The critical numbers of \(f \) are the values of \(x \) in the domain of \(f \) where either \(f'(x) = 0 \) or \(f'(x) \) is undefined. These numbers are important because they are the only values of \(x \) where \(f \) could possibly have local extreme values.

Example 1
Consider the function \(f \) shown in Figure 1.

a. What are the critical numbers of \(f \)? Explain.

b. Where does \(f \) change concavity? What else happens at these points?

c. What are the inflection points on \(f \)? Local max points? Local min points?
Example 2

Find the critical numbers of \(g(\theta) = \frac{\ln(\theta)^2}{\theta^{1/3}} \).

Example 3

Find the critical numbers of \(f(x) = (x - 4)^4 (x + 3)^3 \).
Example 4

The first derivative of the function \(T(x) = \frac{\sqrt[3]{x-10}}{x^2} \) is \(T'(x) = \frac{-5(x-12)}{3x^3 \sqrt[3]{(x-10)^2}} \).

a. What are the critical numbers of \(T \)? Explain.

b. Build a table that clearly shows where \(T \) is increasing and where \(T \) is decreasing. Make sure your table communicates how you arrived at your conclusions.

c. What are the local maximum points on \(T \)? Local minimum points? What sort of point is \((10, 0)\)?
Example 5
Find the local minimum points, local maximum points, and inflection points on the function

\[h(x) = \sqrt[3]{x} + \frac{1}{\sqrt[3]{x}}. \]

Show all relevant work.
Example 6

Determine the intervals over which the function \(f(\theta) = -\frac{\cos^2(\theta)}{2} - \cos(\theta) - \sin(\theta) - \theta \) is increasing and the intervals over which the function is decreasing.
Example 7

Find the critical numbers of $k(t) = \frac{\sqrt{t-4}}{t-10}$.