figure 4.1.8: At left, the velocity function of the person walking; at right, the corresponding
position function.

In Figure 4.1.8, we see how the distances we computed above can be viewed as areas: A; =
4.5 comes from taking rate times time (3 -1.5), as do A, and Aj3 for the second and third rect-
angles. The big new issue is that while A, is an area (and is therefore positive), because this
area involves an interval on which the velocity function is negative, its area has a negative
sign associated with it. This helps us to distinguish between distance traveled and change
in position.

The distance traveled is the sum of the areas,

D=A1+A,+A3=45+2+3 =9.5 miles.

But the change in position has to account for the sign associated with the area, where those
above the t-axis are considered positive while those below the t-axis are viewed as negative,
so that

s(3) = s(0) = (+4.5) + (=2) + (+3) = 5.5 miiles,

assigning the “—2” to the area in the interval [1.5, 2] because there velocity is negative and
the person is walking in the “negative” direction. In other words, the person walks 4.5
miles in the positive direction, followed by two miles in the negative direction, and then 3
more miles in the positive direction. This affect of velocity being negative is also seen in the
graph of the function y = s(t), which has a negative slope (specifically, its slope is —4) on
the interval 1.5 < ¢ < 2 since the velocity is —4 on that interval, which shows the person’s
position function is decreasing due to the fact that she is walking east, rather than west. On
the intervals where she is walking west, the velocity function is positive and the slope of the
position function s is therefore also positive.

To summarize, we see that if velocity is sometimes negative, this makes the moving ob-
ject’s change in position different from its distance traveled. By viewing the intervals on
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which velocity is positive and negative separately, we may compute the distance traveled
on each such interval, and then depending on whether we desire total distance traveled or
total change in position, we may account for negative velocities that account for negative
change in position, while still contributing positively to total distance traveled. We close
this section with one additional activity that further explores the effects of negative velocity
on the problem of finding change in position and total distance traveled.

Activity 4.1.4. Suppose that an object moving along a straight line path has its velocity
v (in meters per second) at time ¢ (in seconds) given by the piecewise linear function
whose graph is pictured at left in Figure 4.1.9. We view movement to the right as being
in the positive direction (with positive velocity), while movement to the left is in the
negative direction.

2l m/sec s]
21 41
2618
2+ 43
-4t -8

Figure 4.1.9: The velocity function of a moving object.

Suppose further that the object’s initial position at time ¢ = 0 is s(0) = 1.

a. Determine the total distance traveled and the total change in position on the time
interval 0 < t < 2. What is the object’s position at ¢ = 2?

b. On what time intervals is the moving object’s position function increasing? Why?
On what intervals is the object’s position decreasing? Why?

c. What is the object’s position at t = 82 How many total meters has it traveled to
get to this point (including distance in both directions)? Is this different from the
object’s total change in positionont =0to t = 8?

d. Find the exact position of the objectatt =1,2,3,...,8 and use this data to sketch
an accurate graph of y = s(t) on the axes provided at right in Figure 4.1.9. How
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4.1 Determining distance traveled from velocity

can you use the provided information about y = v(t) to determine the concavity
of s on each relevant interval?

Summary

¢ If we know the velocity of a moving body at every point in a given interval and the
velocity is positive throughout, we can estimate the object’s distance traveled and in
some circumstances determine this value exactly.

¢ In particular, when velocity is positive on an interval, we can find the total distance
traveled by finding the area under the velocity curve and above the t-axis on the given
time interval. We may only be able to estimate this area, depending on the shape of
the velocity curve.

® An antiderivative of a function f is a new function F whose derivative is f. That is, F
is an antiderivative of f provided that F/ = f. In the context of velocity and position,
if we know a velocity function v, an antiderivative of v is a position function s that
satisfies s’ = v. If v is positive on a given interval, say [a, b], then the change in position,
s(b) — s(a), measures the distance the moving object traveled on [a, b].

¢ In the setting where velocity is sometimes negative, this means that the object is some-
times traveling in the opposite direction (depending on whether velocity is positive or
negative), and thus involves the object backtracking. To determine distance traveled,
we have to think about the problem separately on intervals where velocity is positive
and negative and account for the change in position on each such interval.

Exercises

1. A car comes to a stop six seconds after the driver applies the brakes. While the brakes are
on, the following velocities are recorded:

Time since brakes applied (sec) | 0 [ 2 |4 | 6
Velocity (ft/s) 88 145|116 |0

Give lower and upper estimates (using all of the available data) for the distance the car trav-
eled after the brakes were applied.

lower: ‘

upper: ‘
(for each, include units)
On a sketch of velocity against time, show the lower and upper estimates you found above..

2. The velocity of a car is f(t) = 9t meters/second. Use a graph of f(t) to find the exact
distance traveled by the car, in meters, from ¢ = 0 to ¢ = 10 seconds.

distance = ‘ ‘ (include units)
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Chapter 4 The Definite Integral

3. The velocity of a particle moving along the x-axis is given by f(t) = 12 — 4t cm/sec. Use
a graph of f(t) to find the exact change in position of the particle from time t = 0to f = 4
seconds.

change in position = ‘ ‘ (include units)

4. Two cars start at the same time and travel in the same direction along a straight road. The
figure below gives the velocity, v (in km/hr), of each car as a function of time (in hr).

The velocity of car A is given by the solid, blue curve, and the velocity of car B by dashed,
red curve.

(a)

Which car attains the larger maximum velocity?

(b)

Which stops first?

(c)

Which travels farther?

5. Suppose that an accelerating car goes from 0 mph to 66.8 mph in five seconds. Its velocity
is given in the following table, converted from miles per hour to feet per second, so that all
time measurements are in seconds. (Note: 1 mph is 22/15 feet per sec = 22/15 ft/s.) Find
the average acceleration of the car over each of the first two seconds.

t 0 1 2 3 4 5
u(t) | 0.00 | 33.41 | 57.91 | 75.73 | 89.09 | 98.00

average acceleration over the first second = ‘ ‘
(include units)

average aceleration over the second second = ‘ ‘
(include units)

6. The velocity function is v(t) = t? — 6t + 8 for a particle moving along a line. Find the
displacement (net distance covered) of the particle during the time interval [-2, 5].

displacement = ‘ ‘

7. Along the eastern shore of Lake Michigan from Lake Macatawa (near Holland) to Grand
Haven, there is a bike bath that runs almost directly north-south. For the purposes of this
problem, assume the road is completely straight, and that the function s(#) tracks the posi-
tion of the biker along this path in miles north of Pigeon Lake, which lies roughly halfway
between the ends of the bike path.
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4.1 Determining distance traveled from velocity

Suppose that the biker’s velocity function is given by the graph in Figure 4.1.10 on the time
interval 0 < t < 4 (where t is measured in hours), and that s(0) = 1.

mph miles
101 y=v({t) 10%
6 6
2 hrs 21 | | | | hrs
o4 2 4 5 ol 1 2 3 4 5
671 -6
_10-. _10..

Figure 4.1.10: The graph of the biker’s velocity, y = v(t), at left. At right, axes to plot an
approximate sketch of y = s(t).

Approximately how far north of Pigeon Lake was the cyclist when she was the greatest
distance away from Pigeon Lake? At what time did this occur?

What is the cyclist’s total change in position on the time interval 0 < t < 2? Att =2,
was she north or south of Pigeon Lake?

What is the total distance the biker traveled on 0 < ¢ < 4? At the end of the ride, how
close was she to the point at which she started?

Sketch an approximate graph of y = s(t), the position function of the cyclist, on the
interval 0 < t < 4. Label at least four important points on the graph of s.

8. A toy rocket is launched vertically from the ground on a day with no wind. The rocket’s
vertical velocity at time ¢ (in seconds) is given by v(t) = 500 — 32t feet/sec.

a.

b.

e.

At what time after the rocket is launched does the rocket’s velocity equal zero? Call
this time value a. What happens to the rocket at t = a?

Find the value of the total area enclosed by y = v(t) and the t-axis on the interval
0 <t < a. What does this area represent in terms of the physical setting of the problem?

Find an antiderivative s of the function v. That s, find a function s such that s’(¢) = v(t).

Compute the value of s(a) — s(0). What does this number represent in terms of the
physical setting of the problem?

Compute s(5) — s(1). What does this number tell you about the rocket’s flight?

9. An object moving along a horizontal axis has its instantaneous velocity at time ¢ in sec-
onds given by the function v pictured in Figure 4.1.11, where v is measured in feet/sec.
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Chapter 4 The Definite Integral

Assume that the curves that make up the
parts of the graph of y = v(t) are either por-

tions of straight lines or portions of circles. L / m

Figure 4.1.11: The graph of y = v(t), the
velocity function of a moving object.

a. Determine the exact total distance the object traveled on 0 < t < 2.

b. What is the value and meaning of s(5) — s(2), where y = s(t) is the position function of
the moving object?

¢. On which time interval did the object travel the greatest distance: [0, 2], [2,4], or [5,7]?

d. On which time interval(s) is the position function s increasing? At which point(s) does
s achieve a relative maximum?

10. Filters at a water treatment plant become dirtier over time and thus become less effective;
they are replaced every 30 days. During one 30-day period, the rate at which pollution passes
through the filters into a nearby lake (in units of particulate matter per day) is measured
every 6 days and is given in the following table. The time ¢ is measured in days since the
filters were replaced.

Day, t 0 6 12 18 24 30
Rate of pollution in units per day, p(t) 7 8 10 13 18 35

Table 4.1.12: Pollution data for the water filters.

a. Plot the given data on a set of axes with time on the horizontal axis and the rate of
pollution on the vertical axis.

b. Explain why the amount of pollution that entered the lake during this 30-day period
would be given exactly by the area bounded by y = p(t) and the t-axis on the time
interval [0, 30].

c. Estimate the total amount of pollution entering the lake during this 30-day period.
Carefully explain how you determined your estimate.

222



4.2 Riemann Sums

4.2 Riemann Sums

Motivating Questions

¢ How can we use a Riemann sum to estimate the area between a given curve and the
horizontal axis over a particular interval?

e What are the differences among left, right, middle, and random Riemann sums?

e How can we write Riemann sums in an abbreviated form?

In Section 4.1, we learned that if we have a moving object with velocity function v, whenever
v(t) is positive, the area between y = v(t) and the t-axis over a given time interval tells us the
distance traveled by the object over that time period; in addition, if v(¢) is sometimes negative
and we view the area of any region below the f-axis as having an associated negative sign,
then the sum of these signed areas over a given interval tells us the moving object’s change
in position over the time interval.

For instance, for the velocity function given
in Figure 4.2.1, if the areas of shaded re-
gions are Aq, Ay, and Az as labeled, then
the total distance D traveled by the moving
object on [a, b] is

D=A1+A+ A3,

while the total change in the object’s posi-
tion on [a, b] is

s(b)—s(a):Al—A2+A3. /

Figure 4.2.1: A velocity function that is
sometimes negative.

Because the motion is in the negative direction on the interval where v(t) < 0, we subtract
A3 when determining the object’s total change in position.

Of course, finding D and s(b) — s(a) for the situation given in Figure 4.2.1 presumes that we
can actually find the areas represented by A1, Ay, and Az. In most of our work in Section 4.1,
such as in Activities 4.1.3 and Activity 4.1.4, we worked with velocity functions that were
either constant or linear, so that by finding the areas of rectangles and triangles, we could
find the area bounded by the velocity function and the horizontal axis exactly. But when the
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curve that bounds a region is not one for which we have a known formula for area, we are
unable to find this area exactly. Indeed, this is one of our biggest goals in Chapter 4: to learn
how to find the exact area bounded between a curve and the horizontal axis for as many
different types of functions as possible.

To begin, we expand on the ideas in Activity 4.1.2, where we encountered a nonlinear ve-
locity function and approximated the area under the curve using four and eight rectangles,
respectively. In the following preview activity, we focus on three different options for de-
ciding how to find the heights of the rectangles we will use.

Preview Activity 4.2.1. A person walking along a straight path has her velocity in miles
per hour at time ¢ given by the function v(t) = 0.25¢3 — 1.5t2 + 3t + 0.25, for times in the
interval 0 < t < 2. The graph of this function is also given in each of the three diagrams
in Figure 4.2.2.

3 mph 3l mph 3 mph

y=v(t) y=v(r) y=v()
2 2 2 /"
1t Ay 14 By 11 Cy

As By G

A2 By C2
hrs ABi hrs Ci hrs

/ a1 2 / 1 2 ?| 1 2

Figure 4.2.2: Three approaches to estimating the area under y = v(t) on the interval
[0, 2].

Note that in each diagram, we use four rectangles to estimate the area under y = v(¢) on
the interval [0, 2], but the method by which the four rectangles’ respective heights are
decided varies among the three individual graphs.

a. How are the heights of rectangles in the left-most diagram being chosen? Explain,
and hence determine the value of

S=A1+A2+A3+A4

by evaluating the function y = v(t) at appropriately chosen values and observing
the width of each rectangle. Note, for example, that

1
As=0v(1)-5=2-5=1

N —
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4.2 Riemann Sums

b. Explain how the heights of rectangles are being chosen in the middle diagram and
find the value of
T =B1+ By + B3 + By.

c. Likewise, determine the pattern of how heights of rectangles are chosen in the
right-most diagram and determine

U=Ci+Cr+C3+Cy4.

d. Of the estimates S, T, and U, which do you think is the best approximation of D,
the total distance the person traveled on [0, 2]? Why?

4.2.1 Sigma Notation

It is apparent from several different problems we have considered that sums of areas of rect-
angles is one of the main ways to approximate the area under a curve over a given interval.
Intuitively, we expect that using a larger number of thinner rectangles will provide a way to
improve the estimates we are computing. As such, we anticipate dealing with sums with a
large number of terms. To do so, we introduce the use of so-called sigma notation, named for
the Greek letter X, which is the capital letter S in the Greek alphabet.

For example, say we are interested in the sum
1+2+3+---+100,

which is the sum of the first 100 natural numbers. Sigma notation provides a shorthand
notation that recognizes the general pattern in the terms of the sum. It is equivalent to write

100
Dlk=1+2+3+-+100.
k=1

We read the symbol Zi(iol k as “the sum from k equals 1 to 100 of k.” The variable k is usually
called the index of summation, and the letter that is used for this variable is immaterial. Each
sum in sigma notation involves a function of the index; for example,

10
Z(k2+2k)=(12+2-1)+(22+2-2)+(32+2‘3)+~-+(102+2‘10),
k=1

and more generally,
n

D) = FQ)+ F@)+ -+ f(m).

k=1

Sigma notation allows us the flexibility to easily vary the function being used to track the pat-
tern in the sum, as well as to adjust the number of terms in the sum simply by changing the
value of n. We test our understanding of this new notation in the following activity.
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Activity 4.2.2. For each sum written in sigma notation, write the sum long-hand and
evaluate the sum to find its value. For each sum written in expanded form, write the
sum in sigma notation.

a. 22:1(k2+2) c. 34+7+114+15+---+27
b. X5 ,(2i - 1) d. 4+8+16+32+---+256
e. Z?ﬂ%

4.2.2 Riemann Sums

When a moving body has a positive velocity function y = v(t) on a given interval [a, b], we
know that the area under the curve over the interval is the total distance the body travels
on [a,b]. While this is the fundamental motivating force behind our interest in the area
bounded by a function, we are also interested more generally in being able to find the exact
area bounded by y = f(x) on an interval [a, b], regardless of the meaning or context of the
function f. For now, we continue to focus on determining an accurate estimate of this area
through the use of a sum of the areas of rectangles, doing so in the setting where f(x) > 0
on [a,b]. Throughout, unless otherwise indicated, we also assume that f is continuous on

[a,b].

The first choice we make in any such approximation is the number of rectangles.

Xp X1 X2 xF‘ xi:rl Xp—1  n
Figure 4.2.3: Subdividing the interval [a, b] into 1 subintervals of equal length Ax.

If we say that the total number of rectangles is 1, and we desire n rectangles of equal width
to subdivide the interval [a, b], then each rectangle must have width Ax = b%“ We observe
further that x; = xo + Ax, xo = x¢ + 2Ax, and thus in general x; = a + iAx, as pictured in
Figure 4.2.3.

We use each subinterval [x;, x;41] as the base of a rectangle, and next must choose how to
decide the height of the rectangle that will be used to approximate the area under y = f(x)
on the subinterval. There are three standard choices: use the left endpoint of each subin-
terval, the right endpoint of each subinterval, or the midpoint of each. These are precisely
the options encountered in Preview Activity 4.2.1 and seen in Figure 4.2.2. We next explore
how these choices can be reflected in sigma notation.

If we now consider an arbitrary positive function f on [a, b] with the interval subdivided
as shown in Figure 4.2.3, and choose to use left endpoints, then on each interval of the form
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4.2 Riemann Sums

[xi, xi+1], the area of the rectangle formed is given by
Ai+1 = f(xl) . Ax/

as seen in Figure 4.2.4.

\ y=/r(x)

A | A2 o A

X0 X1 X2 Xi  Xi+1 Xn—1 Xn

Figure 4.2.4: Subdividing the interval [a, b] into n subintervals of equal length Ax and ap-
proximating the area under y = f(x) over [a, b] using left rectangles.

If we let L,; denote the sum of the areas of rectangles whose heights are given by the function
value at each respective left endpoint, then we see that

Lp=A1+A+ - +Aix+-+A,
= f(x0) - Ax+ f(x1) - Ax+-- 4+ f(x;) - Ax 4+ -+ f(xp-1) - Ax.

In the more compact sigma notation, we have
n-1

Ly =, flnhx.
i=0

Note particularly that since the index of summation begins at 0 and ends at n — 1, there are
indeed n terms in this sum. We call L,, the left Riemann sum for the function f on the interval

[a,b].

There are now two fundamental issues to explore: the number of rectangles we choose to
use and the selection of the pattern by which we identify the height of each rectangle. It is
best to explore these choices dynamically, and the applet! found at http://gvsu.edu/s/a9
is a particularly useful one. There we see the image shown in Figure 4.2.5, but with the
opportunity to adjust the slider bars for the left endpoint and the number of subintervals.

Marc Renault, Geogebra Calculus Applets.
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Sample Point Placement 2
I Relative Jeft endpoint 4 f(x)=sin(2x)- ){—0 +3

¥ Show e—
I~ Random*
I~ Upper Sum
I~ Lower Sum 3
Number of Subintervals /
2

n=10

—-—

Approximations
Relative: 7.73716
Random: 6.51399 0 | X X

Upper: 8.58074 0 1 2 3 4 6
Lower: 4.12815

Integral: 6.32356

* Make sure the applet has
focus, then use Ctrl-R or F9
to recompute random values -2

Figure 4.2.5: A snapshot of the applet found at http://gvsu.edu/s/a9.

By moving the sliders, we can see how the heights of the rectangles change as we consider
left endpoints, midpoints, and right endpoints, as well as the impact that a larger number
of narrower rectangles has on the approximation of the exact area bounded by the function
and the horizontal axis.

To see how the Riemann sums for right endpoints and midpoints are constructed, we con-
sider Figure 4.2.6.

ANE® NG
\_
By | B> o Bivt| - [ Ba G |G o G [ e |G \
X0 X1 X Xi Xiyl  Xp—1 Kn X0 X1 X Xi Xig1 Xp—1 Kn

Figure 4.2.6: Riemann sums using right endpoints and midpoints.

For the sum with right endpoints, we see that the area of the rectangle on an arbitrary inter-
val [x;, xi+1] is given by Biy1 = f(xi4+1) - Ax, so that the sum of all such areas of rectangles is
given by
Ry=B1+By+---+Bjs1+---+By
= f(x1)-Ax+ f(x) - Ax+ -+ f(xiz1) - Ax + -+ f(x,) - Ax

n

= D flaix.

i=1
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We call R,, the right Riemann sum for the function f on the interval [a, b]. For the sum that
uses midpoints, we introduce the notation

— Xt X
Xivl = T

so that x;,1 is the midpoint of the interval [x;, x;11]. For instance, for the rectangle with area
C;1 in Figure 4.2.6, we now have
Cr = f(®)- Ax.

Hence, the sum of all the areas of rectangles that use midpoints is

M,=C1+Co+- - 4+Ciy1+---+Cy
=f(x1) - Ax+ f(x2) - Ax+ -+ f(Xis1) - Ax + -+ f(xy) - Ax

= Zn: f(xi)Ax,
i=1

and we say that M, is the middle Riemann sum for f on [a, b].

When f(x) > 0 on [a, b], each of the Riemann sums L,, R,, and M, provides an estimate
of the area under the curve y = f(x) over the interval [a, b]; momentarily, we will discuss
the meaning of Riemann sums in the setting when f is sometimes negative. We also recall
that in the context of a nonnegative velocity function y = v(t), the corresponding Riemann
sums are approximating the distance traveled on [a, b] by the moving object with velocity
function v.

There is a more general way to think of Riemann sums, and that is to not restrict the choice of
where the function is evaluated to determine the respective rectangle heights. That is, rather
than saying we’ll always choose left endpoints, or always choose midpoints, we simply say
that a point x7,, willbe selected at random in the interval [x;, x;+1] (so that x; < x7 | < xi41),
which makes the Riemann sum given by

fOD) - Ax+ f(x5) Ax+---+ f(x], ) - Ax + -+ f(x;) - Ax = Zf(x’lf)Ax.
i=1

Athttp://gvsu.edu/s/a9, the applet noted earlier and referenced in Figure 4.2.5, by uncheck-
ing the “relative” box at the top left, and instead checking “random,” we can easily explore
the effect of using random point locations in subintervals on a given Riemann sum. In com-
putational practice, we most often use L,, R,, or M, while the random Riemann sum is
useful in theoretical discussions. In the following activity, we investigate several different
Riemann sums for a particular velocity function.

Activity 4.2.3. Suppose that an object moving along a straight line path has its velocity
in feet per second at time  in seconds given by v(t) = %(t -3)2+2.

a. Carefully sketch the region whose exact area will tell you the value of the distance
the object traveled on the time interval 2 < t < 5.
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b. Estimate the distance traveled on [2, 5] by computing L4, R4, and My.

c. Does averaging L4 and R4 result in the same value as M4? If not, what do you
think the average of L4 and R4 measures?

d. For this question, think about an arbitrary function f, rather than the particu-
lar function v given above. If f is positive and increasing on [a, b], will L, over-
estimate or under-estimate the exactarea under f on[a, b]? Will R,, over- or under-
estimate the exact area under f on [a, b]? Explain.

4.2.3 When the function is sometimes negative
For a Riemann sum such as
n-1
Ly =) f(x)Ax,
i=0
we can of course compute the sum even when f takes on negative values. We know that

when f is positive on [a, b], the corresponding left Riemann sum L, estimates the area
bounded by f and the horizontal axis over the interval.

y=rf(x) y=rf(x) y=rf(x)

Figure 4.2.7: At left and center, two left Riemann sums for a function f that is sometimes
negative; at right, the areas bounded by f on the interval [a, d].

For a function such as the one pictured in Figure 4.2.7, where in the first figure a left Riemann
sum is being taken with 12 subintervals over [a, d], we observe that the function is negative
on the interval b < x < ¢, and so for the four left endpoints that fall in [b, c], the terms
f(xi)Ax have negative function values. This means that those four terms in the Riemann
sum produce an estimate of the opposite of the area bounded by y = f(x) and the x-axis on

b, c].

In Figure 4.2.7, we also see evidence that by increasing the number of rectangles used in a
Riemann sum, it appears that the approximation of the area (or the opposite of the area)
bounded by a curve appears to improve. For instance, in the middle graph, we use 24 left
rectangles, and from the shaded areas, it appears that we have decreased the error from the
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approximation that uses 12. When we proceed to Section 4.3, we will discuss the natural
idea of letting the number of rectangles in the sum increase without bound.

For now, it is most important for us to observe that, in general, any Riemann sum of a contin-
uous function f on an interval [a, b] approximates the difference between the area that lies
above the horizontal axis on [a, b] and under f and the area that lies below the horizontal
axis on [a, b] and above f. In the notation of Figure 4.2.7, we may say that

Loy zAl —Az +A3,

where Ly, is the left Riemann sum using 24 subintervals shown in the middle graph, and
A1 and Ajz are the areas of the regions where f is positive on the interval of interest, while
Ay is the area of the region where f is negative. We will also call the quantity A; — A, + A3
the net signed area bounded by f over the interval [a, d], where by the phrase “signed area”
we indicate that we are attaching a minus sign to the areas of regions that fall below the
horizontal axis.

Finally, we recall from the introduction to this present section that in the context where the
function f represents the velocity of a moving object, the total sum of the areas bounded
by the curve tells us the total distance traveled over the relevant time interval, while the
total net signed area bounded by the curve computes the object’s change in position on the
interval.

Activity 4.2.4. Suppose that an object moving along a straight line path has its velocity
v (in feet per second) at time f (in seconds) given by

1, 7
)= =t2 -3t +=.
o(t) =5 >
a. Compute Ms, the middle Riemann sum, for v on the time interval [1, 5]. Be sure to
clearly identify the value of At as well as the locations of ¢, t1, - - -, t5. In addition,
provide a careful sketch of the function and the corresponding rectangles that are
being used in the sum.

b. Building on your work in (a), estimate the total change in position of the object on
the interval [1, 5].

¢. Building on your work in (a) and (b), estimate the total distance traveled by the
object on [1, 5].

d. Use appropriate computing technology* to compute Mg and M. What exact
value do you think the middle sum eventually approaches as n increases without
bound? What does that number represent in the physical context of the overall
problem?

“For instance, consider the applet at http://gvsu.edu/s/a9 and change the function and adjust the locations
of the blue points that represent the interval endpoints a and b.
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Summary

* A Riemann sum is simply a sum of products of the form f(x?)Ax that estimates the
area between a positive function and the horizontal axis over a given interval. If the
function is sometimes negative on the interval, the Riemann sum estimates the differ-
ence between the areas that lie above the horizontal axis and those that lie below the
axis.

® The three most common types of Riemann sums are left, right, and middle sums, plus
we can also work with a more general, random Riemann sum. The only difference
among these sums is the location of the point at which the function is evaluated to
determine the height of the rectangle whose area is being computed in the sum. For
a left Riemann sum, we evaluate the function at the left endpoint of each subinterval,
while for right and middle sums, we use right endpoints and midpoints, respectively.

* The left, right, and middle Riemann sums are denoted L, R,, and M,,, with formulas

n-1

Ly = f(x0)Ax + f(x1)AX + -+ + f(xn_1)Ax = Z F(x)Ax,
i=0

Ry = f(x1)Ax + f(x2)Ax + -+ + f(xp)Ax = Zn: f(xi)Ax,
i=1

M, = f(@1)AX + F(T)Ax + - + f(Xp)Ax = Z F(@)Ax,
i=1

where xo = a4, x; = a + iAx, and x, = b, using Ax = bn;” For the midpoint sum,
Xi = (xi1 +x7)/2.

Exercises

)
1. Therectanglesin the graph below illustrate a left endpoint Riemann sum for f(x) = Tx +

WeBWork Zx on the 1nterva1 [2/ 6]'

The value of this left endpoint Riemann sum is ‘ , and this Riemann
sum is [Choose: [select an answer] | an overestimate of | equal to | an underestimate of |
there is ambiguity] the area of the region enclosed by y = f(x), the x-axis, and the vertical
lines x =2 and x = 6.
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=

=} ; — Yg
=1

Left endpoint Riemann sum for y = _sz +2xon [2,6]

2

The rectangles in the graph below illustrate a right endpoint Riemann sum for f(x) = Tx +
2x on the interval [2, 6].

The value of this right endpoint Riemann sum is ‘ , and this Riemann
sum is [Choose: [select an answer] | an overestimate of | equal to | an underestimate of |
there is ambiguity] the area of the region enclosed by y = f(x), the x-axis, and the vertical
lines x =2 and x = 6.

B
L]

=

= R R V 3
=1

Right endpoint Riemann sum for y = _sz +2x on [2,6]

2. Your task is to estimate how far an object traveled during the time interval 0 < t < 8, but
you only have the following data about the velocity of the object.

time (sec) 0|1 (2 (3|4 |5|6]|7]8
velocity (feet/sec) | -3 | 2 | -3 |-1|-2|-1]|4|1]|2

To get an idea of what the velocity function might look like, you pick up a black pen, plot the
data points, and connect them by curves. Your sketch looks something like the black curve
in the graph below.
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=5

Left endpoint approximation

You decide to use a left endpoint Riemann sum to estimate the total displacement. So, you
pick up a blue pen and draw rectangles whose height is determined by the velocity mea-
surement at the left endpoint of each one-second interval. By using the left endpoint Rie-
mann sum as an approximation, you are assuming that the actual velocity is approximately
constant on each one-second interval (or, equivalently, that the actual acceleration is ap-
proximately zero on each one-second interval), and that the velocity and acceleration have
discontinuous jumps every second. This assumption is probably incorrect because it is likely
that the velocity and acceleration change continuously over time. However, you decide to
use this approximation anyway since it seems like a reasonable approximation to the actual
velocity given the limited amount of data.

(A) Using the left endpoint Riemann sum, find approximately how far the object traveled.
Your answers must include the correct units.

Total displacement =

Total distance traveled =
Using the same data, you also decide to estimate how far the object traveled using a right
endpoint Riemann sum. So, you sketch the curve again with a black pen, and draw rectan-
gles whose height is determined by the velocity measurement at the right endpoint of each
one-second interval.

=5

Right endpoint approximation

(B) Using the right endpoint Riemann sum, find approximately how far the object traveled.
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Your answers must include the correct units.

Total displacement =

Total distance traveled = ‘

3. Onasketchof y = e*, represent the left Riemann sum with n = 2 approximating f; e*dx.
Write out the terms of the sum, but do not evaluate it: weslork

Sumz‘ ‘+‘ ‘

On another sketch, represent the right Riemann sum with n = 2 approximating f23 e*dx.
Write out the terms of the sum, but do not evaluate it:

Sum =| I+ |
Which sum is an overestimate?
Which sum is an underestimate?

4. Consider the function f(x) = 3x + 4.

a. Compute My for y = f(x) on the interval [2,5]. Be sure to clearly identify the value
of Ax, as well as the locations of xg, x1, ..., x4. Include a careful sketch of the function
and the corresponding rectangles being used in the sum.

b. Use a familiar geometric formula to determine the exact value of the area of the region
bounded by y = f(x) and the x-axis on [2, 5].

c. Explain why the values you computed in (a) and (b) turn out to be the same. Will this
be true if we use a number different than n = 4 and compute M,,? Will Ly or R4 have
the same value as the exact area of the region found in (b)?

d. Describe the collection of functions g for which it will always be the case that M,,, re-
gardless of the value of 7, gives the exact net signed area bounded between the function
g and the x-axis on the interval [a, b].

5. Let S be the sum given by
S=(14)2+1)-04+((1.8%+1)- 04+ (22> +1)- 0.4+ ((2.6)> +1)- 0.4 + ((3.0> +1) - 0.4.
a. Assume that S is a right Riemann sum. For what function f and what interval [a, b] is

S an approximation of the area under f and above the x-axis on [a, b]? Why?

b. How does your answer to (a) change if S is a left Riemann sum? a middle Riemann
sum?

c. Suppose that S really is a right Riemann sum. What is geometric quantity does S ap-
proximate?

d. Use sigma notation to write a new sum R that is the right Riemann sum for the same
function, but that uses twice as many subintervals as S.

6. A car traveling along a straight road is braking and its velocity is measured at several
different points in time, as given in the following table.
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seconds, t 0 03 06 09 12 15 1.8
Velocity in ft/sec, v(t) 100 88 74 59 40 19 0

Table 4.2.8: Data for the braking car.

a. Plot the given data on a set of axes with time on the horizontal axis and the velocity on
the vertical axis.

b. Estimate the total distance traveled during the car the time brakes using a middle Rie-
mann sum with 3 subintervals.

c. Estimate the total distance traveled on [0, 1.8] by computing L, Re, and %(L6 + Rg).

d. Assuming that v(t) is always decreasing on [0,1.8], what is the maximum possible
distance the car traveled before it stopped? Why?

7. The rate at which pollution escapes a scrubbing process at a manufacturing plant in-
creases over time as filters and other technologies become less effective. For this particular
example, assume that the rate of pollution (in tons per week) is given by the function r that
is pictured in Figure 4.2.9.

Use the graph to estimate the value of My on the interval [0, 4].
What is the meaning of My in terms of the pollution discharged by the plant?
Suppose that r(t) = 0.5¢%°. Use this formula for r to compute Ls on [0, 4].

& n T @

Determine an upper bound on the total amount of pollution that can escape the plant
during the pictured four week time period that is accurate within an error of at most
one ton of pollution.

tons/week

y=r(t)

Figure 4.2.9: The rate, 7(t), of pollution in tons per week.
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4.3 The Definite Integral

Motivating Questions
* How does increasing the number of subintervals affect the accuracy of the approxima-
tion generated by a Riemann sum?
* What is the definition of the definite integral of a function f over the interval [a, b]?

* What does the definite integral measure exactly, and what are some of the key prop-
erties of the definite integral?

In Figure 4.2.7, which is repeated below as Figure 4.3.1, we see visual evidence that increas-
ing the number of rectangles in a Riemann sum improves the accuracy of the approximation
of the net signed area that is bounded by the given function on the interval under consider-
ation.

Figure 4.3.1: At left and center, two left Riemann sums for a function f that is sometimes
negative; at right, the exact areas bounded by f on the interval [a, d].

We thus explore the natural idea of allowing the number of rectangles to increase without
bound in an effort to compute the exact net signed area bounded by a function on an inter-
val. In addition, it is important to think about the differences among left, right, and middle
Riemann sums and the different results they generate as the value of # increases. As we have
done throughout our investigations with area, we begin with functions that are exclusively
positive on the interval under consideration.

Preview Activity 4.3.1. Consider the applet found at http://gvsu.edu/s/a9?. There,
you will initially see the situation shown in Figure 4.3.2.
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Sample Point Placement 2
F Relative  right endpoint 4 f(x) =sin ( 2 X) ~ 10 +3
F Show ————e
I~ Random*
I~ Upper Sum
I~ Lower Sum

Number of Subintervals

n=10
) ——

Approximations

Relative: 4.90595
Random: 5.87868
Upper: 8.58074
Lower: 4.12815

Integral: 6.32356

* Make sure the applet has
focus, then use Ctrl-R or F9
to recompute random values

f(X)=sine0-x/10+3

Figure 4.3.2: A right Riemann sum with 10 subintervals for the function f(x) = sin(2x) -
’1‘—; + 3 on the interval [1, 7]. The value of the sum is R1g = 4.90595.

Note that the value of the chosen Riemann sum is displayed next to the word “relative,”
and that you can change the type of Riemann sum being computed by dragging the
point on the slider bar below the phrase “sample point placement.”

Explore to see how you can change the window in which the function is viewed, as well
as the function itself. You can set the minimum and maximum values of x by clicking
and dragging on the blue points that set the endpoints; you can change the function
by typing a new formula in the “f(x)” window at the bottom; and you can adjust the
overall window by “panning and zooming” by using the Shift key and the scrolling
feature of your mouse. More information on how to pan and zoom can be found at
http://gvsu.edu/s/FL

Work accordingly to adjust the applet so that it uses a left Riemann sum with n = 5
subintervals for the function is f(x) = 2x + 1. You should see the updated figure shown
in Figure 4.3.3. Then, answer the following questions.

a. Update the applet (and view window, as needed) so that the function being con-
sidered is f(x) = 2x + 1 on [1,4], as directed above. For this function on this
interval, compute L, M, R,, for n =5, n = 25, and n = 100. What appears to be
the exact area bounded by f(x) = 2x + 1 and the x-axis on [1,4]?

b. Use basic geometry to determine the exact area bounded by f(x) = 2x +1 and the
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x-axis on [1,4].

c. Based on your work in (a) and (b), what do you observe occurs when we increase
the number of subintervals used in the Riemann sum?

d. Update the applet to consider the function f(x) = x?+ 1 on the interval [1, 4] (note
that you need to enter “x * 2 + 1” for the function formula). Use the applet to
compute L,, M, R, for n =5, n =25, and n = 100. What do you conjecture is the
exact area bounded by f(x) = x? + 1 and the x-axis on [1, 4]?

e. Why can we not compute the exact value of the area bounded by f(x) = x2+1 and
the x-axis on [1, 4] using a formula like we did in (b)?

