8.4.1 Vectors

A vector is a quantity that has both magnitude and direction.

A vector is represented by a directed line segment \overrightarrow{PQ}, with initial point $P(x_1, y_1)$ and terminal point $Q(x_2, y_2)$.

The x-component of the vector represented by \overrightarrow{PQ} is $x_2 - x_1$.

The y-component of the vector represented by \overrightarrow{PQ} is $y_2 - y_1$.

The magnitude of the vector represented by \overrightarrow{PQ} is the length of the directed line segment:

$$|\overrightarrow{PQ}| = \text{dist}(P, Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

The direction of the vector represented by \overrightarrow{PQ} is from P to Q.

Two different directed line segments \overrightarrow{PQ} and \overrightarrow{RS} represent the same vector if and only if they have the same magnitude and the same direction.
The zero vector \(\vec{0} \) is the vector with zero magnitude and no direction. \(\vec{0} = \overrightarrow{PP} \) (initial point and terminal point are the same.)

Adding vectors geometrically:
If \(\overrightarrow{V} \) and \(\overrightarrow{W} \) are two vectors, we define the sum \(\overrightarrow{V} + \overrightarrow{W} \) of \(\overrightarrow{V} \) and \(\overrightarrow{W} \) as follows:

Position \(\overrightarrow{V} \) and \(\overrightarrow{W} \) so that the initial point of \(\overrightarrow{W} \) coincides with the terminal point of \(\overrightarrow{V} \), then \(\overrightarrow{V} + \overrightarrow{W} \) is the unique vector whose initial point coincides with the initial point of \(\overrightarrow{V} \) and whose terminal point coincides with the terminal point of \(\overrightarrow{W} \).

[Diagram showing \(\overrightarrow{V} + \overrightarrow{W} \) with \(\overrightarrow{V} \) and \(\overrightarrow{W} \) illustrated]

Algebraic properties of vector addition
- If \(\overrightarrow{U}, \overrightarrow{V}, \) and \(\overrightarrow{W} \) are vectors in the plane
 - (i) \(\overrightarrow{V} + \overrightarrow{W} = \overrightarrow{W} + \overrightarrow{V} \) (commutative law)
 - (ii) \(\overrightarrow{U} + (\overrightarrow{V} + \overrightarrow{W}) = (\overrightarrow{U} + \overrightarrow{V}) + \overrightarrow{W} \) (associative law)
 - (iii) \(\overrightarrow{V} + \overrightarrow{0} = \overrightarrow{V} \) (identity property)

If \(\overrightarrow{V} \) is a vector, \(-\overrightarrow{V} \) is the vector that has the same magnitude as \(\overrightarrow{V} \) and faces the opposite direction as \(\overrightarrow{V} \).

i.e., if \(\overrightarrow{V} = \overrightarrow{PQ} \) then \(-\overrightarrow{V} = \overrightarrow{QP} \)

Then
- (iv) \(\overrightarrow{V} + (-\overrightarrow{V}) = \overrightarrow{0} \) (inverse property)
Vector Subtraction:
If \(\overrightarrow{V} \) and \(\overrightarrow{W} \) are vectors, the difference \(\overrightarrow{V} - \overrightarrow{W} \) is defined by
\[
\overrightarrow{V} - \overrightarrow{W} = \overrightarrow{V} + (-\overrightarrow{W})
\]

Scalar Multiplication:
A number is called a scalar when we are dealing with vectors.
If \(\alpha \) is a scalar and \(\overrightarrow{V} \) is a vector,
(i) If \(\alpha > 0 \), then \(\alpha \overrightarrow{V} \) is the vector whose magnitude is \(\alpha \) times the magnitude of \(\overrightarrow{V} \) and whose direction is the same as the direction of \(\overrightarrow{V} \).
\[
\|\alpha \overrightarrow{V}\| = \alpha \|\overrightarrow{V}\|
\]
(ii) If \(\alpha < 0 \), \(\alpha \overrightarrow{V} \) is the vector whose magnitude is \(|\alpha| \) times the magnitude of \(\overrightarrow{V} \) and whose direction is the opposite of the direction of \(\overrightarrow{V} \).
\[
\|\alpha \overrightarrow{V}\| = |\alpha| \|\overrightarrow{V}\|
\]
\[
\alpha \overrightarrow{V} = |\alpha| (-\overrightarrow{V})
\]
(ii) If \(a = 0 \) or \(\vec{V} = \vec{0} \) then \(a \vec{V} = \vec{0} \).

