§ 4.1 Vector Spaces and Subspaces

Many of the algebraic properties of \(\mathbb{R}^n \) are shared by other mathematical systems that superficially seem quite different from \(\mathbb{R}^n \).

These algebraic properties are stated in the definition of a Vector Space.

Definition: A vector space is a non-empty set \(V \), whose elements are called vectors, together with two operations called vector addition and scalar multiplication where vector addition maps \(V \times V \rightarrow V \)

by \((\tilde{u}, \tilde{v}) \mapsto \tilde{u} + \tilde{v}\)

and scalar multiplication maps \(\mathbb{R} \times V \rightarrow V \)

by \((r, \tilde{u}) \mapsto r \cdot \tilde{u}\)

such that the following axioms are satisfied:

1. For all \(\tilde{u}, \tilde{v}, \tilde{w} \in V \) and all \(c, d \in \mathbb{R} \)
 1. \(\tilde{u} + \tilde{v} \in V \) (\(V \) is closed under vector addition)
 2. \(\tilde{u} + \tilde{v} = \tilde{v} + \tilde{u} \) (vector addition is commutative)
 3. \((\tilde{u} + \tilde{v}) + \tilde{w} = \tilde{u} + (\tilde{v} + \tilde{w}) \) (vector addition is associative)
 4. There is a vector \(\tilde{0} \in V \) such that
 \[\tilde{u} + \tilde{0} = \tilde{0} + \tilde{u} = \tilde{u} \] (additive identity element)
 5. For each \(\tilde{u} \in V \) there is a vector \(-\tilde{u} \in V \)
 such that \(\tilde{u} + (-\tilde{u}) = (-\tilde{u}) + \tilde{u} = \tilde{0} \) (additive inverses)
4.1.2

(6) \(c \cdot \vec{u} \in V \) (\(V \) is closed under scalar multiplication)

(7) \(c(\vec{u}+\vec{v})=c\vec{u}+c\vec{v} \) (scalar multiplication distributes over vector addition)

(8) \((c+d)\vec{u}=c\vec{u}+d\vec{u} \) (scalar multiplication distributes over scalar addition)

(9) \(c(d\vec{u})=(cd)\vec{u} \) (scalar multiplication is associative)

(10) 1 \cdot \vec{u} = \vec{u} \) (identity property of scalar multiplication)

Using only these properties we can prove:

If \(V \) is a vector space:

(i) The zero vector, \(\vec{0} \), is unique.

(ii) For each \(\vec{u} \in V \), the additive inverse \(-\vec{u} \), or \(\vec{u} \) is unique.

Proof:

(i) Suppose there is another vector \(\vec{w} \in V \) such that \(\vec{u} + \vec{w} = \vec{w} + \vec{u} = \vec{0} \) for all \(\vec{u} \in V \).

Then \(\vec{w} = \vec{w} + \vec{0} \)

\[= \vec{0}. \]

(ii) Let \(\vec{u} \in V \) be given. Suppose there is another vector \(\vec{w} \in V \) such that \(\vec{u} + \vec{w} = \vec{w} + \vec{u} = \vec{0} \).

Thus:

\[\vec{w} = \vec{w} + \vec{0} \]

\[= \vec{w} + (\vec{u} + (-\vec{u})) \]

\[= (\vec{w} + \vec{u}) + (-\vec{u}) \]

\[= \vec{0} + (-\vec{u}) \]

\[= -\vec{u}. \]
Proposition: Let V be a vector space and let $\vec{u} \in V$ and $c \in \mathbb{R}$, then

1. $0\vec{u} = \vec{0}$
2. $c\vec{0} = \vec{0}$
3. $-\vec{u} = (-1)\vec{u}$

Proof:

