1. Determine which one of the slope fields on page 4 corresponds to the equation $\frac{dy}{dx} = -x y$. Then sketch onto the appropriate figure the solution curve that passes through the point $(0, -3)$. Finally, find the general solution to $\frac{dy}{dx} = -x y$ and determine that the equation for the specific solution you sketched is $y = \frac{-3}{\sqrt{e^{x^2}}}$.

For spacing considerations, I’m going to find the symbolic solution first.

$$\frac{dy}{dx} = -x y \quad \Rightarrow \quad \frac{1}{y} \frac{dy}{dx} = -x$$

$$\Rightarrow \int \frac{1}{y} \, dy = \int -x \, dx$$

$$\Rightarrow \int \frac{1}{y} \, dy = \int -x \, dx$$

$$\Rightarrow \ln(|y|) = -\frac{x^2}{2} + C$$

$$\Rightarrow |y| = e^{-\frac{x^2}{2} + C} = e^{-\frac{x^2}{2}} \cdot e^C = C_1 e^{-\frac{x^2}{2}}$$

Let’s talk about the sign issue on y for a bit. $|y|$ is always 1 of 2 things, y or $-y$.

$y \geq 0 \Rightarrow |y| = y \Rightarrow y = C_1 e^{-\frac{x^2}{2}}$

$y \leq 0 \Rightarrow |y| = -y \Rightarrow -y = C_1 e^{-\frac{x^2}{2}} \Rightarrow y = C_2 e^{-\frac{x^2}{2}}$ where $C_2 = -C_1$

In either case, $y = (\text{some unknown constant}) e^{-\frac{x^2}{2}}$. For this reason, in the differential equations environment we tend to ignore the absolute value issue when computing $\int \frac{dy}{y}$ because we know that any negativity issue that emerges for a specific solution will work itself out when we solve for the unknown constant. So we’ll say that the general solution is $y = C_1 e^{-\frac{x^2}{2}}$.

Since $y = -3$ when $x = 0$ we have: $-3 = C_1 e^0 \Rightarrow C_1 = -3$.

So our specific solution is: $y = -3 e^{-\frac{x^2}{2}} \Rightarrow y = -3 \left(e^{x^2}\right)^{-1/2} \Rightarrow y = -\frac{3}{\sqrt{e^{x^2}}}$.
The slope field for \(\frac{dy}{dx} = -xy \) needs to have positive slopes in quadrants I and IV and negative slopes in quadrants I and III; this narrows the choices down to the figures 2, 4, and 6. At the point \((2,2)\), \(\frac{dy}{dx} = -xy = -4 \); clearly, Figure 2 is the only slope field that has this property. The solution curve is shown in Figure X.
2. Solve the initial value problem \(y'\sqrt{1+t^2} = -t - ty \); \(y(0) = 0 \) and show that the solution can be written in the form \(y = \frac{e}{e^{\sqrt{1+t^2}}} - 1 \).

\[
y'\sqrt{1+t^2} = -t - ty \quad \Rightarrow \quad \frac{dy}{dt} \sqrt{1+t^2} = -t(1+y)
\]

\[
\Rightarrow \quad \frac{1}{1+y} \frac{dy}{dt} = \frac{-t}{\sqrt{1+t^2}}
\]

\[
\Rightarrow \quad \int \frac{1}{1+y} \frac{dy}{dt} dt = \int \frac{-t}{\sqrt{1+t^2}} dt
\]

\[
\Rightarrow \quad \ln(1+y) = \int -w^{-1/2} \frac{dw}{2}
\]

\[
\Rightarrow \quad \ln(1+y) = -\frac{1}{2} w^{1/2} + C
\]

\[
\Rightarrow \quad \ln(1+y) = -\sqrt{1+t^2} + C
\]

\[
\Rightarrow \quad 1 + y = e^{-\sqrt{1+t^2} + c} = C_1 e^{-\sqrt{1+t^2}}
\]

\[
\Rightarrow \quad y = C_1 e^{-\sqrt{1+t^2}} - 1
\]

\[
\Rightarrow \quad 0 = C_1 e^{-1} - 1
\]

\[
\Rightarrow \quad C_1 = e
\]

So the specific solution is \(y = e \cdot e^{-\sqrt{1+t^2}} - 1 \Rightarrow y = \frac{e}{e^{\sqrt{1+t^2}}} - 1 \).
3. Solve the initial value problem \(y - y' \sec(x) = 0; \) \(y(\pi) = -e^2. \) Make sure that you state your solution in the form \(y = k e^{f(x)}. \)

\[
y - y' \sec(x) = 0 \quad \Rightarrow \quad y = \frac{dy}{dx} \sec(x)
\]

\[
\Rightarrow \quad \frac{1}{\sec(x)} = \frac{dy}{y} \frac{dx}{dx}
\]

\[
\Rightarrow \quad \int \cos(x) \, dx = \int \frac{dy}{y}
\]

\[
\Rightarrow \quad \int \cos(x) \, dx = \ln(y)
\]

\[
\Rightarrow \quad \sin(x) + C = \ln(y)
\]

\[
\Rightarrow \quad \ln(y) = \sin(x) + C
\]

\[
\Rightarrow \quad y = e^{\sin(x) + C} = C_1 e^{\sin(x)}
\]

\[
y(\pi) = -e^2 \quad \Rightarrow \quad -e^2 = C_1 e^{\sin(\pi)} = C_1 e^{0} = C_1
\]