Sample Point Placement 10 fx)=2x+1

F Relative left endpoint

F Show #—————
I~ Random* 81
I~ Upper Sum
I~ Lower Sum

Number of Subintervals

1
i
|
n=5 4 f
»r—— |
|
i
Approximations 21 i
Relative: 16.2
Random: 18.29319 0 !
Upper: 19.8 0 ¢ 2 3 < 5
Lower: 16.2
Integral: 18 _24
* Make sure the applet has
focus, then use Ctri-R or F9 —44
to recompute random values
fX)=2x+1

Figure 4.3.3: A left Riemann sum with 5 subintervals for the function f(x) = 2x + 1 on
the interval [1,4]. The value of the sum is L5 = 16.2.

“Marc Renault, Shippensburg University, Geogebra Applets for Calclulus, http://gvsu.edu/s/5p.

4.3.1 The definition of the definite integral

In both examples in Preview Activity 4.3.1, we saw that as the number of rectangles got
larger and larger, the values of L,,, M,, and R, all grew closer and closer to the same value.
It turns out that this occurs for any continuous function on an interval [a, b], and even more
generally for a Riemann sum using any point x;_, in the interval [x;, x;;+1]. Said differently,
as we let n — oo, it doesn't really matter where we choose to evaluate the function within a
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given subinterval, because

n
lim L, = lim R, = r}gl(’)lo M, = ;}L{{}ozlf(x:)Ax
s

n—00 n—oo

That these limits always exist (and share the same value) for a continuous! function f allows
us to make the following definition.

Definition 4.3.4. The definite integral of a continuous function f on the interval [a, b], de-
noted fab f(x)dx, is the real number given by

/ Cfax = tim S
a i=1

where Ax = bn;“, x; = a+iAx (fori =0,...,n), and X7 satisfies x;_1 < X7 < X (for i =
1,...,n).

We call the symbol [ the integral sign, the values a and b the limits of integration, and the
function f the integrand. The process of determining the real number j;b f(x)dx is called
evaluating the definite integral. While we will come to understand that there are several dif-
ferent interpretations of the value of the definite integral, for now the most important is that

fgb f(x) dx measures the net signed area bounded by y = f(x) and the x-axis on the interval
[a, b].

For example, in the notation of the definite
integral, if f is the function pictured in Fig-
ure 4.3.5 and A1, Aj, and Ajz are the exact
areas bounded by f and the x-axis on the
respective intervals [a, b], [b, c], and [c, d],
then

b c
[ eax=, [ fedx=-as,
a b

/Cdf(x)dx=A3, /

d
and/ f(x)dx=A1—A2+A3.
a

Figure 4.3.5: A continuous function f on
the interval [a, d].

It turns out that a function need not be continuous in order to have a definite integral. For our purposes, we
assume that the functions we consider are continuous on the interval(s) of interest. It is straightforward to see
that any function that is piecewise continuous on an interval of interest will also have a well-defined definite
integral.
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We can also use definite integrals to express the change in position and distance traveled by
a moving object. In the setting of a velocity function v on an interval [a, b], it follows from
our work above and in preceding sections that the change in position, s(b) —s(a), is given by

b
s(b)—s(a)z/ v(t)dt.

If the velocity function is nonnegative on [a, b], then f: v(t) dt tells us the distance the object
traveled. When velocity is sometimes negative on [, b], the areas bounded by the function
on intervals where v does not change sign can be found using integrals, and the sum of these
values will tell us the distance the object traveled.

If we wish to compute the value of a definite integral using the definition, we have to take the
limit of a sum. While this is possible to do in select circumstances, it is also tedious and time-
consuming; moreover, computing these limits does not offer much additional insight into the
meaning or interpretation of the definite integral. Instead, in Section 4.4, we will learn the
Fundamental Theorem of Calculus, a result that provides a shortcut for evaluating a large
class of definite integrals. This will enable us to determine the exact net signed area bounded
by a continuous function and the x-axis in many circumstances, including examples such as

ffl(x2 + 1) dx, which we approximated by Riemann sums in Preview Activity 4.3.1.

For now, our goal is to understand the meaning and properties of the definite integral, rather
than how to actually compute its value using ideas in calculus. Thus, we temporarily rely on
the net signed area interpretation of the definite integral and observe that if a given curve
produces regions whose areas we can compute exactly through known area formulas, we
can thus compute the exact value of the integral.

For instance, if we wish to evaluate the def-
inite integral f14(2x + 1) dx, we can observe
that the region bounded by this function
and the x-axis is the trapezoid shown in
Figure 4.3.6, and by the known formula for
the area of a trapezoid, its areais A = 1(3+
9)-3=18,s0

4
/ (2x +1)dx = 18.
1

Figure 4.3.6: The area bounded by f(x) =
2x + 1 and the x-axis on the interval [1, 4].
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Activity 4.3.2. Use known geometric formulas and the net signed area interpretation of
the definite integral to evaluate each of the definite integrals below.

a. f013xdx
b. [f(2-2v)dx 14
¢ f—11 VI-aZdx /\ + /_\
3 2 \ 1 /2 3 4
?

Figure 4.3.7: A function g that is piecewise defined; each piece
of the function is part of a circle or part of a line.

d. f_43 g(x)dx, where g is the function pictured in Figure 4.3.7. Assume that each
portion of g is either part of a line or part of a circle.

4.3.2 Some properties of the definite integral

With the perspective that the definite integral of a function f over an interval [a, b] measures
the net signed area bounded by f and the x-axis over the interval, we naturally arrive at
several different standard properties of the definite integral. In addition, it is helpful to
remember that the definite integral is defined in terms of Riemann sums that fundamentally
consist of the areas of rectangles.

If we consider the definite integral fgu f(x)dx for any real number 4, it is evident that no
area is being bounded because the interval begins and ends with the same point. Hence,

If f is a continuous function and 7 is a real number, then f; f(x)dx =0.
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Next, we consider the results of subdivid-
ing a given interval. In Figure 4.3.8, we see
that

b ‘
/f(x)dx=A1,/f(x)dx=A2,
a b

and [ f@ix =1+

which is indicative of the following general
rule.

Figure 4.3.8: The area bounded by y = f(x)
on the interval [a, c].

If f is a continuous function and 4, b, and c are real numbers, then

Cf(X)dx= bf(x)dx+ Cf(x)dx.
a o s

While this rule is most apparent in the situation where a < b < ¢, it in fact holds in general
for any values of a, b, and c. This result is connected to another property of the definite
integral, which states that if we reverse the order of the limits of integration, we change the
sign of the integral’s value.

If f is a continuous function and a2 and b are real numbers, then

af(x)dx =- bf(x)dx.
b a

This result makes sense because if we integrate from a to b, then in the defining Riemann

sum Ax = b%”, while if we integrate from b to a, Ax = b — —bn;“, and this is the only

n
change in the sum used to define the integral.

There are two additional properties of the definite integral that we need to understand. Re-
call that when we worked with derivative rules in Chapter 2, we found that both the Con-
stant Multiple Rule and the Sum Rule held. The Constant Multiple Rule tells us that if f is
a differentiable function and k is a constant, then

L kf 01 = kf' (),
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and the Sum Rule states that if f and g are differentiable functions, then
d ’ ’
1F) + 9] = () + g ()

These rules are useful because they enable us to deal individually with the simplest parts
of certain functions and take advantage of the elementary operations of addition and mul-
tiplying by a constant. They also tell us that the process of taking the derivative respects
addition and multiplying by constants in the simplest possible way.

It turns out that similar rules hold for the definite integral. First, let’s consider the situation
pictured in Figure 4.3.9,

B= 2f(x,-)Ax

y=2f(x)

a Xi  Xiy1 b a Xi  Xiy1 b

Figure 4.3.9: The areas bounded by y = f(x) and y = 2f(x) on [a, b].

where we examine the effect of multiplying a function by a factor of 2 on the area it bounds
with the x-axis. Because multiplying the function by 2 doubles its height at every x-value, we
see that if we consider a typical rectangle from a Riemann sum, the difference in area comes
from the changed height of the rectangle: f(x;) for the original function, versus 2f(x;) in
the doubled function, in the case of left sum. Hence, in Figure 4.3.9, we see that for the
pictured rectangles with areas A and B, it follows B = 2A. As this will happen in every such
rectangle, regardless of the value of n and the type of sum we use, we see that in the limit,
the area of the red region bounded by y = 2f(x) will be twice that of the area of the blue
region bounded by ¥ = f(x). As there is nothing special about the value 2 compared to an
arbitrary constant k, it turns out that the following general principle holds.
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Constant Multiple Rule

If f is a continuous function and k is any real number then

/ﬂbk-f(x)dxzk/abf(x)dx.

Finally, we see a similar situation geometrically with the sum of two functions f and g.

N\ €= (F) +glu))Ax

\ f+g
A= fx)Ax f
B=g(x;)Ax ©
/ g
B *
T a Xi  Xitl b a Xi  Xitl b a Xi  Xitl b

Figure 4.3.10: The areas bounded by y = f(x) and y = g(x) on [a, b], as well as the area
bounded by y = f(x) + g(x).

In particular, as shown in Figure 4.3.10, if we take the sum of two functions f and g, at every
point in the interval, the height of the function f + g is given by (f + g)(x;) = f(x;) + g(xi),
which is the sum of the individual function values of f and g (taken at left endpoints).
Hence, for the pictured rectangles with areas A, B, and C, it follows that C = A + B, and
because this will occur for every such rectangle, in the limit the area of the gray region will
be the sum of the areas of the blue and red regions. Stated in terms of definite integrals, we
have the following general rule.

Sum Rule

If f and g are continuous functions, then

b b b
[ @ anax= [ s+ [ g

More generally, the Constant Multiple and Sum Rules can be combined to make the obser-
vation that for any continuous functions f and g and any constants ¢ and k,

b b b
/[cf(x)ikg(x)]dx=c/ f(x)dxik/ g(x)dx.
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Activity 4.3.3. Suppose that the following information is known about the functions f,
g, x%, and x%:
2 5

o [y fx)dx=-3; [, f(x)dx =2

. foz g(x)dx = 4; f25 g(x)dx = -1

. fozxzdx = g;f;xzdx =17

. f02x3dx =4; f25x3dx =

Use the provided information and the rules discussed in the preceding section to eval-
uate each of the following definite integrals.

a. [ f(x)dx d. [;(3x% - 4x3) dx
b. fos g(x)dx e. f50(2x3 - 7g(x))dx
¢ Jy(F(x) +g(x)) dx

4.3.3 How the definite integral is connected to a function’s average value

One of the most valuable applications of the definite integral is that it provides a way to
meaningfully discuss the average value of a function, even for a function that takes on in-
finitely many values. Recall that if we wish to take the average of n numbers y1, y2, ..., Yu,
we do so by computing
+yp e+
ave=AE

Since integrals arise from Riemann sums in which we add n values of a function, it should
not be surprising that evaluating an integral is something like averaging the output values
of a function. Consider, for instance, the right Riemann sum R, of a function f, which is
given by

Ry = f(x)Ax + f(x2)Ax + -+ f(xn)Ax = (f(x1) + f(x2) + -+ + f(xn))Ax.

Since Ax = b%”, we can thus write

Ry = (F(r0) + () + -+ flxa) -

f(x1)+f(x2)+"'+f(xn)‘

n

=(b-a)

(4.3.1)

Here, we see that the right Riemann sum with #n subintervals is the length of the interval
(b — a) times the average of the n function values found at the right endpoints. And just
as with our efforts to compute area, we see that the larger the value of n we use, the more
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accurate our average of the values of f will be. Indeed, we will define the average value of
fon[a,b] tobe

favga,py = lim f(x1)+f(x2)+"'+f(xn)'

—00 n

But we also know that for any continuous function f on [a, b], taking the limit of a Riemann

sum leads precisely to the definite integral. Thatis, lim, . Ry = fu b f(x)dx, and thus taking
the limit as n — oo in Equation (4.3.1), we have that

b
/ f(x)dx =(b—a)- favgla,b]- (4.3.2)

Solving Equation (4.3.2) for favgya,»), we have the following general principle.

Average value of a function

If f is a continuous function on [a, b], then its average value on [a, b] is given by the
formula

1 b
favelan = 35— /‘Z f(x)dx.

Observe that Equation (4.3.2) tells us another way to interpret the definite integral: the def-
inite integral of a function f from a to b is the length of the interval (b — ) times the average
value of the function on the interval. In addition, Equation (4.3.2) has a natural visual inter-
pretation when the function f is nonnegative on [a, b].

y=f(x y=r(x

\ fave [a.b] \

(b - a) . fAvc[a,b]

Figure 4.3.11: A function y = f(x), the area it bounds, and its average value on [a, b].

Consider Figure 4.3.11, where we see at left the shaded region whose area is fab f(x)dx, at
center the shaded rectangle whose dimensions are (b —a) by favg|a,b], and at right these two
figures superimposed. Specifically, note that in dark green we show the horizontal line y =
favgia,p)- Thus, the area of the green rectangle is given by (b —a) - favg[a,»], Which is precisely

the value of fub f(x)dx. Said differently, the area of the blue region in the left figure is the
same as that of the green rectangle in the center figure; this can also be seen by observing that
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the areas A1 and A; in the rightmost figure appear to be equal. Ultimately, the average value
of a function enables us to construct a rectangle whose area is the same as the value of the
definite integral of the function on the interval. The java applet? at http://gvsu.edu/s/az
provides an opportunity to explore how the average value of the function changes as the
interval changes, through an image similar to that found in Figure 4.3.11.

Activity 4.3.4. Suppose that v(t) = /4 — (t —2)? tells us the instantaneous velocity of
a moving object on the interval 0 < t < 4, where ¢ is measured in minutes and v is
measured in meters per minute.

a. Sketch an accurate graph of y = v(t). What kind of curve is y = /4 — (t — 2)??

b. Evaluate f04 o(t) dt exactly.

c. In terms of the physical problem of the moving object with velocity v(¢), what is
the meaning of f04 v(t) dt? Include units on your answer.

d. Determine the exact average value of v(t) on [0, 4]. Include units on your answer.

e. Sketch a rectangle whose base is the line segment from ¢t = 0 to t = 4 on the ¢-
axis such that the rectangle’s area is equal to the value of f04 v(t)dt. What is the
rectangle’s exact height?

f. How can you use the average value you found in (d) to compute the total distance
traveled by the moving object over [0, 4]?

Summary

¢ Any Riemann sum of a continuous function f on aninterval [a, b] provides an estimate

of the net signed area bounded by the function and the horizontal axis on the interval.
Increasing the number of subintervals in the Riemann sum improves the accuracy of
this estimate, and letting the number of subintervals increase without bound results
in the values of the corresponding Riemann sums approaching the exact value of the
enclosed net signed area.

When we take the just described limit of Riemann sums, we arrive at what we call the

definite integral of f over the interval [a, b]. In particular, the symbol fab f(x)dx de-
notes the definite integral of f over [a, b], and this quantity is defined by the equation

/ b fl)dx = lim Z f(x)Ax,
“ i=1

where Ax = bn;”, xi =a+iAx (fori =0,...,n), and x; satisfies x;-1 < x7 < x; (for
i=1,...,n).

?David Austin, http://gvsu.edu/s/5r.
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The definite integral fab f(x) dx measures the exact net signed area bounded by f and
the horizontal axis on [a, b]; in addition, the value of the definite integral is related to

what we call the average value of the function on [a, b]: favcas) = 7= fgh f(x)dx.In

the setting where we consider the integral of a velocity function v, f: v(t) dt measures
the exact change in position of the moving object on [4, b]; when v is nonnegative,
fab v(t)dt is the object’s distance traveled on [a, b].

The definite integral is a sophisticated sum, and thus has some of the same natural
properties that finite sums have. Perhaps most important of these is how the definite

integral respects sums and constant multiples of functions, which can be summarized
by the rule

b b b
/[cf(x)ikg(x)]dxzc/ f(x)dxik/ g(x)dx

where f and g are continuous functions on [4, b] and ¢ and k are arbitrary constants.

Exercises

1. Use the following figure, which shows a graph of f(x) to find each of the indicated inte-

grals.

Note that the first area (with vertical, red shading) is 55 and the second (with oblique, black
shading) is 5.

b
Al

B. [, f(x)dx =

C. [

D. [f

F(x)dx =

fx)dx =
|F()ldx = |

2. Use the graph of f(x) shown below to find the following integrals.

"

. ,
A. [, f(x)dx :‘ ‘

. . . 6
B. If the vertical red shaded area in the graph has area A, estimate: [*, f(x)dx = ‘

(Your

estimate may be written in terms of A.)
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Chapter 4 The Definite Integral

3. Find the average value of f(x) = 6x + 5 over [2, 6]

menwnrk

average value = ‘

4. The figure below to the left is a graph of f(x), and below to the right is g(x).

luenluurl(

L.5 L.5
6l5 85

fa,5] 9> 3 | Fa.5| o7 2
-8,5 -8,5
f(x) g(x)

(a)

What is the average value of f(x) on0 < x < 2?

avg value = ‘ ‘

(b)

What is the average value of g(x) on 0 < x < 2?

avg value = ‘ ‘

(c)

What is the average value of f(x)- g(x)on0 < x < 2?

avg value = ‘

(d)

Is the following statement true?

Average(f) - Average(g) = Average(f - g)

5. Use the figure below, which shows the graph of y = f(x), to answer the following ques-
e tions.

A. Estimate the integral: f_33 flx)dx = ‘
(You will certainly want to use an enlarged version of the graph to obtain your estimate.)
B. Which of the following average values of f is larger?

145 115 145
6. Suppose f(x)dx =5, f(x)dx =6, f(x)dx = 8.
10 10 13

menwnrl(

13

f(x)dx —‘ ‘
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4.3 The Definite Integral

11.5
/ (5f(x) - 6)dx =|
13

7. The velocity of an object moving along an axis is given by the piecewise linear function
v that is pictured in Figure 4.3.12. Assume that the object is moving to the right when its
velocity is positive, and moving to the left when its velocity is negative. Assume that the
given velocity function is valid for t =0 to t = 4.

a. Write an expression involving defi-
nite integrals whose value is the total 24 ft/sec
change in position of the object on the
interval [0, 4].

b. Use the provided graph of v to deter- 11
mine the value of the total change in
position on [0, 4].

c. Write an expression involving definite
integrals whose value is the total dis-

tance traveled by the object on [0, 4]. 11
What is the exact value of the total dis-
tance traveled on [0, 4]? 24

d. What is the object’s exact average ve-
locity on [0, 4]?

e. Find an algebraic formula for the ob-
ject’s position function on [0, 1.5] that
satisfies s(0) = 0.

Figure 4.3.12: The velocity function of a
moving object.

8. Suppose that the velocity of a moving object is given by v(t) = t(f — 1)(f — 3), measured
in feet per second, and that this function is valid for 0 < t < 4.

a. Write an expression involving definite integrals whose value is the total change in po-
sition of the object on the interval [0, 4].

b. Useappropriate technology (such as http:/ /gvsu.edu/s/a9°%) to compute Riemann sums
to estimate the object’s total change in position on [0, 4]. Work to ensure that your esti-
mate is accurate to two decimal places, and explain how you know this to be the case.

c. Write an expression involving definite integrals whose value is the total distance trav-
eled by the object on [0, 4].

d. Use appropriate technology to compute Riemann sums to estimate the object’s total
distance travelled on [0, 4]. Work to ensure that your estimate is accurate to two decimal
places, and explain how you know this to be the case.

3Marc Renault, Shippensburg University.
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e. What is the object’s average velocity on [0, 4], accurate to two decimal places?

9. Consider the graphs of two functions f and g that are provided in Figure 4.3.13. Each
piece of f and g is either part of a straight line or part of a circle.

y=8
) ) (x)
y=f(x)
1 1
1 \i/é 3 4
-1+ -1+
24 24

Figure 4.3.13: Two functions f and g.

a. Determine the exact value of f01 [f(x)+ g(x)]dx.

b. Determine the exact value of f14[2f(x) —3g(x)] dx.
. Find the exact average value of h(x) = g(x) — f(x) on [0, 4].

@)

Q.

. For what constant ¢ does the following equation hold?

4
/0 cdx = /0 ) + g1 dn

10. Let f(x) = 3 — x% and g(x) = 2x2.

a. On the interval [-1, 1], sketch a labeled graph of y = f(x) and write a definite integral
whose value is the exact area bounded by y = f(x) on [-1,1].

b. On the interval [-1, 1], sketch a labeled graph of y = g(x) and write a definite integral
whose value is the exact area bounded by y = g(x) on [-1,1].

c. Write an expression involving a difference of definite integrals whose value is the exact
area that lies between y = f(x) and y = g(x) on [-1,1].

d. Explain why your expression in (c) has the same value as the single integral f_11 [f(x)-
g(x)]dx.
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4.3 The Definite Integral

e. Explain why, in general, if p(x) > g(x) for all x in [a, b], the exact area between y = p(x)
and y = q(x) is given by

b
/ [p(x) - g(x)] dx.
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4.4 The Fundamental Theorem of Calculus

Motivating Questions

* How can we find the exact value of a definite integral without taking the limit of a
Riemann sum?

¢ Whatis the statement of the Fundamental Theorem of Calculus, and how do antideriva-
tives of functions play a key role in applying the theorem?

e What is the meaning of the definite integral of a rate of change in contexts other than
when the rate of change represents velocity?

Much of our work in Chapter 4 has been motivated by the velocity-distance problem: if we
know the instantaneous velocity function, v(t), for a moving object on a given time interval
[a,b], can we determine its exact distance traveled on [a,b]? In the vast majority of our
discussion in Sections 4.1- Section 4.3, we have focused on the fact that this distance traveled
is connected to the area bounded by ¥ = v(t) and the f-axis on [a, b]. In particular, for any
nonnegative velocity function y = v(f) on [a, b], we know that the exact area bounded by
the velocity curve and the f-axis on the interval tells us the total distance traveled, which is

also the value of the definite integral j;b v(t) dt. In the situation where velocity is sometimes
negative, the total area bounded by the velocity function still tells us distance traveled, while
the net signed area that the function bounds tells us the object’s change in position.

Recall, for instance, the introduction to Sec-
tion 4.2, where we observed that for the ve-
locity function in Figure 4.4.1, the total dis- y=v(?)
tance D traveled by the moving object on
[a,b]is

D=A1+A,+ A3 ,

while the total change in the object’s posi-
tion on [a, b] is

S(b) - S({Jl) =A1—-Ay+ As.

The areas A;, A;, and Az, which are / a W

each given by definite integrals, may
be computed through limits of Riemann
sums (and in select special circumstances
through familiar geometric formulas).

Figure 4.4.1: A velocity function that is
sometimes negative.
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4.4 The Fundamental Theorem of Calculus

In the present section we turn our attention to an alternate approach, similar to the one
we encountered in Activity 4.1.3. To explore these ideas further, we consider the following
preview activity.

Preview Activity 4.4.1. A student with a third floor dormitory window 32 feet off the
ground tosses a water balloon straight up in the air with an initial velocity of 16 feet
per second. It turns out that the instantaneous velocity of the water balloon is given by
u(t) = =32t + 16, where v is measured in feet per second and ¢ is measured in seconds.

a. Let s(t) represent the height of the water balloon above ground at time ¢, and note
that s is an antiderivative of v. That is, v is the derivative of s: s’(t) = v(t). Find
a formula for s(t) that satisfies the initial condition that the balloon is tossed from
32 feet above ground. In other words, make your formula for s satisfy s(0) = 32.

b. When does the water balloon reach its maximum height? When does it land?
c. Compute s(%) —-5(0),s(2) — s(%), and s(2) — s(0). What do these represent?

d. What is the total vertical distance traveled by the water balloon from the time it is
tossed until the time it lands?

e. Sketch a graph of the velocity function y = v(¢) on the time interval [0, 2]. What is
the total net signed area bounded by y = v(t) and the t-axis on [0,2]? Answer this
question in two ways: first by using your work above, and then by using a familiar
geometric formula to compute areas of certain relevant regions.

4.4.1 The Fundamental Theorem of Calculus

Consider the setting where we know the
position function s(t) of an object moving
along an axis, as well as its correspond-
ing velocity function v(t), and for the mo-
ment let us assume that v(t) is positive on
[a,b]. Then, as shown in Figure 4.4.2, we
know two different perspectives on the dis-
tance, D, the object travels: one is that D =
s(b) — s(a), which is the object’s change in
position. The other is that the distance trav-
eled is the area under the velocity curve,
which is given by the definite integral, so

D = ["o(t)dt.

Figure 4.4.2: Finding distance traveled when we know a velocity function v.
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Chapter 4 The Definite Integral

Of course, since both of these expressions tell us the distance traveled, it follows that they
are equal, so

b
s(b) —s(a) = / v(t)dt. (4.4.1)

Furthermore, we know that Equation (4.4.1) holds even when velocity is sometimes nega-
tive, since s(b) — s(a) is the object’s change in position over [a, b], which is simultaneously

measured by the total net signed area on [a, b] given by fab v(t)dt.

Perhaps the most powerful part of Equation (4.4.1) lies in the fact that we can compute the
integral’s value if we can find a formula for s. Remember, s and v are related by the fact that
v is the derivative of s, or equivalently that s is an antiderivative of v. For example, if we have
an object whose velocity is v(t) = 3t? + 40 feet per second (which is always nonnegative),
and wish to know the distance traveled on the interval [1, 5], we have that

5 5
D= /1 v(t)dt = /1 (3t + 40) dt = 5(5) — s(1),

where s is an antiderivative of v. We know that the derivative of t3 is 3t> and that the
derivative of 40t is 40, so it follows that if s(t) = +3+40t, then s is a function whose derivative
is v(t) = s’(t) = 3t? + 40, and thus we have found an antiderivative of v. Therefore,

5
D:/ 3t2 +40dt = s(5) — s(1)
1

=(52+40-5)— (13 +40- 1) = 284 feet.

Note the key lesson of this example: to find
the distance traveled, we needed to com-
pute the area under a curve, which is given
by the definite integral. But to evaluate
the integral, we found an antiderivative,
s, of the velocity function, and then com-
puted the total change in s on the interval.
In particular, observe that we have found
the exact area of the region shown in Fig-
ure 4.4.3, and done so without a familiar
formula (such as those for the area of a tri-
angle or circle) and without directly com-
puting the limit of a Riemann sum.

Figure 4.4.3: The exact area of the region
enclosed by v(t) = 3t + 40 on [1,5].
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4.4 The Fundamental Theorem of Calculus

As we proceed to thinking about contexts other than just velocity and position, it is advan-
tageous to have a shorthand symbol for a function’s antiderivative. In the general setting
of a continuous function f, we will often denote an antiderivative of f by F, so that the re-
lationship between F and f is that F’(x) = f(x) for all relevant x. Using the notation V in
place of s (so that V is an antiderivative of v) in Equation (4.4.1), we find it is equivalent to
write that

b
V(b) - V(a) = / o(t) dt. (4.4.2)

Now, in the general setting of wanting to evaluate the definite integral fﬂb f(x)dx for an
arbitrary continuous function f, we could certainly think of f as representing the velocity of
some moving object, and x as the variable that represents time. And again, Equations (4.4.1)
and (4.4.2) hold for any continuous velocity function, even when v is sometimes negative.
This leads us to see that Equation (4.4.2) tells us something even more important than the
change in position of a moving object: it offers a shortcut route to evaluating any definite
integral, provided that we can find an antiderivative of the integrand. The Fundamental
Theorem of Calculus (FTC) summarizes these observations.

Fundamental Theorem of Calculus

If f is a continuous function on [4, b], and F is any antiderivative of f, then fah f(x)dx =

F(b) - F(a).

A common alternate notation for F(b) — F(a) is
F(b) - F(a) = F()l;,

where we read the righthand side as “the function F evaluated from a to b.” In this notation,
the FTC says that

b
‘/fqu=Hmﬂ

The FTC opens the door to evaluating exactly a wide range of integrals. In particular, if we

are interested in a definite integral for which we can find an antiderivative F for the integrand

f, then we can evaluate the integral exactly. For instance since % 1x%] = x2, the FIC tells

us that
1 1
/xzdxz 1x3
0 3 o

1y - 307

QW= W=

But finding an antiderivative can be far from simple; in fact, often finding a formula for
an antiderivative is very hard or even impossible. While we can differentiate just about
any function, even some relatively simple ones don’t have an elementary antiderivative. A
significant portion of integral calculus (which is the main focus of second semester college
calculus) is devoted to understanding the problem of finding antiderivatives.

257



Chapter 4 The Definite Integral

Activity 4.4.2. Use the Fundamental Theorem of Calculus to evaluate each of the follow-
ing integrals exactly. For each, sketch a graph of the integrand on the relevant interval
and write one sentence that explains the meaning of the value of the integral in terms
of the (net signed) area bounded by the curve.

a. f_41(2 —2x)dx C. f01 e* dx
b. [} sin(x)dx d. [! x5 dx
e. f02(3x3 —2x%2 —e¥)dx

4.4.2 Basic antiderivatives

The general problem of finding an antiderivative is difficult. In part, this is due to the fact

that we are trying to undo the process of differentiating, and the undoing is much more

difficult than the doing. For example, while it is evident that an antiderivative of f(x) =

sin(x) is F(x) = — cos(x) and that an antiderivative of g(x) = x%is G(x) = %x‘o’, combinations

of f and g can be far more complicated. Consider such functions as

sin(x)
2

5sin(x) — 4x%, x?sin(x), , and sin(x?).

What is involved in trying to find an antiderivative for each? From our experience with
derivative rules, we know that while derivatives of sums and constant multiples of basic
functions are simple to execute, derivatives involving products, quotients, and composites
of familiar functions are much more complicated. Thus, it stands to reason that antidiffer-
entiating products, quotients, and composites of basic functions may be even more chal-
lenging. We defer our study of all but the most elementary antiderivatives to later in the
text.

We do note that each time we have a function for which we know its derivative, we have a
function-derivative pair, which also leads us to knowing the antiderivative of a function. For
instance, since we know that

%[— cos(x)] = sin(x),

it follows that F(x) = —cos(x) is an antiderivative of f(x) = sin(x). It is equivalent to say
that f(x) = sin(x) is the derivative of F(x) = —cos(x), and thus F and f together form the
function-derivative pair. Clearly, every basic derivative rule leads us to such a pair, and
thus to a known antiderivative. In Activity 4.4.3, we will construct a list of most of the basic
antiderivatives we know at this time. Furthermore, those rules will enable us to antidiffer-
entiate sums and constant multiples of basic functions. For example, if f(x) = 5sin(x) —4x?,
note that since — cos(x) is an antiderivative of sin(x) and %x3 is an antiderivative of x2, it
follows that

F(x) = =5 cos(x) — §x3
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4.4 The Fundamental Theorem of Calculus

is an antiderivative of f, by the sum and constant multiple rules for differentiation.

Finally, before proceeding to build a list of common functions whose antiderivatives we
know, we revisit the fact that each function has more than one antiderivative. Because the
derivative of any constant is zero, any time we seek an arbitrary antiderivative, we may
add a constant of our choice. For instance, if we want to determine an antiderivative of
g(x) = x%, we know that G(x) = %x3 is one such function. But we could alternately have
chosen G(x) = %xg' + 7, since in this case as well, G’(x) = x2. In some contexts later on in
calculus, it is important to discuss the most general antiderivative of a function. If g(x) = x2,
we say that the general antiderivative of g is

G(x) = %x3 +C,

where C represents an arbitrary real number constant. Regardless of the formula for g,
including +C in the formula for its antiderivative G results in the most general possible
antiderivative.

Our primary current interest in antiderivatives is for use in evaluating definite integrals by
the Fundamental Theorem of Calculus. In that situation, the arbitrary constant C is irrele-
vant, and thus we usually omit it. To see why, consider the definite integral

1
/ x2 dx.
0

For the integrand g(x) = x2, suppose we find and use the general antiderivative G(x) =
1x% + C. Then, by the FTC,

1 1 1
/ x?dx = —x3+C‘
0 3 0

(307 +¢) - (307 +¢)

Specifically, we observe that the C-values appear as opposites in the evaluation of the in-
tegral and thus do not affect the definite integral’s value. In the same way, the potential
inclusion of +C with the antiderivative has no bearing on any definite integral, and thus we
generally choose to omit this possible constant whenever we evaluate an integral using the
Fundamental Theorem of Calculus.

In the following activity, we work to build a list of basic functions whose antiderivatives we
already know.
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Chapter 4 The Definite Integral

Activity 4.4.3. Use your knowledge of derivatives of basic functions to complete the
above table of antiderivatives. For each entry, your task is to find a function F whose
derivative is the given function f. When finished, use the FTC and the results in the
table to evaluate the three given definite integrals.

given function, f(x) antiderivative, F(x)
k, (k is constant)
x",n#-1
%, x>0
sin(x)
cos(x)
sec(x) tan(x)
csc(x) cot(x)
sec?(x)
csc?(x)
ex
a* (a>1)

T

1+x2
1

Vi-x2

Table 4.4.4: Familiar basic functions and their antiderivatives.

1
a. / (x®—x—e*+2)dx
0

/3
b. / (2sin(t) — 4 cos(t) + sec?(t) — m) dt
0

1
c. /0 (Vx — x?) dx

4.4.3 The total change theorem

As we use the Fundamental Theorem of Calculus to evaluate definite integrals, it is essen-
tial that we remember and understand the meaning of the numbers we find. We briefly
summarize three key interpretations to date.

¢ For a moving object with instantaneous velocity v(t), the object’s change in position on

the time interval [a, b] is given by fgb v(t) dt,and whenever v(t) > Oon [, b], fab o(t) dt
tells us the total distance traveled by the object on [a, b].

¢ For any continuous function f, its definite integral fab f(x)dx represents the total net
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4.4 The Fundamental Theorem of Calculus

signed area bounded by iy = f(x) and the x-axis on [a, b], where regions that lie below
the x-axis have a minus sign associated with their area.

¢ The value of a definite integral is linked to the average value of a function: for a con-
tinuous function f on [a, b], its average value favga,s] is given by

1 b
fAVG[a,b] = m/a fx)dx.

The Fundamental Theorem of Calculus now enables us to evaluate exactly (without taking a
limit of Riemann sums) any definite integral for which we are able to find an antiderivative
of the integrand.

A slight change in notational perspective allows us to gain even more insight into the mean-
ing of the definite integral. To begin, recall Equation (4.4.2), where we wrote the Fundamen-
tal Theorem of Calculus for a velocity function v with antiderivative V as

b
V(b)-V(a) = / v(t)dt.

If we instead replace V with s (which represents position) and replace v with s’ (since ve-
locity is the derivative of position), Equation (4.4.2) equivalently reads

b
s(b) —s(a) = / s'(t)dt. (4.4.3)

In words, this version of the FTC tells us that the total change in the object’s position function
on a particular interval is given by the definite integral of the position function’s derivative
over that interval.

Of course, this result is not limited to only the setting of position and velocity. Writing the
result in terms of a more general function f, we have the Total Change Theorem.

Total Change Theorem

If f is a continuously differentiable function on [a, b] with derivative f’, then f(b) —

f(a) = j; b f'(x) dx. That is, the definite integral of the derivative of a function on [a, b]
is the total change of the function itself on [a, b].

The Total Change Theorem tells us more about the relationship between the graph of a func-
tion and that of its derivative. Recall Figure 1.4.1, which provided one of the first times we
saw that heights on the graph of the derivative function come from slopes on the graph of
the function itself. That observation occurred in the context where we knew f and were
seeking f’; if now instead we think about knowing f’ and seeking information about f, we
can instead say the following:

differences in heights on f correspond to net signed areas bounded by f’.
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Chapter 4 The Definite Integral

y=r(x)

Figure 4.4.5: The graphs of f’(x) = 4 — 2x (at left) and an antiderivative f(x) = 4x — x? at
right. Differences in heights on f correspond to net signed areas bounded by f.

To see why this is so, say we consider the difference f(1) — f(0). Note that this value is
3, in part because f(1) = 3 and f(0) = 0, but also because the net signed area bounded
by y = f'(x) on [0,1] is 3. Thatis, f(1) - f(0) = fol f’(x)dx. A similar pattern holds
throughout, including the fact that since the total net signed area bounded by f’ on [0, 4] is
0, fif f'(x)dx =0, 50 it must be that £(4) — £(0) = 0, s0 f(4) = £(0).