Properties:

(i) \(0 \vec{V} = \vec{0} \)

(ii) \(1 \vec{V} = \vec{V} \)

(iii) \(-1 \vec{V} = -\vec{V} \)

(iv) \((\alpha + \beta) \vec{V} = \alpha \vec{V} + \beta \vec{V} \)

(v) \(a(\vec{V} + \vec{W}) = a\vec{V} + a\vec{W} \)

(vi) \(a(\beta \vec{V}) = (a \beta) \vec{V} \)

Graphing vectors

\(\vec{W} \) has components \([2, 5]\)

\(\vec{U} \) has components \([2, -1]\)

\(\vec{V} \) has components \([5, 0]\)

Graph:

(9) \(\vec{V} + \vec{W} \)

\(\vec{V} + \vec{W} \) has components \([7, 5]\)

\([5, 0] + [2, 5] = [5 + 2, 0 + 5] = [7, 5]\)
13. \(\vec{V} - \vec{W} \)
\(\vec{V} \) has components \([5, 0]\)
\(-\vec{W} \) has components \([-2, -5]\)

\[\vec{V} - \vec{W} \text{ has components } [3, -5] \]
\[[5, 0] - [2, 5] = [3, -5] \]
\[[5, 0] + [-2, -5] = [3, -5] \]

11. \(3\vec{V} \)
\(\vec{V} \) has components \([5, 0]\)

\(3\vec{V} \) has components \([15, 0]\)
\[8.4.6\]

If \(\overrightarrow{V} = \langle a, b \rangle \) is an algebraic vector whose initial point is at \((0,0)\), the origin, then \(\overrightarrow{V} \) is called a position vector.

Theorem: Suppose \(\overrightarrow{V} \) is a vector represented by the directed line segment \(PQ \) where \(P = (x_1, y_1) \) and \(Q = (x_2, y_2) \). Then \(\overrightarrow{V} \) is equal to the position vector \(\overrightarrow{V} = \langle x_2 - x_1, y_2 - y_1 \rangle \).

If \(a = x_2 - x_1 \), \(b = y_2 - y_1 \),

\[\overrightarrow{V} \text{ and } \overrightarrow{PQ} \text{ have the same direction and the same magnitude, so they are equal.} \]

Example: If \(\overrightarrow{V} = \overrightarrow{PQ} \) where \(P = (-2, 0) \) and \(Q = (3, 4) \),

Then \(\overrightarrow{V} = \langle 3 - (-2), 4 - 0 \rangle = \langle 5, 4 \rangle \)

is the position vector for \(\overrightarrow{V} \).
Equality of Vectors
If \(\vec{V} = \langle a_1, b_1 \rangle \) and \(\vec{W} = \langle a_2, b_2 \rangle \)
then \(\vec{V} = \vec{W} \) if and only if
\[a_1 = a_2 \quad \text{and} \quad b_1 = b_2 \]

Standard Unit Vectors
- The standard unit vector in the x-direction is \(\hat{i} = \langle 1, 0 \rangle \)
- The standard unit vector in the y-direction is \(\hat{j} = \langle 0, 1 \rangle \)

If \(\vec{V} = \langle a_1, b_1 \rangle \) then
\[\vec{V} = \langle a_1, 0 \rangle + \langle 0, b_1 \rangle \]
\[= a_1 \hat{i} + b_1 \hat{j} \]

Adding and Subtracting Vectors
Algebraically
If \(\vec{V} = \langle a_1, b_1 \rangle = a_1 \hat{i} + b_1 \hat{j} \)
\(\vec{W} = \langle a_2, b_2 \rangle = a_2 \hat{i} + b_2 \hat{j} \)
then
\[\vec{V} + \vec{W} = (a_1 + a_2) \hat{i} + (b_1 + b_2) \hat{j} \]
\[= \langle a_1 + a_2, b_1 + b_2 \rangle \]

and
\[\vec{V} - \vec{W} = (a_1 - a_2) \hat{i} + (b_1 - b_2) \hat{j} \]
\[= \langle a_1 - a_2, b_1 - b_2 \rangle \]

If \(\alpha \) is a scalar
\[\alpha \vec{V} = (\alpha a_1) \hat{i} + (\alpha b_1) \hat{j} \]
\[= \langle \alpha a_1, \alpha b_1 \rangle \]

1. \(\| \vec{V} \| = \sqrt{a_1^2 + b_1^2} \)
The vector \mathbf{v} has initial point P and terminal point Q. Write \mathbf{v} in the form $a\mathbf{i} + b\mathbf{j}$. Find its position vector.

30. $P = (-3, 2), \quad Q = (6, 5)$

$\mathbf{v} = (6 - (-3), 5 - 2) = (9, 3)$

$= 9\mathbf{i} + 3\mathbf{j}$

Find $|\mathbf{v}|$

36. $\mathbf{v} = -5\mathbf{i} + 12\mathbf{j}$

$|\mathbf{v}| = \sqrt{(-5)^2 + (12)^2}$

$= \sqrt{25 + 144}$

$= \sqrt{169}$

$= 13$

If $\mathbf{v} = 3\mathbf{i} - 5\mathbf{j} = <3, -5>$, $\mathbf{w} = -2\mathbf{i} + 3\mathbf{j} = <-2, 3>$