So the specific solution is \(y = -e^2 e^{\sin(x)}. \)
4. E. Coli likes to divide; specifically, when placed into a welcoming host, each E. Coli cell divides into 2 cells every 20 minutes. Assuming that all cells divide on schedule and that no cells die, this means that when placed into a welcoming host an E. Coli population doubles every 20 minutes! If we let \(E \) be the number of E. Coli cells present in Gomer’s tummy \(t \) hours after he ingests 1500 E. Coli cells, and we assume that Gomer’s tummy is a welcoming host, then a formula for \(E \) can be found by solving the differential equation \(\frac{dE}{dt} = kE \). Find the formula for \(E \) and use it to determine how long it takes for Gomer's 1500 cell sample to grow into a 1,000,000 cell sample.

\[
\frac{dE}{dt} = kE \quad \Rightarrow \quad \frac{1}{E} \frac{dE}{dt} = k \quad \Rightarrow \quad \int \frac{1}{E} \frac{dE}{dt} dt = \int k dt \\
\Rightarrow \quad \int \frac{dE}{E} = \int k dt \\
\Rightarrow \quad \ln(E) = kt + C \\
\Rightarrow \quad E = e^{kt+C} = C_1 e^t
\]

\[y(0) = 1500 \quad \Rightarrow \quad 1500 = C_1 e^0 \]
\[\Rightarrow \quad C_1 = 1500\]

Alrighty, then… according to the constructs of the problem, after 20 minutes there are 3000 E. Coli cells in Gomer’s tummy; this means that \(y\left(\frac{1}{3}\right) = 3000 \). This gives us:

\[
3000 = 1500 e^{\frac{t}{3}} \quad \Rightarrow \quad t = 3 \ln(2) \\
\Rightarrow \quad y = 1500 e^{3\ln(2) t} \\
\Rightarrow \quad y = 1500 e^{(\ln(2)^3) t} \\
\Rightarrow \quad y = 1500 \cdot 2^{3t}
\]

Okie-dokie, we now need to determine when \(y = 1,000,000 \). Using our technology we get \(t \approx 3.12694059465 \). Further using our technology, we can conclude that it takes about 3 hours, 7 minutes, and 37 seconds for the population to grow to 1,000,000.
5. Yummy cookies were pulled from a 175°C oven and were left to cool in a 22°C room. In the first 5 minutes, one of the cookies cooled from 175°C to 99°C. Once removed from the oven, how much time (to the nearest second) did it take for this cookie to cool to within 5% of the room temperature?

\[\frac{dT}{dt} = k(T - 22) \]

OK ... let's define \(T \) to be the temp of the of "the cookie" (°C) \(t \) seconds after it was removed from the oven. From Sir Newton's Law of Cooling we know that: \(\frac{dT}{dt} = k(T - 22) \). So...

\[
\int \frac{1}{T - 22} \, dt = \int k \, dt
\]

\[
\ln(T - 22) = kt + C
\]

\[
T - 22 = e^{kt + C} = Ce^{kt}
\]

\[
T = 22 + Ce^{kt}
\]

\[
y(0) = 175
\]

\[
y(300) = 99
\]

\[
k = \frac{\ln(77/153)}{300}
\]

Oh boy! \(T \) actually is greater than 22!

\[
y(0) = 175
\]

\[
y(300) = 99
\]

\[
T = 22 + 153e^{300k}
\]

\[
k = \frac{\ln(77/153)}{300}
\]

Okie dokie, our formula is \(T = e^{\frac{\ln(77/153)}{300}t} \). So let's determine when \(T = 1.05(22) = 23.1 \).

\[
23.1 = 22 + 153e^{\frac{\ln(77/153)}{300}t} \quad \Rightarrow \quad t \approx 2156.2
\]

Good golly, how many minutes are there in 2156 seconds??

It takes about 35 minutes, 56 seconds for that cookie to cool to within 5% of room temperature.
6. Find the specific solution for the curve in Figure 11.

\[
y^3 \frac{dy}{dx} + x^4 y \frac{dy}{dx} = x + x y^4
\]

\[
y^3 \frac{dy}{dx} + x^4 y \frac{dy}{dx} = x + x y^4 \Rightarrow \left(1 + x^4\right) y \frac{dy}{dx} = x (1 + y^4)
\]

\[
\Rightarrow \frac{y^3}{1 + y^4} \frac{dy}{dx} = \frac{x}{1 + x^4}
\]

\[
\Rightarrow \int \frac{y^3}{1 + y^4} \frac{dy}{dx} dx = \int \frac{x}{1 + x^4} dx
\]

\[
w = 1 + y^4
\]

\[
dw = 4 y^3 \ dy \Rightarrow \frac{dw}{4} = y^3 \ dy
\]

\[
\Rightarrow \int \frac{y^3}{1 + y^4} \frac{dy}{dx} dx = \int \frac{x}{1 + x^4} dx \Rightarrow \int \frac{dw}{4} = \int \frac{du/2}{1 + u^2}
\]

\[
\Rightarrow \frac{1}{4} \ln(w) = \frac{1}{2} \tan^{-1}(u) + C
\]

\[
\Rightarrow \ln(w) = 2 \tan^{-1}(u) + C_1
\]

\[
\Rightarrow w = e^{2 \tan^{-1}(u) + C_1} = C_2 e^{2 \tan^{-1}(x)}
\]

\[
\Rightarrow 1 + y^4 = C_2 e^{2 \tan^{-1}(x)}
\]

\[
y^4 = C_2 e^{2 \tan^{-1}(x)} - 1
\]

\[
y(0) = 0 \Rightarrow 0 = C_2 e^{2 \tan^{-1}(0)} - 1 = C_2 e^0 - 1
\]

\[
1 = C_2
\]

The specific solution is \(y^4 = e^{2 \tan^{-1}(x^2)} - 1 \).