Beyond this general observation about area, the Total Change Theorem enables us to con-
sider interesting and important problems where we know the rate of change, and answer
key questions about the function whose rate of change we know.

Example 4.4.6. Suppose that pollutants are leaking out of an underground storage tank at a
rate of r(t) gallons/day, where ¢ is measured in days. Itis conjectured that r(f) is given by the
formula r(t) = 0.0069¢> —0.125¢ +11.079 over a certain 12-day period. The graph of y = r(t)
is given in Figure 4.4.7. What is the meaning of f410 r(t)dt and what is its value? What is the
average rate at which pollutants are leaving the tank on the time interval 4 < t < 10?
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4.4 The Fundamental Theorem of Calculus

al/da
1p] 82l/day

101

N A O

214618110112

Figure 4.4.7: The rate r(t) of pollution leaking from a tank, measured in gallons per day.

Solution. We know that since 7(t) > 0, the value of f410 r(t) dt is the area under the curve
on the interval [4, 10]. If we think about this area from the perspective of a Riemann sum,
the rectangles will have heights measured in gallons per day and widths measured in days,
thus the area of each rectangle will have units of

gallons

day

- days = gallons.

Thus, the definite integral tells us the total number of gallons of pollutant that leak from the
tank from day 4 to day 10. The Total Change Theorem tells us the same thing: if we let R(t)
denote the function that measures the total number of gallons of pollutant that have leaked
from the tank up to day ¢, then R’(t) = r(t), and

10
/ r(t)dt = R(10) — R(4),
4

which is the total change in the function that measures total gallons leaked over time, thus
the number of gallons that have leaked from day 4 to day 10.

To compute the exact value, we use the Fundamental Theorem of Calculus. Antidifferenti-
ating r(t) = 0.0069¢> — 0.125¢ + 11.079, we find that

10

10
/ 0.0069#3 — 0.125¢2 + 11.079 dt = 0.0069 - 31 t+-0.125- %ﬁ +11.079¢
4 4

~ 44.282.

Thus, approximately 44.282 gallons of pollutant leaked over the six day time period.
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Chapter 4 The Definite Integral

To find the average rate at which pollutant leaked from the tank over 4 < t < 10, we want to
compute the average value of r on [4, 10]. Thus,

44.282

1 10
TAVG[4,10] = 10—4/ r(t)dt = =7.380,
% J4

which has its units measured in gallons per day.

Activity 4.4.4. During a 40-minute workout, a person riding an exercise machine burns
calories at a rate of c calories per minute, where the function y = c(t) is given in Fig-
ure 4.4.8. On the interval 0 < t < 10, the formula for c is c(t) = —0.05t> + t + 10, while
on 30 < t < 40, its formula is c(t) = —0.05t2 + 3t — 30.

cal/min

15¢ y=c(t)
10./ \

min

10 [ 20 ' 30

Figure 4.4.8: The rate c(t) at which a person exercising burns calories, measured in calo-
ries per minute.

a. What is the exact total number of calories the person burns during the first 10
minutes of her workout?

b. Let C(t) be an antiderivative of c(t). What is the meaning of C(40) — C(0) in the
context of the person exercising? Include units on your answer.

c. Determine the exact average rate at which the person burned calories during the
40-minute workout.

d. At what time(s), if any, is the instantaneous rate at which the person is burning
calories equal to the average rate at which she burns calories, on the time interval
0<t<40?
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4.4 The Fundamental Theorem of Calculus

Summary

We can find the exact value of a definite integral without taking the limit of a Riemann
sum or using a familiar area formula by finding the antiderivative of the integrand,
and hence applying the Fundamental Theorem of Calculus.

The Fundamental Theorem of Calculus says that if f is a continuous function on [a, b]
and F is an antiderivative of f, then

b
/ f(x)dx = F(b) — F(a).

Hence, if we can find an antiderivative for the integrand f, evaluating the definite
integral comes from simply computing the change in F on [a, b].

A slightly different perspective on the FIC allows us to restate it as the Total Change
Theorem, which says that

b
/ F(x)dx = F(b) - f(a),

for any continuously differentiable function f. This means that the definite integral
of the instantaneous rate of change of a function f on an interval [a, b] is equal to the
total change in the function f on [a, b].

Exercises

1. Use the following figure, which shows a graph of f(x) to find each of the indicated inte-

grals.

Note that the first area (with vertical, red shading) is 9 and the second (with oblique, black
shading) is 3.

b
Al

B. [, f(x)dx =
C. [ f(x)dx =

D. [*

F(x)dx =

|F(x0)ldx = |

2. Use the graph of f(x) shown below to find the following integrals.
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\ N

A [ Fxdx =| |

B.If the vertical red shaded area in the graph has area A, estimate: f_53 f(x)dx = ‘

(Your estimate may be written in terms of A.)

3. Find the average value of f(x) = 4x +4 over [4, 9]

average value =

4. The figure below to the left is a graph of f(x), and below to the right is g(x).

.5 |

=}
h
=]
4]

8,5 i 4| F8.5 T
-8,5 -8,5
f(x) g(x)

(a)

What is the average value of f(x) on0 < x < 2?

avg value = ‘ ‘

(b)

What is the average value of g(x) on 0 < x < 2?

avg value = ‘ ‘

(c)

What is the average value of f(x)- g(x)on0 < x < 2?

avg value = ‘

(d)

Is the following statement true?

Average(f) - Average(g) = Average(f - g)

5. Use the figure below, which shows the graph of y = f(x), to answer the following ques-

tions.
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4.4 The Fundamental Theorem of Calculus

A. Estimate the integral: f_33 f(x)dx ~ ‘ ‘
(You will certainly want to use an enlarged version of the graph to obtain your estimate.)
B. Which of the following average values of f is larger?

7.5 45 7.5
6. Suppose f(x)dx =4, f(x)dx =1, f(x)dx =1.
3 3 6

6
[ seoax | |
4.5

4.5
| -] |

7. The instantaneous velocity (in meters per minute) of a moving object is given by the func-
tion v as pictured in Figure 4.4.9. Assume that on the interval 0 < t < 4, v(t) is given by
u(t) =— % 3+ %tz +1, and that on every other interval v is piecewise linear, as shown.

a. Determine the exact distance traveled

by the object on the time interval 0 < m/min y=v(t)

t<4. 151
b. What is the object’s average velocity 121

on [12,24]? 9
c. At what time is the object’s accelera-

tion greatest? 61
d. Suppose that the velocity of the object 34

is increased by a constant value ¢ for min

all values of . What value of ¢ will : : : : } }
make the object’s total distance trav- 4 8 12 16 20 24
eled on [12,24] be 210 meters?

Figure 4.4.9: The velocity function of a
moving body.

8. A function f is given piecewise by the formula

—x+3, if2<x<3

—x24+2x+1, if0<x<?2
f(x)=
x2-8x+15, if3<x<5

a. Determine the exact value of the net signed area enclosed by f and the x-axis on the
interval [2, 5].
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b. Compute the exact average value of f on [0, 5].

c. Find a formula for a function g on 5 < x < 7 so that if we extend the above definition
of f so that f(x) = g(x) if 5 < x < 7, it follows that [ f(x)dx = 0.

9. When an aircraft attempts to climb as rapidly as possible, its climb rate (in feet per minute)
decreases as altitude increases, because the air is less dense at higher altitudes. Given below
is a table showing performance data for a certain single engine aircraft, giving its climb rate
at various altitudes, where c(h) denotes the climb rate of the airplane at an altitude /.

h (feet) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

c(ft/min) 925 875 830 780 730 685 635 585 535 490 440

Let a new function called m (/) measure the number of minutes required for a plane at alti-
tude & to climb the next foot of altitude.

a. Determine a similar table of values for m(h) and explain how it is related to the table
above. Be sure to explain the units.

b. Give a careful interpretation of a function whose derivative is m(/1). Describe what the
input is and what the output is. Also, explain in plain English what the function tells
us.

c. Determine a definite integral whose value tells us exactly the number of minutes re-
quired for the airplane to ascend to 10,000 feet of altitude. Clearly explain why the
value of this integral has the required meaning.

d. Use the Riemann sum M5 to estimate the value of the integral you found in (c). Include
units on your result.

10. In Chapter 1, we showed that for an object moving along a straight line with position
function s(t), the object’s “average velocity on the interval [a, b]” is given by

s(b) —s(a)
AVjgp) = ———.
[a.b] b—a
More recently in Chapter 4, we found that for an object moving along a straight line with
velocity function v(t), the object’s “average value of its velocity function on [a, b]” is

1 b
VAVGla,b] = m/ o(t)dt.
a

Are the “average velocity on the interval [4, b]” and the “average value of the velocity func-
tion on [a, b]” the same thing? Why or why not? Explain.
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Evaluating Integrals

5.1 Constructing Accurate Graphs of Antiderivatives

Motivating Questions

¢ Given the graph of a function’s derivative, how can we construct a completely accurate
graph of the original function?

¢ How many antiderivatives does a given function have? What do those antiderivatives
all have in common?

¢ Given a function f, how does the rule A(x) = fox f(t)dt define a new function A?

A recurring theme in our discussion of differential calculus has been the question “Given
information about the derivative of an unknown function f, how much information can we
obtain about f itself?” For instance, in Activity 1.8.3, we explored the situation where the
graphof y = f’(x) was known (along with the value of f at a single point) and endeavored to
sketch a possible graph of f near the known point. In Example 3.1.4 — and indeed through-
out Section 3.1 — we investigated how the first derivative test enables us to use information
regarding f’ to determine where the original function f is increasing and decreasing, as
well as where f has relative extreme values. Further, if we know a formula or graph of f’,
by computing f” we can find where the original function f is concave up and concave down.
Thus, the combination of knowing f’ and f” enables us to fully understand the shape of the
graph of f.

We returned to this question in even more detail in Section 4.1; there, we considered the
situation where we knew the instantaneous velocity of a moving object and worked from
that information to determine as much information as possible about the object’s position
function. We found key connections between the net-signed area under the velocity function
and the corresponding change in position of the function; in Section 4.4, the Total Change
Theorem further illuminated these connections between f’” and f in a more general setting,
such as the one found in Figure 4.4.5, showing that the total change in the value of f over an
interval [a, b] is determined by the exact net-signed area bounded by f’ and the x-axis on
the same interval.
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In what follows, we explore these issues still further, with a particular emphasis on the sit-
uation where we possess an accurate graph of the derivative function along with a single
value of the function f. From that information, we desire to completely determine an accu-
rate graph of f that not only represents correctly where f is increasing, decreasing, concave
up, and concave down, but also allows us to find an accurate function value at any point of
interest to us.

Preview Activity 5.1.1. Suppose that the following information is known about a func-
tion f: the graph of its derivative, y = f’(x), is given in Figure 5.1.1. Further, assume
that f’ is piecewise linear (as pictured) and that for x < 0 and x > 6, f’(x) = 0. Finally,
it is given that f(0) = 1.

y=f'(x)
34 3
14 1
1 3 5 1 3 5
14 1
3¢ 3

Figure 5.1.1: At left, the graph of y = f’(x); at right, axes for plotting y = f(x).

a. Onwhatinterval(s) is f an increasing function? On what intervals is f decreasing?
b. On what interval(s) is f concave up? concave down?
c. At what point(s) does f have a relative minimum? a relative maximum?

d. Recall that the Total Change Theorem tells us that

1
F1) - F(0) = /0 £/ dx.

What is the exact value of f(1)?
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5.1 Constructing Accurate Graphs of Antiderivatives

e. Use the given information and similar reasoning to that in (d) to determine the

exact value of f(2), f(3), f(4), f(5), and f(6).

f. Based on your responses to all of the preceding questions, sketch a complete and
accurate graph of ¥ = f(x) on the axes provided, being sure to indicate the behav-
ior of f for x < 0and x > 6.

5.1.1 Constructing the graph of an antiderivative

Preview Activity 5.1.1 demonstrates that when we can find the exact area under a given
graph on any given interval, it is possible to construct an accurate graph of the given func-
tion’s antiderivative: that is, we can find a representation of a function whose derivative is
the given one. While we have considered this question at different points throughout our
study;, it is important to note here that we now can determine not only the overall shape of
the antiderivative, but also the actual height of the antiderivative at any point of interest.

Indeed, this is one key consequence of the Fundamental Theorem of Calculus: if we know a
function f and wish to know information about its antiderivative, F, provided that we have
some starting point a for which we know the value of F(a), we can determine the value of

F(b) via the definite integral. In particular, since F(b) — F(a) = fab f(x)dx, it follows that
b
F(b) = F(a)+/ f(x)dx. (5.1.1)
a

Moreover, in the discussion surrounding Figure 4.4.5, we made the observation that dif-
ferences in heights of a function correspond to net-signed areas bounded by its derivative.
Rephrasing this in terms of a given function f and its antiderivative F, we observe that on
an interval [a, b],

differences in heights on the antiderivative (such as F(b) — F(a)) correspond to the net-
signed area bounded by the original function on the interval [a, b] ( j;b f(x)dx).

For example, say that f(x) = x2 and that we are interested in an antiderivative of f that
satisfies F(1) = 2. Thinking of 2 = 1 and b = 2 in Equation (5.1.1), it follows from the
Fundamental Theorem of Calculus that
2
F(2) =F(1) + / x? dx
1

2

1
=2+ =x°
3x1
8§ 1
=2+ (2-=
5-3)
13
=3

In this way, we see that if we are given a function f for which we can find the exact net-signed
area bounded by f on a given interval, along with one value of a corresponding antideriva-
tive F, we can find any other value of F that we seek, and in this way construct a completely
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accurate graph of F. We have two main options for finding the exact net-signed area: using
the Fundamental Theorem of Calculus (which requires us to find an algebraic formula for an
antiderivative of the given function f), or, in the case where f has nice geometric properties,
finding net-signed areas through the use of known area formulas.

Activity 5.1.2. Suppose that the function y = f(x) is given by the graph shown in Fig-
ure 5.1.2, and that the pieces of f are either portions of lines or portions of circles. In
addition, let F be an antiderivative of f and say that F(0) = —1. Finally, assume that for
x<0andx >7, f(x)=0.

Figure 5.1.2: At left, the graph of y = f(x).

a. Onwhatinterval(s) is F an increasing function? On what intervals is F decreasing?
b. On what interval(s) is F concave up? concave down? neither?
c. At what point(s) does F have a relative minimum? a relative maximum?

d. Use the given information to determine the exact value of F(x) forx =1,2,...,7.
In addition, what are the values of F(—1) and F(8)?

e. Based on your responses to all of the preceding questions, sketch a complete and
accurate graph of y = F(x) on the axes provided, being sure to indicate the be-
havior of F for x < 0 and x > 7. Clearly indicate the scale on the vertical and
horizontal axes of your graph.

f. What happens if we change one key piece of information: in particular, say that G
is an antiderivative of f and G(0) = 0. How (if at all) would your answers to the
preceding questions change? Sketch a graph of G on the same axes as the graph
of F you constructed in (e).

5.1.2 Multiple antiderivatives of a single function
In the final question of Activity 5.1.2, we encountered a very important idea: a given func-

tion f has more than one antiderivative. In addition, any antiderivative of f is determined
uniquely by identifying the value of the desired antiderivative at a single point. For example,
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5.1 Constructing Accurate Graphs of Antiderivatives

suppose that f is the function given at left in Figure 5.1.3,

34 4
l..

1 3 5
14
34

Figure 5.1.3: At left, the graph of y = f(x). Atright, three different antiderivatives of f.

and we say that F is an antiderivative of f that satisfies F(0) = 1.

Then, using Equation (5.1.1), we can compute F(1) = 1.5, F(2) = 1.5, F(3) = -0.5, F(4) = -2,
F(5) = -0.5, and F(6) = 1, plus we can use the fact that F/ = f to ascertain where F is
increasing and decreasing, concave up and concave down, and has relative extremes and in-
flection points. Through work similar to what we encountered in Preview Activity 5.1.1 and
Activity 5.1.2, we ultimately find that the graph of F is the one given in blue in Figure 5.1.3.

If we instead chose to consider a function G that is an antiderivative of f but has the property
that G(0) = 3, then G will have the exact same shape as F (since both share the derivative f),
but G will be shifted vertically away from the graph of F, as pictured in red in Figure 5.1.3.
Note that G(1) — G(0) = f01 f(x)dx = 0.5, just as F(1) — F(0) = 0.5,, but since G(0) = 3,
G(1) = G(0) + 0.5 = 3.5, whereas F(1) = F(0) + 0.5 = 1.5, since F(0) = 1. In the same way, if
we assigned a different initial value to the antiderivative, say H(0) = —1, we would get still
another antiderivative, as shown in magenta in Figure 5.1.3.

This example demonstrates an important fact that holds more generally:

If G and H are both antiderivatives of a function f, then the function G — H must be
constant.

To see why this result holds, observe that if G and H are both antiderivatives of f, then
G’ = f and H' = f. Hence,

d ’ ’

22 G —H(0)] = G'(x) - H'(x) = f(x) - f(x) = 0.

Since the only way a function can have derivative zero is by being a constant function, it
follows that the function G — H must be constant.

Further, we now see that if a function has a single antiderivative, it must have infinitely many:
we can add any constant of our choice to the antiderivative and get another antiderivative.
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For this reason, we sometimes refer to the general antiderivative of a function f. For example, if
f(x) = x?, its general antiderivative is F(x) = %x?’ +C, where we include the “+C” to indicate
that F includes all of the possible antiderivatives of f. To identify a particular antiderivative
of f, we must be provided a single value of the antiderivative F (this value is often called
an initial condition). In the present example, suppose that condition is F(2) = 3; substituting
the value of 2 for x in F(x) = %x3 + C, we find that

1
=223+
3 3() C,

and thus C =3—§ =
1,3, 1
§X +§.

%. Therefore, the particular antiderivative in this case is F(x) =

Activity 5.1.3. For each of the following functions, sketch an accurate graph of the an-
tiderivative that satisfies the given initial condition. In addition, sketch the graph of
two additional antiderivatives of the given function, and state the corresponding ini-
tial conditions that each of them satisfy. If possible, find an algebraic formula for the
antiderivative that satisfies the initial condition.

a. original function: g(x) = |x| — 1; initial condition: G(-1) = 0; interval for sketch:

[-2,2]
b. original function: h(x) = sin(x); initial condition: H(0) = 1; interval for sketch:
[0,4m]
X2, if0<x<1
c. original function: p(x) = { —(x —=2)?, if1 < x < 2; initial condition: P(0) = 1;
0 otherwise

interval for sketch: [-1, 3]

5.1.3 Functions defined by integrals

In Equation (5.1.1), we found an important rule that enables us to compute the value of
the antiderivative F at a point b, provided that we know F(a) and can evaluate the definite
integral from a to b of f. Again, that rule is

b
F(b) = F(a) + / F(x)dx.

In several examples, we have used this formula to compute several different values of F(b)
and then plotted the points (b, F(b)) to assist us in generating an accurate graph of F. That
suggests that we may want to think of b, the upper limit of integration, as a variable itself.
To that end, we introduce the idea of an integral function, a function whose formula involves
a definite integral.
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5.1 Constructing Accurate Graphs of Antiderivatives

Given a continuous function f, we define the corresponding integral function A accord-
ing to the rule

AQ):/mﬂﬂdt (5.12)

Note particularly that because we are using the variable x as the independent variable in
the function A, and x determines the other endpoint of the interval over which we integrate
(starting from a), we need to use a variable other than x as the variable of integration. A
standard choice is t, but any variable other than x is acceptable.

One way to think of the function A is as the “net-signed area from a up to x” function,
where we consider the region bounded by y = f(¢) on the relevant interval. For example, in
Figure 5.1.4, we see a given function f pictured at left, and its corresponding area function
(choosing a = 0), A(x) = fox f(t)dt shown at right.

y=f(t)

21

Figure 5.1.4: At left, the graph of the given function f. At right, the area function A(x) =
Iy f()dt.

Note particularly that the function A measures the net-signed area from t = O to t = x
bounded by the curve y = f(t); this value is then reported as the corresponding height on
the graph of y = A(x). It is even more natural to think of this relationship between f and A
dynamically. At http://gvsu.edu/s/cz, we find a java applet! that brings the static picture
in Figure 5.1.4 to life. There, the user can move the red point on the function f and see how
the corresponding height changes at the light blue point on the graph of A.

The choice of a is somewhat arbitrary. In the activity that follows, we explore how the
value of a affects the graph of the integral function, as well as some additional related is-

David Austin, Grand Valley State University
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sues.

Activity 5.1.4. Suppose that g is given by the graph at left in Figure 5.1.5 and that A is
the corresponding integral function defined by A(x) = flx g(t)dt.

3] & 3

1 1
1 3 5 1 3 5

-1 -1

34 -3

Figure 5.1.5: At left, the graph of y = g(t); at right, axes for plotting y = A(x), where A
is defined by the formula A(x) = [, g(t) dt.

a. On what interval(s) is A an increasing function? On what intervals is A decreas-
ing? Why?

b. On what interval(s) do you think A is concave up? concave down? Why?
c. At what point(s) does A have a relative minimum? a relative maximum?

d. Use the given information to determine the exact values of A(0), A(1), A(2), A(3),
A(4), A(5), and A(6).

e. Based on your responses to all of the preceding questions, sketch a complete and
accurate graph of y = A(x) on the axes provided, being sure to indicate the behav-
ior of A for x < 0and x > 6.

f. How does the graph of B compare to A if B is instead defined by B(x) = fox g(t)dt?

Summary

* Given the graph of a function f, we can construct the graph of its antiderivative F
provided that (a) we know a starting value of F, say F(a), and (b) we can evaluate the
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integral fab f(x)dx exactly for relevant choices of a2 and b. For instance, if we wish to

know F(3), we can compute F(3) = F(a) + ff f(x)dx. When we combine this infor-
mation about the function values of F together with our understanding of how the
behavior of F’ = f affects the overall shape of F, we can develop a completely accurate
graph of the antiderivative F.

® Because the derivative of a constant is zero, if F is an antiderivative of f, it follows that
G(x) = F(x) + C will also be an antiderivative of f. Moreover, any two antiderivatives
of a function f differ precisely by a constant. Thus, any function with at least one
antiderivative in fact has infinitely many, and the graphs of any two antiderivatives
will differ only by a vertical translation.

¢ Given a function f, the rule A(x) = fax f(t)dt defines a new function A that measures
the net-signed area bounded by f on the interval [, x]. We call the function A the
integral function corresponding to f.

Exercises

1. Use the graph of f(x) shown below to find the following integrals.
0

A [ f)dx =|

B.If the vertical red shaded area in the graph has area A, estimate: f_75 f(x)dx =

(Your estimate may be written in terms of A.)

2. Consider the graph of the function f(x) shown below.

WeBlWork

(Click on the graph for a larger version)
A. Estimate the integral

17 fx)dx ~| |

B.If F is an antiderivative of the same function f and F(0) = 40, estimate F(7):

@) ~| |

3. Assume f' is given by the graph below. Suppose f is continuous and that f(5) = 0.

WeBlWork
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Sketch, on a sheet of work paper, an accurate graph of f, and use it to find each of

£(0) = |

and

£@) =| |

Then find the value of the integral:

e dz =|

(Note that you can do this in two different ways!)

4. The figure below shows f.

If F/ = f and F(0) = 0, find F(b) for b =1, 2, 3, 4, 5, 6, and fill these values in the following
table.

b |1]2]3]4]5]6
F(b)

5. A moving particle has its velocity given by the quadratic function v pictured in Fig-
ure 5.1.6. In addition, itis given that A1 = g and A, = %, as well as that for the corresponding
position function s, s(0) = 0.5.

a. Use the given information to determine s(1), s(3), s(5), and s(6).

b. On what interval(s) is s increasing? On what interval(s) is s decreasing?

¢. On what interval(s) is s concave up? On what interval(s) is s concave down?
d. Sketch an accurate, labeled graph of s on the axes at right in Figure 5.1.6.

e. Note that v(t) = -2 + %(t —3)2. Find a formula for s.
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31 3t
v -
o 1..
A t t
1 6 2 4 6
Ay 14
34 34

Figure 5.1.6: At left, the given graph of v. At right, axes for plotting s.

6. A person exercising on a treadmill experiences different levels of resistance and thus
burns calories at different rates, depending on the treadmill’s setting. In a particular work-
out, the rate at which a person is burning calories is given by the piecewise constant function
¢ pictured in Figure 5.1.7. Note that the units on ¢ are “calories per minute.”

cal/min
154 -
_C
104 -
5-- ——
min
10 20 30 10 20 30

Figure 5.1.7: At left, the given graph of c. At right, axes for plotting C.

a. Let C be an antiderivative of c. What does the function C measure? What are its units?
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b. Assume that C(0) = 0. Determine the exact value of C(t) at the values t = 5, 10, 15, 20, 25, 30.

c. Sketch an accurate graph of C on the axes provided at right in Figure 5.1.7. Be certain
to label the scale on the vertical axis.

d. Determine a formula for C that does not involve an integral and is valid for 5 < ¢t < 10.

7. Consider the piecewise linear function f given in Figure 5.1.8. Let the functions A, B, and
C be defined by the rules A(x) = [ f()dt, B(x) = [; f(t)dt,and C(x) = [;" f(t)dt.

a. For the values x = -1,0,1, ..., 6, make a table that lists corresponding values of A(x),
B(x), and C(x).
b. On the axes provided in Figure 5.1.8, sketch the graphs of A, B, and C.

c. How are the graphs of A, B, and C related?
d. How would you best describe the relationship between the function A and the function

f?

3 3}
1..
1 3 5
-1+
-3 -3

Figure 5.1.8: At left, the given graph of f. At right, axes for plotting A, B, and C.
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5.2 The Second Fundamental Theorem of Calculus

5.2 The Second Fundamental Theorem of Calculus

Motivating Questions

e How does the integral function A(x) = [; f(t)dt define an antiderivative of f?
e What is the statement of the Second Fundamental Theorem of Calculus?

¢ How do the First and Second Fundamental Theorems of Calculus enable us to formally
see how differentiation and integration are almost inverse processes?

In Section 4.4, we learned the Fundamental Theorem of Calculus (FTC), which from here
forward will be referred to as the First Fundamental Theorem of Calculus, as in this section
we develop a corresponding result that follows it. In particular, recall that the First FTC tells
us that if f is a continuous function on [4, b] and F is any antiderivative of f (thatis, F’ = f),
then

b
/ F(x)dx = E(b) - F(a).

We have typically used this result in two settings: (1) where f is a function whose graph
we know and for which we can compute the exact area bounded by f on a certain interval
[a,b], we can compute the change in an antiderivative F over the interval; and (2) where f
is a function for which it is easy to determine an algebraic formula for an antiderivative, we
may evaluate the integral exactly and hence determine the net-signed area bounded by the
function on the interval. For the former, see Preview Activity 5.1.1 or Activity 5.1.2. For the
latter, we can easily evaluate exactly integrals such as

4
/ x2dx,
1

3

since we know that the function F(x) = %x is an antiderivative of f(x) = x2. Thus,

! 1
/ x*dx = =x°
1 3

1 1
= 5(4)3 - 5(1)3

=21.

4

1

Here we see that the First FTC can be viewed from at least two perspectives: first, as a tool to
find the difference F(b)— F(a) for an antiderivative F of the integrand f. In this situation, we

need to be able to determine the value of the integral fab f(x)dx exactly, perhaps through
known geometric formulas for area. It is possible that we may not have a formula for F
itself. From a second perspective, the First FTC provides a way to find the exact value of a
definite integral, and hence a certain net-signed area exactly, by finding an antiderivative of
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the integrand and evaluating its total change over the interval. In this latter case, we need
to know a formula for the antiderivative F, as this enables us to compute net-signed areas
exactly through definite integrals, as demonstrated in Figure 5.2.1.

Figure 5.2.1: At left, the graph of f(x) = x2 on the interval [1,4] and the area it bounds. At
right, the antiderivative function F(x) = %x3, whose total change on [1, 4] is the value of the
definite integral at left.

We recall further that the value of a definite integral may have additional meaning depend-
ing on context: change in position when the integrand is a velocity function, total pollutant
leaked from a tank when the integrand is the rate at which pollution is leaking, or other total
changes that correspond to a given rate function that is the integrand. In addition, the value
of the definite integral is always connected to the average value of a continuous function on

a given interval: favgas] = 7 fah f(x)dx.

Next, remember that in the last part of Section 5.1, we studied integral functions of the form
A(x) = fcx f(t)dt. Figure 5.1.4 is a particularly important image to keep in mind as we
work with integral functions, and the correspondingjava applet at gvsu.edu/s/cz is likewise
foundational to our understanding of the function A. In what follows, we use the First FTC
to gain additional understanding of the function A(x) = [ f(t) dt, where the integrand f is
given (either through a graph or a formula), and c is a constant. In particular, we investigate
further the special nature of the relationship between the functions A and f.

Preview Activity 5.2.1. Consider the function A defined by the rule

Alx) = /1 (bt
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where f(t) =4 - 2t.
a. Compute A(1) and A(2) exactly.

b. Use the First Fundamental Theorem of Calculus to find a formula for A(x) that
does not involve integrals. That is, use the first FTC to evaluate flx (4 -2t)dt.

c. Observe that f is a linear function; what kind of function is A?
d. Using the formula you found in (b) that does not involve integrals, compute A’(x).

e. While we have defined f by the rule f(t) = 4 — 2t, it is equivalent to say that f
is given by the rule f(x) = 4 — 2x. What do you observe about the relationship
between A and f?

5.2.1 The Second Fundamental Theorem of Calculus

The result of Preview Activity 5.2.1 is not particular to the function f(¢) = 4 — 2¢, nor to the
choice of “1” as the lower bound in the integral that defines the function A. For instance, if
we let f(t) = cos(t) — t and set A(x) = fzx f(t)dt, then we can determine a formula for A
without integrals by the First FTC. Specifically,

Ax) = /zx(cos(t) —t)dt

X

—_

= sin(t) — =2

sin(x) — %xZ —(sin(2) - 2).

N

2

Differentiating A(x), since (sin(2) — 2) is constant, it follows that
A’(x) = cos(x) — x,

and thus we see that A’(x) = f(x). This tells us that for this particular choice of f, A is an
antiderivative of f. More specifically, since A(2) = f; f(t)dt = 0, Ais the only antiderivative
of f for which A(2) = 0.

In general, if f is any continuous function, and we define the function A by the rule

mm=/fmm,

where ¢ is an arbitrary constant, then we can show that A is an antiderivative of f. To see
why, let’s demonstrate that A’(x) = f(x) by using the limit definition of the derivative. Doing
s0, we observe that

h
L@ [T fat
m

=1
h1—>o h

Al(x) = 11113(1)
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A (OF]

lim ; (5.2.1)

where Equation (5.2.1) in the preceding chain follows from the fact that fcx f(t)dt+ f Yx+h f(t)dt =
fCHh f(t)dt. Now, observe that for small values of I,

xX+h
/ F(tydt ~ f(x)-h,

by a simple left-hand approximation of the integral. Thus, as we take the limit in Equa-
tion (5.2.1), it follows that

L fwde fe-h
no im0

A(x) =1
(X) hlir(l) h—0

= f().
Hence, A is indeed an antiderivative of f. In addition, A(c) = f: f(t)dt = 0. The preceding

argument demonstrates the truth of the Second Fundamental Theorem of Calculus, which
we state as follows.

—— The Second Fundamental Theorem of Calculus

If f is a continuous function and c is any constant, then f has a unique antiderivative
A that satisfies A(c) = 0, and that antiderivative is given by the rule A(x) = fcx f(t)dt.

Activity 5.2.2. Suppose that f is the function given in Figure 5.2.2 and that f is a piece-
wise function whose parts are either portions of lines or portions of circles, as pictured.

Figure 5.2.2: At left, the graph of y = f(x). Atright, axes for sketching y = A(x).

In addition, let A be the function defined by the rule A(x) = fzx f(t)dt.
a. What does the Second FTC tell us about the relationship between A and f?
b. Compute A(1) and A(3) exactly.

c. Sketch a precise graph of y = A(x) on the axes at right that accurately reflects
where A is increasing and decreasing, where A is concave up and concave down,
and the exact valuesof A atx =0,1,...,7.
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5.2 The Second Fundamental Theorem of Calculus

d. How is A similar to, but different from, the function F that you found in Activ-
ity 5.1.2?

e. With as little additional work as Eossible, sketch precise graphs of the functions
B(x) = 3x f(t)dt and C(x) = [, f(t)dt. Justify your results with at least one
sentence of explanation.

5.2.2 Understanding Integral Functions

The Second FTC provides us with a means to construct an antiderivative of any continu-
ous function. In particular, if we are given a continuous function g and wish to find an
antiderivative of G, we can now say that

G(x) = / () dt

provides the rule for such an antiderivative, and moreover that G(c) = 0. Note especially
that we know that G’(x) = g(x). We sometimes want to write this relationship between G
and g from a different notational perspective. In particular, observe that

% [/C g(t) dt} = g(x). (5.2.2)

This result can be particularly useful when we're given an integral function such as G and
wish to understand properties of its graph by recognizing that G’(x) = g(x), while not nec-
essarily being able to exactly evaluate the definite integral fcx g(t)dt. To see how this is the
case, we consider the following example.

Example 5.2.3. Investigate the behavior of the integral function

E(x):/ e dt.
0

Solution. E is closely related to the well known error function', a function that is particularly
important in probability and statistics. It turns out that the function e~ does not have an
elementary antiderivative that we can express without integrals. That is, whereas a function
such as f(t) = 4 — 2t has elementary antiderivative F(t) = 4t — t?, we are unable to find a
. . . . —2 . - .
simple formula for an antiderivative of e that does not involve a definite integral. We
will learn more about finding (complicated) algebraic formulas for antiderivatives without
definite integrals in the chapter on infinite series.

Returning our attention to the function E, while we cannot evaluate E exactly for any value
other than x = 0, we still can gain a tremendous amount of information about the function

IThe error function is defined by the rule erf(x) = \/LE fox e~ dt and has the key property that 0 < erf(x) < 1 for

all x > 0 and moreover that limy_,q erf(x) = 1.
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E. To begin, applying the rule in Equation (5.2.2) to E, it follows that

, d x_tz 2
E(X)ZE Oe dt| =e™,

so we know a formula for the derivative of E. Moreover, we know that E(0) = 0. This infor-
mation is precisely the type we were given in problems such as the one in Activity 3.1.2 and
others in Section 3.1, where we were given information about the derivative of a function,
but lacked a formula for the function itself.

Here, using the first and second derivatives of E, along with the fact that E(0) = 0, we can
determine more information about the behavior of E. First, with E’(x) = ¢™", we note that
for all real numbers x, e > 0, and thus E’(x) > O for all x. Thus E is an always increasing
function. Further, we note that as x — oo, E’(x) = e 0, hence the slope of the function
E tends to zero as x — oo (and similarly as x — —o0). Indeed, it turns out (due to some more
sophisticated analysis) that E has horizontal asymptotes as x increases or decreases without
bound.

In addition, we can observe that E”(x) = —2xe™*, and that E”(0) = 0, while E”(x) < 0 for
x > 0and E”(x) > 0 for x < 0. This information tells us that E is concave up for x < 0 and
concave down for x > 0 with a point of inflection at x = 0.

The only thing we lack at this point is a sense of how big E can get as x increases. If we use
a midpoint Riemann sum with 10 subintervals to estimate E(2), we see that E(2) ~ 0.8822; a
similar calculation to estimate E(3) shows little change (E(3) ~ 0.8862), so it appears that as
x increases without bound, E approaches a value just larger than 0.886, which aligns with
the fact that E has horizontal asymptotes. Putting all of this information together (and using

the symmetry of f(t) = e~1"), we see the results shown in Figure 5.2.4.

f(1) = e E(x)= [fe " dr

Figure 5.2.4: Atleft, the graph of f(t) = e, At right, the integral function E(x) = fox e~ dt,
which is the unique antiderivative of f that satisfies E(0) = 0.
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5.2 The Second Fundamental Theorem of Calculus

Again, E is the antiderivative of f(f) = ¢~ that satisfies E (0) = 0. Moreover, the values on
the graph of y = E(x) represent the net-signed area of the region bounded by f(t) = e~**
from 0 up to x. We see that the value of E increases rapidly near zero but then levels off as
x increases since there is less and less additional accumulated area bounded by f(f) = et

as x increases.