1. $0\vec{u} = (0+0)\vec{u}$

 $= 0\cdot\vec{u} + 0\cdot\vec{u}$

 $0\vec{u} + (-0\vec{u}) = (0\cdot\vec{u} + 0\vec{u}) + (-0\vec{u})$

 $\vec{0} = 0\cdot\vec{u} + (0\vec{u} + (-0\vec{u}))$

 $\vec{0} = 0\cdot\vec{u} + \vec{0}$

 $\vec{u} = 0\cdot\vec{u}$

2. $c\vec{0} = c(\vec{0} + \vec{0})$

 $= c\vec{0} + c\vec{0}$

 $c\vec{0} + (-c\vec{0}) = (c\vec{0} + c\vec{0}) + (-c\vec{0})$

 $\vec{0} = c\vec{0} + (c\vec{0} + (-c\vec{0}))$

 $\vec{0} = c\vec{0} + \vec{0}$

 $\vec{0} = c\vec{0}$

3. $\vec{u} + (-1)\vec{u} = (1 + (-1))\vec{u}$

 $= 0\vec{u}$

 $= \vec{0}$ by (1).

 $\Rightarrow (-1)\vec{u} = -\vec{u}$ by the uniqueness of additive inverses.
Examples of vector spaces

1. \mathbb{R}^n where $n \geq 1$, with the standard component-wise definition of vector addition and scalar multiplication is a vector space.
 (See §1.3, page 27, Algebraic Properties of \mathbb{R}^n)

2. Let V be the set of all real valued functions on an interval $[a, b] \subseteq \mathbb{R}$, i.e., if $f \in V$, $f(x) \in \mathbb{R}$ for all $x \in [a, b]$.

 Define vector addition on V by: If $f, g \in V$

 $f + g \in V$ is the function

 defined by

 $(f + g)(x) = f(x) + g(x) \in \mathbb{R}$

 for all $x \in [a, b]$.

 Define scalar multiplication on V by: If $f \in V$ and $c \in \mathbb{R}$

 then $cf \in V$ is the function

 defined by

 $(cf)(x) = c \cdot (f(x)) \in \mathbb{R}$

 for all $x \in [a, b]$.

 The zero vector $\vec{0} \in V$ is the constant zero function

 $\vec{0}(x) = 0$ for all $x \in [a, b]$

 so if $f \in V$

 $(f + \vec{0})(x) = f(x) + \vec{0}(x)$

 $= f(x) + 0$

 $= f(x)$ for all $x \in [a, b]$

 $f + \vec{0} = f$ for all $f \in V$.
2) If \(f \in V \) the additive inverse of \(f \) is the function
\[
-f = (-1)f \in V
\]
defined by \((-f)(x) = -(f(x)) \in \mathbb{R}^n\) for all \(x \in [a, b] \).

Then if \(f \in V \) and \(x \in [a, b] \)
\[
(f + (-f))(x) = f(x) + (-f)(x) = f(x) + (-f(x)) = 0 = \theta(x)
\]
so \(f + (-f) = \theta \).

The vector space axioms are all satisfied by the properties of real numbers:

Example: Axiom (1) \(c(f + g) = (cf) + (cg) \)
If \(f, g \in V \) and \(c \in \mathbb{R} \)
if \(x \in [a, b] \) then
\[
[c(f + g)](x) = c[f + g](x)
= c[f(x) + g(x)]
= c[f(x)] + c[g(x)]
= (cf)(x) + (cg)(x)
= [cf + cg](x)
\]
so \(c(f + g) = cf + cg \).
Example: For \(n \geq 0 \), let \(P_n \) be the set of all polynomials with real coefficients of the form

\[
p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n
\]

where the coefficients \(a_0, a_1, \ldots, a_n \) can be any real numbers and \(x \) is a real valued variable.

Note \(P_n \) is a subset of the set of all real valued functions on \((-\infty, \infty)\). We define vector addition and scalar multiplication on \(P_n \) the same way:

If \(p, q \in P_n \) and \(c \in \mathbb{R} \),

\[
p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n
\]

\[
q(x) = b_0 + b_1x + b_2x^2 + \cdots + b_nx^n
\]

\[(p + q)(x) = p(x) + q(x) \quad \text{(collect like terms)} \]

\[(c \cdot p)(x) = c \cdot p(x) \quad \text{(scaling)} \]

and

\[(c \cdot p)(x) = c \cdot (p(x)) \]

\[= c(a_0) + (c_1a_1)x + (c_2a_2)x^2 + \cdots + (c_na_n)x^n\]

