Due at 6:00 pm on Thursday, February 11

You may work on this assignment with your classmates or anybody else you please. You may get help from a tutor or even the instructor. What you may not do is simply copy somebody else’s work – that completely obviates the purpose of the assignment. If you forget to complete the assignment before it is due, do not simply copy someone else’s paper and turn that in … that is not “working together,” that is taking credit for somebody else’s work.

1. Answer each question on this page in reference to the function \(f \) shown in Figure 1; you may simply supply the requested values in the provided blanks – no explanations necessary. The “areas” of the three shaded regions are, from left to right, 4, 8, and 3.5. Assume that \(F \) is in reference to the specific antiderivative of \(f \) that passes through the point \((3, -8) \); i.e., \(F(3) = -8 \)

a. \(F(5) = \)

b. \(F(0) = \)

c. \(\int_{3}^{5} f(x) \, dx = \)

d. \(\int_{0}^{-2} f(x) \, dx = \)

e. \(\int_{-1}^{0} f(2x) \, dx = \)

f. If \(g(t) = \int_{5}^{t} f(x) \, dx \), then \(g(0) = \)

g. Circle each of the following that must have a negative value.

\[
\begin{align*}
\int_{-2}^{5} f(x) \, dx & \quad & \int_{-2}^{5} F(x) \, dx & \quad & \int_{-2}^{5} f'(x) \, dx \\
\int_{5}^{-2} f(x) \, dx & \quad & \int_{5}^{-2} F(x) \, dx & \quad & \int_{5}^{-2} f'(x) \, dx \\
\end{align*}
\]
2. Two different functions, both called f', are shown below. For each function, do the following.

a. Use “areas” to determine the value of the integral that is stated in the figure caption. \textit{Include units while making the calculation.}

b. Write a description of what the integral value tells you.

Figure 2: $\int_0^7 f'(t) \, dt$

Figure 3: $\int_1^6 f'(t) \, dt$