Activity 5.2.3. Suppose that f(t) = 77 and F(x) = fo f(t)dt.

a. On the axes at left in Figure 5.2.5, plot a graph of f(t) = # on the interval —10 <
t < 10. Clearly label the vertical axes with appropriate scale.

b. What is the key relationship between F and f, according to the Second FTC?

c. Use the first derivative test to determine the intervals on which F is increasing and
decreasing.

d. Use the second derivative test to determine the intervals on which F is concave
up and concave down. Note that f’(t) can be simplified to be written in the form

£ = defm
e. Using technology appropriately, estimate the values of F(5) and F(10) through

appropriate Riemann sums.

f. Sketch an accurate graph of y = F(x) on the righthand axes provided, and clearly
label the vertical axes with appropriate scale.

Figure 5.2.5: Axes for plotting f and F.
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Chapter 5 Evaluating Integrals

5.2.3 Differentiating an Integral Function

We have seen that the Second FTC enables us to construct an antiderivative F of any con-
tinuous function f by defining F by the corresponding integral function F(x) = fcx f(t)dt.
Said differently, if we have a function of the form F(x) = fcx f(t)dt, then we know that
F'(x)= % [ fCX f(t)dt] = f(x). This shows that integral functions, while perhaps having the
most complicated formulas of any functions we have encountered, are nonetheless particu-
larly simple to differentiate. For instance, if

F(x) = /x sin(t?) dt,

then by the Second FTC, we know immediately that

F'(x) = sin(x?).

Stating this result more generally for an arbitrary function f, we know by the Second FTC

that ; N
gg[L'fanﬁ]=f@)

In words, the last equation essentially says that “the derivative of the integral function whose
integrand is f, is f.” In this sense, we see that if we first integrate the function f from t = a
tot = x, and then differentiate with respect to x, these two processes “undo” one another.

Taking a different approach, say we begin with a function f(t) and differentiate with respect
to t. What happens if we follow this by integrating the result from t = a to t = x? That is,
what can we say about the quantity

“d
| Glolar

a

Here, we use the First FTC and note that f(t) is an antiderivative of £ [ f(t)]. Applying this
result and evaluating the antiderivative function, we see that

X d x
| Glrara=sof
= )~ fGa).

Thus, we see that if we apply the processes of first differentiating f and then integrating the
result from a to x, we return to the function f, minus the constant value f(a). So in this
situation, the two processes almost undo one another, up to the constant f(a).

The observations made in the preceding two paragraphs demonstrate that differentiating
and integrating (where we integrate from a constant up to a variable) are almost inverse
processes. In one sense, this should not be surprising: integrating involves antidifferentiat-
ing, which reverses the process of differentiating. On the other hand, we see that there is
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5.2 The Second Fundamental Theorem of Calculus

some subtlety involved, as integrating the derivative of a function does not quite produce
the function itself. This is connected to a key fact we observed in Section 5.1, which is that
any function has an entire family of antiderivatives, and any two of those antiderivatives
differ only by a constant.

Activity 5.2.4. Evaluate each of the following derivatives and definite integrals. Clearly
cite whether you use the First or Second FTC in so doing.

a &) e at]

b. 54 [5] at
L[ [ cos(t®) ]
 fy 4 In(1 + £2)] dt

. [f;‘s sin(tz)dt] :

N

Q.

o

Summary
e For a continuous function f, the integral function A(x) = flx f(t)dt defines an an-
tiderivative of f.

* The Second Fundamental Theorem of Calculus is the formal, more general statement
of the preceding fact: if f is a continuous function and c is any constant, then A(x) =
fcx f(t)dt is the unique antiderivative of f that satisfies A(c) = 0.

¢ Together, the First and Second FTC enable us to formally see how differentiation and
integration are almost inverse processes through the observations that

[ Slrola =5 - @

[ o] - s

and

Exercises

1. Let g(x) = fzx f(t)dt, where f(t) is given in the figure below.
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Find each of the following:
A. g(2) =‘

B.g'(3) = ‘
C. The interval (with endpoints given to the nearest 0.25) where g is concave up:

interval = ‘ ‘
(Give your answer as an interval or a list of intervals, e.g., (-infinity,8] or (1,5),(7,10), or enter nonefor
no intervals.)

D. The value of x where g takes its maximum on the interval 0 < x < 8.

x| |

d a
2. Find the derivative: o / cos(tan(t)) dt =‘ ‘
X

3. Find a good numerical approximation to F(9) for the function with the properties that
F'(x) = e=**/5 and F(0) = 2.
FO) ~| |

4. Let g be the function pictured at left in Figure 5.2.6, and let F be defined by F(x) =
fzx g(t)dt. Assume that the shaded areas have values A; = 4.29, A, = 12.75, A3 = 0.36,
and A4 = 1.79. Assume further that the portion of A, that lies between x = 0.5and x = 2is
6.06.

Sketch a carefully labeled graph of F on the axes provided, and include a written analysis of
how you know where F is zero, increasing, decreasing, CCU, and CCD.

15¢

101

Figure 5.2.6: At left, the graph of g. At right, axes for plotting F.
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5.2 The Second Fundamental Theorem of Calculus

5. The tide removes sand from the beach at a small ocean park at a rate modeled by the
function

R(t) =2+ 5sin (@)

25
A pumping station adds sand to the beach at rate modeled by the function
15t
SO =13

Both R(t) and S(t) are measured in cubic yards of sand per hour, ¢ is measured in hours,
and the valid times are 0 < f < 6. At time t = 0, the beach holds 2500 cubic yards of sand.

a. What definite integral measures how much sand the tide will remove during the time
period 0 < t < 6? Why?

b. Write an expression for Y(x), the total number of cubic yards of sand on the beach at
time x. Carefully explain your thinking and reasoning.

c. At what instantaneous rate is the total number of cubic yards of sand on the beach at
time t = 4 changing?

d. Over the time interval 0 < t < 6, at what time ¢ is the amount of sand on the beach
least? What is this minimum value? Explain and justify your answers fully.

6. When an aircraft attempts to climb as rapidly as possible, its climb rate (in feet per minute)
decreases as altitude increases, because the air is less dense at higher altitudes. Given below
is a table showing performance data for a certain single engine aircraft, giving its climb rate
at various altitudes, where c(h) denotes the climb rate of the airplane at an altitude /.

h (feet) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000

c (ft/min) 925 875 830 780 730 685 635 585 535 490 440

Table 5.2.7: Data for the climbing aircraft.

Let anew function m, that also depends on 4, (say y = m(h)) measure the number of minutes
required for a plane at altitude & to climb the next foot of altitude.

a. Determine a similar table of values for m(h) and explain how it is related to the table
above. Be sure to discuss the units on m.

b. Give a careful interpretation of a function whose derivative is m(). Describe what the
input is and what the output is. Also, explain in plain English what the function tells
us.

c. Determine a definite integral whose value tells us exactly the number of minutes re-
quired for the airplane to ascend to 10,000 feet of altitude. Clearly explain why the
value of this integral has the required meaning.

d. Determine a formula for a function M(h) whose value tells us the exact number of
minutes required for the airplane to ascend to / feet of altitude.

e. Estimate the values of M(6000) and M(10000) as accurately as you can. Include units
on your results.
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5.3 Integration by Substitution

Motivating Questions

¢ How can we begin to find algebraic formulas for antiderivatives of more complicated
algebraic functions?

* What is an indefinite integral and how is its notation used in discussing antideriva-
tives?

¢ How does the technique of u-substitution work to help us evaluate certain indefinite
integrals, and how does this process rely on identifying function-derivative pairs?

In Section 4.4, we learned the key role that antiderivatives play in the process of evaluating
definite integrals exactly. In particular, the Fundamental Theorem of Calculus tells us that
if F is any antiderivative of f, then

b
/ f(x)dx = F(b) — F(a).

Furthermore, we realized that each elementary derivative rule developed in Chapter 2 leads
to a corresponding elementary antiderivative, as summarized in Table 4.4.4. Thus, if we
wish to evaluate an integral such as

/01(x3—\/§+5x) dx

it is straightforward to do so, since we can easily antidifferentiate f(x) = x - \/_ + 5% In

particular, since a function F whose derivative is f is given by F(x) = $x* — 2x%2 + WSX
the Fundamental Theorem of Calculus tells us that
! 1, 2 1 |
3 _ X . 4 £ 3/2 X
/0 (x® = Vx +5%) dx 15 3% +_ln(5)5
1 1
— Ly 192 + 1
i ( ) i (5) 0-0+ (5)5
__ E 4
B 1n(5)

Because an algebraic formula for an antiderivative of f enables us to evaluate the definite

integral f: f(x) dx exactly, we see that we have a natural interest in being able to find such
algebraic antiderivatives. Note that we emphasize algebraic antiderivatives, as opposed to
any antiderivative, since we know by the Second Fundamental Theorem of Calculus that
G(x) = fax f(t)dt is indeed an antiderivative of the given function f, but one that still in-
volves a definite integral. One of our main goals in this section and the one following is to
develop understanding, in select circumstances, of how to “undo” the process of differenti-
ation in order to find an algebraic antiderivative for a given function.
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5.3 Integration by Substitution

Preview Activity 5.3.1. In Section 2.5, we learned the Chain Rule and how it can be
applied to find the derivative of a composite function. In particular, if u is a differentiable
function of x, and f is a differentiable function of u(x), then

L Fue)] = £/ ' (x).

In words, we say that the derivative of a composite function ¢(x) = f(u(x)), where f
is considered the “outer” function and u the “inner” function, is “the derivative of the
outer function, evaluated at the inner function, times the derivative of the inner func-
tion.”

a. Foreach of the following functions, use the Chain Rule to find the function’s deriva-
tive. Be sure to label each derivative by name (e.g., the derivative of g(x) should

be labeled g’(x)).
i g(x)=e> iii. p(x) = arctan(2x)
ii. h(x) =sin(5x +1) iv. g(x) = (2 - 7x)*

v. r(x) = 3+1x

b. For each of the following functions, use your work in (a) to help you determine the
general antiderivative® of the function. Label each antiderivative by name (e.g., the
antiderivative of m should be called M). In addition, check your work by comput-
ing the derivative of each proposed antiderivative.

i. m(x) = e iv. v(x) = (2-"7x)°
ii. n(x) = cos(5x +1) v. w(x) =34+ 1x
iii. $(x) = 9=

c. Based on your experience in parts (a) and (b), conjecture an antiderivative for each
of the following functions. Test your conjectures by computing the derivative of
each proposed antiderivative.

i. a(x) = cos(mx) iii. c(x) = xe*
ii. b(x) = (4x + 7)1

“Recall that the general antiderivative of a function includes “+C” to reflect the entire family of functions
that share the same derivative.
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5.3.1 Reversing the Chain Rule: First Steps

In Preview Activity 5.3.1, we saw that it is usually straightforward to antidifferentiate a func-
tion of the form

h(x) = f(u(x)),
whenever f is a familiar function whose antiderivative is known and u(x) is a linear function.
For example, if we consider

h(x) = (5x = 3)°,
in this context the outer function f is f(u) = u®, while the inner function is u(x) = 5x — 3.
Since the antiderivative of f is F(u) = 2u” + C, we see that the antiderivative of / is

Lo sy oo Ly gy
H(x)—7(5x 3) 5+C—35(5x 3) +C.

The inclusion of the constant 1 is essential precisely because the derivative of the inner func-
tionis u’(x) = 5. Indeed, if we now compute H’(x), we find by the Chain Rule (and Constant
Multiple Rule) that

H'(x) = % - 7(5x —3)° -5 = (5x — 3)° = h(x),

and thus H is indeed the general antiderivative of h.

Hence, in the special case where the outer function is familiar and the inner function is linear,
we can antidifferentiate composite functions according to the following rule.

If h(x) = f(ax + b) and F is a known algebraic antiderivative of f, then the general
antiderivative of & is given by

H(x) = %P(ax +Db)+C.

When discussing antiderivatives, it is often useful to have shorthand notation that indicates
the instruction to find an antiderivative. Thus, in a similar way to how the notation

= [fw)

represents the derivative of f(x) with respect to x, we use the notation of the indefinite inte-

gral,
/ f(x)dx

to represent the general antiderivative of f with respect to x. For instance, returning to the
earlier example with /1(x) = (5x —3)® above, we can rephrase the relationship between  and
its antiderivative H through the notation

1
— 6 = — — 7
/(Sx 3)° dx 35(5x 6)" + C.
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When we find an antiderivative, we will often say that we evaluate an indefinite integral; said
differently, the instruction to evaluate an indefinite integral means to find the general an-
tiderivative. Just as the notation %[D] means “find the derivative with respect to x of O,”
the notation | O dx means “find a function of x whose derivative is 0.

Activity 5.3.2. Evaluate each of the following indefinite integrals. Check each antideriva-
tive that you find by differentiating.

a. [ sin(8 —3x)dx d. [ esc(2x + 1) cot(2x + 1) dx
2 1

b. [ sec’(4x)dx e. [ 7= dx

¢ [ o dx f. [5%dx

5.3.2 Reversing the Chain Rule: u-substitution

Of course, a natural question arises from our recent work: what happens when the inner
function is not a linear function? For example, can we find antiderivatives of such functions
as

g(x) = xe® and h(x) = ex'?

It is important to explicitly remember that differentiation and antidifferentiation are essen-
tially inverse processes; that they are not quite inverse processes is due to the +C that arises
when antidifferentiating. This close relationship enables us to take any known derivative
rule and translate it to a corresponding rule for an indefinite integral. For example, since

d

L G B
dx[x] 5x%,

we can equivalently write
/5x4dx =x°+C.

Recall that the Chain Rule states that
d ’ ’
= f@GD] = f(9()) - g'(2).
Restating this relationship in terms of an indefinite integral,

[ raeng e = fat + ¢ 53.1)

Hence, Equation (5.3.1) tells us that if we can take a given function and view its algebraic
structure as f’(g(x))g’(x) for some appropriate choices of f and g, then we can antidiffer-
entiate the function by reversing the Chain Rule. It is especially notable that both g(x) and
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g’(x) appear in the form of f’(g(x))g’(x); we will sometimes say that we seek to identify a
function-derivative pair when trying to apply the rule in Equation (5.3.1).

In the situation where we can identify a function-derivative pair, we will introduce a new
variable u to represent the function g(x). Observing that with u = g(x), it follows in Leibniz
notation that % = g’(x), so that in terms of differentials!, du = g’(x) dx. Now converting the
indefinite integral of interest to a new one in terms of u, we have

[ g wan= [ .

Provided that f’ is an elementary function whose antiderivative is known, we can now eas-
ily evaluate the indefinite integral in u, and then go on to determine the desired overall
antiderivative of f'(g(x))g’(x). We call this process u-substitution. To see u-substitution at
work, we consider the following example.

Example 5.3.1. Evaluate the indefinite integral
/x3 -sin(7x* + 3) dx
and check the result by differentiating.

Solution. We can make two key algebraic observations regarding the integrand, x3-sin(7x*+
3). First, sin(7x* + 3) is a composite function; as such, we know we’ll need a more sophis-
ticated approach to antidifferentiating. Second, x3 is almost the derivative of (7x* + 3); the
only issue is a missing constant. Thus, x* and (7x* + 3) are nearly a function-derivative pair.
Furthermore, we know the antiderivative of f(u) = sin(u). The combination of these ob-
servations suggests that we can evaluate the given indefinite integral by reversing the chain
rule through u-substitution.

Letting u represent the inner function of the composite function sin(7x* + 3), we have u =
7x* + 3, and thus Z_Z = 28x3. In differential notation, it follows that du = 28x3 dx, and thus
x3dx = 35 du. We make this last observation because the original indefinite integral may
now be written

/sir1(7x4 +3)-x3dx,

1

55 du for

and so by substituting the expressions in u for x (specifically u for 7x* + 3 and
x3 dx), it follows that

/sir1(7x4 +3)-x3dx = /sin(u) . 21_8 du.

Now we may evaluate the original integral by first evaluating the easier integral in u, fol-
lowed by replacing u by the expression 7x* + 3. Doing so, we find

/sin(7x4 +3)-x3dx = /sin(u) . % du

IIf we recall from the definition of the derivative that % = % and use the fact that % = g’(x), then we see that

g’(x) ~ L. Solving for Au, Au ~ g’(x)Ax. It is this last relationship that, when expressed in “differential”
notation enables us to write du = g’(x) dx in the change of variable formula.
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=3 sin(u) du

1
= %(— cos(u))+ C

1 4
= - %cos(%c +3)+C.

To check our work, we observe by the Chain Rule that
d 1 4 __1 ; 4 3 _ o 4 3
T [ 78 cos(7x* +3)| = 75 (=1)sin(7x* + 3) - 28x° = sin(7x* + 3) - x°,
which is indeed the original integrand.

An essential observation about our work in Example 5.3.1 is that the u-substitution only
worked because the function multiplying sin(7x* +3) was x>. If instead that function was x?
or x*, the substitution process may not (and likely would not) have worked. This is one of the
primary challenges of antidifferentiation: slight changes in the integrand make tremendous
differences. For instance, we can use u-substitution with # = x2 and du = 2xdx to find that

/xe"zdx: /e”-%du
:%/e”du

1
zze“-i-C

1 2
==e¢ +C.
2@

If, however, we consider the similar indefinite integral

/exz dx,

the missing x to multiply ¢ makes the u-substitution u = x2 no longer possible. Hence,
part of the lesson of u-substitution is just how specialized the process is: it only applies
to situations where, up to a missing constant, the integrand that is present is the result of
applying the Chain Rule to a different, related function.

Activity 5.3.3. Evaluate each of the following indefinite integrals by using these steps:

* Find two functions within the integrand that form (up to a possible missing con-
stant) a function-derivative pair;

* Make a substitution and convert the integral to one involving u and du;
¢ Evaluate the new integral in u;

¢ Convert the resulting function of u back to a function of x by using your earlier
substitution;
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¢ Check your work by differentiating the function of x. You should come up with
the integrand originally given.

2 O
a. fﬁdx C. fﬁx/{")dx
b. [ e*sin(e*)dx

5.3.3 Evaluating Definite Integrals via u-substitution

We have just introduced u-substitution as a means to evaluate indefinite integrals of func-
tions that can be written, up to a constant multiple, in the form f(g(x))g’(x). This same
technique can be used to evaluate definite integrals involving such functions, though we
need to be careful with the corresponding limits of integration. Consider, for instance, the

definite integral
5
/ xe* dx.
2

Whenever we write a definite integral, it is implicit that the limits of integration correspond
to the variable of integration. To be more explicit, observe that

5 ) x=5 )
/ xe® dx:/ xe* dx.
2 x=2

When we execute a u-substitution, we change the variable of integration; it is essential to note
that this also changes the limits of integration. For instance, with the substitution u = x2and
du = 2x dx, it also follows that when x = 2, u = 22 = 4, and when x = 5, u = 52 = 25. Thus,
under the change of variables of u-substitution, we now have

x=5 ) u=25 1
/ xe* dx / e - =du
x=2 u=4 2

u=25
1,
2

1
2

u=4

1
25 4
—26 .

e

Alternatively, we could consider the related indefinite integral [ xe*’ dx, find the antideriva-

tive %e"z through u-substitution, and then evaluate the original definite integral. From that
perspective, we’d have

which is, of course, the same result.

298



5.3 Integration by Substitution

Activity 5.3.4. Evaluate each of the following definite integrals exactly through an ap-
propriate u-substitution.

2 _x 4/m cos(l)
a. fl 1+4x2 dx ¢ Jon xzx dx

b. fol e *(2e™ +3)7 dx

Summary

¢ To begin to find algebraic formulas for antiderivatives of more complicated algebraic
functions, we need to think carefully about how we can reverse known differentiation
rules. To that end, it is essential that we understand and recall known derivatives of
basic functions, as well as the standard derivative rules.

¢ Theindefinite integral provides notation for antiderivatives. When we write “ [ f(x) dx,”
we mean “the general antiderivative of f.” In particular, if we have functions f and F
such that F’ = f, the following two statements say the exact thing:

%[P(x)] = f(x)and /f(x) dx = F(x)+C.

That is, f is the derivative of F, and F is an antiderivative of f.

* The technique of u-substitution helps us to evaluate indefinite integrals of the form
J f(g(x))g’(x) dx through the substitutions u = g(x) and du = g’(x) dx, so that

[ o= [ s

A key part of choosing the expression in x to be represented by u is the identification of
a function-derivative pair. To do so, we often look for an “inner” function g(x) that is
part of a composite function, while investigating whether g’(x) (or a constant multiple
of g’(x)) is present as a multiplying factor of the integrand.

Exercises
1. Find the following integral. Note that you can check your answer by differentiation. 4
A

/ Bt - 3)° dt =| |

2. Find the the general antiderivative F(x) of the function f(x) given below. Note that you
can check your answer by differentiation. weptork

f(x) = 2x3sin(x*)

antiderivative F(x) = ‘ ‘
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3. Find the following integral. Note that you can check your answer by differentiation.

T [ |

zZ

4. Find the following integral. Note that you can check your answer by differentiation.
A

WeBlWorkK 5x
e
= |
5+ e>*

Y 5. Find the following integral. Note that you can check your answer by differentiation.

WeBWork 7 e ZW
dy = |
VY

& 6. Use the Fundamental Theorem of Calculus to find
WeBlWorkK 371
/ 1) -cos(q) dq =‘ ‘
5m/2

7. This problem centers on finding antiderivatives for the basic trigonometric functions
other than sin(x) and cos(x).

a. Consider the indefinite integral [ tan(x)dx. By rewriting the integrand as tan(x) =
sin(x)
cos(x)
and hence evaluate f tan(x) dx.

and identifying an appropriate function-derivative pair, make a u-substitution

b. In a similar way, evaluate | cot(x) dx.

c. Consider the indefinite integral

/ sec?(x) + sec(x) tan(x) dx

sec(x) + tan(x)

Evaluate this integral using the substitution u = sec(x) + tan(x).

d. Simplify the integrand in (c) by factoring the numerator. What is a far simpler way to
write the integrand?

e. Combine your work in (c) and (d) to determine f sec(x) dx.

f. Using (c)-(e) as a guide, evaluate [ csc(x) dx.

8. Consider the indefinite integral [ xVx —1dx.

a. At first glance, this integrand may not seem suited to substitution due to the presence
of x in separate locations in the integrand. Nonetheless, using the composite function

Vx —1as aguide, let u = x — 1. Determine expressions for both x and dx in terms of u.
b. Convert the given integral in x to a new integral in u.

c. Evaluate the integral in (b) by noting that v = u!/? and observing that it is now pos-
sible to rewrite the integrand in u by expanding through multiplication.

d. Evaluate each of the integrals [ x>Vx — 1dx and [ xVx2 — 1dx. Write a paragraph to
discuss the similarities among the three indefinite integrals in this problem and the role
of substitution and algebraic rearrangement in each.
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9. Consider the indefinite integral [ sin’(x) dx.

a.

Explain why the substitution u = sin(x) will not work to help evaluate the given inte-
gral.

Recall the Fundamental Trigonometric Identity, which states that sin?(x) + cos?(x) = 1.
By observing that sin®(x) = sin(x)-sin?(x), use the Fundamental Trigonometric Identity
to rewrite the integrand as the product of sin(x) with another function.

Explain why the substitution u# = cos(x) now provides a possible way to evaluate the
integral in (b).

Use your work in (a)-(c) to evaluate the indefinite integral f sin®(x) dx.

e. Use a similar approach to evaluate [ cos®(x) dx.

10. For the town of Mathland, M1, residential power consumption has shown certain trends
over recent years. Based on data reflecting average usage, engineers at the power company
have modeled the town’s rate of energy consumption by the function

r(t) = 4 +sin(0.263t + 4.7) + cos(0.526¢ + 9.4).

Here, t measures time in hours after midnight on a typical weekday, and r is the rate of
consumption in megawatts? at time ¢. Units are critical throughout this problem.

a.

Sketch a carefully labeled graph of r(t) on the interval [0,24] and explain its meaning.
Why is this a reasonable model of power consumption?

Without calculating its value, explain the meaning of f024 r(t)dt. Include appropriate
units on your answer.
Determine the exact amount of power Mathland consumes in a typical day.

What is Mathland’s average rate of energy consumption in a given 24-hour period?
What are the units on this quantity?

?The unit megawatt is itself a rate, which measures energy consumption per unit time. A megawatt-hour is the total
amount of energy that is equivalent to a constant stream of 1 megawatt of power being sustained for 1 hour.
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5.4 Integration by Parts

Motivating Questions
* How do we evaluate indefinite integrals that involve products of basic functions such
as [ xsin(x)dx and [ xe* dx?

¢ What is the method of integration by parts and how can we consistently apply it to
integrate products of basic functions?

* How does the algebraic structure of functions guide us in identifying # and dv in using
integration by parts?

In Section 5.3, we learned the technique of u-substitution for evaluating indefinite integrals
that involve certain composite functions. For example, the indefinite integral [ x® sin(x*) dx
is perfectly suited to u-substitution, since not only is there a composite function present,
but also the inner function’s derivative (up to a constant) is multiplying the composite func-
tion. Through u-substitution, we learned a general situation where recognizing the algebraic
structure of a function can enable us to find its antiderivative.

It is natural to ask similar questions to those we considered in Section 5.3 about functions
with a different elementary algebraic structure: those that are the product of basic functions.
For instance, suppose we are interested in evaluating the indefinite integral

/ x sin(x) dx.

Here, there is not a composite function present, but rather a product of the basic functions
f(x) = x and g(x) = sin(x). From our work in Section 2.3 with the Product Rule, we know
that it is relatively complicated to compute the derivative of the product of two functions, so
we should expect that antidifferentiating a product should be similarly involved. In addi-
tion, intuitively we expect that evaluating [ x sin(x) dx will involve somehow reversing the
Product Rule.

To that end, in Preview Activity 5.4.1 we refresh our understanding of the Product Rule and
then investigate some indefinite integrals that involve products of basic functions.

Preview Activity 5.4.1. In Section 2.3, we developed the Product Rule and studied how
it is employed to differentiate a product of two functions. In particular, recall that if f
and g are differentiable functions of x, then

1) 90] = ) 90 + 90 £ ()
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a. For each of the following functions, use the Product Rule to find the function’s

derivative. Be sure to label each derivative by name (e.g., the derivative of g(x)
should be labeled g’(x)).

i. g(x) = xsin(x) iv. g(x) = x? cos(x)
ii. h(x) = xe® v. r(x) = e* sin(x)

iii. p(x) = xIn(x)

b. Use your work in (a) to help you evaluate the following indefinite integrals. Use
differentiation to check your work.

i [xe®+e*dx iv. [ xcos(x) + sin(x) dx
ii. [ e*(sin(x) + cos(x)) dx v. [1+In(x)dx

iii. [ 2xcos(x) — x?sin(x) dx

c. Observe that the examples in (b) work nicely because of the derivatives you were
asked to calculate in (a). Each integrand in (b) is precisely the result of differen-
tiating one of the products of basic functions found in (a). To see what happens
when an integrand is still a product but not necessarily the result of differentiating
an elementary product, we consider how to evaluate

/ x cos(x) dx.

[x sin(x)] = x cos(x) + sin(x).

i. First, observe that

dx
Integrating both sides indefinitely and using the fact that the integral of a
sum is the sum of the integrals, we find that

/(%[X sin(x)]) dx = /xcos(x) dx+/sin(x) dx.

In this last equation, evaluate the indefinite integral on the left side as well as
the rightmost indefinite integral on the right.

ii. In the most recent equation from (i.), solve the equation for the expression
J x cos(x) dx.

iii. For which product of basic functions have you now found the antiderivative?
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5.4.1 Reversing the Product Rule: Integration by Parts

Problem (c) in Preview Activity 5.4.1 provides a clue for how we develop the general tech-
nique known as Integration by Parts, which comes from reversing the Product Rule. Recall
that the Product Rule states that

d ’ ’
= [f@g@)] = f()g'(x) + g () f' (),
Integrating both sides of this equation indefinitely with respect to x, it follows that

[ sl ax = [ f@reaxs [ oeorex Ga41)

On the left in Equation (5.4.1), we recognize that we have the indefinite integral of the deriva-
tive of a function which, up to an additional constant, is the original function itself. Tem-
porarily omitting the constant that may arise, we equivalently have

F)g(x) = / G () dx + / §()f(x) d. (5.42)

The most important thing to observe about Equation (5.4.2) is that it provides us with a
choice of two integrals to evaluate. That s, in a situation where we can identify two functions
f and g, if we can integrate f(x)g’(x), then we know the indefinite integral of g(x) f’(x), and
vice versa. To that end, we choose the first indefinite integral on the left in Equation (5.4.2)
and solve for it to generate the rule

[ regerix = fgto - [ owos s (543)

Often we express Equation (5.4.3) in terms of the variables u and v, where u = f(x) and
v = g(x). Note that in differential notation, du = f’(x)dx and dv = g’(x) dx, and thus we
can state the rule for Integration by Parts in its most common form as follows.

/udvzlw—/vdu.

To apply Integration by Parts, we look for a product of basic functions that we can identify as
u and dv. If we can antidifferentiate dv to find v, and evaluating [ v du is not more difficult
than evaluating [ u dv, then this substitution usually proves to be fruitful. To demonstrate,
we consider the following example.

Example 5.4.1. Evaluate the indefinite integral

/ x cos(x) dx

using Integration by Parts.
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Solution. Whenever we are trying to integrate a product of basic functions through Inte-
gration by Parts, we are presented with a choice for u and dv. In the current problem, we
can either let u = x and dv = cos(x) dx, or let u = cos(x) and dv = x dx. While there is not
a universal rule for how to choose u and dv, a good guideline is this: do so in a way that
J vdu is at least as simple as the original problem [ u dv.

In this setting, this leads us to choose! # = x and dv = cos(x) dx, from which it follows that
du = 1dx and v = sin(x). With this substitution, the rule for Integration by Parts tells us
that

/x cos(x) dx = x sin(x) — /sin(x) -1dx.

At this point, all that remains to do is evaluate the (simpler) integral [ sin(x) - 1dx. Doing
so, we find

/x cos(x)dx = xsin(x) — (— cos(x)) + C = x sin(x) + cos(x) + C.

There are at least two additional important observations to make from Example 5.4.1. First,
the general technique of Integration by Parts involves trading the problem of integrating the
product of two functions for the problem of integrating the product of two related functions.
In particular, we convert the problem of evaluating | u dv for that of evaluating [ v du. This
perspective clearly shapes our choice of # and v. In Example 5.4.1, the original integral to
evaluate was [ x cos(x) dx, and through the substitution provided by Integration by Parts,
we were instead able to evaluate f sin(x)-1 dx. Note that the original function x was replaced
by its derivative, while cos(x) was replaced by its antiderivative. Second, observe that when
we get to the final stage of evaluating the last remaining antiderivative, it is at this step that
we include the integration constant, +C.

Activity 5.4.2. Evaluate each of the following indefinite integrals. Check each antideriva-
tive that you find by differentiating.

a. [tetdt c. [zsec*(z)dz
b. [ 4xsin(3x)dx d. [xIn(x)dx

5.4.2 Some Subtleties with Integration by Parts

There are situations where Integration by Parts is not an obvious choice, but the technique
is appropriate nonetheless. One guide to understanding why is the observation that inte-
gration by parts allows us to replace one function in a product with its derivative while

10Observe that if we considered the alternate choice, and let u = cos(x) and dv = x dx, then du = —sin(x) dx and
v = %xz, from which we would write [ x cos(x) dx = %xz cos(x) - [ %xz(— sin(x)) dx. Thus we have replaced
the problem of integrating x cos(x) with that of integrating 1x? sin(x); the latter is clearly more complicated,
which shows that this alternate choice is not as helpful as the first choice.
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replacing the other with its antiderivative. For instance, consider the problem of evaluating
/ arctan(x) dx.

Initially, this problem seems ill-suited to Integration by Parts, since there does not appear to
be a product of functions present. But if we note that arctan(x) = arctan(x)-1, and realize that
we know the derivative of arctan(x) as well as the antiderivative of 1, we see the possibility
for the substitution u = arctan(x) and dv = 1dx. We explore this substitution further in
Activity 5.4.3.

In a related problem, if we consider [ 2 sin(t?) dt, two key observations can be made about
the algebraic structure of the integrand: there is a composite function present in sin(#?), and
there is not an obvious function-derivative pair, as we have t> present (rather than simply #)
multiplying sin(#?). This problem exemplifies the situation where we sometimes use both u-
substitution and Integration by Parts in a single problem. If we write +> = ¢ - t? and consider
the indefinite integral

/t -2 - sin(#?) dt,

we can use a mix of the two techniques we have recently learned. First, let z = > so that dz =
2t dt, and thus t dt = § dz. (We are using the variable z to perform a “z-substitution” since
u will be used subsequently in executing Integration by Parts.) Under this z-substitution,

we now have
1
/t-tz-sin(tz)dt =/z-sin(z)-§dz.

The remaining integral is a standard one that can be evaluated by parts. This, too, is explored
further in Activity 5.4.3.

The problems briefly introduced here exemplify that we sometimes must think creatively in
choosing the variables for substitution in Integration by Parts, as well as that it is entirely
possible that we will need to use the technique of substitution for an additional change of
variables within the process of integrating by parts.

Activity 5.4.3. Evaluate each of the following indefinite integrals, using the provided
hints.

a. Evaluate [ arctan(x)dx by using Integration by Parts with the substitution u =
arctan(x) and dov = 1dx.

b. Evaluate [ In(z)dz. Consider a similar substitution to the one in (a).

c. Use the substitution z = 2 to transform the integral [ 3 sin(¢?) dt to a new integral
in the variable z, and evaluate that new integral by parts.

d. Evaluate [ s%es” ds using an approach similar to that described in (c).

e. Evaluate [ e? cos(e')dt. You will find it helpful to note that e? = e’ - e’.
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5.4.3 Using Integration by Parts Multiple Times

We have seen that the technique of Integration by Parts is well suited to integrating the
product of basic functions, and that it allows us to essentially trade a given integrand for a
new one where one function in the product is replaced by its derivative, while the other is
replaced by its antiderivative. The main goal in this trade of [ u dv for [ v du is to have the
new integral not be more challenging to evaluate than the original one. At times, it turns out
that it can be necessary to apply Integration by Parts more than once in order to ultimately
evaluate a given indefinite integral.

For example, if we consider [ t?¢'dt and let u = t?> and dv = e’ dt, then it follows that

du =2tdt and v = ef, thus
/t2etdt = t2e! —/2tetdt.

The integral on the righthand side is simpler to evaluate than the one on the left, but it still
requires Integration by Parts. Now letting u = 2t and dv = e’ dt, we have du = 2dt and

v =e!, so that
/t%fdt:tz t_ (Ztet—/Zetdt).

Note the key role of the parentheses, as it is essential to distribute the minus sign to the entire
value of the integral [ 2te’ dt. The final integral on the right in the most recent equation is
a basic one; evaluating that integral and distributing the minus sign, we find

/t2et dt = t?et — 2tet +2¢f + C.

Of course, situations are possible where even more than two applications of Integration by
Parts may be necessary. For instance, in the preceding example, it is apparent that if the
integrand was 3¢’ instead, we would have to use Integration by Parts three times.

Next, we consider the slightly different scenario presented by the definite integral [ e’ cos(t) dt.
Here, we can choose to let u be either e’ or cos(t); we pick u = cos(t), and thus dv = e’ dt.
With du = —sin(t) dt and v = e!, Integration by Parts tells us that

/etcos(t) dt = e’ cos(t) —/et(— sin(t)) dt,

or equivalently that

/et cos(t)dt = e’ cos(t) + /et sin(t) dt (5.4.4)

Observe that the integral on the right in Equation (5.4.4), [ esin(t)dt, while not being
more complicated than the original integral we want to evaluate, it is essentially identical to
f e’ cos(t) dt. While the overall situation isn’t necessarily better than what we started with,
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the problem hasn’t gotten worse. Thus, we proceed by integrating by parts again. This time
we let u = sin(t) and dv = e’ dt, so that du = cos(t) dt and v = e!, which implies

/et cos(t)dt = e’ cos(t) + (et sin(t) — /et cos(t) dt) (5.4.5)

We seem to be back where we started, as two applications of Integration by Parts has led us
back to the original problem, f e’ cos(t) dt. But if we look closely at Equation (5.4.5), we see
that we can use algebra to solve for the value of the desired integral. In particular, adding
f e’ cos(t) dt to both sides of the equation, we have

Z/et cos(t)dt = e’ cos(t) + e’ sin(t),

and therefore
1
/et cos(t)dt = 5 (' cos(t) + e’ sin(t)) + C.

