The critical numbers of \(f \) are the values of \(x \) in the domain of \(f \) where either \(f'(x) = 0 \) or \(f''(x) \) is undefined. These numbers are important because they are the only values of \(x \) where \(f \) could possibly have local extreme values.

Example 1
Consider the function \(f \) shown in Figure 1.

a. What are the critical numbers of \(f \)? Explain.

The domain of \(f \) is \((-\infty, 6) \cup (6, \infty)\).

\[f'(x) = 0 \quad \text{at} \quad -7, 3, \text{and} \quad 9 \]

Over the domain of \(f \), \(f' \) is undefined at -6 and 6.

\(\therefore \) The critical numbers of \(f \) are \(-7, -6, 3, 9, \text{and} \quad 9 \).

b. Where does \(f \) change concavity? What else happens at these points?

\(f \) changes concavity at \(-6, 0, \text{and} \quad 8\). At these values of \(x \), \(f'' \) changes sign, so \(f' \) must either be zero or undefined.

c. What are the inflection points on \(f \)? Local max points? Local min points?

The inflection points are \((-6, 2)\) and \((0, 1)\) and \((9, 3)\). These occur at \(-6, 0, \text{and} \quad 9\).

The only local maximum point is \((-3, 4)\). This point occurs at \(-3\). The local maximum value is 4.

The local minimum points are \((-7, -2.5)\) and \((3, -2)\).
I see a Rational Exponent.

My Exponent tells me that the algebra will be Simpler if I use the product rule.

Example 2

Find the critical numbers of \(g(\theta) = \frac{\ln(\theta)}{\theta^{3/2}} \).

\[
 g'(\theta) = 2 \ln(\theta) \cdot \frac{1}{\theta} \cdot \theta^{-1/2} + \left(\frac{\ln(\theta)}{\theta^{1/2}} \right) \cdot \frac{1}{3} \theta^{-1/3}
\]

\[
 = 2 \ln(\theta) \cdot \theta^{-1/3} - \frac{1}{3} \left(\ln(\theta) \right)^2 \theta^{-1/3}
\]

\[
 = \frac{2 \ln(\theta)}{\theta^{1/3}} - \frac{\left(\ln(\theta) \right)^2}{3 \theta^{4/3}}
\]

\[
 = \frac{6 \ln(\theta) - \left(\ln(\theta) \right)^2}{3 \theta^{4/3}}
\]

The domain of \(g \) is \((0, \infty)\).

\(g'(\theta) = 0 \) where \(\ln(\theta) = 0 \) or \(6 - \ln(\theta) = 0 \).

\[\begin{align*}
\ln(\theta) &= 0 \\
\theta &= e^0 \\
\end{align*}\]

\(g'(\theta) = 0 \) when \(\theta = 1 \) or \(\theta = e^6 \).

Over the domain of \(g \), \(g' \) is undefined nowhere.

\[\text{The critical nums of } g \text{ are } 1 \text{ and } e^6.\]
Example 3

Find the critical numbers of \(f(x) = (x - 4)^3 (x + 3)^3 \).

\[
f'(x) = 4(x-4)^3 \cdot 1 \cdot (x+3)^3 + (x-4)^3 \cdot 3(x+3)^2 \cdot 1 \\
= (x-4)^3 (x+3)^2 \left[4(x+3) + 3(x-4) \right] \\
= (x-4)^3 (x+3)^2 \left[7x \right] \\
= 7x (x-4)^3 (x+3)^2
\]

The domain of \(f \) is \((-\infty, \infty)\).

\[f'(x) = 0 \text{ at } 0, 4, \text{ and } -3. \]

\(f'(x) \) is never undefined.

\[\therefore \text{ The critical numbers of } f \text{ are } 0, 4, \text{ and } -3. \]
Example 4

The first derivative of the function $T(x) = \frac{1100 \sqrt{x - 10}}{x^3}$ is $T'(x) = \frac{-5500(x - 12)}{3x^3 \sqrt{x - 10}}$.

a. What are the critical numbers of T? Explain.

The domain of T is $(-\infty, 0) \cup (0, \infty)$.

$T'(x) = 0$ @ 12.

Over the domain of T, T' is undefined @ 10.

The critical #s of T are 10 and 12.

b. Build a table that clearly shows where T is increasing and where T is decreasing. Make sure your table communicates how you arrived at your conclusions.

