1. State the three “sub-properties” that must be true about the function \(f \) at the number \(a \) if \(f \) is continuous at \(a \). (6 points)

 i.

 ii.

 iii.

2. State each value of \(x \) where the function \(f \) shown in Figure 1 is discontinuous. For each discontinuity, state (by number) each of the properties that you stated in problem 1 that fail at that value of \(x \). Please note that you will not get full credit for this question if your answer to question 1 is not 100% correct. (9 points)
3. Use limit laws to formally establish the value of \(\lim_{x \to -\infty} \frac{3x^3 + 2x}{3x - 2x^3} \). (12 points)

To earn full credit your work must include all relevant limit law steps accompanied by a statement of the limit law number(s) used in each of those steps (as shown in class).
4. Use limit laws to formally establish the value of \(\lim_{x \to \frac{\pi}{4}} \frac{\sin(x) - \cos(x)}{\cos(2x)} \). (12 points)

To earn full credit your work must include all relevant limit law steps accompanied by a statement of the limit law number(s) used in each of those steps (as shown in class).

Some useful information …

\[
\cos(2x) = \cos^2(x) - \sin^2(x) \text{ and } \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}
\]
5. The function z shown in Figure 2 was generated by the formula $y = 2 + 4x - x^2$.

 a. Simplify the difference quotient for z. (12 points)

 b. Use the graph to find the slope of the secant line to z between the points where $x = -1$ and $x = 2$.
 Check your simplified difference quotient for z by using it to find the slope of the same secant line.
 Make sure that you show work that clearly indicates that you completed both tasks stated in this problem. (6 points)
6. Write into each provided blank the number or symbol that makes the equation “true.” The correct symbol for some of the blanks may be \(\infty \) or \(-\infty\); all other correct answers are numbers. (2 points each)

 a. \(\lim_\infty \frac{e^{2x}}{e^{x^2}} =
 \)

 b. \(\lim_{x \to -\infty} \frac{e^{2x}}{e^x} =
 \)

 c. \(\lim_{x \to 2^+} \frac{x^2 - 4}{x^2 - 4x + 4} =
 \)

 d. \(\lim_{x \to \infty} \sin \left(\frac{\pi e^{3x}}{2e^x + 4e^{3x}} \right) =
 \)

 e. \(\lim_{h \to 0} \frac{5h^2 + 3}{2 - 3h^2} =
 \)

 f. \(\lim_{h \to -\infty} \frac{5h^2 + 3}{2 - 3h^2} =
 \)

7. If a ball is thrown straight up into the air with an initial velocity of 40 ft/s, then the height (ft) of the ball \(t \) seconds after it is thrown is given by the function \(s(t) = 40t - 16t^2 \).

 What, including unit, is the average rate of change in \(s \) over the interval \([2, 3]\) and what does this rate tell you about the motion of the ball? (9 points)
8. Draw onto Figure 3 a function, \(f \), that satisfies each and every one of the following properties. Make sure that you draw and appropriately label all asymptotes. (14 points)

- The only discontinuities on \(f \) occur at \(-4 \) and \(3 \)
- \(f \) has no \(x \)-intercepts
- \(f \) is continuous from the right at \(-4 \)
- \(\lim_{x \to -4^-} f(x) = 1 \) and \(\lim_{x \to -4^+} f(x) = -2 \)
- \(\lim_{x \to 3^-} f(x) = -\infty \)
- \(\lim_{x \to \infty} f(x) = -\infty \)
- \(f \) has a constant slope of \(-2\) over \((-\infty, -4)\)

9. Consider the function

\[
 f(x) = \begin{cases}
 x + 2 & \text{if } x < 0 \\
 1 + e^x & \text{if } 0 \leq x \leq 1 \\
 \frac{x - 4}{(x - 4)(x - 6)} & \text{if } x > 1
 \end{cases}
\]

State the values of \(x \) where each of the following occur. If a stated property doesn't occur, make sure that you state that (as opposed to simply leaving the answer space blank). (2 points each)

a. At what values of \(x \) is \(f \) discontinuous?

b. At what values of \(x \) is \(f \) continuous from the left but not the right?

c. At what values of \(x \) is \(f \) continuous from the right but not the left?

d. At what values of \(x \) does \(f \) have removable discontinuities?