Note that since we never actually encountered an integral we could evaluate directly, we
didn’t have the opportunity to add the integration constant C until the final step, at which
point we include it as part of the most general antiderivative that we sought from the outset
in evaluating an indefinite integral.

Activity 5.4.4. Evaluate each of the following indefinite integrals.

. [ x*sin(x) dx

. [ t3In(t)dt

. [e*sin(z)dz

. [s%e¥ ds

. [ tarctan(t) dt (Hint: At a certain point in this problem, it is very helpful to note

2 _ 1
thatm—l— 1+t2')

e o o

o

o

5.4.4 Evaluating Definite Integrals Using Integration by Parts

Just as we saw with u-substitution in Section 5.3, we can use the technique of Integration by
Parts to evaluate a definite integral. Say, for example, we wish to find the exact value of

/2
/ t sin(t) dt.
0

One option is to evaluate the related indefinite integral to find that f tsin(t)dt = —t cos(t) +
sin(t) + C, and then use the resulting antiderivative along with the Fundamental Theorem

308



5.4 Integration by Parts

of Calculus to find that

/2
/ t sin(t) dt
0

/2
(=t cos(t) + sin(t)) ‘0

= (—z cos(z) + sin(z)) — (=0cos(0) + sin(0))
2 2 2
=1
Alternatively, we can apply Integration by Parts and work with definite integrals through-

out. In this perspective, it is essential to remember to evaluate the product uv over the given
limits of integration. To that end, using the substitution # = t and dv = sin(t) dt, so that

du = dt and v = — cos(t), we write
/2 /2
—/ (—cos(t)) dt
0

/2
/ tsin(t)dt = — t cos(t)
0 0

2

/2
- tcos(t)‘ + sin(t)
0

0
= (—% cos(g) + sin(%)) — (=0cos(0) + sin(0))
=1.

As with any substitution technique, it is important to remember the overall goal of the prob-
lem, to use notation carefully and completely, and to think about our end result to ensure
that it makes sense in the context of the question being answered.

5.4.5 When u-substitution and Integration by Parts Fail to Help

As we close this section, it is important to note that both integration techniques we have
discussed apply in relatively limited circumstances. In particular, it is not hard to find ex-
amples of functions for which neither technique produces an antiderivative; indeed, there
are many, many functions that appear elementary but that do not have an elementary alge-
braic antiderivative. For instance, if we consider the indefinite integrals

/e’(2 dx and /xtan(x) dx,

neither u-substitution nor Integration by Parts proves fruitful. While there are other integra-
tion techniques, some of which we will consider briefly, none of them enables us to find an
algebraic antiderivative for e** or x tan(x). There are at least two key observations to make:
one, we do know from the Second Fundamental Theorem of Calculus that we can construct
an integral antiderivative for each function; and two, antidifferentiation is much, much
harder in general than differentiation. In particular, we observe that F(x) = j;]x e’ dt is an
antiderivative of f(x) = e, and G(x) = fox t tan(t) dt is an antiderivative of g(x) = x tan(x).
But finding an elementary algebraic formula that doesn’t involve integrals for either F or
G turns out not only to be impossible through u-substitution or Integration by Parts, but
indeed impossible altogether.
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Summary

¢ Through the method of Integration by Parts, we can evaluate indefinite integrals that
involve products of basic functions such as [ xsin(x)dx and [ xIn(x)dx through a
substitution that enables us to effectively trade one of the functions in the product for
its derivative, and the other for its antiderivative, in an effort to find a different product
of functions that is easier to integrate.

¢ If we are given an integral whose algebraic structure we can identify as a product of
basic functions in the form f f(x)g’(x) dx, we can use the substitution # = f(x) and
dv = g’(x) dx and apply the rule

/udv:uv—/vdu

in an effort to evaluate the original integral [ f(x)g’(x) dx by instead evaluating [ v du =
[ f@)g(x) dx.

* When deciding to integrate by parts, we normally have a product of functions present
in the integrand and we have to select both # and dv. That selection is guided by
the overall principal that we desire the new integral [ v du to not be any more diffi-
cult or complicated than the original integral [ u dv. In addition, it is often helpful to
recognize if one of the functions present is much easier to differentiate than antidiffer-
entiate (such as In(x)), in which case that function often is best assigned the variable
u. For sure, when choosing dv, the corresponding function must be one that we can
antidifferentiate.

Exercises

1. For each of the following integrals, indicate whether integration by substitution or inte-
gration by parts is more appropriate, or if neither method is appropriate. Do not evaluate
the integrals.

1. [ xsinxdx

2. f % dx

3. [ x%% dx

4. [ x?cos(x3)dx

5 [ \/3)16? dx

(Note that because this is multiple choice, you will not be able to see which parts of the problem you
got correct.)

2. Use integration by parts to evaluate the integral.

/3x cos(2x)dx = ‘ ‘ +C

3. Find the integral
f(z+1)e4zdz=‘ ‘
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4. Evaluate the definite integral.

4
/ te~'dt =\ \
0

5. Let f(t) = te™® and F(x) = [; f(t)dt.

a. Determine F’(x).

b. Use the First FTC to find a formula for F that does not involve an integral.

c. Is F an increasing or decreasing function for x > 0? Why?

6. Consider the indefinite integral given by [ ¢ cos(e®) dx.

a. Noting that e?* = ¢* - ¢*, use the substitution z = e to determine a new, equivalent
integral in the variable z.

b. Evaluate the integral you found in (a) using an appropriate technique.

c. How is the problem of evaluating [ e* cos(e?*) dx different from evaluating the inte-
gral in (a)? Do so.

d. Evaluate each of the following integrals as well, keeping in mind the approach(es) used
earlier in this problem:

o [ e**sin(e")dx
o [e3¥sin(e¥)dx

o [ xe® cos(e*’)sin(e*’) dx

=
WeBWorkK

7. For each of the following indefinite integrals, determine whether you would use u-substitution,

integration by parts, neither*, or both to evaluate the integral. In each case, write one sen-
tence to explain your reasoning, and include a statement of any substitutions used. (That is,
if you decide in a problem to let u = e3x, you should state that, as well as that du = 3e3% dx.)
Finally, use your chosen approach to evaluate each integral. (* one of the following problems
does not have an elementary antiderivative and you are not expected to actually evaluate this
integral; this will correspond with a choice of “neither” among those given.)

. [ x*cos(x®) dx

. [ x°cos(x®)dx (Hint: x> = x2 - x%)
. [xIn(x?)dx

. [ sin(x*) dx

. [ x3sin(xt) dx

f. [ x7sin(x*) dx

o o

o Q& n
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5.5 Other Options for Finding Algebraic Antiderivatives

Motivating Questions

¢ How does the method of partial fractions enable any rational function to be antidiffer-
entiated?

* What role have integral tables historically played in the study of calculus and how can
a table be used to evaluate integrals such as [ Va2 + u2 du?

* Whatrole can a computer algebra system play in the process of finding antiderivatives?

In the preceding sections, we have learned two very specific antidifferentiation techniques:
u-substitution and integration by parts. The former is used to reverse the chain rule, while
the latter to reverse the product rule. But we have seen that each only works in very special-
ized circumstances. For example, while [ xe¥ dx may be evaluated by u-substitution and

| xe* dx by integration by parts, neither method provides a route to evaluate [ ¢ dx. That
fact is not a particular shortcoming of these two antidifferentiation techniques, as it turns
out there does not exist an elementary algebraic antiderivative for e*’. Said differently, no
matter what antidifferentiation methods we could develop and learn to execute, none of
them will be able to provide us with a simple formula that does not involve integrals for a
function F(x) that satisfies F’(x) = e

In this section of the text, our main goals are to better understand some classes of func-
tions that can always be antidifferentiated, as well as to learn some options for so doing.
At the same time, we want to recognize that there are many functions for which an alge-
braic formula for an antiderivative does not exist, and also appreciate the role that comput-
ing technology can play in helping us find antiderivatives of other complicated functions.
Throughout, it is helpful to remember what we have learned so far: how to reverse the chain
rule through u-substitution, how to reverse the product rule through integration by parts,
and that overall, there are subtle and challenging issues to address when trying to find an-
tiderivatives.

Preview Activity 5.5.1. For each of the indefinite integrals below, the main question is to
decide whether the integral can be evaluated using u-substitution, integration by parts,
a combination of the two, or neither. For integrals for which your answer is affirmative,
state the substitution(s) you would use. It is not necessary to actually evaluate any of the
integrals completely, unless the integral can be evaluated immediately using a familiar
basic antiderivative.

a. [x%sin(x®)dx, [x%sin(x)dx, [sin(x®)dx, [ x°sin(x®)dx

1 X 2x+3 e*
b. f 1+x2 dx, f 1+x2 dx, f 1+x2 dx, f 1+(ex)? dx,
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5.5 Other Options for Finding Algebraic Antiderivatives

c. [xIn(x)dx, f@dx, JIn(1 +x?)dx, [xIn(1+x?)dx,
d. [xV1-2x2dx,

| w=de | e | i

5.5.1 The Method of Partial Fractions

The method of partial fractions is used to integrate rational functions, and essentially in-
volves reversing the process of finding a common denominator. For example, suppoes we
have the function R(x) = 22— and want to evaluate

x2—x-2
5
/ _ g
x2—x-2

Thinking algebraically, if we factor the denominator, we can see how R might come from the

sum of two fractions of the form 45 + £~ In particular, suppose that

5x A N B
(x=2)(x+1) x-2 x+1

Multiplying both sides of this last equation by (x — 2)(x + 1), we find that
5x = A(x + 1) + B(x — 2).
Since we want this equation to hold for every value of x, we can use insightful choices of
specific x-values to help us find A and B. Taking x = -1, we have
5(-1) = A(0) + B(-3),
and thus B = g Choosing x = 2, it follows
5(2) = A(3) + B(0),

SO A = 1—30. Therefore, we now know that
5x _ [ 10/3 5/3
/xz—x—zdx_/x—2+x+1dx'

This equivalent integral expression is straightforward to evaluate, and hence we find that

5x 10 5
/mdx— §1n|x—2|+§1n|x+1|+C.

It turns out that for any rational function R(x) = g((g where the degree of the polynomial P
is less than' the degree of the polynomial Q, the method of partial fractions can be used to
rewrite the function as a sum of simpler rational functions of one of the following forms:
A A Ax+B or Ax+B
x—c (x—o) x2+k’ " (x2+k)"

1If the degree of P is greater than or equal to the degree of Q, long division may be used to write R as the sum of
a polynomial plus a rational function where the numerator’s degree is less than the denominator’s.
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Chapter 5 Evaluating Integrals

where A, B, and c are real numbers, and k is a positive real number. Because each of these
basic forms is one we can antidifferentiate, partial fractions enables us to antidifferentiate
any rational function. A computer algebra system such as Maple, Mathematica, or Wolfra-
mAlpha can be used to find the partial fraction decomposition of any rational function. In
WolframAlpha, entering

partial fraction 5x/(x*2-x-2)

results in the output
5x 10 5

xz—x—2=3(x—2)+3(x+1)'

We will primarily use technology to generate partial fraction decompositions of rational
functions, and then work from there to evaluate the integrals of interest using established
methods.

Activity 5.5.2. For each of the following problems, evaluate the integral by using the
partial fraction decomposition provided.

——— dx, giv 1 _ 14 1/4
a. f P o dx, given that o3 = x3 T xil
b x2+1 . 241 _ 1 1 5
: f B2 dx, given that prcmrn At
=2 dx, giv x=2_ _ 1 _ 2 —xi2

c f Tiry2 4%, glven that pres Al o

5.5.2 Using an Integral Table

Calculus has a long history, with key ideas going back as far as Greek mathematicians in
400-300 BC. Its main foundations were first investigated and understood independently by
Isaac Newton and Gottfried Wilhelm Leibniz in the late 1600s, making the modern ideas
of calculus well over 300 years old. It is instructive to realize that until the late 1980s, the
personal computer essentially did not exist, so calculus (and other mathematics) had to be
done by hand for roughly 300 years. During the last 30 years, however, computers have
revolutionized many aspects of the world we live in, including mathematics. In this section
we take a short historical tour to precede the following discussion of the role computer al-
gebra systems can play in evaluating indefinite integrals. In particular, we consider a class
of integrals involving certain radical expressions that, until the advent of computer algebra
systems, were often evaluated using an integral table.

As seen in the short table of integrals found in Appendix A, there are also many forms of

integrals that involve Va? + w? and Vw? — a2. These integral rules can be developed using
a technique known as trigonometric substitution that we choose to omit; instead, we will sim-
ply accept the results presented in the table. To see how these rules are needed and used,
consider the differences among

1 X
—dx, /—dx, and /Vl—xzdx.
/Vl—x2 V1 —x2
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5.5 Other Options for Finding Algebraic Antiderivatives

The first integral is a familiar basic one, and results in arcsin(x) + C. The second integral
can be evaluated using a standard u-substitution with u =1 - x2. The third, however, is not
familiar and does not lend itself to u-substitution.

In Appendix A, we find the rule

2

(h)/Vuz—uzdu=% az—u2+%arcsing+(:.

Using the substitutions 2 = 1 and u = x (so that du = dx), it follows that

1
/Vl—x%ixz% 1—x2—§arcsinx+C.

One important point to note is that whenever we are applying a rule in the table, we are
doing a u-substitution. This is especially key when the situation is more complicated than
allowing u = x as in the last example. For instance, say we wish to evaluate the integral

/ VO + 64x2 dx.

Here, we want to use Rule (c) from the table, and do so with a = 3 and u = 8x; we also choose
the “+” option in the rule. With this substitution, it follows that du = 8dx, so dx = %du.
Applying this substitution,

/V9+64x2dx:/V9+u2-%du:%/\/9+u2du.

By Rule (c), we now find that
1
/V9+64x2dx—§(— 9+21n|u+\/u2+9|+c)
:%( 64x2+9+ = 1n|8x+\/64x2+ |+C)

In problems such as this one, it is essential that we not forget to account for the factor of %
that must be present in the evaluation.

Activity 5.5.3. For each of the following integrals, evaluate the integral using u-substitution
and/or an entry from the table found in Appendix A.

a. [ Vx2+4dx c f\/léfwdx
b J Vit d. f 49 3612
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5.5.3 Using Computer Algebra Systems

A computer algebra system (CAS) is a computer program that is capable of executing sym-
bolic mathematics. For a simple example, if we ask a CAS to solve the equation ax?+bx +c =
0 for the variable x, where a, b, and ¢ are arbitrary constants, the program will return

x = =bevb—dac "21”:_4”6. While research to develop the first CAS dates to the 1960s, these programs
became more common and publicly available in the early 1990s. Two prominent early exam-
ples are the programs Maple and Mathematica, which were among the first computer algebra
systems to offer a graphical user interface. Today, Maple and Mathematica are exceptionally
powerful professional software packages that are capable of executing an amazing array of
sophisticated mathematical computations. They are also very expensive, as each is a propri-
etary program. The CAS SAGE is an open-source, free alternative to Maple and Mathematica.

For the purposes of this text, when we need to use a CAS, we are going to turn instead to a
similar, but somewhat different computational tool, the web-based “computational knowl-
edge engine” called WolframAlpha. There are two features of WolframAlpha that make it stand
out from the CAS options mentioned above: (1) unlike Maple and Mathematica, WolframAlpha
is free (provided we are willing to suffer through some pop-up advertising); and (2) unlike
any of the three, the syntax in WolframAlpha is flexible. Think of WolframAlpha as being a lit-
tle bit like doing a Google search: the program will interpret what is input, and then provide
a summary of options.

If we want to have WolframAlpha evaluate an integral for us, we can provide it syntax such
as

integrate x*2 dx

to which the program responds with

2 X
/x dx = 3 + constant.

While there is much to be enthusiastic about regarding CAS programs such as WolframAlpha,
there are several things we should be cautious about: (1) a CAS only responds to exactly what
is input; (2) a CAS can answer using powerful functions from highly advanced mathematics;
and (3) there are problems that even a CAS cannot do without additional human insight.

Although (1) likely goes without saying, we have to be careful with our input: if we enter
syntax that defines a function other than the problem of interest, the CAS will work with
precisely the function we define. For example, if we are interested in evaluating the integral

[ s
16 — 5x2

and we mistakenly enter
integrate 1/16 - 5x*2 dx

a CAS will (correctly) reply with
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It is essential that we are sufficiently well-versed in antidifferentiation to recognize that this

function cannot be the one that we seek: integrating a rational function such as —%—, we

16-5x27
expect the logarithm function to be present in the result.

Regarding (2), even for a relatively simple integral such as [ ﬁ dx, some CASs will in-
voke advanced functions rather than simple ones. For instance, if we use Maple to execute
the command

int(1/(16-5*%x*2), x);
the program responds with

1 V5 V5
/m dx = % arctanh(Tx).

While this is correct (save for the missing arbitrary constant, which Maple never reports),
the inverse hyperbolic tangent function is not a common nor familiar one; a simpler way to
express this function can be found by using the partial fractions method, and happens to be
the result reported by WolframAlpha:

/ ﬁ dx = 81% (log(4\/§ +5vx) - 1Og(ﬁl\/g - 5\/?)) + constant.

Using sophisticated functions from more advanced mathematics is sometimes the way a
CAS says to the user “I don't know how to do this problem.” For example, if we want to

evaluate
/ e dx,

and we ask WolframAlpha to do so, the input
integrate exp(-x*2)dx
results in the output

/ e dx = ? erf(x) + constant.

The function “erf(x)” is the error function, which is actually defined by an integral:
2 (Y .
erf(x) = — / e dt.
V7T Jo

So, in producing output involving an integral, the CAS has basically reported back to us the
very question we asked.

Finally, as remarked at (3) above, there are times that a CAS will actually fail without some
additional human insight. If we consider the integral

/(1 +x)e* V1 + x2e2* dx

and ask WolframAlpha to evaluate
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int (1+x)* exp(x)* sqrt(1+x*2 * exp(2x))dx,
the program thinks for a moment and then reports
(no result found in terms of standard mathematical functions)

But in fact this integral is not that difficult to evaluate. If we let u = xe*, then du = (1 +
x)e* dx, which means that the preceding integral has form

/(1+x)exV1+x262xdx=/V1+u2du,

which is a straightforward one for any CAS to evaluate.

So, the above observations regarding computer algebra systems lead us to proceed with
some caution: while any CASis capable of evaluating a wide range of integrals (both definite
and indefinite), there are times when the result can mislead us. We must think carefully
about the meaning of the output, whether it is consistent with what we expect, and whether
or not it makes sense to proceed.

Summary

¢ The method of partial fractions enables any rational function to be antidifferentiated,
because any polynomial function can be factored into a product of linear and irre-
ducible quadratic terms. This allows any rational function to be written as the sum of
a polynomial plus rational terms of the form ﬁ (where 7 is a natural number) and

Bx+C
x2+k

(where k is a positive real number).

¢ Until the development of computing algebra systems, integral tables enabled students

of calculus to more easily evaluate integrals such as | Va2 + u2 du, where a is a positive
real number. A short table of integrals may be found in Appendix A.

e Computer algebra systems can play an important role in finding antiderivatives, though
we must be cautious to use correct input, to watch for unusual or unfamiliar advanced
functions that the CAS may cite in its result, and to consider the possibility that a CAS
may need further assistance or insight from us in order to answer a particular question.

Exercises

1. Calculate the integral below by partial fractions and by using the indicated substitution.

v Be sure that you can show how the results you obtain are the same.

/ 2x i
x2-25

First, rewrite this with partial fractions:

xzszdezf‘ ‘dx+f‘ dx =

| 4] +C.
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(Note that you should not include the +C in your entered answet, as it has been provided at the end
of the expression.)
Next, use the substitution w = x? — 25 to find the integral:

o 25dx—f‘ ‘dw=‘ +C =
‘ +C.

(For the second answer blank, give your antiderivative in terms of the variable w. Again, note that
you should not include the +C in your answer.)

2. Calculate the integral:
e =
(x+6)(x +8)

3. Calculate the integral

7x + 3 ll.leBon K

[ 2 |
x2—-3x+2

4. Consider the following indefinite integral.

ll.leEl.UorK

/6x3+8x2+2x+6
dx

x4+ 1x?
The integrand has partial fractions decomposition:

a b cx+d

X2 x x2+1

where

a =

Now integrate term by term to evaluate the integral.

Answer: ‘ ‘ +C

5. The form of the partial fraction decomposition of a rational function is given below.

ll.leBI.UorK

25x —10x2-45 A +Bx+C
(x=5x2+9) x-5 1249

i -] -] \
Now evaluate the indefinite integral.
25x — 10x? — 45 dx = ‘ ‘
(x =5)(x2+9)

6. For each of the following integrals involving rational functions, (1) use a CAS to find the
partial fraction decomposition of the integrand; (2) evaluate the integral of the resulting
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function without the assistance of technology; (3) use a CAS to evaluate the original integral
to test and compare your result in (2).

a. fx+x+ld
bf x+x+3 dx

¥—6x2+11x—6
x2-x-1
c [ s dx

7. For each of the following integrals involving radical functions, (1) use an appropriate
u-substitution along with Appendix A to evaluate the integral without the assistance of
technology, and (2) use a CAS to evaluate the original integral to test and compare your
result in (1).

1
a f xV9x2+25 dx
b. [xV1+x*dx
c. [e*Va+e2dx
f __tan(x)
19— cosz(x

8. Consider the indefinite integral given by
VX + V1 +x2
/ S

a. Explain why u-substitution does not offer a way to simplify this integral by discussing
at least two different options you might try for u.

b. Explain why integration by parts does not seem to be a reasonable way to proceed,
either, by considering one option for u and dv.

c. Is there any line in the integral table in Appendix Athat is helpful for this integral?
d. Evaluate the given integral using WolframAlpha. What do you observe?
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5.6 Numerical Integration

Motivating Questions

e How do we accurately evaluate a definite integral such as fol ¢~ dx when we can-
not use the First Fundamental Theorem of Calculus because the integrand lacks an
elementary algebraic antiderivative? Are there ways to generate accurate estimates
without using extremely large values of n in Riemann sums?

* What is the Trapezoid Rule, and how is it related to left, right, and middle Riemann
sums?

* How are the errors in the Trapezoid Rule and Midpoint Rule related, and how can they
be used to develop an even more accurate rule?

When we were first exploring the problem of finding the net-signed area bounded by a curve,
we developed the concept of a Riemann sum as a helpful estimation tool and a key step in
the definition of the definite integral. In particular, as we found in Section 4.2, recall that the
left, right, and middle Riemann sums of a function f on an interval [a, b] are denoted L,,
R,,, and M,,, with formulas

n—1

Ly, = f(xo)Ax + f(x1)Ax + -+ + f(xy—1)Ax = Zf(xl-)Ax, (5.6.1)
i=0

Ry = f(x1)Ax + f(x2)Ax + -+ f(x,)Ax = Zf(xl-)Ax, (5.6.2)
i=1

My, = fEDAX + f@)Ax + -+ f(E)Ax = D f(%))AX, (5.63)

i=1

where xg = a, x; = a + iAx, x, = b, and Ax = b%” For the middle sum, note that x; =
(xiz1 + x7)/2.

Further, recall that a Riemann sum is essentially a sum of (possibly signed) areas of rectan-
gles, and that the value of n determines the number of rectangles, while our choice of left
endpoints, right endpoints, or midpoints determines how we use the given function to find
the heights of the respective rectangles we choose to use. Visually, we can see the similarities
and differences among these three options in Figure 5.6.1, where we consider the function
f(x) = 21—0(x —4)3+7 on the interval [1, 8], and use 5 rectangles for each of the Riemann sums.
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\l= s \l= e \= s

\

1 LEFT 8 1 RIGHT 8 1 MID 8

Figure 5.6.1: Left, right, and middle Riemann sums for y = f(x) on [1, 8] with 5 subintervals.

While it is a good exercise to compute a few Riemann sums by hand, just to ensure that we
understand how they work and how varying the function, the number of subintervals, and
the choice of endpoints or midpoints affects the result, it is of course the case that using
computing technology is the best way to determine L,, R,, and M, going forward. Any
computer algebra system will offer this capability; as we saw in Preview Activity 4.3.1,
a straightforward option that happens to also be freely available online is the applet! at
http://gvsu.edu/s/a9.

Note that we can adjust the formula for f(x), the window of x- and y-values of interest,
the number of subintervals, and the method. See Preview Activity 4.3.1 for any needed
reminders on how the applet works.

In what follows in this section we explore several different alternatives, including left, right,
and middle Riemann sums, for estimating definite integrals. One of our main goals in the
upcoming section is to develop formulas that enable us to estimate definite integrals accu-
rately without having to use exceptionally large numbers of rectangles.

Preview Activity 5.6.1. As we begin to investigate ways to approximate definite inte-
grals, it will be insightful to compare results to integrals whose exact values we know.

To that end, the following sequence of questions centers on f03 x%dx.

a. Use the applet at http://gvsu.edu/s/a9 with the function f(x) = x? on the win-
dow of x values from 0 to 3 to compute L3, the left Riemann sum with three subin-
tervals.

b. Likewise, use the applet to compute R3 and M3, the right and middle Riemann
sums with three subintervals, respectively.

c. Use the Fundamental Theorem of Calculus to compute the exact value of I =
3,2
Jo x*dx.

Marc Renault, Shippensburg University
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d. We define the error in an approximation of a definite integral to be the difference
between the integral’s exact value and the approximation’s value. What is the error
that results from using L3? From R3? From M3?

e. In what follows in this section, we will learn a new approach to estimating the
value of a definite integral known as the Trapezoid Rule. The basic idea is to use
trapezoids, rather than rectangles, to estimate the area under a curve. What is the
formula for the area of a trapezoid with bases of length by and b, and height 1?

f. Working by hand, estimate the area under f(x) = x?on [0, 3] using three subinter-
vals and three corresponding trapezoids. What is the error in this approximation?
How does it compare to the errors you calculated in (d)?

5.6.1 The Trapezoid Rule

Throughout our work to date with developing and estimating definite integrals, we have
used the simplest possible quadrilaterals (that is, rectangles) to subdivide regions with com-
plicated shapes. It is natural, however, to wonder if other familiar shapes might serve us

even better. In particular, our goal is to be able to accurately estimate f: f(x)dx without
having to use extremely large values of 7 in Riemann sums.

To this end, we consider an alternative to L,, R,, and M,,, know as the Trapezoid Rule. The
fundamental idea is simple: rather than using a rectangle to estimate the (signed) area
bounded by y = f(x) on a small interval, we use a trapezoid. For example, in Figure 5.6.2,
we estimate the area under the pictured curve using three subintervals and the trapezoids
that result from connecting the corresponding points on the curve with straight lines.

\ y=/r(x)

X0 X1 X2 X3

Figure 5.6.2: Estimating fab f(x) dx using three subintervals and trapezoids, rather than rect-
angles, where a = xp and b = x3.
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The biggest difference between the Trapezoid Rule and a left, right, or middle Riemann sum
is that on each subinterval, the Trapezoid Rule uses two function values, rather than one, to
estimate the (signed) area bounded by the curve. For instance, to compute D1, the area of the
trapezoid generated by the curve y = f(x) in Figure 5.6.2 on [xp, x1], we observe that the left
base of this trapezoid has length f(x¢), while the right base has length f(x1). In addition,
the height of this trapezoid is x; —xp = Ax = b%“ Since the area of a trapezoid is the average
of the bases times the height, we have

D1 = 3(f(x0) + flxn) - Ax.

Using similar computations for D, and D3, we find that T3, the trapezoidal approximation
to fub f(x)dx is given by

T3 = D1+ Dy + Dj3
= 2(FG0) + f() - A+ 2(f() + () - Ax + 2(f(x2) + f(33) - Ax.

Because both left and right endpoints are being used, we recognize within the trapezoidal
approximation the use of both left and right Riemann sums. In particular, rearranging the
expression for T3 by removing factors of 3 and Ax, grouping the left endpoint evaluations
of f, and grouping the right endpoint evaluations of f, we see that

Tz = % [(f (x0) + f(x1) + fx2))] Ax + (f (x1) + % [f(x2) + f(x3))] Ax. (5.6.4)

At this point, we observe that two familiar sums have arisen. Since the left Riemann sum L3 is
L3 = f(x0)Ax + f(x1)Ax + f(x2)Ax, and the right Riemann sum is R3 = f(x1)Ax + f(x2)Ax +
f(x3)Ax, substituting L3 and R3 for the corresponding expressions in Equation (5.6.4), it
follows that T3 = 1 [L3 + R3]. We have thus seen the main ideas behind a very important
result: using trapezoids to estimate the (signed) area bounded by a curve is the same as
averaging the estimates generated by using left and right endpoints.

— The Trapezoid Rule

The trapezoidal approximation, T, of the definite integral fab f(x) dx using n subinter-
vals is given by the rule

T = [0+ FGx0) + FFGc0) + Flaa)) -+ 5(F ) + x| Ax.

n-1
Z %(f(xi) + f(xiz1))Ax.

i=0

Moreover, T,, = % [L, +R,].
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Activity 5.6.2. In this activity, we explore the relationships among the errors generated
by left, right, midpoint, and trapezoid approximations to the definite integral flz Xl—z dx
a. Use the First FIC to evaluate flz % dx exactly.

b. Use appropriate computing technology to compute the following approximations
for [} L dx: Ty, My, Ts, and Ms.

c. Let the error of an approximation be the difference between the exact value of
the definite integral and the resulting approximation. For instance, if we let ET4
represent the error that results from using the trapezoid rule with 4 subintervals
to estimate the integral, we have

21
ET,4 Z/ —zdx —T4.
1 X

Similarly, we compute the error of the midpoint rule approximation with 8 subin-
tervals by the formula

|
EM,g =/ —2dx —Mg.
1 X

Based on your work in (a) and (b) above, compute Et 4, ETs, Ep4, Ems.

d. Which rule consistently over-estimates the exact value of the definite integral?
Which rule consistently under-estimates the definite integral?

e. What behavior(s) of the function f(x) = % lead to your observations in (d)?

5.6.2 Comparing the Midpoint and Trapezoid Rules

We know from the definition of the definite integral of a continuous function f, that if we
let n be large enough, we can make the value of any of the approximations L,, R,;, and M,

as close as we’d like (in theory) to the exact value of j;h f(x)dx. Thus, it may be natural to
wonder why we ever use any rule other than L, or R, (with a sufficiently large n value) to
estimate a definite integral. One of the primary reasons is that as n — oo, Ax = bn;“ - 0,
and thus in a Riemann sum calculation with a large n value, we end up multiplying by a
number that is very close to zero. Doing so often generates roundoff error, as representing
numbers close to zero accurately is a persistent challenge for computers.

Hence, we are exploring ways by which we can estimate definite integrals to high levels of
precision, but without having to use extremely large values of n. Paying close attention to
patterns in errors, such as those observed in Activity 5.6.2, is one way to begin to see some
alternate approaches.

To begin, we make a comparison of the errors in the Midpoint and Trapezoid rules from two
different perspectives. First, consider a function of consistent concavity on a given interval,
and picture approximating the area bounded on that interval by both the Midpoint and
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Trapezoid rules using a single subinterval.

N IN

i Ml\\ Ml\\

Figure 5.6.3: Estimating fab f(x) dx using a single subinterval: at left, the trapezoid rule; in
the middle, the midpoint rule; at right, a modified way to think about the midpoint rule.

As seen in Figure 5.6.3, it is evident that whenever the function is concave up on an interval,
the Trapezoid Rule with one subinterval, T7, will overestimate the exact value of the definite
integral on that interval. Moreover, from a careful analysis of the line that bounds the top
of the rectangle for the Midpoint Rule (shown in magenta), we see that if we rotate this line
segment until it is tangent to the curve at the point on the curve used in the Midpoint Rule
(as shown at right in Figure 5.6.3), the resulting trapezoid has the same area as M;, and
this value is less than the exact value of the definite integral. Hence, when the function is
concave up on the interval, M; underestimates the integral’s true value.

N\

M,

Figure 5.6.4: Comparing the error in estimating fab f(x) dx using a single subinterval: in red,
the error from the Trapezoid rule; in light red, the error from the Midpoint rule.
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These observations extend easily to the situation where the function’s concavity remains
consistent but we use higher values of # in the Midpoint and Trapezoid Rules. Hence, when-

ever f is concave up on [a,b], T, will overestimate the value of fab f(x)dx, while M,, will
underestimate fub f(x)dx. The reverse observations are true in the situation where f is con-
cave down.

Next, we compare the size of the errors between M, and T,,. Again, we focus on M; and T;
on an interval where the concavity of f is consistent. In Figure 5.6.4, where the error of the
Trapezoid Rule is shaded in red, while the error of the Midpoint Rule is shaded lighter red,
it is visually apparent that the error in the Trapezoid Rule is more significant. To see how
much more significant, let’s consider two examples and some particular computations.

If welet f(x) = 1-x? and consider fol f(x) dx, we know by the First FTC that the exact value
of the integral is
1 31
X 2
1-x?)dx=x—-=| =Z.
/0 1-x%)dx =x 3= 3

Using appropriate technology to compute My, Mg, Ty, and Tg, as well as the corresponding
errors Eyr4, Ems, ET4, and ETg, as we did in Activity 5.6.2, we find the results summarized
in Table 5.6.5. Note that in the table, we also include the approximations and their errors for

the example flz % dx from Activity 5.6.2.

Rule fol(l - x2)dx =0.6 error f12 Ldx =05 error

Ty 0.65625 —0.0104166667 0.5089937642  0.0089937642
My 0.671875 0.0052083333 0.4955479365  —0.0044520635
Tg 0.6640625 —0.0026041667 0.5022708502  0.0022708502
Mg 0.66796875 0.0013020833 0.4988674899  —0.0011325101

Table 5.6.5: Calculations of T4, My, Tg, and Mg, along with corresponding errors, for the
definite integrals fol(l - x?) dx and f12 L dx.

Recall that for a given function f and interval [a, ], ET4 = fgb f(x)dx — T4 calculates the
difference between the exact value of the definite integral and the approximation generated
by the Trapezoid Rule with n = 4. If we look at not only Et4, but also the other errors
generated by using T, and M,, with n = 4 and n = 8 in the two examples noted in Table 5.6.5,
we see an evident pattern. Not only is the sign of the error (which measures whether the rule
generates an over- or under-estimate) tied to the rule used and the function’s concavity, but
the magnitude of the errors generated by T,, and M,, seems closely connected. In particular,
the errors generated by the Midpoint Rule seem to be about half the size of those generated
by the Trapezoid Rule.

That is, we can observe in both examples that Eyj4 = —%ETA and Epg = —%ET,g, which
demonstrates a property of the Midpoint and Trapezoid Rules that turns out to hold in gen-
eral: for a function of consistent concavity, the error in the Midpoint Rule has the opposite
sign and approximately half the magnitude of the error of the Trapezoid Rule. Said symbol-
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ically,

1
EM,n ~ _EET,n .

This important relationship suggests a way to combine the Midpoint and Trapezoid Rules
to create an even more accurate approximation to a definite integral.

5.6.3 Simpson’s Rule

When we first developed the Trapezoid Rule, we observed that it can equivalently be viewed
as resulting from the average of the Left and Right Riemann sums:

1
T, = E(Ln + Rn)-

Whenever a function is always increasing or always decreasing on the interval [, b], one of

L, and R,, will over-estimate the true value of f: f(x) dx, while the other will under-estimate
the integral. Said differently, the errors found in L, and R, will have opposite signs; thus,
averaging L, and R, eliminates a considerable amount of the error present in the respective
approximations. In a similar way, it makes sense to think about averaging M, and T, in
order to generate a still more accurate approximation.

At the same time, we’ve just observed that M, is typically about twice as accurate as T),.
Thus, we instead choose to use the weighted average

2M, + T,
3 .