<table>
<thead>
<tr>
<th>Interval</th>
<th>T''</th>
<th>$x - 12$</th>
<th>x^2</th>
<th>$3\sqrt{x - 10}$</th>
<th>T'</th>
<th>T is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-\infty, 0)$</td>
<td>-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>decreasing</td>
</tr>
<tr>
<td>$[0, 10)$</td>
<td>7</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>increasing</td>
</tr>
<tr>
<td>$(10, 12)$</td>
<td>11</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>increasing</td>
</tr>
<tr>
<td>$(12, \infty)$</td>
<td>53</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>decreasing</td>
</tr>
</tbody>
</table>

$c.$ What are the local maximum points on T? Local minimum points? What sort of point is $(10, 0)$?

The only local max - point is $(12, \frac{1100 \sqrt{2}}{144})$.

There are no local min points.

$(10, 0)$ is an inflection pt. that we stumbled upon. We’d need to analyze T'' to build an exhaustive list of inflection points.

4 Critical Numbers
Example 5

Find the local minimum points, local maximum points, and inflection points on the function
\(h(x) = \sqrt[3]{x} + \frac{1}{\sqrt[3]{x}} \). Show all relevant work. There is additional work space on page 6.

\[
\begin{align*}
 h'(x) &= \frac{1}{3} x^{-\frac{2}{3}} - \frac{1}{3} x^{-\frac{4}{3}} \\
 h''(x) &= -\frac{2}{9} x^{-\frac{5}{3}} + \frac{4}{9} x^{-\frac{7}{3}} \\
 h'''(x) &= -\frac{1}{3} x^{-\frac{2}{3}} - \frac{1}{3} x^{-\frac{4}{3}} \\
 &= \frac{x^{\frac{2}{3}} - 1}{3 x^{\frac{4}{3}}} \\
 &= \frac{(x^{\frac{1}{3}} + 1)(x^{\frac{1}{3}} - 1)}{3 x^{\frac{4}{3}}} \\
 h''(x) &= -\frac{2}{9} \cdot \frac{1}{x^{\frac{5}{3}}} \cdot \frac{x^{\frac{4}{3}}}{x^{\frac{4}{3}}} + \frac{4}{9} \cdot \frac{1}{x^{\frac{7}{3}}} \\
 &= -\frac{2}{9} \cdot \frac{x^{\frac{1}{3}} - 2}{9 x^{\frac{7}{3}}} \\
 &= \frac{-2(x^{\frac{1}{3}} + \sqrt{2})(x^{\frac{1}{3}} - \sqrt{2})}{9 x^{\frac{7}{3}}} \\
\end{align*}
\]

The domain of \(h \) is \((-\infty, 0) \cup (0, \infty)\).

\(h'(x) = 0 \) when \(\sqrt[3]{x} = -1 \) or \(\sqrt[3]{x} = 1 \), so \(x = \pm 1 \).

Over the domain of \(h \), \(h' \) is never undefined.

\[\because \text{The critical values of } h \text{ are } 1 \text{ and } -1. \]
\[h(x) = \sqrt[3]{x} + \frac{1}{\sqrt[3]{x}} \quad h'(x) = \frac{(x^{\frac{1}{3}} - 1)(x^{\frac{1}{3}} + 1)}{3x^{\frac{4}{3}}} \quad h''(x) = \frac{2(\sqrt{2} + x^{\frac{1}{3}})(\sqrt{2} - x^{\frac{1}{3}})}{9x^{\frac{7}{3}}} \]

- \[h''(x) = 0 \text{ when } 3x = \pm \sqrt{2}, \quad x = \pm \frac{2}{3} \]
- \[h''(x) \text{ is undefined when } x = 0 \]

Table 2: Increase Table for \(h \)

<table>
<thead>
<tr>
<th>Interval</th>
<th>(\frac{1}{3})</th>
<th>(3x - 1)</th>
<th>(3x + 1)</th>
<th>(x^{1/3})</th>
<th>(h')</th>
<th>Behavior of (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\infty, -1)</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>increasing</td>
</tr>
<tr>
<td>(-1, 0)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>decreasing</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>decreasing</td>
</tr>
<tr>
<td>(1, \infty)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>increasing</td>
</tr>
</tbody>
</table>

Note: End points in concavity test occur wherever \(h''(x) = 0 \) or \(h''(x) \) is undefined (over the range domain of \(h \)).

\[h''(x) = 0 \text{ when } 3x = \pm \sqrt{2}, \quad x = \pm \frac{2}{3} \]

Table 3: Concavity Table for \(h \)

<table>
<thead>
<tr>
<th>Interval</th>
<th>(3x + \frac{2}{3})</th>
<th>(3x - \frac{2}{3})</th>
<th>(x^{1/3})</th>
<th>(h'')</th>
<th>Concavity of (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, -\frac{2}{3}))</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>up</td>
</tr>
<tr>
<td>((-\frac{2}{3}, 0))</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>down</td>
</tr>
<tr>
<td>((0, \frac{2}{3}))</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>up</td>
</tr>
<tr>
<td>((\frac{2}{3}, \infty))</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>down</td>
</tr>
</tbody>
</table>

The only local maximum point is \((-1, -2)\).

