1. Use the definition of the first derivative to find the value of $f'(3)$ for the function $f(x) = 4x^2 - 2x$. Please note that you will get no credit for using a short cut formula to find the formula for $f'(x)$. In fact, I'm not looking for the first derivative formula, just the first derivative value at 3. (12 points)

$$f'(x) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$$

$$= \lim_{h \to 0} \frac{4(3+h)^2 - 2(3+h) - 30}{h}$$

$$= \lim_{h \to 0} \frac{4(9 + 6h + h^2) - 6 - 2h - 30}{h}$$

$$= \lim_{h \to 0} \frac{36 + 24h + 4h^2 - 6 - 2h - 30}{h}$$

$$= \lim_{h \to 0} \frac{22h + 4h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(22 + 4h)}{h}$$

$$= 22$$
2. Sketch onto Figure 2 a continuous antiderivative of the function \(f \) shown in Figure 1; specifically, draw the continuous antiderivative that passes through the point \((-4, 2)\). Please note that I am looking for a plausible curve, not the exact curve. (12 points)

3. Figure K shows a graph of Mr. Kitty's weight (lb) \(t \) weeks after the Cartmans brought him home from the SP no kill kitty shelter. Calculate, and state, the slope of the line—including unit— and interpret the slope as a rate of change. (7 points)

The slope is \(\frac{1}{3} \) lb/wk.

After coming home with the Cartmans, Mr. Kitty's weight increased at the constant rate of \(\frac{1}{3} \) lb/wk.
4. Use the definition of the first derivative to find the formula for \(g'(x) \) if \(g(x) = 2 \). Please note that you will get no credit for using a short cut formula to find the formula for \(g'(x) \). (8 points)

\[
g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}
\]

\[
= \lim_{h \to 0} \frac{2 - 2}{h}
\]

\[
= \lim_{h \to 0} \frac{0}{h}
\]

\[
= 0
\]

5. Draw onto Figure 3 a plausible first derivative of a function, \(f \), that has each of the following properties. To be clear, I am telling you properties of \(f \) and you are going to draw \(f' \). (12 points)

- \(f \) is continuous over \((-7,7)\)
- \(f \) is increasing on \((-7,-2)\) and \((-2,4)\); \(f \) is decreasing on \((4,7)\).
- \(f \) is concave up on \((-4,-2)\), linear on \((-2,2)\), and concave down on both \((-7,-4)\) and \((2,7)\).
- The tangent lines to \(f \) at both \(x = -3 \) and \(x = -1 \) have a slope of 1.
- Over \((-7,7)\), \(f \) is nondifferentiable exactly one time.
- Over \((-7,7)\), there are exactly two points where the tangent line to \(f \) is horizontal.
6. Miss Communication makes a lot of embarrassing typos. The number of typos she makes in a given morning depends upon the amount of coffee she drinks (oz) before coming to work.

Figure T shows a graph of the number of embarrassing typos Miss Communication makes, on average, as a function of the amount of coffee she drinks before coming to work; call this relationship \(y = m(x) \).

a. What is the contextual meaning of the function value \(m(25) = 15 \)? (5 points)

On mornings when Miss Communication drinks 25 oz of coffee before coming to work, she makes, on average, 15 embarrassing typos.

b. The tangent line to \(y = m(x) \) at the point \((45, 35)\) has a slope of 2. What, including unit, is the value of \(m'(45) \)? (2 points)

\[m'(45) = 2 \text{ typos/oz} \]

c. The numerical value of \(m''(45) \) is either 0.1 or -0.1. Which one must be correct? How do you know? (3 points)

\[m''(45) = 0.1. \text{ } m''(45) \text{ cannot be negative because } m \text{ is concave up @ } 45. \]

d. What is the unit on \(m''(45) \)? (2 points)

\[\frac{\text{typos/oz}}{\text{oz}} \]
7. For the function \(g(x) = (2x - 7)^5 \), the formula for the first derivative is
\[g'(x) = 10(2x - 7)^4. \]
State the equation of the tangent line to \(g \) at the point where \(x = 4 \).

(6 points)

A point on the line is \((4,1)\).
The slope of the line is \(g'(4) = 10 \).
The equation of the line is \(y = 10x - 39 \).

8. The function \(k' \) is shown in Figure 4. Answer each of the following questions in reference to this function; in all cases restrict your answer to values on the interval \((-7, 7)\). You do not need to explain nor do you need to answer using complete sentences. Please note - the graph is \(k' \), not \(k \). Assume that \(k \) is a continuous function.

(3 points each)

a. Over what intervals(s) is \(k \) increasing?
\((-7, 0) \text{ and } (2, 5)\)

b. At what value(s) of \(x \) is \(k \) nondifferentiable?
2

c. At what value(s) of \(x \) does an antiderivative of \(k \) have a point of inflection?
0, 2, and 5

d. Over what intervals is the function \(y = k''(x) \) constant?
\((-7, -3) \text{ and } (-3, 2)\)

e. At what value(s) of \(x \) does \(k \) have horizontal tangent lines?
0 and 5
9. Each of the following sentences is true if one of the
words/phrases in Table 1 is inserted into the blank. Find
the proper word/phrase for each of the blanks. Read each
sentence carefully!!
(2 points each)

a. If \(f' \) is positive over the entire interval \((2, 5)\), then \(f \) is ______ increasing ______ over the entire interval \((2, 5)\).

b. If the slope of \(f' \) is increasing along the entire interval \((2, 5)\), then \(f'' \) is ______ increasing ______ over the entire interval \((2, 5)\).

c. If \(g'' \) is positive over the entire interval \((2, 5)\), then \(g' \) is ______ increasing ______ over the entire interval \((2, 5)\).

d. If \(g \) is everywhere differentiable and has a local maximum at the point where \(t = 11 \),
then the tangent line to \(y = g(t) \) is ______ horizontal ______ at \(t = 11 \).

e. If the slope of \(g \) is negative over the entire interval \((2, 5)\), then \(g' \) is ______ negative ______ over the entire interval \((2, 5)\).

f. If an antiderivative of \(f \) is constantly decreasing and concave up, then \(f' \) must always be ______ positive, zero, or undefined ______.

g. If \(y = g(t) \) has a point of inflection at \(t = 7 \), then \(g''(7) \) is ______ zero or undefined ______.

h. If \(f \) has a vertical asymptote at \(x = 8 \) then \(f' \) must be ______ nondifferentiable ______ at \(x = 8 \).

Table 1: Blank Options

<table>
<thead>
<tr>
<th>Increasing</th>
<th>Decreasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concave Up</td>
<td>Concave Down</td>
</tr>
<tr>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Zero</td>
<td>"Zero or UD"</td>
</tr>
<tr>
<td>(This is one choice)</td>
<td></td>
</tr>
<tr>
<td>"Positive, Zero or UD"</td>
<td>"Negative, Zero or UD"</td>
</tr>
<tr>
<td>Horizontal</td>
<td>Vertical</td>
</tr>
<tr>
<td>Nondifferentiable</td>
<td>Infinity</td>
</tr>
</tbody>
</table>

Note: UD is short for undefined