Sop = (5.6.5)

The rule for S,, giving by Equation (5.6.5) is usually known as Simpson’s Rule.? Note that
we use “Sy,” rather that “S,,” since the n points the Midpoint Rule uses are different from
the n points the Trapezoid Rule uses, and thus Simpson’s Rule is using 2n points at which
to evaluate the function. We build upon the results in Table 5.6.5 to see the approximations
generated by Simpson’s Rule. In particular, in Table 5.6.6, we include all of the results in
Table 5.6.5, but include additional results for Sg = % and S = 2M83—+T8

2Thomas Simpson was an 18th century mathematician; his idea was to extend the Trapezoid rule, but rather than
using straight lines to build trapezoids, to use quadratic functions to build regions whose area was bounded by
parabolas (whose areas he could find exactly). Simpson’s Rule is often developed from the more sophisticated
perspective of using interpolation by quadratic functions.
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Rule fol(l - x2)dx =0.6 error flz L dx =05 error

Ty 0.65625 —0.0104166667 0.5089937642  (0.0089937642
My 0.671875 0.0052083333 0.4955479365  —0.0044520635
Ss 0.6666666667 0 0.5000298792  0.0000298792
Tg 0.6640625 —0.0026041667 0.5022708502  0.0022708502
Mg 0.66796875 0.0013020833 0.4988674899  —0.0011325101
S16 0.6666666667 0 0.5000019434  0.0000019434

Table 5.6.6: Table 5.6.5 updated to include Sg, Si6, and the corresponding errors.

The results seen in Table 5.6.6 are striking. If we consider the S1¢ approximation of flz % dx,
the error is only Eg 16 = 0.0000019434. By contrast, Lg = 0.5491458502, so the error of that
estimate is Ej g = —0.0491458502. Moreover, we observe that generating the approximations
for Simpson’s Rule is almost no additional work: once we have L,, R, and M, for a given
value of 1, it is a simple exercise to generate T,;, and from there to calculate Sp,,. Finally, note

that the error in the Simpson’s Rule approximations of fol(l - x2) dx is zero!®

These rules are not only useful for approximating definite integrals such as fol e~ dx, for

which we cannot find an elementary antiderivative of e, but also for approximating def-
inite integrals in the setting where we are given a function through a table of data.

Activity 5.6.3. A car traveling along a straight road is braking and its velocity is mea-
sured at several different points in time, as given in the following table. Assume that
v is continuous, always decreasing, and always decreasing at a decreasing rate, as is
suggested by the data.

seconds, t 0 03 06 09 12 15 1.8
Velocity in ft/sec, v(t) 100 99 96 90 80 50

Table 5.6.7: Data for the braking car.

a. Plot the given data on the set of axes provided in Figure 5.6.8 with time on the
horizontal axis and the velocity on the vertical axis.

b. What definite integral will give you the exact distance the car traveled on [0, 1.8]?

c. Estimate the total distance traveled on [0, 1.8] by computing L3, R3, and T3. Which
of these under-estimates the true distance traveled?

Similar to how the Midpoint and Trapezoid approximations are exact for linear functions, Simpson’s Rule ap-
proximations are exact for quadratic and cubic functions. See additional discussion on this issue later in the
section and in the exercises.
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d. Estimate the total distance traveled v
on [0, 1.8] by computing M3. Is this
an over- or under-estimate? Why?

e. Using your results from (c) and (d),
improve your estimate further by
using Simpson’s Rule.

f. What is your best estimate of the
average velocity of the car on
[0,1.8]?7 Why? What are the units

t
on this quantity?

03 06 09 12 15 18

Figure 5.6.8: Axes for plotting the data in
Activity 5.6.3.

5.6.4 Overall observations regarding L, R, T, M;;, and S»;,.

As we conclude our discussion of numerical approximation of definite integrals, it is impor-
tant to summarize general trends in how the various rules over- or under-estimate the true
value of a definite integral, and by how much. To revisit some past observations and see
some new ones, we consider the following activity.

Activity 5.6.4. Consider the functions f(x) = 2—x2, g(x) =2 -x>,and h(x) = 2—x*, all
on the interval [0, 1]. For each of the questions that require a numerical answer in what
follows, write your answer exactly in fraction form.

a. On the three sets of axes provided in Figure 5.6.9, sketch a graph of each function
on the interval [0, 1], and compute L1 and R; for each. What do you observe?

b. Compute M; for each function to approximate fol f(x)dx, fol g(x)dx,and fol h(x)dx,
respectively.

c. Compute T; for each of the three functions, and hence compute S, for each of the
three functions.

d. Evaluate each of the integrals fol f(x)dx, fol g(x)dx, and fol h(x) dx exactly using
the First FTC.

e. For each of the three functions f, g, and h, compare the results of L1, Ry, M1, Ty,
and S to the true value of the corresponding definite integral. What patterns do
you observe?
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Figure 5.6.9: Axes for plotting the functions in Activity 5.6.4.

The results seen in the examples in Activity 5.6.4 generalize nicely. For instance, for any

function f that is decreasing on [a, b], L,, will over-estimate the exact value of fab f(x)dx,
and for any function f that is concave down on [a, b], M,, will over-estimate the exact value
of the integral. An excellent exercise is to write a collection of scenarios of possible function
behavior, and then categorize whether each of L,,, R,, T,, and M, is an over- or under-
estimate.

Finally, we make two important notes about Simpson’s Rule. When T. Simpson first devel-
oped this rule, his idea was to replace the function f on a given interval with a quadratic
function that shared three values with the function f. In so doing, he guaranteed that this
new approximation rule would be exact for the definite integral of any quadratic polyno-
mial. In one of the pleasant surprises of numerical analysis, it turns out that even though it
was designed to be exact for quadratic polynomials, Simpson’s Rule is exact for any cubic

polynomial: that is, if we are interested in an integral such as f25(5x3 —2x% +7x — 4)dx, Sy,
will always be exact, regardless of the value of . This is just one more piece of evidence
that shows how effective Simpson’s Rule is as an approximation tool for estimating definite
integrals.*

Summary

¢ For a definite integral such as fol e~ dx when we cannot use the First Fundamental
Theorem of Calculus because the integrand lacks an elementary algebraic antideriva-
tive, we can estimate the integral’s value by using a sequence of Riemann sum approx-
imations. Typically, we start by computing L,, R, and M, for one or more chosen
values of n.

¢ The Trapezoid Rule, which estimates fgb f(x) dx by using trapezoids, rather than rect-
angles, can also be viewed as the average of Left and Right Riemann sums. That is,
Ty = %(Ln +Ry).

4One reason that Simpson’s Rule is so effective is that Sy, benefits from using 2n + 1 points of data. Because it
combines M, which uses n midpoints, and T,;, which uses the # + 1 endpoints of the chosen subintervals,
Sy, takes advantage of the maximum amount of information we have when we know function values at the
endpoints and midpoints of # subintervals.
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¢ The Midpoint Rule is typically twice as accurate as the Trapezoid Rule, and the signs

of the respective errors of these rules are opposites. Hence, by taking the weighted

. . . b
average S, = %, we can build a much more accurate approximation to [, f(x) dx

by using approximations we have already computed. The rule for S, is known as
Simpson’s Rule, which can also be developed by approximating a given continuous
function with pieces of quadratic polynomials.

Exercises

1. Note: for this problem, because later answers depend on earlier ones, you must enter
v answers for all answer blanks for the problem to be correctly graded. If you would like to
get feedback before you completed all computations, enter a “1” for each answer you did
not yet compute and then submit the problem. (But note that this will, obviously, result in

a problem submission.)

(a) What is the exact value of f03 e*dx?
7 e* dx :‘
(b)

Find LEFT(2), RIGHT(2), TRAP(2), MID(2), and SIMP(2); compute the error for each.

LEFT(2) | RIGHT(2) | TRAP(2) | MID(2) | SIMP(2)

value

error

(c)
Repeat part (b) with n = 4 (instead of n = 2).

LEFT(4) | RIGHT(4) | TRAP(4) | MID(4) | SIMP(4)

value

error

(d)
For each rule in part (b), as n goes from nn = 2to nn = 4, does the error go down approximately
as you would expect? Explain by calculating the ratios of the errors:

Error LEFT(2)/Error LEFT(4) =
Error RIGHT(2)/Error RIGHT(4) = |
Error TRAP(2)/Error TRAP(4) =
Error MID(2) /Error MID(4) = ‘

Error SIMP(2),/Error SIMP(4) = |
(Be sure that you can explain in words why these do (or don’t) make sense.)

2. Using the figure showing f(x) below, order the following approximations to the integral

WeBlWork

f03 f(x)dx and its exact value from smallest to largest.
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Enter each of "LEFT(n)”, "RIGHT(n)”, “TRAP(n)”, "MID(n)” and "Exact” in one of the fol-
lowing answer blanks to indicate the correct ordering:

<] <| <| <| |

3. Using a fixed number of subdivisions, we approximate the integrals of f and g on the
interval shown in the figure below. weBlhork

(The function f(x) is shown in blue, and g(x) in black.)
For which function, f or g is LEFT more accurate?
For which function, f or g is RIGHT more accurate?
For which function, f or g is MID more accurate?
For which function, f or g is TRAP more accurate?

4. Consider the four functions shown below. On the first two, an approximation for fab f(x)dx
is shown.

WeBlWork

3. ' ' 4.

1. For graph number 1, Which integration method is shown?

Is this method an over- or underestimate?

2. For graph number 2, Which integration method is shown?

Is this method an over- or underestimate?

3. On a copy of graph number 3, sketch an estimate with n = 2 subdivisions using the
midpoint rule.

Is this method an over- or underestimate?
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4. On a copy of graph number 4, sketch an estimate with n = 2 subdivisions using the
trapezoid rule.
Is this method an over- or underestimate?

5. Consider the definite integral jz)l x tan(x) dx.

a. Explain why this integral cannot be evaluated exactly by using either u-substitution or
by integrating by parts.
b. Using 4 subintervals, compute L4, R4, Ma, T4, and Ss.

c. Which of the approximations in (b) is an over-estimate to the true value of fol x tan(x) dx?
Which is an under-estimate? How do you know?

6. For an unknown function f(x), the following information is known.

e fis continuous on [3, 6];

¢ f is either always increasing or always decreasing on [3, 6];

* f has the same concavity throughout the interval [3, 6];

¢ As approximations to f36 f(x)dx, Ly =7.23, R4 = 6.75, and My = 7.05.

a. Is f increasing or decreasing on [3, 6]? What data tells you?

b. Is f concave up or concave down on [3, 6] Why?

c. Determine the best possible estimate you can for f36 f(x)dx, based on the given infor-

mation.

7. The rate at which water flows through Table Rock Dam on the White River in Branson,
MO, is measured in thousands of cubic feet per second (TCFS). As engineers open the flood-
gates, flow rates are recorded according to the following chart.

seconds, t 0 10 20 30 40 50 60
flow in TCFS, r(t) 2000 2100 2400 3000 3900 5100 6500

Table 5.6.10: Water flow data.

a. What definite integral measures the total volume of water to flow through the dam in
the 60 second time period provided by the table above?

b. Use the given data to calculate M,, for the largest possible value of #n to approximate
the integral you stated in (a). Do you think M,, over- or under-estimates the exact value
of the integral? Why?

c. Approximate the integral stated in (a) by calculating S, for the largest possible value
of n, based on the given data.

d. Compute S, and 2000+2100+2400+3000+39004510046500 ' What quantity do both of these val-
ues estimate? Which is a more accurate approximation?
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Using Definite Integrals

6.1 Using Definite Integrals to Find Area and Length

Motivating Questions

¢ How can we use definite integrals to measure the area between two curves?

¢ How do we decide whether to integrate with respect to x or with respect to ¥ when
we try to find the area of a region?

¢ How can a definite integral be used to measure the length of a curve?

Early on in our work with the definite integral, we learned that if we have a nonnegative
velocity function, v, for an object moving along an axis, the area under the velocity function
between a and b tells us the distance the object traveled on that time interval. Moreover,

based on the definition of the definite integral, that area is given precisely by fuh v(t)dt. In-
deed, for any nonnegative function f on aninterval [a, b], we know that fab f(x) dx measures
the area bounded by the curve and the x-axis between x = g and x = b.

Through our upcoming work in the present section and chapter, we will explore how definite
integrals can be used to represent a variety of different physically important properties. In
Preview Activity 6.1.1, we begin this investigation by seeing how a single definite integral
may be used to represent the area between two curves.

Preview Activity 6.1.1. Consider the functions given by f(x) =5 — (x — 1)? and g(x) =
4—x.

a. Use algebra to find the points where the graphs of f and g intersect.

b. Sketch an accurate graph of f and g on the axes provided, labeling the curves by
name and the intersection points with ordered pairs.

c. Find and evaluate exactly an integral expression that represents the area between
y = f(x) and the x-axis on the interval between the intersection points of f and g.
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d. Find and evaluate exactly an integral expression that represents the area between
y = g(x) and the x-axis on the interval between the intersection points of f and g.

e. What is the exact area between f and g between their intersection points? Why?

Figure 6.1.1: Axes for plotting f and g in Preview Activity 6.1.1

6.1.1 The Area Between Two Curves

Through Preview Activity 6.1.1, we encounter a natural way to think about the area between
two curves: the area between the curves is the area beneath the upper curve minus the area
below the lower curve. For the functions f(x) = (x — 1)> + 1 and g(x) = x + 2, shown in
Figure 6.1.2,

Figure 6.1.2: The areas bounded by the functions f(x) = (x — 1)> + 1 and g(x) = x +2 on the
interval [0, 3].

we see that the upper curve is g(x) = x + 2, and that the graphs intersect at (0,2) and (3, 5).
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Note that we can find these intersection points by solving the system of equations given by
y = (x 1)) + 1and y = x + 2 through substitution: substituting x + 2 for y in the first
equation yields x + 2 = (x — 12 +1,s0x +2=x2—-2x + 1+ 1, and thus

x?-3x=x(x-3)=0,

from which it follows that x = 0 or x = 3. Using y = x + 2, we find the corresponding
y-values of the intersection points.

On the interval [0, 3], the area beneath g is

3
/ (x +2)dx = 2,
0 2

while the area under f on the same interval is
3
/ [(x —1)? +1]dx = 6.
0

Thus, the area between the curves is

21 9

3 3
Az/o(x+2)dx—/0[(x—1)2+1]dx=7—6=§. (6.1.1)

A slightly different perspective is also helpful here: if we take the region between two curves
and slice it up into thin vertical rectangles (in the same spirit as we originally sliced the
region between a single curve and the x-axis in Section 4.2), then we see that the height of a
typical rectangle is given by the difference between the two functions. For example, for the
rectangle shown at left in Figure 6.1.3,

Figure 6.1.3: The area bounded by the functions f(x) = (x — 1) + 1 and g(x) = x + 2 on the
interval [0, 3].
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we see that the rectangle’s height is g(x) — f(x), while its width can be viewed as Ax, and
thus the area of the rectangle is

Arect = (g(x) - f(x))Ax-

The area between the two curves on [0, 3] is thus approximated by the Riemann sum

A= Y (g(x) = f(x)Ax,

i=1

and then as we let n — oo, it follows that the area is given by the single definite integral
3
A= /O (9(x) = f(x))dx. (6.1.2)

In many applications of the definite integral, we will find it helpful to think of a “represen-
tative slice” and how the definite integral may be used to add these slices to find the exact
value of a desired quantity. Here, the integral essentially sums the areas of thin rectangles.

Finally, whether we think of the area between two curves as the difference between the area
bounded by the individual curves (as in (6.1.1)) or as the limit of a Riemann sum that adds
the areas of thin rectangles between the curves (as in (6.1.2)), these two results are the same,
since the difference of two integrals is the integral of the difference:

3 3 3
/0 g(x) dx - /O F(x)dx = /0 (9(x) ~ F(x)) dx.

Moreover, our work so far in this section exemplifies the following general principle.

If two curves y = g(x) and y = f(x) intersect at (a, g(a)) and (b, g(b)), and for all x such
thata < x < b, g(x) > f(x), then the area between the curvesis A = fab(g(x) — f(x))dx.

Activity 6.1.2. In each of the following problems, our goal is to determine the area of the
region described. For each region, (i) determine the intersection points of the curves, (ii)
sketch the region whose area is being found, (iii) draw and label a representative slice,
and (iv) state the area of the representative slice. Then, state a definite integral whose
value is the exact area of the region, and evaluate the integral to find the numeric value
of the region’s area.

a. The finite region bounded by y = Vx and y = 1x.
b. The finite region bounded by y = 12 — 2x? and y = x2 - 8.

c. The area bounded by the y-axis, f(x) = cos(x), and g(x) = sin(x), where we con-
sider the region formed by the first positive value of x for which f and g intersect.
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3 2

I d. The finite regions between the curves y = x° —x and y = x*.

6.1.2 Finding Area with Horizontal Slices

At times, the shape of a geometric region may dictate that we need to use horizontal rect-
angular slices, rather than vertical ones. For instance, consider the region bounded by the
parabola x = y? — 1 and the line y = x — 1, pictured in Figure 6.1.4. First, we observe that by
solving the second equation for x and writing x = y +1, we can eliminate a variable through
substitution and find that y + 1 = y? — 1, and hence the curves intersect where y* -y -2 = 0.
Thus, we find y = =1 or y = 2, so the intersection points of the two curves are (0, —1) and
(3,2).

We see that if we attempt to use vertical rectangles to slice up the area, at certain values of x
(specifically from x = =1 to x = 0, as seen in the center graph of Figure 6.1.4), the curves that
govern the top and bottom of the rectangle are one and the same. This suggests, as shown in
the rightmost graph in the figure, that we try using horizontal rectangles as a way to think
about the area of the region.

Figure 6.1.4: The area bounded by the functions x = y?> — 1 and y = x — 1 (at left), with the
region sliced vertically (center) and horizontally (at right).

For such a horizontal rectangle, note that its width depends on y, the height at which the
rectangle is constructed. In particular, at a height y between y = —1 and y = 2, the right end
of a representative rectangle is determined by the line, x = y + 1, while the left end of the
rectangle is determined by the parabola, x = y? —1, and the thickness of the rectangle is Ay.

Therefore, the area of the rectangle is

Arect = [(y + 1) - (]/2 - 1)]Ay'

from which it follows that the area between the two curves on the y-interval [-1,2] is ap-
proximated by the Riemann sum

Ax ) [(yi+1) = (y2 - D]Ay.
i=1
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Taking the limit of the Riemann sum, it follows that the area of the region is

y=2
A= [ tren-F-nldy. (6.13)
Yy

=-1

We emphasize that we are integrating with respect to y; this is dictated by the fact that
we chose to use horizontal rectangles whose widths depend on y and whose thickness is
denoted Ay. It is a straightforward exercise to evaluate the integral in Equation (6.1.3) and
find that A = %.

Just as with the use of vertical rectangles of thickness Ax, we have a general principle for
finding the area between two curves, which we state as follows.

If two curves x = g(y) and x = f(y) intersect at (g(c), c) and (g(d), d), and for all y such
that c <y <d, g(y) > f(y), then the area between the curves is

y=d
A= /y (@) - F(y)dy.

=3

Activity 6.1.3. In each of the following problems, our goal is to determine the area of the
region described. For each region, (i) determine the intersection points of the curves, (ii)
sketch the region whose area is being found, (iii) draw and label a representative slice,
and (iv) state the area of the representative slice. Then, state a definite integral whose
value is the exact area of the region, and evaluate the integral to find the numeric value
of the region’s area. Note well: At the step where you draw a representative slice, you
need to make a choice about whether to slice vertically or horizontally.

a. The finite region bounded by x = y? and x = 6 — 2y
b. The finite region bounded by x =1 — y? and x = 2 — 2y2.
c. The area bounded by the x-axis, y = x2,and y = 2 — x.

d. The finite regions between the curves x = y?> — 2y and y = x.

6.1.3 Finding the length of a curve

In addition to being able to use definite integrals to find the areas of certain geometric re-
gions, we can also use the definite integral to find the length of a portion of a curve. We use
the same fundamental principle: we take a curve whose length we cannot easily find, and
slice it up into small pieces whose lengths we can easily approximate. In particular, we take
a given curve and subdivide it into small approximating line segments, as shown at left in
Figure 6.1.5.
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™~ yan

Xo X1 X2 X3 Ax

=

Figure 6.1.5: At left, a continuous function y = f(x) whose length we seek on the interval
a = xo to b = x3. Atright, a close up view of a portion of the curve.

To see how we find such a definite integral that measures arc length on the curve y = f(x)
from x = a to x = b, we think about the portion of length, Lgjic, that lies along the curve on
a small interval of length Ax, and estimate the value of Lslice using a well-chosen triangle.
In particular, if we consider the right triangle with legs parallel to the coordinate axes and
hypotenuse connecting two points on the curve, as seen at right in Figure 6.1.5, we see that
the length, 1, of the hypotenuse approximates the length, Lgjice, of the curve between the

two selected points. Thus,
Lglice ® h = Y\ (Ax)Z + (Ay)z-

By algebraically rearranging the expression for the length of the hypotenuse, we see how a
definite integral can be used to compute the length of a curve. In particular, observe that by
removing a factor of (Ax)?, we find that

Lglice = (Ax)Z + (Ay)z
(Ay)?
=4/(Ax)* |1+
\/( o1+ g
Ay)2
RV
(Ax)?
Furthermore, as n — oo and Ax — 0, it follows that % - Z—Z = f’(x). Thus, we can say that

Lglice ® /1 + f/(x)?Ax.
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Taking a Riemann sum of all of these slices and letting n — oo, we arrive at the following

fact.

Given a differentiable function f on an interval [a, b], the total arc length, L, along the
curve y = f(x) from x = a to x = b is given by

L= /h‘“ + f'(x)? dx.

. Determine the arc length of y = xe

Activity 6.1.4. Each of the following questions somehow involves the arc length along
a curve.

a. Use the definition and appropriate computational technology to determine the arc

length along v = 2 fromx=-1tox=1.

. Find the arc length of ¥y = V4 — x2 on the interval -2 < x < 2. Find this value

in two different ways: (a) by using a definite integral, and (b) by using a familiar
property of the curve.

3% on the interval [0, 1].

. Will the integrals that arise calculating arc length typically be ones that we can

evaluate exactly using the First FTC, or ones that we need to approximate? Why?

. A moving particle is traveling along the curve given by y = f(x) = 0.1x% + 1, and

does so at a constant rate of 7 cm/sec, where both x and y are measured in cm
(that is, the curve y = f(x) is the path along which the object actually travels; the
curve is not a “position function”). Find the position of the particle when t = 4
sec, assuming that when t = 0, the particle’s location is (0, f(0)).

Summary
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¢ To find the area between two curves, we think about slicing the region into thin rect-
angles. If, for instance, the area of a typical rectangle on the interval x = atox = b
is given by Arect = (g(x) — f(x))Ax, then the exact area of the region is given by the
definite integral

b
A= [ (g0 - pyix.

The shape of the region usually dictates whether we should use vertical rectangles of
thickness Ax or horizontal rectangles of thickness Ay. We desire to have the height of
the rectangle governed by the difference between two curves: if those curves are best
thought of as functions of y, we use horizontal rectangles, whereas if those curves are
best viewed as functions of x, we use vertical rectangles.
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¢ The arc length, L, along the curve y = f(x) from x = a to x = b is given by
b
L= / 1+ f/(x)*dx.
AR

Exercises

1. Find the area of the region between y = x'/2and y = x4 for 0 < x < 1.

area = ‘ ‘

2. Find the area between y = 7sinx and y = 10cos x over the interval [0, ]. Sketch the
curves if necessary.

A=

3. Sketch the region enclosed by x + y? =42 and x + y = 0.
Decide whether to integrate with respect to x or y, and then find the area of the region.

The area is ‘ ‘

4. Find the arc length of the graph of the function f(x) = 9Vx3 from x = 5to x = 8.

arc length = ‘ ‘

5. Find the exact area of each described region.
a. The finite region between the curves x = y(y —2) and x = —(y — 1)(y — 3).
b. The region between the sine and cosine functions on the interval [, %’T].
c. The finite region between x = y> -y —2and y = 2x — 1.

d. The finite region between y = mx and y = x> — 1, where m is a positive constant.

6. Let f(x) =1 - x%and g(x) = ax? — a, where a is an unknown positive real number. For
what value(s) of a is the area between the curves f and g equal to 2?

7. Let f(x) = 2—x2. Recall that the average value of any continuous function f on an interval
[a,b] is given by 7= [ f(x)dx.

a. Find the average value of f(x) = 2 — x2 on the interval [0, V2]. Call this value .

b. Sketch a graph of y = f(x) and y = r. Find their intersection point(s).

c. Show that on the interval [0, V2], the amount of area that lies below y = f(x)and above
y = r is equal to the amount of area that lies below y = r and above y = f(x).

d. Will the result of (c) be true for any continuous function and its average value on any
interval? Why?
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Chapter 6 Using Definite Integrals

6.2 Using Definite Integrals to Find Volume

Motivating Questions

* How can we use a definite integral to find the volume of a three-dimensional solid
of revolution that results from revolving a two-dimensional region about a particular
axis?

® In what circumstances do we integrate with respect to y instead of integrating with
respect to x?

* What adjustments do we need to make if we revolve about a line other than the x- or
y-axis?

Just as we can use definite integrals to add the areas of rectangular slices to find the exact
area that lies between two curves, we can also employ integrals to determine the volume of
certain regions that have cross-sections of a particular consistent shape.

As a very elementary example, consider a y
cylinder of radius 2 and height 3, as pic- 2 1 >
tured in Figure 6.2.1. While we know that
we can compute the area of any circular
cylinder by the formula V = nr?h, if we
think about slicing the cylinder into thin
pieces, we see that each is a cylinder of
radius ¥ = 2 and height (thickness) Ax. X
Hence, the volume of a representative slice x 3
is
Vice = 722 Ax.

| Ax

Figure 6.2.1: A right circular cylinder.

Letting Ax — 0 and using a definite integral to add the volumes of the slices, we find that

3
v=/ 722 dx.
0

Moreover, since f03 4m dx = 127, we have found that the volume of the cylinder is 127. The
principal problem of interest in our upcoming work will be to find the volume of certain
solids whose cross-sections are all thin cylinders (or washers) and to do so by using a definite
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integral. To that end, we first consider another familiar shape in Preview Activity 6.2.1: a
circular cone.

Preview Activity 6.2.1. Consider a circular cone of radius 3 and height 5, which we
view horizontally as pictured in Figure 6.2.2. Our goal in this activity is to use a definite
integral to determine the volume of the cone.

a. Find a formula for the linear function y = f(x) that is pictured in Figure 6.2.2.

b. For the representative slice of thick- 3 L
ness Ax that is located horizontally
atalocation x (somewhere between
x = 0 and x = 5), what is the
radius of the representative slice?
Note that the radius depends on the

X
value of x. — | —
58 5
c. What is the volume of the represen-
tative slice you found in (b)?
d. What definite integral will sum the | Ax

volumes of the thin slices across the
full horizontal span of the cone?
What is the exact value of this defi-
nite integral?

e. Compare the result of your work
in (d) to the volume of the cone
that comes from using the formula
Veone = 37rh.

Figure 6.2.2: The circular cone described
in Preview Activity 6.2.1

6.2.1 The Volume of a Solid of Revolution

A solid of revolution is a three dimensional solid that can be generated by revolving one or
more curves around a fixed axis. For example, we can think of a circular cylinder as a solid of
revolution: in Figure 6.2.1, this could be accomplished by revolving the line segment from
(0,2) to (3,2) about the x-axis. Likewise, the circular cone in Figure 6.2.2 is the solid of
revolution generated by revolving the portion of the line y = 3 — 2x fromx = Otox =5
about the x-axis. It is particularly important to notice in any solid of revolution that if we
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Chapter 6 Using Definite Integrals

slice the solid perpendicular to the axis of revolution, the resulting cross-section is circular.

We consider two examples to highlight some of the natural issues that arise in determining
the volume of a solid of revolution.

Example 6.2.3. Find the volume of the solid of revolution generated when the region R
bounded by y = 4 — x? and the x-axis is revolved about the x-axis.

Solution. First, we observe that y = 4 — x? intersects the x-axis at the points (-2,0) and
(2,0). When we take the region R that lies between the curve and the x-axis on this in-
terval and revolve it about the x-axis, we get the three-dimensional solid pictured in Fig-
ure 6.2.4.

Taking a representative slice of the solid lo-
cated at a value x that lies between x = -2
and x = 2, we see that the thickness of such
a slice is Ax (which is also the height of
the cylinder-shaped slice), and that the ra-
dius of the slice is determined by the curve
y = 4 — x2. Hence, we find that

Vilice = T1(4 — xz)zAx/

since the volume of a cylinder of radius r
and height h is V = nr?h.

Figure 6.2.4: The solid of revolution in Ex-
ample 6.2.3.

Using a definite integral to sum the volumes of the representative slices, it follows that

2
Vz/ (4 — x%)? dx.

2

It is straightforward to evaluate the integral and find that the volume is V = %n.

For a solid such as the one in Example 6.2.3, where each cross-section is a cylindrical disk, we
first find the volume of a typical cross-section (noting particularly how this volume depends
on x), and then we integrate over the range of x-values through which we slice the solid
in order to find the exact total volume. Often, we will be content with simply finding the
integral that represents the sought volume; if we desire a numeric value for the integral, we
typically use a calculator or computer algebra system to find that value.

The general principle we are using to find the volume of a solid of revolution generated by
a single curve is often called the disk method.
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6.2 Using Definite Integrals to Find Volume

—— The Disk Method

If y = r(x)is anonnegative continuous function on [4, b], then the volume of the solid of
revolution generated by revolving the curve about the x-axis over this interval is given

by

b
Vz/ nr(x)? dx.

A different type of solid can emerge when two curves are involved, as we see in the following
example.

Example 6.2.5. Find the volume of the solid of revolution generated when the finite region
R that lies between y = 4 — x?> and y = x + 2 is revolved about the x-axis.

Solution. First, we must determine where the curves y = 4 — x? and y = x + 2 intersect.
Substituting the expression for y from the second equation into the first equation, we find
that x + 2 = 4 — x2. Rearranging, it follows that

X +x-2=0,

and the solutions to this equation are x = =2 and x = 1. The curves therefore cross at (-2, 0)
and (1,1).

When we take the region R that lies between the curves and revolve it about the x-axis, we
get the three-dimensional solid pictured at left in Figure 6.2.6.

Figure 6.2.6: At left, the solid of revolution in Example 6.2.5. At right, a typical slice with
inner radius r(x) and outer radius R(x).

Immediately we see a major difference between the solid in this example and the one in
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Example 6.2.3: here, the three-dimensional solid of revolution isn't “solid” in the sense that
it has open space in its center. If we slice the solid perpendicular to the axis of revolution,
we observe that in this setting the resulting representative slice is not a solid disk, but rather
a washer, as pictured at right in Figure 6.2.6. Moreover, at a given location x between x = -2
and x = 1, the small radius r(x) of the inner circle is determined by the curve y = x + 2, so
r(x) = x + 2. Similarly, the big radius R(x) comes from the function y = 4 — x2, and thus
R(x) =4 —x2.

Thus, to find the volume of a representative slice, we compute the volume of the outer disk
and subtract the volume of the inner disk. Since

nR(x)*Ax — tr(x)?Ax = n[R(x)? — r(x)*]Ax,
it follows that the volume of a typical slice is

Vilice = T[(4 - X2)2 —(x+ 2)2]Ax

Hence, using a definite integral to sum the volumes of the respective slices across the inte-
gral, we find that

V= /1 n[(4 — x?)? = (x + 2)*] dx.

2

Evaluating the integral, the volume of the solid of revolutionis V = 1%

The general principle we are using to find the volume of a solid of revolution generated by
a single curve is often called the washer method.

—— The Washer Method

If y = R(x) and y = r(x) are nonnegative continuous functions on [a, b] that satisfy
R(x) = r(x) for all x in [a, b], then the volume of the solid of revolution generated by
revolving the region between them about the x-axis over this interval is given by

b
V= / n[R(x)? — r(x)?] dx.

Activity 6.2.2. In each of the following questions, draw a careful, labeled sketch of the
region described, as well as the resulting solid that results from revolving the region
about the stated axis. In addition, draw a representative slice and state the volume of
that slice, along with a definite integral whose value is the volume of the entire solid. It
is not necessary to evaluate the integrals you find.

a. The region S bounded by the x-axis, the curve y = vx, and the line x = 4; revolve
S about the x-axis.

b. The region S bounded by the y-axis, the curve y = v/x, and the line y = 2; revolve
S about the x-axis.

348
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c. The finite region S bounded by the curves y = y/x and y = x3; revolve S about the
x-axis.

d. The finite region S bounded by the curves y = 2x? + 1 and y = x? + 4; revolve S
about the x-axis.

e. The region S bounded by the y-axis, the curve y = V/x, and the line y = 2; revolve
S about the y-axis. How is this problem different from the one posed in part (b)?

6.2.2 Revolving about the y-axis

As seen in Activity 6.2.2, problem (e), the problem changes considerably when we revolve
a given region about the y-axis. Foremost, this is due to the fact that representative slices
now have thickness Ay, which means that it becomes necessary to integrate with respect to
y. Let’s consider a particular example to demonstrate some of the key issues.

Example 6.2.7. Find the volume of the solid of revolution generated when the finite region
R that lies between y = vx and y = x* is revolved about the y-axis.

Solution. We observe that these two curves intersect when x = 1, hence at the point (1, 1).
When we take the region R that lies between the curves and revolve it about the y-axis, we
get the three-dimensional solid pictured at left in Figure 6.2.8.

Figure 6.2.8: At left, the solid of revolution in Example 6.2.7. At right, a typical slice with
inner radius r(y) and outer radius R(y).

Now, it is particularly important to note that the thickness of a representative slice is Ay,
and that the slices are only cylindrical washers in nature when taken perpendicular to the
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y-axis. Hence, we envision slicing the solid horizontally, starting at y = 0 and proceeding up
to y = 1. Because the inner radius is governed by the curve y = /x, but from the perspective
that x is a function of y, we solve for x and get x = y* = r(y). In the same way, we need to
view the curve y = x* (which governs the outer radius) in the form where x is a function of
y, and hence x = +fy. Therefore, we see that the volume of a typical slice is

Viice = T[R(y)? — r(y)?] = n[¥7° — (y*)P1Ay.

Using a definite integral to sum the volume of all the representative slices from y = 0 to
y =1, the total volume is

' //yo n [ - (2] dy.

It is straightforward to evaluate the integral and find that V = % .

Activity 6.2.3. In each of the following questions, draw a careful, labeled sketch of the
region described, as well as the resulting solid that results from revolving the region
about the stated axis. In addition, draw a representative slice and state the volume of
that slice, along with a definite integral whose value is the volume of the entire solid. It
is not necessary to evaluate the integrals you find.

a. The region S bounded by the y-axis, the curve y = V/x, and the line y = 2; revolve
S about the y-axis.

b. The region S bounded by the x-axis, the curve y = V/x, and the line x = 4; revolve
S about the y-axis.

c. The finite region S in the first quadrant bounded by the curves y = 2x and y = x3;
revolve S about the x-axis.

d. The finite region S in the first quadrant bounded by the curves y = 2x and y = x%;
revolve S about the y-axis.

e. The finite region S bounded by the curves x = (y — 1)2and y = x — 1; revolve S
about the y-axis

6.2.3 Revolving about horizontal and vertical lines other than the
coordinate axes

Just as we can revolve about one of the coordinate axes (y = 0 or x = 0), it is also possible
to revolve around any horizontal or vertical line. Doing so essentially adjusts the radii of
cylinders or washers involved by a constant value. A careful, well-labeled plot of the solid of
revolution will usually reveal how the different axis of revolution affects the definite integral
we set up. Again, an example is instructive.
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6.2 Using Definite Integrals to Find Volume

Example 6.2.9. Find the volume of the solid of revolution generated when the finite region
S that lies between y = x? and y = x is revolved about the line y = —1.

Solution.

Graphing the region between the two
curves in the first quadrant between their Y
points of intersection ((0, 0) and (1, 1)) and
then revolving the region about the line y =

-1, we see the solid shown in Figure 6.2.10. =
Each slice of the solid perpendicular to the

axis of revolution is a washer, and the radii

of each washer are governed by the curves —

y = x> and y = x. But we also see that
there is one added change: the axis of rev-
olution adds a fixed length to each radius.
In particular, the inner radius of a typical
slice, 7(x), is given by r(x) = x2 + 1, while
the outer radius is R(x) = x + 1.