- The zero polynomial in \(P_n \) is

\[\overline{0}(x) = 0 \]

\[= 0 + (0)x + (0)x^2 + \cdots + (0)x^n\]

\[\min \{ (p + \overline{0})(x) \} = \]

\[= a_0 + (a_1 + 0)x + (a_2 + 0)x^2 + \cdots + (a_n + 0)x^n = \]

\[= p(x) \]

\[\Rightarrow p + \overline{0} = p \quad \text{for all} \quad p \in P_n \]
If $p \in \mathbb{R}^n$ the additive inverse of p is $-p = (-1)p$

$$-p(x) = (-a_0) + (-a_1)x + (-a_2)x^2 + \cdots + (-a_n)x^n$$

$$= (a_0 - a_0) + (a_1 - a_1)x + (a_2 - a_2)x^2 + \cdots + (a_n - a_n)x^n = 0 + 0x + 0x^2 + \cdots + 0x^n = \mathbb{O}(x)$$

$\Rightarrow p + (-p) = \mathbb{O}$

Again the vector space axioms are all satisfied by the properties of real numbers.

Examples page 195

(2) Let W be the union of the first and third quadrants in the xy-plane, i.e. $W = \{[x, y] \in \mathbb{R}^2 \mid xy \geq 0\}$

If $\overrightarrow{u} \in W$ and c is any scalar is $c\overrightarrow{u} \in W$? Why?

If $\overrightarrow{u} = [x, y] \in W$ then $xy \geq 0$

If $c \in \mathbb{R}$ then $c\overrightarrow{u} = [cx, cy]$ and $(cx)(cy) = c^2xy$ and $c^2 \geq 0$ and $xy \geq 0 \Rightarrow c^2(xy) \geq 0$ $

\Rightarrow c\overrightarrow{u} \in W$ for all $c \in \mathbb{R}$

$\Rightarrow W$ is closed under scalar multiplication.
4.1.8

(i) Find specific vectors $\vec{u}, \vec{v} \in W$ such that $\vec{u} + \vec{v}$ is not in W.
This shows W is not closed under vector addition (Axiom 1).
Hence W is not a vector space.

Let $\vec{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$

$(3)(2) > 0 \Rightarrow \vec{u} \in W \\
(-2)(-3) > 0 \Rightarrow \vec{v} \in W

\vec{u} + \vec{v} = \begin{bmatrix} 3 - 2 \\ 2 - 3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}

(1)(-1) = -1 < 0

$\Rightarrow \vec{u} + \vec{v} \notin W$

$\Rightarrow W$ is not a vector space.

Subspaces:

Let V be a vector space.
A subspace of V (sub-vector space) is a subset $H \subseteq V$ that satisfies the following three properties:

(a) $\vec{0} \in H$ (the zero vector of V is contained in H)
(b) H is closed under vector addition
 i.e. if $\vec{u}, \vec{v} \in H$ then $\vec{u} + \vec{v} \in H$ too.
(c) H is closed under scalar multiplication.
 i.e. if $\vec{v} \in H$ and $c \in \mathbb{R}$ then $c\vec{v} \in H$ too.

Note: property (c) implies that if $\vec{v} \in H$, then $-\vec{v} = (-1)\vec{v} \in H$ too.

$\Rightarrow H$ is also closed under additive inverses.
It follows that all of the 10 vector space axioms are satisfied by \(H \) since they are satisfied by \(V \) and \(H \) is a subset of \(V \).

Therefore:
If \(H \) is a subspace of \(V \), \(H \) is a vector space in its own right under the operations of vector addition and scalar multiplication it inherits from \(V \).