The only local minimum point is \((1, 2)\).

The inflection points are \((-2\sqrt{2}, -\frac{2\sqrt{2}}{2})\) and \((2\sqrt{2}, \frac{2\sqrt{2}}{2})\).
Example 6

Determine the intervals over which the function \(f'(\theta) = -\frac{\cos^2(\theta)}{2} - \cos(\theta) - \sin(\theta) - \theta \) is increasing and the intervals over which the function is decreasing.

The domain of \(f \) is \(\mathbb{R} \).

\[
 f'(\theta) = -\frac{1}{2} \cdot 2 \cos(\theta) \cdot (-\sin(\theta) + \sin(\theta)) - \cos(\theta) - 1 \\
 = \cos(\theta) \cdot \sin(\theta) + 3 \sin(\theta) - \cos(\theta) - 1 \\
 = \sin(\theta)(\cos(\theta) + 1) - 1(\cos(\theta) + 1) \\
 = (\cos(\theta) + 1)(\sin(\theta) - 1)
\]

\(\sin(\theta) \leq 1 \forall \theta \implies \sin(\theta) - 1 \) is never positive.

\(\cos(\theta) \geq -1 \forall \theta \implies \cos(\theta) + 1 \) is never negative.

\(\therefore \) The two factors in \(f' \) never have the same sign so their product is never positive. Ergo, \(f \) is never increasing, it's always decreasing (neither factor in \(f' \) is ever zero over an interval.)
Example 7

Find the critical numbers of \(k(t) = \frac{\sqrt{t-4}}{t-10} \).

\[k'(t) = \frac{1}{2} (t-4)^{-\frac{1}{2}} (t-10)^{-1} + (t-4)^{\frac{1}{2}} (t-10)^{-\frac{3}{2}} - 1 \cdot (t-10)^{-2} \]

\[= \frac{1}{2} \cdot \frac{1}{\sqrt{t-4}} \cdot \frac{1}{t-10} \cdot \frac{t-10}{2} - \frac{(t-4)^{\frac{1}{2}}}{(t-10)^{\frac{3}{2}}} \cdot \frac{2}{2} \cdot \frac{\sqrt{t-4}}{t-10} \]

\[= \frac{(t-10) - 2(t-4)}{2 \sqrt{t-4} (t-10)^{\frac{3}{2}}} \]

\[= \frac{-t - 2}{2 \sqrt{t-4} (t-10)^{\frac{3}{2}}} \]

\[= -\frac{t + 2}{2 \sqrt{t-4} (t-10)^{\frac{3}{2}}} \]

The domain of \(k \) is \([-4, 10) \cup (10, \infty)\).

\(k'(t) = 0 \) nowhere (\(-2 \) is not in the domain of \(k' \) or \(k \)).

Over the domain of \(k \), \(k'(t) \) is undefined at \(4 \).

i. The only critical # of \(k \) is \(4 \).
For the function $g(x) = \frac{1-e^x}{1+e^x}$, $g'(x) = \frac{-2e^x}{(1+e^x)^2}$ and $g''(x) = \frac{2e^x(e^x-1)}{(1+e^x)^3}$. We are going to graph this function onto Figure 1 after answering each of the following questions.

- What are the critical numbers of g?
- What are the local minimum points and local maximum points on g?
- What are the inflection points on g?
- What are the asymptotes on a graph of g?

The domain of g is $(-\infty,\infty)$ ($e^x \neq -1$ over \mathbb{R}).

- $g'(x)$ never equals zero and g' is never undefined.
- g has no critical numbers.
- If there aren't any critical numbers, there aren't any local extreme points. g has no local extreme points.

- $g''(x) = 0$ when $e^x - 1 = 0$, which occurs at 0.
- $g''(x)$ is never undefined.

 The only inflection point on g is $(0,0)$.

- g has no vertical asymptotes. (e^x is always positive.)

- The horizontal asymptotes are $y = \lim_{x \to \infty} g(x)$ and $y = \lim_{x \to -\infty} g(x)$.