Figure 6.2.10: The solid of revolution de-
scribed in Example 6.2.9.

Therefore, the volume of a typical slice is

Vilice = T[R(x)? = r(x)*]Ax = 7t [(x + 1)* = (x? + 1)?] Ax.

Finally, we integrate to find the total volume, and

1
V:/0 mf(x +1)% = (x* + 1) dx:%n.

Activity 6.2.4. In each of the following questions, draw a careful, labeled sketch of the
region described, as well as the resulting solid that results from revolving the region
about the stated axis. In addition, draw a representative slice and state the volume of
that slice, along with a definite integral whose value is the volume of the entire solid. It
is not necessary to evaluate the integrals you find. For each prompt, use the finite region
S in the first quadrant bounded by the curves y = 2x and y = x°.

a. Revolve S about the line y = -2. c. Revolve S about the line x = —1.

b. Revolve S about the line y = 4. d. Revolve S about the line x = 5.
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Chapter 6 Using Definite Integrals

Summary

¢ We can use a definite integral to find the volume of a three-dimensional solid of revo-
lution that results from revolving a two-dimensional region about a particular axis by
taking slices perpendicular to the axis of revolution which will then be circular disks
or washers.

e If we revolve about a vertical line and slice perpendicular to that line, then our slices
are horizontal and of thickness Ay. This leads us to integrate with respect to y, as
opposed to with respect to x when we slice a solid vertically.

¢ If we revolve about a line other than the x- or y-axis, we need to carefully account for
the shift that occurs in the radius of a typical slice. Normally, this shift involves taking
a sum or difference of the function along with the constant connected to the equation
for the horizontal or vertical line; a well-labeled diagram is usually the best way to
decide the new expression for the radius.

Exercises

1. The region bounded by y = ¢2*,y = 0,x = =2, x = 0 is rotated around the x-axis. Find
the volume.

volume = ‘

2. Find the volume of the solid obtained by rotating the region in the first quadrant bounded
by y = x%, y = 1, and the y-axis around the y-axis.

Volume = ‘ ‘

3. Find the volume of the solid obtained by rotating the region in the first quadrant bounded
by y = x%, y = 1, and the y-axis around the x-axis.

Volume = ‘ ‘

4. Find the volume of the solid obtained by rotating the region in the first quadrant bounded
by y = x%, y = 1, and the y-axis about the line y = —5.

Volume = ‘ ‘

5. Find the volume of the solid obtained by rotating the region bounded by the curves

about the line y = 4.

Answer:

6. Find the volume of the solid obtained by rotating the region bounded by the given curves
about the line x = -5
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Answer:

7. Consider the curve f(x) = 3cos(’fl—3) and the portion of its graph that lies in the first
quadrant between the y-axis and the first positive value of x for which f(x) = 0. Let R
denote the region bounded by this portion of f, the x-axis, and the y-axis.

a.

b.

Set up a definite integral whose value is the exact arc length of f that lies along the
upper boundary of R. Use technology appropriately to evaluate the integral you find.

Set up a definite integral whose value is the exact area of R. Use technology appropri-
ately to evaluate the integral you find.

Suppose that the region R is revolved around the x-axis. Set up a definite integral
whose value is the exact volume of the solid of revolution that is generated. Use tech-
nology appropriately to evaluate the integral you find.

Suppose instead that R is revolved around the y-axis. If possible, set up an integral
expression whose value is the exact volume of the solid of revolution and evaluate the
integral using appropriate technology. If not possible, explain why.

8. Consider the curves given by y = sin(x) and y = cos(x). For each of the following prob-
lems, you should include a sketch of the region/solid being considered, as well as a labeled
representative slice.

a.

Sketch the region R bounded by the y-axis and the curves y = sin(x) and y = cos(x)
up to the first positive value of x at which they intersect. What is the exact intersection
point of the curves?

Set up a definite integral whose value is the exact area of R.

c. Set up a definite integral whose value is the exact volume of the solid of revolution

generated by revolving R about the x-axis.

Set up a definite integral whose value is the exact volume of the solid of revolution
generated by revolving R about the y-axis.

Set up a definite integral whose value is the exact volume of the solid of revolution
generated by revolving R about the line y = 2.

Set up a definite integral whose value is the exact volume of the solid of revolution
generated by revolving R about the x = -1.

9. Consider the finite region R that is bounded by the curves y = 1+ 3(x—2)%, y = 12, and
x=0.

a.

b.

Determine a definite integral whose value is the area of the region enclosed by the two
curves.

Find an expression involving one or more definite integrals whose value is the volume
of the solid of revolution generated by revolving the region R about the line y = —1.

Determine an expression involving one or more definite integrals whose value is the
volume of the solid of revolution generated by revolving the region R about the y-axis.

Find an expression involving one or more definite integrals whose value is the perime-
ter of the region R.
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6.3 Density, Mass, and Center of Mass

Motivating Questions

* How are mass, density, and volume related?
e How is the mass of an object with varying density computed?

* What is is the center of mass of an object, and how are definite integrals used to com-
pute it?

We have seen in several different circumstances how studying the units on the integrand and
variable of integration enables us to better understand the meaning of a definite integral.
For instance, if v(t) is the velocity of an object moving along an axis, measured in feet per
second, while ¢ measures time in seconds, then both the definite integral and its Riemann

sum approximation,
b n
/ o(t)dt ~ Z o(t)At,
a i=1

have their overall units given by the product of the units of v(t) and ¢:
(feet/sec) - (sec) = feet.

Thus, |, b

, 0(t)dt measures the total change in position (in feet) of the moving object.

This type of unit analysis will be particularly helpful to us in what follows. To begin, in the
following preview activity we consider two different definite integrals where the integrand
is a function that measures how a particular quantity is distributed over a region and think
about how the units on the integrand and the variable of integration indicate the meaning
of the integral.

Preview Activity 6.3.1. In each of the following scenarios, we consider the distribution
of a quantity along an axis.

a. Suppose that the function c(x) = 200 + 100e ~01x models the density of traffic on
a straight road, measured in cars per mile, where x is number of miles east of a

major interchange, and consider the definite integral fOZ(ZOO +100e~91%) dx.
i. What are the units on the product c(x) - Ax?

ii. What are the units on the definite integral and its Riemann sum approxima-

tion given by
2 n
c(x)dx ~ c(xi)Ax?
/ 2,

i=1
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iii. Evaluate the definite integral [ c(x)dx = [’ (200 + 100e~01%) dx and write
one sentence to explain the meaning of the value you find.

b. On a 6 foot long shelf filled with books, the function B models the distribution of
the weight of the books, in pounds per inch, where x is the number of inches from
the left end of the bookshelf. Let B(x) be given by the rule B(x) = 0.5 + —.

(x+1)2°

i. What are the units on the product B(x) - Ax?

ii. What are the units on the definite integral and its Riemann sum approxima-

tion given by
36 n
B(x)dx =~ B(x;)Ax?

iii. Evaluate the definite integral fo72 B(x)dx = 072 (0.5 + ﬁ) dx and write
one sentence to explain the meaning of the value you find.

6.3.1 Density

The mass of a quantity, typically measured in metric units such as grams or kilograms, is
a measure of the amount of a quantity. In a corresponding way, the density of an object
measures the distribution of mass per unit volume. For instance, if a brick has mass 3 kg
and volume 0.002 m?, then the density of the brick is

3k k
78 _1500-8,
0.002m3 m3

As another example, the mass density of water is 1000 kg/m?>. Each of these relationships
demonstrate the following general principle.

For an object of constant density d, with mass m and volume V,

d:%,orm:d-v.

But what happens when the density is not constant?

If we consider the formula m = d - V, it is reminiscent of two other equations that we have
used frequently in recent work: for a body moving in a fixed direction, distance = rate - time,
and, for a rectangle, its area is given by A = | - w. These formulas hold when the principal
quantities involved, such as the rate the body moves and the height of the rectangle, are
constant. When these quantities are not constant, we have turned to the definite integral
for assistance. The main idea in each situation is that by working with small slices of the
quantity that is varying, we can use a definite integral to add up the values of small pieces
on which the quantity of interest (such as the velocity of a moving object) are approximately
constant.
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For example, in the setting where we have a nonnegative velocity function that is not con-
stant, over a short time interval At we know that the distance traveled is approximately
v(t)At, since v(t) is almost constant on a small interval, and for a constant rate, distance
= rate - time. Similarly, if we are thinking about the area under a nonnegative function f
whose value is changing, on a short interval Ax the area under the curve is approximately
the area of the rectangle whose height is f(x) and whose width is Ax: f(x)Ax. Both of these
principles are represented visually in Figure 6.3.1.

ft/sec y

sec X

A\t Ax

Figure 6.3.1: At left, estimating a small amount of distance traveled, v(¢)At, and at right, a
small amount of area under the curve, f(x)Ax.

In a similar way, if we consider the setting where the density of some quantity is not constant,
the definite integral enables us to still compute the overall mass of the quantity. Throughout,
we will focus on problems where the density varies in only one dimension, say along a single
axis, and think about how mass is distributed relative to location along the axis.

Let’s consider a thin bar of length b that is situated so its left end is at the origin, where x = 0,
and assume that the bar has constant cross-sectional area of 1 cm?. We let the function p(x)
represent the mass density function of the bar, measured in grams per cubic centimeter.
That is, given a location x, p(x) tells us approximately how much mass will be found in a
one-centimeter wide slice of the bar at x.

Ax

Figure 6.3.2: A thin bar of constant cross-sectional area 1 cm? with density function p(x)
3
g/cm?’.
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6.3 Density, Mass, and Center of Mass

If we now consider a thin slice of the bar of width Ax, as pictured in Figure 6.3.2, the volume
of such a slice is the cross-sectional area times Ax. Since the cross-sections each have constant
area 1 cm?, it follows that the volume of the slice is 1Ax cm3. Moreover, since mass is the
product of density and volume (when density is constant), we see that the mass of this given
slice is approximately

massslice ~ p(x) % “1Ax em® = p(x) - Ax g.

Hence, for the corresponding Riemann sum (and thus for the integral that it approximates),

” p(xi)Ax ~ bP(x)dX,
0
i=1

we see that these quantities measure the mass of the bar between 0 and b. (The Riemann
sum is an approximation, while the integral will be the exact mass.)

At this point, we note that we will be focused primarily on situations where mass is dis-
tributed relative to horizontal location, x, for objects whose cross-sectional area is constant.
In that setting, it makes sense to think of the density function p(x) with units “mass per unit
length,” such as g/cm. Thus, when we compute p(x) - Ax on a small slice Ax, the resulting
units are g/cm - cm = g, which thus measures the mass of the slice. The general principle
follows.

For an object of constant cross-sectional area whose mass is distributed along a single
axis according to the function p(x) (wWhose units are units of mass per unit of length),
the total mass, M of the object between x = a and x = b is given by

M = /ah p(x)dx.

Activity 6.3.2. Consider the following situations in which mass is distributed in a non-
constant manner.

a. Suppose that a thin rod with constant cross-sectional area of 1 cm? has its mass
distributed according to the density function p(x) = 2¢7%2*, where x is the distance
in cm from the left end of the rod, and the units on p(x) are g/cm. If the rod is 10
cm long, determine the exact mass of the rod.

b. Consider the cone that has a base of radius 4 m and a height of 5 m. Picture the
cone lying horizontally with the center of its base at the origin and think of the
cone as a solid of revolution.

i. Write and evaluate a definite integral whose value is the volume of the cone.

ii. Next, suppose that the cone has uniform density of 800 kg/m?>. What is the
mass of the solid cone?

iii. Now suppose that the cone’s density is not uniform, but rather that the cone
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is most dense at its base. In particular, assume that the density of the cone is
uniform across cross sections parallel to its base, but that in each such cross
section that is a distance x units from the origin, the density of the cross sec-
tion is given by the function p(x) = 400+ 12&?2 , measured in kg/m>. Determine
and evaluate a definite integral whose value is the mass of this cone of non-
uniform density. Do so by first thinking about the mass of a given slice of the
cone x units away from the base; remember that in such a slice, the density

will be essentially constant.

c. Leta thin rod of constant cross-sectional area 1 cm? and length 12 cm have its mass
be distributed according to the density function p(x) = 21—5(x - 15)?, measured in
g/cm. Find the exact location z at which to cut the bar so that the two pieces will
each have identical mass.

6.3.2 Weighted Averages

The concept of an average is a natural one, and one that we have used repeatedly as part of
our understanding of the meaning of the definite integral. If we have n values a1, a, ..., a,,
we know that their average is given by

a+ax+---+ay
n 7

and for a quantity being measured by a function f on an interval [a, b], the average value of
the quantity on [a, b] is
1 b
m / f(X) dx.
a
As we continue to think about problems involving the distribution of mass, it is natural to

consider the idea of a weighted average, where certain quantities involved are counted more
in the average.

A common use of Weighted averages class grade grade points credits
is in the computation of a student’s chemistry B+ 3.3 5
GPA, where grades are weighted ac-

' ) , calculus A- 3.7 4
cording to credit hours. Let’s con- hist B >y 3
sider the scenario in Table 6.3.3. 1story :

psychology ~ B- 2.7 3

Table 6.3.3: A college student’s semester grades.

If all of the classes were of the same weight (i.e., the same number of credits), the student’s
GPA would simply be calculated by taking the average

33+3.7+27+27
1 =

3.1.
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But since the chemistry and calculus courses have higher weights (of 5 and 4 credits respec-
tively), we actually compute the GPA according to the weighted average

33:-5+37-4+27-3+27-3

5+4+3+3 = 3.16.

The weighted average reflects the fact that chemistry and calculus, as courses with higher
credits, have a greater impact on the students’ grade point average. Note particularly that in
the weighted average, each grade gets multiplied by its weight, and we divide by the sum
of the weights.

In the following activity, we explore further how weighted averages can be used to find the
balancing point of a physical system.

Activity 6.3.3. For quantities of equal weight, such as two children on a teeter-totter, the
balancing point is found by taking the average of their locations. When the weights of
the quantities differ, we use a weighted average of their respective locations to find the
balancing point.

a. Suppose that a shelf is 6 feet long, with its left end situated at x = 0. If one book of
weight 1 1b is placed at x1 = 0, and another book of weight 1 Ib is placed at x; = 6,
what is the location of X, the point at which the shelf would (theoretically) balance
on a fulcrum?

b. Now, say that we place four books on the shelf, each weighing 1 1b: at x; = 0, at
X2 =2, at x3 =4, and at x4 = 6. Find ¥, the balancing point of the shelf.

c. How does x change if we change the location of the third book? Say the locations
of the 1-Ib books are x;1 =0, x, =2, x3 = 3, and x4 = 6.

d. Next, suppose that we place four books on the shelf, but of varying weights: at
x1 = 0 a 2-1b book, at xo = 2 a 3-Ib book, at x3 = 4 a 1-Ib book, and at x4 = 6 a 1-Ib
book. Use a weighted average of the locations to find ¥, the balancing point of the
shelf. How does the balancing point in this scenario compare to that found in (b)?

e. What happens if we change the location of one of the books? Say that we keep
everything the same in (d), except that x3 = 5. How does x change?

f. What happens if we change the weight of one of the books? Say that we keep
everything the same in (d), except that the book at x3 = 4 now weighs 2 Ibs. How
does x change?

g. Experiment with a couple of different scenarios of your choosing where you move
one of the books to the left, or you decrease the weight of one of the books.

h. Write a couple of sentences to explain how adjusting the location of one of the
books or the weight of one of the books affects the location of the balancing point
of the shelf. Think carefully here about how your changes should be considered
relative to the location of the balancing point x of the current scenario.
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6.3.3 Center of Mass

In Activity 6.3.3, we saw that the balancing point of a system of point-masses! (such as books
on a shelf) is found by taking a weighted average of their respective locations. In the activity,
we were computing the center of mass of a system of masses distributed along an axis, which
is the balancing point of the axis on which the masses rest.

— Center of Mass (point-masses)

For a collection of n masses my, ..., m, that are distributed along a single axis at the
locations x1, .. ., X, the center of mass is given by

X1mq + Xompy + -+ Xymy
my+mg+-c+my,

X =

What if we instead consider a thin bar over which density is distributed continuously? If
the density is constant, it is obvious that the balancing point of the bar is its midpoint. But
if density is not constant, we must compute a weighted average. Let’s say that the function
p(x) tells us the density distribution along the bar, measured in g/cm. If we slice the bar
into small sections, this enables us to think of the bar as holding a collection of adjacent
point-masses. For a slice of thickness Ax at location x;, note that the mass of the slice, m;,
satisfies m; = p(x;)Ax.

Taking n slices of the bar, we can approximate its center of mass by

X1 p(x1)AxX + x2 - p(x2)AX + -+ + x5 - p(xy)Ax
p(x1)Ax + p(x2)Ax + - - - + p(x,)Ax

X =

Rewriting the sums in sigma notation, it follows that

Yiq xi - p(xi)Ax
Yimq p(xi)Ax

X =

(6.3.1)

Moreover, it is apparent that the greater the number of slices, the more accurate our esti-
mate of the balancing point will be, and that the sums in Equation (6.3.1) can be viewed as
Riemann sums. Hence, in the limit as n — oo, we find that the center of mass is given by the
quotient of two integrals.

—— Center of Mass (continuous mass distribution)

For a thin rod of density p(x) distributed along an axis from x = a to x = b, the center
of mass of the rod is given by

fab xp(x)dx
fub p(x)dx .

X =

In the activity, we actually used weight rather than mass. Since weight is proportional to mass, the computa-
tions for the balancing point result in the same location regardless of whether we use weight or mass. The
gravitational constant is present in both the numerator and denominator of the weighted average.
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Note particularly that the denominator of x is the mass of the bar, and that this quotient of
integrals is simply the continuous version of the weighted average of locations, x, along the
bar.

Activity 6.3.4. Consider a thin bar of length 20 cm whose density is distributed accord-
ing to the function p(x) = 4 + 0.1x, where x = 0 represents the left end of the bar.
Assume that p is measured in g/cm and x is measured in cm.

a. Find the total mass, M, of the bar.

b. Without doing any calculations, do you expect the center of mass of the bar to be
equal to 10, less than 10, or greater than 10? Why?

c. Compute ¥, the exact center of mass of the bar.

d. What is the average density of the bar?

e. Now consider a different density function, given by p(x) = 4¢%920732% also for a

bar of length 20 cm whose left end is at x = 0. Plot both p(x) and p(x) on the same
axes. Without doing any calculations, which bar do you expect to have the greater
center of mass? Why?

f. Compute the exact center of mass of the bar described in (e) whose density func-
tion is p(x) = 4€%020732¥ Check the result against the prediction you made in (e).

Summary

¢ For an object of constant density D, with volume V and mass m, we know that m =
D-V.

e If an object with constant cross-sectional area (such as a thin bar) has its density dis-
tributed along an axis according to the function p(x), then we can find the mass of the
object between x = g and x = b by

b
m= / p(x)dx.
a

¢ For a system of point-masses distributed along an axis, say mj,...,m, at locations
X1,..., %y, the center of mass, ¥, is given by the weighted average

n
— Z,‘:1 XM
x = n—.
i=1 Mi

If instead we have mass continuously distributed along an axis, such as by a density
function p(x) for a thin bar of constant cross-sectional area, the center of mass of the
portion of the bar between x = a and x = b is given by

j;b xp(x)dx
I pydx

X =
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In each situation, x represents the balancing point of the system of masses or of the
portion of the bar.

Exercises

1. A rod has length 3 meters. At a distance x meters from its left end, the density of the rod
vk g given by 0(x) = 4 4+ 5x g/m.

(a) Complete the Riemann sum for the total mass of the rod (use Dx in place of Ax):

mass = L ‘ ‘
(b) Convert the Riemann sum to an integral and find the exact mass.

mass —| |
(include units)

2. A rod with density 6(x) = 7 + sin(x) lies on the x-axis between x = 0 and x = 7. Find the

week  mass and center of mass of the rod.

mass = ‘

center of mass =

3. Suppose that the density of cars (in cars per mile) down a 20-mile stretch of the Pennsyl-

"™ vania Turnpike is approximated by 6(x) = 350 (2 + sin (4\/ x + 0.175)) , at a distance x miles
from the Breezewood toll plaza. Sketch a graph of this function for 0 < x < 20.
(a) Complete the Riemann sum that approximates the total number of cars on this 20-mile
stretch (use Dx instead of Ax):

Number = L. ‘
(b) Find the total number of cars on the 20-mile stretch.
Number = ‘

4. A point mass of 1 grams located 6 centimeters to the left of the origin and a point mass
v of 3 grams located 7 centimeters to the right of the origin are connected by a thin, light rod.

Find the center of mass of the system.

Center of Mass =
[Choose: to the left of the origin | to the right of the origin | (at the origin)]
(include units in your center of mass)

5. Let a thin rod of length a have density distribution function p(x) = 10e~%1*, where x is
measured in cm and p in grams per centimeter.

a. If the mass of the rod is 30 g, what is the value of a?

b. For the 30g rod, will the center of mass lie at its midpoint, to the left of the midpoint,
or to the right of the midpoint? Why?

c. For the 30g rod, find the center of mass, and compare your prediction in (b).

d. At what value of x should the 30g rod be cut in order to form two pieces of equal mass?
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6. Consider two thin bars of constant cross-sectional area, each of length 10 cm, with respec-

tive mass density functions p(x) =

a.
b.

C.

1

-0.1x
1+x2 :

and p(x) =e

Find the mass of each bar.
Find the center of mass of each bar.
Now consider a new 10 cm bar whose mass density function is f(x) = p(x) + p(x).

a. Explain how you can easily find the mass of this new bar with little to no additional
work.

b. Similarly, compute fow x f(x)dx as simply as possible, in light of earlier computa-
tions.

c. True or false: the center of mass of this new bar is the average of the centers of
mass of the two earlier bars. Write at least one sentence to say why your conclusion
makes sense.

7. Consider the curve given by y = f(x) = 2xe™1%% + (30 — x)e025(30-%),

a.

Plot this curve in the window x = 0...30, y = 0...3 (with constrained scaling so the
units on the x and y axis are equal), and use it to generate a solid of revolution about
the x-axis. Explain why this curve could generate a reasonable model of a baseball bat.

Let x and y be measured in inches. Find the total volume of the baseball bat generated
by revolving the given curve about the x-axis. Include units on your answer

Suppose that the baseball bat has constant weight density, and that the weight density
is 0.6 ounces per cubic inch. Find the total weight of the bat whose volume you found
in (b).

Because the baseball bat does not have constant cross-sectional area, we see that the
amount of weight concentrated at a location x along the bat is determined by the vol-
ume of a slice at location x. Explain why we can think about the function p(x) =
0.67 f(x)? (where f is the function given at the start of the problem) as being the weight
density function for how the weight of the baseball bat is distributed from x = 0 to
x = 30.

Compute the center of mass of the baseball bat.
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6.4 Physics Applications: Work, Force, and Pressure

Motivating Questions
¢ How do we measure the work accomplished by a varying force that moves an object a
certain distance?
¢ What is the total force exerted by water against a dam?

* How are both of the above concepts and their corresponding use of definite integrals
similar to problems we have encountered in the past involving formulas such as “dis-
tance equals rate times time” and “mass equals density times volume”?

a NAx

Figure 6.4.1: Three settings where we compute the accumulation of a varying quantity: the
area under y = f(x), the distance traveled by an object with velocity y = v(t), and the mass
of a bar with density function y = p(x).

In our work to date with the definite integral, we have seen several different circumstances
where the integral enables us to measure the accumulation of a quantity that varies, pro-
vided the quantity is approximately constant over small intervals. For instance, based on
the fact that the area of a rectangle is A = [ - w, if we wish to find the area bounded by
a nonnegative curve y = f(x) and the x-axis on an interval [a, b], a representative slice of
width Ax has area Agjice = f(x)Ax, and thus as we let the width of the representative slice
tend to zero, we find that the exact area of the region is

A= /ubf(x)dx.

In a similar way, if we know that the velocity of a moving object is given by the function
y = v(t), and we wish to know the distance the object travels on an interval [a, b] where v(t)
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is nonnegative, we can use a definite integral to generalize the fact that d = r - t when the
rate, r, is constant. More specifically, on a short time interval At, v(t) is roughly constant,
and hence for a small slice of time, dgjice = v(t)At, and so as the width of the time interval
At tends to zero, the exact distance traveled is given by the definite integral

d= /ﬂb v(t)dt.

Finally, when we recently learned about the mass of an object of non-constant density, we
saw that since M = D - V (mass equals density times volume, provided that density is
constant), if we can consider a small slice of an object on which the density is approximately
constant, a definite integral may be used to determine the exact mass of the object. For
instance, if we have a thin rod whose cross sections have constant density, but whose density
is distributed along the x axis according to the function y = p(x), it follows that for a small
slice of the rod that is Ax thick, Mgice = p(x)Ax. In the limit as Ax — 0, we then find that
the total mass is given by

M = /ub p(x)dx.

Note that all three of these situations are similar in that we have abasicrule (A = [-w,d = r-t,
M = D - V) where one of the two quantities being multiplied is no longer constant; in each,
we consider a small interval for the other variable in the formula, calculate the approximate
value of the desired quantity (area, distance, or mass) over the small interval, and then use a
definite integral to sum the results as the length of the small intervals is allowed to approach
zero. It should be apparent that this approach will work effectively for other situations where
we have a quantity of interest that varies.

We next turn to the notion of work: from physics, a basic principal is that work is the product
of force and distance. For example, if a person exerts a force of 20 pounds to lift a 20-pound
weight 4 feet off the ground, the total work accomplished is

W =F-d=20-4 =80 foot-pounds.

If force and distance are measured in English units (pounds and feet), then the units on work
are foot-pounds. If instead we work in metric units, where forces are measured in Newtons
and distances in meters, the units on work are Newton-meters.

Of course, the formula W = F - d only applies when the force is constant while it is exerted
over the distance d. In Preview Activity 6.4.1, we explore one way that we can use a definite
integral to compute the total work accomplished when the force exerted varies.

Preview Activity 6.4.1. A bucket is being lifted from the bottom of a 50-foot deep well;
its weight (including the water), B, in pounds at a height / feet above the water is given
by the function B(h). When the bucket leaves the water, the bucket and water together
weigh B(0) = 20 pounds, and when the bucket reaches the top of the well, B(50) = 12
pounds. Assume that the bucket loses water at a constant rate (as a function of height,
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h) throughout its journey from the bottom to the top of the well.
a. Find a formula for B(h).

b. Compute the value of the product B(5)Ah, where Ah = 2 feet. Include units on
your answer. Explain why this product represents the approximate work it took
to move the bucket of water fromh =5toh =7.

c. Is the value in (b) an over- or under-estimate of the actual amount of work it took
to move the bucket from h = 5to h = 7? Why?

d. Compute the value of the product B(22)Ah, where Ah = 0.25 feet. Include units
on your answer. What is the meaning of the value you found?

e. More generally, what does the quantity Wjice = B(h)Ah measure for a given value
of h and a small positive value of Ah?

f. Evaluate the definite integral fOSO B(h)dh. What is the meaning of the value you
find? Why?

6.4.1 Work

Because work is calculated by the rule W = F - d, whenever the force F is constant, it follows
that we can use a definite integral to compute the work accomplished by a varying force. For
example, suppose that in a setting similar to the problem posed in Preview Activity 6.4.1,
we have a bucket being lifted in a 50-foot well whose weight at height & is given by B(h) =
12 + 87010,

In contrast to the problem in the preview activity, this bucket is not leaking at a constant
rate; but because the weight of the bucket and water is not constant, we have to use a definite
integral to determine the total work that results from lifting the bucket. Observe that at a
height 1 above the water, the approximate work to move the bucket a small distance Ah is

Watice = B(h)AR = (12 + 8¢ 1 ARL.

Hence, if we let Ah tend to 0 and take the sum of all of the slices of work accomplished on
these small intervals, it follows that the total work is given by

50 50
w:/ B(h)dh:/ (12 + 8¢~y dh.
0 0

While is a straightforward exercise to evaluate this integral exactly using the First Funda-
mental Theorem of Calculus, in applied settings such as this one we will typically use com-
puting technology to find accurate approximations of integrals that are of interest to us.

Here, it turns out that W = f050(12 +8¢701) dh ~ 679.461 foot-pounds.

Our work in Preview Activity 6.4.1 and in the most recent example above employs the fol-
lowing important general principle.
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For an object being moved in the positive direction along an axis, x, by a force F(x), the
total work to move the object from a to b is given by

W = /abF(x)dx.

Activity 6.4.2. Consider the following situations in which a varying force accomplishes
work.

a. Suppose that a heavy rope hangs over the side of a cliff. The rope is 200 feet long
and weighs 0.3 pounds per foot; initially the rope is fully extended. How much
work is required to haul in the entire length of the rope? (Hint: set up a function
F(h) whose value is the weight of the rope remaining over the cliff after / feet have
been hauled in.)

b. A leaky bucket is being hauled up from a 100 foot deep well. When lifted from
the water, the bucket and water together weigh 40 pounds. As the bucket is being
hauled upward at a constant rate, the bucket leaks water at a constant rate so that it
is losing weight at a rate of 0.1 pounds per foot. What function B(h) tells the weight
of the bucket after the bucket has been lifted & feet? What is the total amount of
work accomplished in lifting the bucket to the top of the well?

c. Now suppose that the bucket in (b) does not leak at a constant rate, but rather that
its weight at a height & feet above the water is given by B(h) = 25+ 15¢ %" What
is the total work required to lift the bucket 100 feet? What is the average force
exerted on the bucket on the interval # = 0 to h = 100?

d. From physics, Hooke’s Law for springs states that the amount of force required to
hold a spring that is compressed (or extended) to a particular length is proportion-
ate to the distance the spring is compressed (or extended) from its natural length.
That is, the force to compress (or extend) a spring x units from its natural length is
F(x) = kx for some constant k (which is called the spring constant.) For springs, we
choose to measure the force in pounds and the distance the spring is compressed
in feet. Suppose that a force of 5 pounds extends a particular spring 4 inches (1/3
foot) beyond its natural length.

i. Use the given fact that F(1/3) = 5 to find the spring constant k.

ii. Find the work done to extend the spring from its natural length to 1 foot
beyond its natural length.

iii. Find the work required to extend the spring from 1 foot beyond its natural
length to 1.5 feet beyond its natural length.

367



Chapter 6 Using Definite Integrals

6.4.2 Work: Pumping Liquid from a Tank

In certain geographic locations where the water table is high, residential homes with base-
ments have a peculiar feature: in the basement, one finds a large hole in the floor, and in the
hole, there is water. For example, in Figure 6.4.2 we see a sump crock!. Essentially, a sump
crock provides an outlet for water that may build up beneath the basement floor; of course,
as that water rises, it is imperative that the water not flood the basement.

Hence, in the crock we see the presence of a
floating pump that sits on the surface of the
water: this pump is activated by elevation,
so when the water level reaches a particu-
lar height, the pump turns on and pumps a
certain portion of the water out of the crock,
hence relieving the water buildup beneath
the foundation. One of the questions we’d
like to answer is: how much work does a
sump pump accomplish?

#
Figure 6.4.2: A sump crock.

To that end, let’s suppose that we have a

sump crock that has the shape of a frus- y
tum of a cone, as pictured in Figure 6.4.3.
Assume that the crock has a diameter of
3 feet at its surface, a diameter of 1.5 feet
at its base, and a depth of 4 feet. In ad-
dition, suppose that the sump pump is set
up so that it pumps the water vertically up
a pipe to a drain that is located at ground
level just outside a basement window. To
accomplish this, the pump must send the
water to a location 9 feet above the surface +
of the sump crock.

.(4,0.75)

Figure 6.4.3: A sump crock with approx-
imately cylindrical cross-sections that is 4
feet deep, 1.5 feet in diameter at its base,
and 3 feet in diameter at its top.

It turns out to be advantageous to think of the depth below the surface of the crock as being
the independent variable, so, in problems such as this one we typically let the positive x-axis

Image credit to www.warreninspect.com/basement-moisture.
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point down, and the positive y-axis to the right, as pictured in the figure. As we think about
the work that the pump does, we first realize that the pump sits on the surface of the water,
so it makes sense to think about the pump moving the water one “slice” at a time, where it
takes a thin slice from the surface, pumps it out of the tank, and then proceeds to pump the
next slice below.

For the sump crock described in this example, each slice of water is cylindrical in shape.
We see that the radius of each approximately cylindrical slice varies according to the linear
function y = f(x) that passes through the points (0, 1.5) and (4, 0.75), where x is the depth of
the particular slice in the tank; it is a straightforward exercise to find that f(x) = 1.5-0.1875x.
Now we are prepared to think about the overall problem in several steps: (a) determining
the volume of a typical slice; (b) finding the weight? of a typical slice (and thus the force that
must be exerted on it); (c) deciding the distance that a typical slice moves; and (d) computing
the work to move a representative slice. Once we know the work it takes to move one slice,
we use a definite integral over an appropriate interval to find the total work.

Consider a representative cylindrical slice that sits on the surface of the water at a depth of x
feet below the top of the crock. It follows that the approximate volume of that slice is given
by

Vilice = T f(x)*Ax = 11(1.5 — 0.1875x)*Ax.

Since water weighs 62.4 Ib/ft?, it follows that the approximate weight of a representative
slice, which is also the approximate force the pump must exert to move the slice, is

Faice = 62.4 - Vgice = 62.47(1.5 — 0.1875x)*Ax.

Because the slice is located at a depth of x feet below the top of the crock, the slice being
moved by the pump must move x feet to get to the level of the basement floor, and then, as
stated in the problem description, be moved another 9 feet to reach the drain at ground level
outside a basement window. Hence, the total distance a representative slice travels is

dslice =x+09.

Finally, we note that the work to move a representative slice is given by
Wilice = Fslice * dslice = 62.41(1.5 — 0.1875x)*Ax - (x +9),
since the force to move a particular slice is constant.

We sum the work required to move slices throughout the tank (from x = 0 to x = 4), let
Ax — 0, and hence

4
W= / 62.47(1.5 — 0.1875x)*(x + 9) dx,
0

which, when evaluated using appropriate technology, shows that the total work is W =
10970.57 foot-pounds.

The preceding example demonstrates the standard approach to finding the work required
to empty a tank filled with liquid. The main task in each such problem is to determine

?We assume that the weight density of water is 62.4 pounds per cubic foot.
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the volume of a representative slice, followed by the force exerted on the slice, as well as
the distance such a slice moves. In the case where the units are metric, there is one key
difference: in the metric setting, rather than weight, we normally first find the mass of a slice.
For instance, if distance is measured in meters, the mass density of water is 1000 kg/ m3. In
that setting, we can find the mass of a typical slice (in kg). To determine the force required
to move it, we use F = ma, where m is the object’s mass and a is the gravitational constant

9.81 N/kg>. That is, in metric units, the weight density of water is 9810 N/m?.
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Activity 6.4.3. In each of the following problems, determine the total work required to
accomplish the described task. In parts (b) and (c), a key step is to find a formula for a
function that describes the curve that forms the side boundary of the tank.

Figure 6.4.4: A trough with triangular ends, as described in Activity 6.4.3, part (c).

a. Consider a vertical cylindrical tank of radius 2 meters and depth 6 meters. Suppose
the tank is filled with 4 meters of water of mass density 1000 kg/m?, and the top
1 meter of water is pumped over the top of the tank.

b. Consider a hemispherical tank with a radius of 10 feet. Suppose that the tank is
full to a depth of 7 feet with water of weight density 62.4 pounds/ft?, and the top

5 feet of water are pumped out of the tank to a tanker truck whose height is 5 feet

above the top of the tank.

c. Consider a trough with triangular ends, as pictured in Figure 6.4.4, where the tank

is 10 feet long, the top is 5 feet wide, and the tank is 4 feet deep. Say that the trough
is full to within 1 foot of the top with water of weight density 62.4 pounds/ft’, and
a pump is used to empty the tank until the water remaining in the tank is 1 foot
deep.
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6.4.3 Force due to Hydrostatic Pressure

When a dam is built, it is imperative to for engineers to understand how much force water
will exert against the face of the dam. The first thing we realize is the force exerted by the
fluid is related to the natural concept of pressure. The pressure a force exerts on a region
is measured in units of force per unit of area: for example, the air pressure in a tire is often
measured in pounds per square inch (PSI). Hence, we see that the general relationship is
given by

P=—,0orF=P-A,

|

where P represents pressure, F represents force, and A the area of the region being consid-
ered. Of course, in the equation F = PA, we assume that the pressure is constant over the
entire region A.