Example: Let \(V \) be a vector space.
Let \(\mathbf{0} \in V \) be the zero vector.
Let \(H = \{ \mathbf{0} \} \) be the subset of \(V \) containing only the zero vector, then
\[
\begin{align*}
\text{(i) } & \mathbf{0} \in H \text{ is satisfied.} \\
\mathbf{0} + \mathbf{0} = \mathbf{0} \in H & \Rightarrow \text{(ii) is satisfied} \\
\text{If } c \in \mathbb{R} \text{ then } c \cdot \mathbf{0} = \mathbf{0} & \Rightarrow \\
\text{ } c \cdot \mathbf{0} \in H \text{ for all } c \in \mathbb{R} \Rightarrow \text{(iv) is satisfied} \\
\Rightarrow & H = \{ \mathbf{0} \} \text{ is a subspace of } V \\
\{ \mathbf{0} \} \text{ is called the trivial subspace of } V.
\end{align*}
\]
Examples

A plane through the origin in \mathbb{R}^3 is a subspace of \mathbb{R}^3.

Proof:

A plane through the origin in \mathbb{R}^3 is a plane with equation of the form $ax+by+cz=0$.

Let $H = \{ [x, y, z] \in \mathbb{R}^3 | ax+by+cz=0 \}$.

Let $\mathbf{u} = \left[\begin{array}{c} x_1 \\ y_1 \\ z_1 \end{array} \right] \in H$ because $a(x_1)+b(y_1)+c(z_1)=0$.

Let $\mathbf{v} = \left[\begin{array}{c} x_2 \\ y_2 \\ z_2 \end{array} \right]$.

Let both belong to H. Then

$a x_1 + b y_1 + c z_1 = 0$ and $a x_2 + b y_2 + c z_2 = 0$.

Claim: $\mathbf{u} + \mathbf{v} \in H$ too.

$\mathbf{u} + \mathbf{v} = \left[\begin{array}{c} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{array} \right]$

and

$a(x_1+x_2) + b(y_1+y_2) + c(z_1+z_2) = 0$

$a x_1 + a x_2 + b y_1 + b y_2 + c z_1 + c z_2 = 0$

$(a x_1 + b y_1 + c z_1) + (a x_2 + b y_2 + c z_2) = 0 + 0 = 0$

$\mathbf{u} + \mathbf{v} \in H$ too.

Hence H is closed under vector addition.

(2) Suppose $\mathbf{u} = \left[\begin{array}{c} x_1 \\ y_1 \\ z_1 \end{array} \right] \in H$ and $c \in \mathbb{R}$

Then $a x_1 + b y_1 + c z_1 = 0$.

Now $c \mathbf{u} = \left[\begin{array}{c} c x_1 \\ c y_1 \\ c z_1 \end{array} \right]$.
4.1.1

\[a(cx_1) + b(ry_1) + c(z_1) = \]
\[n(ax_1) + r(by_1) + l(z_1) = \]
\[\sqrt{ax_1 + by_1 + cz_1} = \]
\[\sqrt{0} = 0 \]
\[\Rightarrow \sqrt{y} \in H \text{ too.} \]
\[\Rightarrow H \text{ is closed under scalar multiplication} \]

\(\Rightarrow H \text{ is a subspace of } \mathbb{R}^3 \)

(5) Determine if the given set is a subspace of \(\mathbb{R}^n \) for an appropriate value of \(n \).

(6) All polynomials of the form \(p(t) = a + t^2 \) where \(a \in \mathbb{R} \), \(p(t) = a + (0)t + (1)t^2 \)
\[\bar{0} = 0 + 0t + 0t^2 \]
is not of the form \(a + t^2 \) for some \(a \in \mathbb{R} \)
\[\Rightarrow \bar{0} \notin \mathbb{R} = a + t^2 / a \in \mathbb{R}^3 \]
\[\Rightarrow H = \mathbb{R} + t^2 / a \in \mathbb{R}^3 \]
is not a subspace
it fails to contain the zero vector.

(8) All polynomials such that \(p(0) = 0 \)
\[H = \mathbb{R} p \in P_n / p(0) = 0 \]
(8) \(\bar{0}(0) = 0 \Rightarrow \bar{0} \in H \).
(9) If \(p, q \in H \) then \(p(0) = 0 \) and \(q(0) = 0 \)
\[\Rightarrow (p + q)(0) = p(0) + q(0) = 0 \]
\[\Rightarrow p + q \in H \]
\[\Rightarrow H \text{ is closed under vector addition}. \]
4.1.12

(3) If \(p \in \mathbb{R}^1 \) and \(c \in \mathbb{R} \) then
\[
 p(0) = 0 \implies (cp)(0) = c (p(0)) = c (0) = 0.
\]
\[
\implies cp \in H
\]
\[
\Rightarrow H \text{ is closed under scalar multiplication.}
\]

(4) \(c(0) = H \) is a subspace of \(\mathbb{R}^n \).