 - If these limits exist (numbers)

 \[\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{1-e^x}{1+e^x} = \lim_{x \to \infty} \left(1 - \frac{1}{1+e^x} \right) = 1 \]

 \[\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} \frac{1}{1+e^x} = \frac{1}{1+1} = \frac{1}{2} \]

 - The horizontal asymptotes are $y = 1$ and $y = -1$.

Figure 1: $y = g(x)$
MTH 251 – Mr. Simonds’ class

Find each limit showing work that fully supports your answer.

\[
\lim_{x \to \infty} \frac{(2x + 1)(3x - 2)}{5 - 7x^2} = \lim_{x \to \infty} \left(\frac{6x^2 - 6x - 2}{5 - 7x^2} \cdot \frac{1/x^2}{1/x^2} \right)
\]

\[
= \lim_{x \to \infty} \frac{6 - 1/x - 2/x^2}{5/x^2 - 7}
\]

\[
= \frac{6 - 0 - 0}{0}
\]

\[
\lim_{t \to 0} \frac{\sin^2(2t)}{1 - \cos^2(t)} = \lim_{t \to 0} \frac{4 \sin^2(t) \cos^2(t)}{1 - \cos^2(t)}
\]

\[
= \lim_{t \to 0} \frac{4 \sin^2(t)}{\sin^2(t)}
\]

\[
= 4
\]
\[
\lim_{h \to 0} \frac{h}{4 - \sqrt{16 + h}} = \lim_{h \to 0} \left(\frac{\frac{h}{4 - \sqrt{16 + h}}}{\frac{4 + \sqrt{16 + h}}{4 + \sqrt{16 + h}}} \right)
\]
\[
= \lim_{h \to 0} \frac{h \left(4 + \sqrt{16 + h} \right)}{16 - (16 + h)}
\]
\[
= \lim_{h \to 0} \frac{h \left(4 + \sqrt{16 + h} \right)}{-h}
\]
\[
= \lim_{h \to 0} \frac{4 + \sqrt{16 + h}}{-1}
\]
\[
= \frac{4 + \sqrt{16}}{-1}
\]
\[
= -8
\]

What are the asymptotes on a graph of the function \(y = \frac{4x}{\sqrt{x^3 - 6}} \)?

Vertical asymptote: \(x = \frac{3}{4} \) (not \(-2, 0\) or \(2\))

The only vertical asymptote is \(x = 6 \). \(x > 6 \) for both radicals to be real.

\(3 \) is not in the domain of the function's radicals to be real.

Horizontal asymptote: \(\lim_{x \to \infty} f(x) = -\frac{4}{3} \)

Domain: the function is \((6, \infty) \)

Domain: the function is \((6, \infty) \)

If \(x > 6 \), then \(\sqrt{x} > \sqrt{6} \).

The horizontal asymptote is \(y = -\frac{4}{3} \).
Over what intervals is the function \(y = \frac{4x}{\sqrt{x-3} \sqrt{x-6}} \) increasing and over what intervals is the function decreasing?

\[
\frac{dy}{dx} = 4x \left(x-3 \right)^{-\frac{1}{2}} \left(x-6 \right)^{-\frac{1}{2}} + 4 \cdot \frac{1}{2} \left(x-3 \right)^{-\frac{3}{2}} \left(x-6 \right)^{-\frac{1}{2}} + 4 \cdot \left(x-3 \right)^{-\frac{1}{2}} \cdot \frac{1}{2} \left(x-6 \right)^{-\frac{3}{2}}
\]

\[
= \frac{4}{(x-3)^{\frac{1}{2}} (x-6)^{\frac{1}{2}}} - \frac{2x}{(x-3)^{\frac{3}{2}} (x-6)^{\frac{1}{2}}} - \frac{2x}{(x-3)^{\frac{1}{2}} (x-6)^{\frac{3}{2}}}
\]

\[
= \frac{4x^2 - 36x + 72}{(x-3)^{\frac{3}{2}} (x-6)^{\frac{1}{2}}} - \frac{2x^2 + 12x - 2x^2 + 6x}{(x-3)^{\frac{3}{2}} (x-6)^{\frac{1}{2}}}
\]

\[
= \frac{-18x + 72}{(x-3)^{\frac{3}{2}} (x-6)^{\frac{1}{2}}} - \frac{19 (x-4)}{(x-3)^{\frac{3}{2}} (x-6)^{\frac{3}{2}}}
\]

\[
\frac{dy}{dx} = 0 \quad \text{The function is always decreasing.}
\]