Most people know from experience that the deeper one dives underwater while swimming,
the greater the pressure that is exerted by the water. This is due to the fact that the deeper
one dives, the more water there is right on top of the swimmer: it is the force that “column”
of water exerts that determines the pressure the swimmer experiences. To get water pressure
measured in its standard units (pounds per square foot), we say that the total water pressure
is found by computing the total weight of the column of water that lies above a region of area
1 square foot at a fixed depth. Such a rectangular column with a 1 x 1 base and a depth of d
feet has volume V = 1-1-d ft3, and thus the corresponding weight of the water overhead
is 62.4d. Since this is also the amount of force being exerted on a 1 square foot region at a
depth d feet underwater, we see that P = 62.4d (Ibs/ft?) is the pressure exerted by water at
depth d.

The understanding that P = 62.4d will tell us the pressure exerted by water at a depth of 4,
along with the fact that F = PA, will now enable us to compute the total force that water
exerts on a dam, as we see in the following example.

Example 6.4.5. Consider a trapezoid-shaped dam that is 60 feet wide at its base and 90 feet
wide at its top, and assume the dam is 25 feet tall with water that rises to within 5 feet of the
top of its face. Water weighs 62.4 pounds per cubic foot. How much force does the water
exert against the dam?

Solution. First, we sketch a picture of the dam, as shown in Figure 6.4.6. Note that, as in
problems involving the work to pump out a tank, we let the positive x-axis point down.
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+ (257 30)

Figure 6.4.6: A trapezoidal dam that is 25 feet tall, 60 feet wide at its base, 90 feet wide at its
top, with the water line 5 feet down from the top of its face.

It is essential to use the fact that pressure is constant at a fixed depth. Hence, we consider a
slice of water at constant depth on the face, such as the one shown in the figure. First, the
approximate area of this slice is the area of the pictured rectangle. Since the width of that
rectangle depends on the variable x (which represents the how far the slice lies from the top
of the dam), we find a formula for the function y = f(x) that determines one side of the face
of the dam. Since f is linear, it is straightforward to find that y = f(x) = 45— 2x. Hence, the
approximate area of a representative slice is

Aslice = 2f(x)Ax = 2(45 - %x)Ax.

At any point on this slice, the depth is approximately constant, and thus the pressure can
be considered constant. In particular, we note that since x measures the distance to the top
of the dam, and because the water rises to within 5 feet of the top of the dam, the depth of
any point on the representative slice is approximately (x — 5). Now, since pressure is given
by P = 62.4d, we have that at any point on the representative slice

Paice = 62.4(x = 5).

Knowing both the pressure and area, we can find the force the water exerts on the slice.
Using F = PA, it follows that

3
Flice = Pglice * Aslice = 62‘4(3( - 5) ' 2(45 - EX)AX.

Finally, we use a definite integral to sum the forces over the appropriate range of x-values.
Since the water rises to within 5 feet of the top of the dam, we start at x = 5 and slice all the
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way to the bottom of the dam, where x = 30. Hence,

x=30 3
F= / 62.4(x —5) - 2(45 — =x) dx.
x=5 5

Using technology to evaluate the integral, we find F ~ 1.248 X 10° pounds.

Activity 6.4.4. In each of the following problems, determine the total force exerted by
water against the surface that is described.

7

xt

Figure 6.4.7: A trough with triangular ends, as described in Activity 6.4.4, part (c).

a. Consider a rectangular dam that is 100 feet wide and 50 feet tall, and suppose that
water presses against the dam all the way to the top.

b. Consider a semicircular dam with a radius of 30 feet. Suppose that the water rises
to within 10 feet of the top of the dam.

c. Consider a trough with triangular ends, as pictured in Figure 6.4.7, where the tank
is 10 feet long, the top is 5 feet wide, and the tank is 4 feet deep. Say that the trough
is full to within 1 foot of the top with water of weight density 62.4 pounds/ft®.
How much force does the water exert against one of the triangular ends?

While there are many different formulas that we use in solving problems involving work,
force, and pressure, it is important to understand that the fundamental ideas behind these
problems are similar to several others that we’ve encountered in applications of the definite
integral. In particular, the basic idea is to take a difficult problem and somehow slice it into
more manageable pieces that we understand, and then use a definite integral to add up these
simpler pieces.
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Chapter 6 Using Definite Integrals

Summary

¢ To measure the work accomplished by a varying force that moves an object, we sub-
divide the problem into pieces on which we can use the formula W = F - 4, and then
use a definite integral to sum the work accomplished on each piece.

¢ To find the total force exerted by water against a dam, we use the formula F = P - A to
measure the force exerted on a slice that lies at a fixed depth, and then use a definite
integral to sum the forces across the appropriate range of depths.

* Because work is computed as the product of force and distance (provided force is con-
stant), and the force water exerts on a dam can be computed as the product of pressure
and area (provided pressure is constant), problems involving these concepts are sim-
ilar to earlier problems we did using definite integrals to find distance (via “distance
equals rate times time”) and mass (“mass equals density times volume”).

Exercises

1. A tank in the shape of an inverted right circular cone has height 4 meters and radius
2 meters. It is filled with 2 meters of hot chocolate. Find the work required to empty the
tank by pumping the hot chocolate over the top of the tank. The density of hot chocolate is
6 = 1080 kg/m?. Your answer must include the correct units.

Work =

2. A fuel oil tank is an upright cylinder, buried so that its circular top is 10 feet beneath
ground level. The tank has a radius of 7 feet and is 21 feet high, although the current oil
level is only 17 feet deep. Calculate the work required to pump all of the oil to the surface.
Oil weighs 501b/ft°.

Work =
(include units)

3. A rectangular swimming pool 40 ft long, 15 ft wide, and 16 ft deep is filled with water to
a depth of 15 ft. Use an integral to find the work required to pump all the water out over the

top. (Take as the density of water 6 = 62.41b/ ft3.)

Work = ‘
(include units)

4. Water in a cylinder of height 10 ft and radius 3 ft is to be pumped out. The density of

water is 62.4 Ib/ft®. Find the work required if
(a) The tank is full of water and the water is to be pumped over the top of the tank.

Work = ‘ ‘
(include units)

(b) The tank is full of water and the water must be pumped to a height 4 ft above the top of
the tank.

Work = ‘
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(include units)

(c) The depth of water in the tank is 8 ft and the water must be pumped over the top of the
tank.

Work = ‘ ‘
(include units)

5. A lobster tank in a restaurant is 1.25 m long by 1 m wide by 80 cm deep. Taking the
density of water to be 1000kg/m?, find the water forces

on the bottom of the tank: Force = ‘

on each of the larger sides of the tank: Force =

on each of the smaller sides of the tank: Force =

(include units for each, and use g = 9.8 m/ %)

6. Consider the curve f(x) = 3cos(’:1—3) and the portion of its graph that lies in the first
quadrant between the y-axis and the first positive value of x for which f(x) = 0. Let R
denote the region bounded by this portion of f, the x-axis, and the y-axis. Assume that x
and y are each measured in feet.

a. Picture the coordinate axes rotated 90 degrees clockwise so that the positive x-axis
points straight down, and the positive y-axis points to the right. Suppose that R is
rotated about the x axis to form a solid of revolution, and we consider this solid as a
storage tank. Suppose that the resulting tank is filled to a depth of 1.5 feet with water
weighing 62.4 pounds per cubic foot. Find the amount of work required to lower the
water in the tank until it is 0.5 feet deep, by pumping the water to the top of the tank.

b. Again picture the coordinate axes rotated 90 degrees clockwise so that the positive x-
axis points straight down, and the positive y-axis points to the right. Suppose that R,
together with its reflection across the x-axis, forms one end of a storage tank that is
10 feet long. Suppose that the resulting tank is filled completely with water weighing
62.4 pounds per cubic foot. Find a formula for a function that tells the amount of work
required to lower the water by / feet.

c. Suppose that the tank described in (b) is completely filled with water. Find the total
force due to hydrostatic pressure exerted by the water on one end of the tank.

7. A cylindrical tank, buried on its side, has radius 3 feet and length 10 feet. It is filled
completely with water whose weight density is 62.4 Ibs/ft?, and the top of the tank is two
feet underground.

a. Set up, but do not evaluate, an integral expression that represents the amount of work
required to empty the top half of the water in the tank to a truck whose tank lies 4.5
feet above ground.

b. With the tank now only half-full, set up, but do not evaluate an integral expression that
represents the total force due to hydrostatic pressure against one end of the tank.
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6.5 Improper Integrals

Motivating Questions

¢ What are improper integrals and why are they important?
* What does it mean to say that an improper integral converges or diverges?

* What are some typical improper integrals that we can classify as convergent or diver-
gent?

Another important application of the definite integral regards how the likelihood of certain
events can be measured. For example, consider a company that manufactures incandescent
light bulbs, and suppose that based on a large volume of test results, they have determined
that the fraction of light bulbs that fail between times t = 4 and t = b of use (where t is
measured in months) is given by
b
/ 0.3e 703 dt.
a

For example, the fraction of light bulbs that fail during their third month of use is given by

3 3
/ 0.3¢703 gt = —¢ 703
2 2

=—¢09 4 ¢”
~ 0.1422.

0.6

Thus about 14.22% of all lightbulbs fail between t = 2 and t = 3. Clearly we could adjust the
limits of integration to measure the fraction of light bulbs that fail during any time period
of interest.

Preview Activity 6.5.1. A company with a large customer base has a call center that
receives thousands of calls a day. After studying the data that represents how long
callers wait for assistance, they find that the function p(t) = 0.25¢%2% models the time
customers wait in the following way: the fraction of customers who wait between t = a

and t = b minutes is given by
b
/ p(t)dt.
a

Use this information to answer the following questions.
a. Determine the fraction of callers who wait between 5 and 10 minutes.
b. Determine the fraction of callers who wait between 10 and 20 minutes.

c. Next, let’s study the fraction who wait up to a certain number of minutes:
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i. What is the fraction of callers who wait between 0 and 5 minutes?
ii. What is the fraction of callers who wait between 0 and 10 minutes?
iii. Between 0 and 15 minutes? Between 0 and 20?

d. Let F(b) represent the fraction of callers who wait between 0 and b minutes. Find
a formula for F(b) that involves a definite integral, and then use the First FTC to
find a formula for F(b) that does not involve a definite integral.

e. What is the value of the limit lim;_,. F(b)? What is its meaning in the context of
the problem?

6.5.1 Improper Integrals Involving Unbounded Intervals

In light of our example with light bulbs that fail, as well as with the problem involving
customer wait time in Preview Activity 6.5.1, we see that it is natural to consider questions
where we desire to integrate over an interval whose upper limit grows without bound. For
example, if we are interested in the fraction of light bulbs that fail within the first > months
of use, we know that the expression

b
/ 0.3¢793 g¢
0

measures this value. To think about the fraction of light bulbs that fail eventually, we under-
stand that we wish to find

b
lim 0.3¢793 g¢,

b—oo 0
for which we will also use the notation

/ 0.3¢793¢ dt. 6.5.1)
0

Note particularly that we are studying the area of an unbounded region, as pictured in Fig-
ure 6.5.1.
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Figure 6.5.1: At left, the area bounded by p(t) = 0.3¢7%-% on the finite interval [0, b]; at right,
the result of letting b — oo. By “- - -” in the righthand figure, we mean that the region extends
to the right without bound.

Anytime we are interested in an integral for which the interval of integration is unbounded
(that is, one for which at least one of the limits of integration involves o), we say that the
integral is improper. For instance, the integrals

* 1 S| * 2
—dx, dx, and e ¥ dx
T x2 o 1+ x2 o

are all improper due to having limits of integration that involve co. We investigate the value
of any such integral by replacing the improper integral with a limit of proper integrals; for
an improper integral such as fooo f(x)dx, we write

o0 b
/0f(x)dx=bli_r)£1o/0 f(x)dx.

We can then attempt to evaluate fob f(x) dx using the First FTC, after which we can evaluate
the limit. Animmediate and important question arises: is it even possible for the area of such
an unbounded region to be finite? The following activity explores this issue and others in
more detail.

Activity 6.5.2. In this activity we explore the improper integrals floo 1dxand floo ﬁ dx.

a. First we investigate floo Ldx.

i. Use the First FTC to determine the exact values of fllo 1dx, f11000 1dx, and

100000 . N
I 1 dx. Then, use your calculator to compute a decimal approximation

of each result.
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ii. Use the First FTC to evaluate the definite integral flb 1 dx (which results in
an expression that depends on b).

iii. Now, use your work from (ii.) to evaluate the limit given by

b
lim 1 dx.
x

b Jq

b. Next, we investigate [|” iz dx.

1
i. Use the First FTC to determine the exact values of [, =5 dx, 11 =7 dx,

and f1100000 ﬁ dx. Then, use your calculator to compute a decimal approxi-
mation of each result.

ii. Use the First FTC to evaluate the definite integral flb # dx (which results in
an expression that depends on b).

iii. Now, use your work from (ii.) to evaluate the limit given by

b
lim dx.

h—oo 1 x3/2
c. Plotthe functionsy = and y = ﬁ on the same coordinate axes for the values x =

0...10. How would you compare their behavior as x increases without bound?
What is similar? What is different?

d. How would you characterize the value of [, 1 dx? of [;~ # dx? What does this
tell us about the respective areas bounded by these two curves for x > 1?

6.5.2 Convergence and Divergence

Our work so far has suggested that when we consider a nonnegative function f on an in-
terval [1, o0], such as f(x) = % or f(x) = 35317, there are at least two possibilities for the
value of limy_, flb f(x)dx: the limit is finite or infinite. With these possibilities in mind, we
introduce the following terminology.

If f(x) is nonnegative for x > a, then we say that the improper integral faoo f(x)dx
converges provided that

b
bh_r}?o/u f(x)dx

exists and is finite. Otherwise, we say that [ f(x)dx diverges.

We normally restrict our interest to improper integrals for which the integrand is nonnega-
tive. Further, we note that our primary interest is in functions f for which lim,_,. f(x) =0,
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for if the function f does not approach 0 as x — oo, then it is impossible for f:o f(x)dx to
converge.

Activity 6.5.3. Determine whether each of the following improper integrals converges
or diverges. For each integral that converges, find its exact value.

0 q ) 3
a. fl F dx d L m dx
b. fooo et dx e. fooo xe /% dx
C_9 4 © q : "
c ) Grspn 4% f. [ & dx, where p is a positive real
number

6.5.3 Improper Integrals Involving Unbounded Integrands

It is also possible for an integral to be improper due to the integrand being unbounded on
the interval of integration. For example, if we consider

1
1
—dx,

I

we see that because f(x) = % has a vertical asymptote at x = 0, f is not continuous on [0, 1],

and the integral is attempting to represent the area of the unbounded region shown at right
in Figure 6.5.2.

Figure 6.5.2: At left, the area bounded by f(x) = % on the finite interval [a, 1]; at right, the

result of letting @ — 0%, where we see that the shaded region will extend vertically without
bound.

Just as we did with improper integrals involving infinite limits, we address the problem
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of the integrand being unbounded by replacing such an improper integral with a limit of
proper integrals. For example, to evaluate fol % dx, we replace 0 with 2 and let a approach

0 from the right. Thus,
1

—dx— lim —dx

a—0* \/_

and then we evaluate the proper 1ntegral f —= dx, followed by taking the limit. In the same

way as with improper integrals involving unbounded regions, we will say that the improper
integral converges provided that this limit exists, and diverges otherwise. In the present

example, we observe that
!
—dx = lim —dx
/ a—)O*/a \/E

lim Z‘EE
a—07*
lim 21 -2va
a—0*
=2,

and therefore the improper integral fo —= dx converges (to the value 2).

We have to be particularly careful with unbounded integrands, for they may arise in ways
that may not initially be obvious. Consider, for instance, the integral

3
1
/1 G2 ™

At first glance we might think that we can
simply apply the Fundamental Theorem of
Calculus by antidifferentiating ﬁ to get

—ﬁ and then evaluate from 1 to 3. Were
we to do so, we would be erroneously ap-
plying the FTC because f(x) = o= 2)2 fails
to be continuous throughout the interval,
as seen in Figure 6.5.3.

Figure 6.5.3: The function f(x) =
an interval including x = 2.
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Such an incorrect application of the FTC leads to an impossible result (—2), which would
itself suggest that something we did must be wrong. Indeed, we must address the vertical
asymptote in f(x) = ﬁ at x = 2 by writing

SO | | SO |
1 gy =1i x4 i 1 4
[ -2 u§¥[‘u—2y:“U§¥A‘u—zy X

and then evaluate two separate limits of proper integrals. For instance, doing so for the
integral with a approaching 2 from the left, we find

2 1 |
———dx = 1li —d
/1 (x—27 ™" 32“/1 -2

li LI
P
= Jim -
-2 (a-2) 1-2
= 00,
since 5 — —oo as 4 approaches 2 from the left. Thus, the improper integral flz ﬁ dx

diverges; similar work shows that f; ﬁ dx also diverges. From either of these two results,

we can conclude that that the original integral, f13 ﬁ dx diverges, too.

Activity 6.5.4. For each of the following definite integrals, decide whether the integral
is improper or not. If the integral is proper, evaluate it using the First FTC. If the integral
is improper, determine whether or not the integral converges or diverges; if the integral
converges, find its exact value.

1 2
a. [ ﬁdx d. f_le—zdx
b. foze‘x dx e. fon/ztan(x)dx
4 1
C. fl \/f—xdx f. ﬁ) \/1;_711.9(
Summary

* An integral fab f(x)dx can be improper if at least one of a or b is oo, making the
interval unbounded, or if f has a vertical asymptote at x = ¢ for some value of ¢ that
satisfies 2 < ¢ < b. One reason that improper integrals are important is that certain

probabilities can be represented by integrals that involve infinite limits.

* When we encounter an improper integral, we work to understand it by replacing the
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improper integral with a limit of proper integrals. For instance, we write

[ e =pm [ ’ f)d,

and then work to determine whether the limit exists and is finite. For any improper in-
tegral, if the resulting limit of proper integrals exists and is finite, we say the improper
integral converges. Otherwise, the improper integral diverges.

* An important class of improper integrals is given by

/ idx
1 xP

where p is a positive real number. We can show that this improper integral converges
whenever p > 1, and diverges whenever 0 < p < 1. A related class of improper

integrals is fol xip dx, which converges for 0 < p < 1, and diverges for p > 1.

Exercises

1. Consider the integral

3
-8
——dx
/0 xvx
If the integral is divergent, type an upper-case “D”. Otherwise, evaluate the integral.

2. Calculate the integral below, if it converges. If it does not converge, enter diverges for your
answer.

f;o 1x2e~% dx = ‘ ‘

3. Calculate the integral, if it converges. If it diverges, enter diverges for your answer.

1 5% _ ‘ ‘
—00 1+¢5% dx =

4. Calculate the integral, if it converges. If it diverges, enter diverges for your answer.

[ Lao- |
10

5. Find the area under the curve y = #Z(t) between t = 0 and ¢t = 71/2. Enter diverges if the

area is not bounded.

area = ‘ ‘

6. Determine, with justification, whether each of the following improper integrals converges
or diverges.

a. [” @ dx
0 1
b. fe xIn(x) dx
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© 1
e f, @R X

d. f:o m dx, where p is a positive real number
e. fol @ dx
f. j;)l In(x) dx

7. Sometimes we may encounter an improper integral for which we cannot easﬂy evaluate
the limit of the corresponding proper integrals. For instance, cons1der f1 735 dx. While

it is hard (or perhaps impossible) to find an antiderivative for 37 3 , We can stlll determine
whether or not the improper integral converges or diverges by comparison to a simpler one.
Observe that for all x > 0, 1 + x3 > x3, and therefore

! <
1+x3 %8

—d
/1 1+x3 / X

for every b > 1. If welet b — oo so as to consider the two improper integrals f1

It therefore follows that

1+ T3 dx
and floo 361—3 dx, we know that the larger of the two improper integrals converges. And thus,
since the smaller one lies below a convergent integral, it follows that the smaller one must
converge, too. In particular, fl T X3 dx must converge, even though we never explicitly
evaluated the corresponding limit of proper integrals. We use this idea and similar ones in
the exercises that follow.

a. Explain why x? + x + 1 > x2 for all x > 1, and hence show that [,” dx converges

o 2+ +1
by comparison to [}~ & dx.

b. Observe that for each x > 1, In(x) < x. Explain why

b b
1 1
/2 ;dx</2 ln(x)dx

for each b > 2. Why must it be true that fzb m dx diverges?

c. Explain why ./ Xi—jl > 1 for all x > 1. Then, determine whether or not the improper

integral
1 4
- \/ ol :1 dx
X x

converges or diverges.
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APPENDIX A I

A Short Table of Integrals

o

Ik du_ — larctan 4 + C

a?+u?
b. [ A _=In|u+Vu2xa?+C

0

SV a?du = ENuZxa? £ S nfu + VuZ £a2| + C

2
Ik —”Til;z = 4VuZ 22 F Clnfu + VuZ £a2|+ C

&

2+u

L +C

¢

Wil

f. fu\/r —sec1%+C

=arcsin & +C

[ =
2 .

J Va? —u?du = §Va? —u? + % arcsin £ + C
2 .

=—4Va? —u? + S arcsin £ + C

7 ®

=

2
.f\/u;‘—_jdu

. 2_,2

j. fu\/r_ ;1_111’1 a+1114 u +C
du__ _ N2

k. fuZVau—uZ_ ‘;Zu” +C






u-substitution, 295

absolute convergence, 490
acceleration, 62
alternating series, 486

alternating series estimation theorem,

489

alternating series test, 488
antiderivative, 215

general, 259, 274

graph, 271
antidifferentiation, 213
arc length, 340, 342
arcsine, 138
area, 336

under velocity function, 211
asymptote, 159

horizontal, 159

vertical, 159
autonomous, 392
average rate of change, 22
average value, 247
average value of a function, 246
average velocity, 2

backward difference, 48

carrying capacity, 441
central difference, 48
chain rule, 127
codomain, 135
composition, 124

concave down, 61
concave up, 61

concavity, 60

conditional convergence, 490
constant multiple rule, 94
continuous, 74
continuous at x = a, 74

Index

converge
sequence, 452
convergence
absolute, 490
conditional, 490
convergent sequence, 452
cosecant, 119
cotangent, 119
critical number, 168
critical point, 168
critical value, 168
cusp, 77

decreasing, 55
definite integral
constant multiple rule, 245
definition, 239
sum rule, 245
density, 355
derivative
arcsine, 140
constant function, 93
cosine, 103
cotangent, 120
definition, 24, 36
exponential function, 93
inverse, 142
logarithm, 137
power function, 93
sine, 103
tangent, 120
difference quotient, 47
differentiable, 24, 75
differential equation, 386
autonomous, 392
first order, 392
solution, 389
disk method, 346
distance traveled, 213
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INDEX

diverge

sequence, 452
Divergence Test, 473
domain, 135
dominates, 163

equilibrium solution, 402
stable, 403
unstable, 403

error, 325

error functin, 285

error function, 317

Euler’s Method, 410
error, 415

extreme value, 166

extreme value theorem, 188

Fibonacci sequence, 449
first derivative test, 168
foot-pound, 365
forward difference, 48
FTC, 257
function, 135
function-derivative pair, 296
Fundamental Theorem of Calculus
First, 281
Second, 283
fundamental theorem of calculus, 255,
257

geometric series, 459
common ratio, 459
geometric sum, 458

harmonic series, 474
Hooke’s Law, 367

implicit function, 146
improper integral, 377
converges, 379
diverges, 379
unbounded integrand, 381
unbounded region of integration,
378
increasing, 55
indefinite integral, 294
evaluate, 295

532

indeterminate form, 14
infinite series, 469
infinity, 158

inflection point, 173
initial condition, 274

instantaneous rate of change, 23, 46

instantaneous velocity, 3, 16
integral function, 274
integral sign, 240

integral test, 474, 477
integrand, 240

integration by parts, 304
interval of convergence, 507

L'Hopital’s rule, 155
L'Hoépital’s rule (at infinity), 160
Lagrange error bound, 511
left limit, 71
lemniscate, 146
limit
definition, 13
one-sided, 71
limit comparison test, 477
limits of integration, 240
local linearization, 84
locally linear, 77
logistic, 440
logistic equation, 440
solution, 442

Maclaurin series, 506
mass, 355
maximum
absolute, 165
global, 165
local, 166
relative, 166
midpoint rule
error, 325
minimum
absolute, 165
global, 165
local, 166
relative, 166

net signed area, 231
Newton’s Law of Cooling, 393



Newton-meter, 365

one-to-one, 135
onto, 135

partial fractions, 313

partial sum, 460, 471

per capita growth rate, 438

position, 2

power series, 517

power series differentiation and
integration theorem, 522

product rule, 108

quotient rule, 110

ratio test, 479
related rates, 201
Riemann sum, 227
left, 227
middle, 229
right, 229
right limit, 71

secant, 119
secant line, 25
second derivative, 58
second derivative test, 170
second fundamental theorem of calculus,
284
separable, 420, 421
sequence, 451
term, 451
sequence of partial sums, 471

INDEX

series, 469
converges, 471
diverges, 471
geometric, 459
sigma notation, 225
Simpson’s rule, 328
slope field, 397, 399
solid of revolution, 345
stable, 403
sum rule, 95

tangent, 119
tangent line, 25
equation, 83
Taylor polynomial
error, 509
Taylor polynomials, 500
Taylor series, 504, 505
interval of convergence, 507
radius of convergence, 509
total change theorem, 260, 261
trapezoid rule, 323
error, 325
triangular numbers, 449
trigonometry, 118
fundamental trigonometric identity,
118

unstable, 403
washer method, 348

weighted average, 328, 358
work, 365, 366
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Antiderivatives

1. Find the general antiderivative of each function. Check your answer by taking
the derivative of the second column.

Function Antiderivative

f(x)=4x’

fx) ="

F)=x"
ﬂm=¢3-§
x* +2\/;

X

f(x) =

f)==
X

fx)=e




S (x) = cos(x)

S (x) =sin(x)

f(x) =sec’(x)

f(x) = ———
1-x

f@) = ————
1-x
1

f(?€)=1 5
+ X

. Find equations for f’and /', given f"(x)=x, f'(0)=1, f(0)=0.

. Find equations for g'and g, given g"(¢) = 2¢' +3cos(t), g'(0) =1, g(0) =3.

. A stone is dropped off a cliff. It hits the ground 6 seconds later. How high is the
cliff? (Hint: Acceleration due to gravity is a constant -32 ft/sec’.)

. A car traveling 84 ft/s begins to decelerate at a constant rate of 14 ft/s>. After
how many seconds does the car come to a stop and how far will the car have

traveled before stopping?



6. You are the question designer! Create a limit problem where you must correctly
apply L’Hospital’s Rule twice in order to evaluate the limit. The ground work is
laid out for you below. Determine the functions f”'(x), g'(x), f(x), and g(x) to
result in the following limit. Don’t forget about the criteria needed in order to
apply L Hospital’s Rule.

NSO N €)

=0 g(x) 0 gl(x)

2 figg L)
=0 g'(x)
_ lim e* +cos(x)
=0 12x-6

e’ +cos(0) _ o

= m < Evaluating the limit

1+1

-6

1

3

« After 1* application of L’Hospital’s Rule

— After 2" application of L’Hospital’s Rule

«— The resulting limit

Trigonometric Substitution
1. Evaluate the integral using the recommended trigonometric substitution:

X . o
a. f - dx, x=sect < Check your answer using substitution!
1

x_

5
1
b. [————dx, x=5tané
{(25+x2)2

dx, x=2siné

x2
C. fm



2. Evaluate the integral using the necessary trigonometric substitution:

6

a. f V36 - x*dx € Check your answer using geometry!
%
b [
xWx® -16
c.

1
———dx
fxlel—xz

2
1
d [——dx
:£(4+x2)3/2

Approximate Integrals Technology Lab (Optional)
Use the link below to be taken to the pre-created GeoGebra applet:

https://www.geogebra.org/m/SKAvZYtn

1
1. Consider the integral f xe™ dx . Using the GeoGebra applet, fill in the table
0

with the given approximations using the sliders, as needed. Round to 8 decimal

places.

Approximation Over or under?

Ms

Te

Ti6

Based on the shape of the curve, explain how you determined whether My and

Tx were over- or under-approximations.



2. Confirm GeoGebra’s result for T by hand using the general formula for Ty (that
is, the formula with 1,2, 2, ... ,2,2, 1). Be sure to state whether your result for
Te matches the one that GeoGebra gave. Round your final answer to 8 decimal

places.

1
3. Determine the exact value of f xe*" dx using an integration technique we’ve
0

learned in class. State the technique being used. Show all work with proper
notation, and give both an exact value and an approximate value, rounding to 8

decimal places. Is this pretty close to the approximation from #2? What’s the

error?

4. Change the function and Approximation
sliders in GeoGebra so M,
that the applet T,
approximates the integral S

8
1
fxsin(mc)dx. (To Me
-1
change the function, Tie
double-click in the S5

Algebra window and edit. Use pi for m.)
Fill in the table.



5. Confirm GeoGebra’s result for Sg by hand using the general formula for Sy (the
one with 1,4,2,4,...,4,2,4,1). Be sure to state whether your result for Sg
matches the one that GeoGebra gave. Do not use decimal approximations in
your work; keep values exact until the very end, and then round your final

answer to 8 decimal places.\

1
6. Determine the exact value of f xsin(zzx)dx using an integration technique we’ve
-1

learned in class. State the technique being used. Show all work with proper
notation, and give both an exact value and an approximate value, rounding to 8
decimal places. Is this pretty close to the approximation from #5? What’s the

error?

Error Bound Formulas

K,(b-a)’
12N?

K,(b-a)’
24N?

K,(b- a)’

Error(T,) <
T 180N*

Error(M ) = Error(Sy) =

1. Find the maximum possible error associated in using T, to approximate
1

fe‘“dx.

0

/2

2. Find the value of N for which Sy approximates f sin(2x)dx with an error of
0

at most 0.001.




3
3. Consider f xIn(x)dx. Answer the following, rounding all approximations to 6
1

decimal places.

a. Find the maximum possible error associated in using S4 to approximate

}x In(x)dx .

3

b. Use S4 to approximate f xIn(x)dx.
1

3
c. Evaluate f xIn(x)dx. Give an exact and approximate value.
1

3
d. Determine the actual error when using S4 to approximate f xIn(x)dx.
1

The Comparison Test for Improper Integrals

1. Use the Comparison Test to determine whether the following integrals converge
or diverge. Your answer should be a sentence of how the Comparison Test was
used and what your final conclusion is.

1

a. ‘[vx4+l

dx




2. Determine whether the improper integral ~ Y ix converges or diverges by
Prop (x> +1)°
0

using the Comparison Test. If it converges, evaluate it.

Cross-Sectional Volumes

1. Consider a cone with base of radius 4

and height 8 (see figure).

a.

C.

What shape are the cross-sections
perpendicular to the y-axis? Are
the widths of the cross-sections
Ax or Ay?

N

\

Draw the cross-section at the following y-values and determine the radius

and area.
y-value Radius Area
y=0
y=4
y=38

Notice in part b that the radii are given by the x-coordinate (verify this in the
table above). Find an equation that relates x and y so that we can get the radii
in terms of y instead of x. Use this to get the area of the cross-sections in

terms of y. Why do we need to do this?

Integrate the area formula found in part c to find the volume of the cone.
What should the bounds of integration be? Check your answer using the

formula V = %mfzh.



2. Consider a pyramid with square base of y
dimension 6 by 6 and height of 9 (see
figure).

a. What shape are the cross-sections
perpendicular to the y-axis? Are the
widths of the cross-sections Ax or
Ay?

y/4 \ %

b. Draw an arbitrary cross-section and determine the formula for its area. (Find
an equation that relates x and y and use as necessary in creating your
formula.) Should this area formula be in terms of x or y?

c. Integrate the area formula found in part ¢ with respect to the appropriate
variable (so either dx or dy) to find the volume of the pyramid. What should
the bounds of integration be? Check your answer using the formula

Ly,
3



Calculate the volume of the ramp shown by integrating the area of the cross-
sections perpendicular to each axis. Draw an arbitrary cross-section for each and
state what the shape is. You should

get the same answer.

Z
a. x-axis
4
y
2
6
X
b. y-axis z
4
y
2
6
C. Zz-axis »
rd
4
y
2
6
X

d. Which approach from part (a)—(c) was easiest? Reflect on why.

e. Check your answer using the formula V' = llwh.



Method of Cylindrical Shells

Students can use the Method of Cylindrical Shells in many of the Active Calculus
Section 6.2 questions. They can do some of the exercises twice: once using
disks/washers and again using cylindrical shells.

Problems that lend themselves well to the Method of Cylindrical Shells:
Activity 6.2.2 ¢
Activity 6.2.3 a,b,d, e
Activity 6.2.4 ¢, d
Exercise 6.2.5 #2, 6, 7d, 8d, 8f, 9¢c

Mean Value Theorem for Integrals

The Mean Value Theorem for Integrals: If fis continuous on [a, b], then there exists a
number c in [a, b] such that

1 b
AOLY E{f(X)dx

That is, j' f(x)dx = f(c)(b-a)

1. For each of the following:

* Find the average value f =

b
we =7 f f(x)dx on the given interval.
-a

* Find ¢ such that f(c) = f,

ave*

* Sketch the graph of fand a rectangle whose area is the same as the area under
the graph of f'on the given interval.



a. g(x)=3x"+3on][-1,3]

b. g(x)= ion [1, e]

c. f(x)=cos(2x)on [O,%l

d g()= on[-1, 1]

1+¢2

2. A ball is thrown vertically upwards from ground level with an initial velocity of
96 ft/sec. It’s height, A(¢)in feet, as a function of time, ¢ in seconds, is given by

h(t) = 96t - 16¢°.

a. Find the average height of the ball during the time period that it’s in the air.
b. Determine when the ball’s height is equal to its average height.

c. Find the average velocity of the ball during the time period that it’s in the air.
d. Determine when the ball’s velocity is equal to its average velocity.

e. Find the average acceleration of the ball during the time period that it’s in the
air.

f. Determine when the ball’s acceleration is equal to its average acceleration.



	Acknowledgements
	Contributors
	Active Calculus: Our Goals
	Features of the Text
	How to Use this Text
	Understanding the Derivative
	How do we measure velocity?
	The notion of limit
	The derivative of a function at a point
	The derivative function
	Interpreting, estimating, and using the derivative
	The second derivative
	Limits, Continuity, and Differentiability
	The Tangent Line Approximation

	Computing Derivatives
	Elementary derivative rules
	The sine and cosine functions
	The product and quotient rules
	Derivatives of other trigonometric functions
	The chain rule
	Derivatives of Inverse Functions
	Derivatives of Functions Given Implicitly
	Using Derivatives to Evaluate Limits

	Using Derivatives
	Using derivatives to identify extreme values
	Using derivatives to describe families of functions
	Global Optimization
	Applied Optimization
	Related Rates

	The Definite Integral
	Determining distance traveled from velocity
	Riemann Sums
	The Definite Integral
	The Fundamental Theorem of Calculus

	Evaluating Integrals
	Constructing Accurate Graphs of Antiderivatives
	The Second Fundamental Theorem of Calculus
	Integration by Substitution
	Integration by Parts
	Other Options for Finding Algebraic Antiderivatives
	Numerical Integration

	Using Definite Integrals
	Using Definite Integrals to Find Area and Length
	Using Definite Integrals to Find Volume
	Density, Mass, and Center of Mass
	Physics Applications: Work, Force, and Pressure
	Improper Integrals

	Differential Equations
	An Introduction to Differential Equations
	Qualitative behavior of solutions to DEs
	Euler's method
	Separable differential equations
	Modeling with differential equations
	Population Growth and the Logistic Equation

	Sequences and Series
	Sequences
	Geometric Series
	Series of Real Numbers
	Alternating Series
	Taylor Polynomials and Taylor Series
	Power Series

	A Short Table of Integrals
	Index