Let \(V \) be a vector space.

Let \(S = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\} \) be a set of vectors in \(V \). Let \(c_1, c_2, \ldots, c_k \in \mathbb{R} \) be scalars. Then a linear combination of the vectors in \(S \) is a vector of the form:
\[
\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k.
\]

Definition: Let \(V \) be a vector space. Let \(S = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\} \) be a set of vectors in \(V \). Then the span of \(S \), denoted \(\text{Span}(S) \) or \(\text{Span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k) \), is the set of all possible linear combinations of the vectors in \(S \).
\[
\text{Span}(S) = \{\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_k \mathbf{v}_k \mid c_1, c_2, \ldots, c_k \in \mathbb{R}\}.
\]

Theorem (1): If \(V \) is a vector space and \(S = \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\} \) is a non-empty subset of vectors in \(V \), then
\[
H = \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k) \text{ is a subspace of } V.
\]
Proof:

(a) \(\tilde{0} = 0 \tilde{v}_1 + 0 \tilde{v}_2 + \ldots + 0 \tilde{v}_k \in H \).

(b) If \(\tilde{u} = c_1 \tilde{v}_1 + c_2 \tilde{v}_2 + \ldots + c_k \tilde{v}_k \in H \)
and \(\tilde{v} = d_1 \tilde{v}_1 + d_2 \tilde{v}_2 + \ldots + d_k \tilde{v}_k \in H \)
then \(\tilde{u} + \tilde{v} = (c_1 d_1) \tilde{v}_1 + (c_2 + d_2) \tilde{v}_2 + \ldots + (c_k + d_k) \tilde{v}_k \in H \).

(\Rightarrow) If \(\tilde{u}, \tilde{v} \in H \) then \(\tilde{u} + \tilde{v} \in H \) too.

(\Rightarrow) \(H \) is closed under vector addition.

(c) If \(\tilde{u} = c_1 \tilde{v}_1 + c_2 \tilde{v}_2 + \ldots + c_k \tilde{v}_k \) and \(r \in \mathbb{R} \)
then \(r\tilde{u} = r(c_1 \tilde{v}_1 + c_2 \tilde{v}_2 + \ldots + c_k \tilde{v}_k) \)
\[= r(c_1 \tilde{v}_1) + r(c_2 \tilde{v}_2) + \ldots + r(c_k \tilde{v}_k) \]
\[= (rc_1) \tilde{v}_1 + (rc_2) \tilde{v}_2 + \ldots + (rc_k) \tilde{v}_k \]
\(\in H \).

(\Rightarrow) If \(\tilde{u} \in H \) and \(r \in \mathbb{R} \) then \(r\tilde{u} \in H \) too.

(\Rightarrow) \(H \) is closed under scalar multiplication.

(\Rightarrow) (a), (b), (c) \(\Rightarrow H \) is a subspace of \(V \).

Example: page 170.

(12) Let \(W \) be the set of all vectors of the form
\[
\begin{bmatrix}
2s + 4t \\
2s \\
2s - 3t \\
0 + 5t
\end{bmatrix}
\]
satisfying

\[
\begin{bmatrix}
2s + 4t \\
2s + 0 \\
2s - 3t \\
0 + 5t
\end{bmatrix} = s
\begin{bmatrix}
2 \\
2 \\
0 \\
0
\end{bmatrix} + t
\begin{bmatrix}
4 \\
0 \\
-3 \\
5
\end{bmatrix}
\]
satisfying

(\Rightarrow) \(W = \text{Span}\left(\begin{bmatrix}2 \\ 2 \\ 0 \\ 1\end{bmatrix}, \begin{bmatrix}4 \\ 0 \\ -3 \\ 5\end{bmatrix}\right)\)

(\Rightarrow) \(W \) is a subspace of \(\mathbb{R}^4 \).