Find

42. $3\mathbf{v} - 2\mathbf{w} = 3<3, -5> - 2<-2, 3>$

$= <9, -15> + <4, -6>$

$= <13, -21>$

$= 13\mathbf{i} - 21\mathbf{j}$

43. $|\mathbf{v} - \mathbf{w}|$

$\mathbf{v} - \mathbf{w} = <3, -5> - <-2, 3>$

$= <3 - (-2), -5 - 3>$

$= <5, -8>$

$|\mathbf{v} - \mathbf{w}| = \sqrt{(5)^2 + (-8)^2}$

$= \sqrt{25 + 64}$

$= \sqrt{89} \\ \approx 9.43$ units
8. 4. 9

- Finding a unit vector

If \(\vec{V} = <a, b> \neq <0, 0> \)

\[||\vec{V}|| = \sqrt{a^2 + b^2} \neq 0 \]

The unit vector in the direction of \(\vec{V} \)

is \(\vec{U} = \frac{1}{||\vec{V}||} \vec{V} \)

\[= \left(\frac{a}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}} \right) \]

Example: pg. 628

Find the unit vector in the direction of \(\vec{V} \).

\[\vec{V} = 3\hat{i} - 4\hat{j} = <3, -4> \]

\[||\vec{V}|| = \sqrt{3^2 + (-4)^2} \]

\[= \sqrt{9 + 16} \]

\[= \sqrt{25} \]

\[= 5 \]

\[\vec{U} = \frac{1}{5} \vec{V} \]

\[= \frac{1}{5} <3, -4> \]

\[= \left(\frac{3}{5}, -\frac{4}{5} \right) \]

\[= \left(\frac{3\hat{i}}{5} - \frac{4\hat{j}}{5} \right) \]

- Finding a vector from its direction and magnitude

If \(\vec{V} = <a, b> \)

its direction angle \(\theta \) is the angle between the positive x-axis and the vector \(\vec{V} \)

\[\tan(\theta) = \frac{b}{a} \quad \text{if} \ a \neq 0 \]
The unit vector in the direction of \(\vec{V} \) is
\[
\vec{U} = \frac{\vec{V}}{||\vec{V}||} \Rightarrow \vec{V} = ||\vec{V}|| \vec{U}
\]
\[
= ||\vec{V}|| < \cos(\theta), \sin(\theta) >=
\]
\[
= ||\vec{V}|| < \cos(\theta), \sin(\theta) >
\]
\[
= \left(||\vec{V}|| \cos(\theta), ||\vec{V}|| \sin(\theta) \right)
\]

I.e.
If the magnitude of \(\vec{V} \) is \(||\vec{V}|| \)
and the direction angle of \(\vec{V} \) is \(\theta \)
then
\[
\vec{V} = ||\vec{V}|| \left(\cos(\theta) \hat{i} + \sin(\theta) \hat{j} \right)
\]

Example: pg. 62
Write the vector \(\vec{V} \) in the form \(\vec{V} = a\hat{i} + b\hat{j} \)
given its magnitude \(||\vec{V}|| \) and its direction angle \(\alpha \).

(6) \(||\vec{V}|| = 5, \alpha = 45^\circ \)
\[
\vec{V} = (5 \cos(45^\circ), 5 \sin(45^\circ)) = (5 \left(\frac{\sqrt{2}}{2} \right), 5 \left(\frac{\sqrt{2}}{2} \right)) = (4.12, 4.12)
\]
\[
= 4.12 \hat{i} + 4.12 \hat{j}
\]

(6) \(||\vec{V}|| = 25, \alpha = 330^\circ \) (in QIV \(330^\circ = -30^\circ + 360^\circ \))
\[
\vec{V} = (25 \cos(330^\circ), 25 \sin(330^\circ)) = (25 \left(\frac{\sqrt{3}}{2} \right), 25 \left(-\frac{1}{2} \right)) = (12.5 \sqrt{3}, -12.5)
\]
\[
= (12.5 \sqrt{3}) \hat{i} - (12.5) \hat{j}
\]
Find the direction angle between \(\vec{v} \) and \(\vec{v} \) for each vector.

\[
\vec{V} = 4\hat{i} - 2\hat{j} = \langle 4, -2 \rangle \quad \text{in } \mathbb{QIV}
\]

\[
\alpha = \tan^{-1}\left(\frac{-2}{4}\right) = \tan^{-1}\left(-\frac{1}{2}\right)
\]

\[
\alpha = -26.57^\circ
\]

or \[-26.57^\circ + 360^\circ = 333.43^\circ\]

\[
\|\vec{V}\| = \sqrt{(4)^2 + (-2)^2}
\]

\[
= \sqrt{16 + 4}
\]

\[
= \sqrt{20}
\]

\[
= 2\sqrt{5}
\]

\[
\vec{V} = 2\sqrt{5} \left(\cos(333.43^\circ) \hat{i} + \sin(333.43^\circ) \hat{j} \right)
\]

MODEL WITH VECTORS

Forces can be represented by vectors because they have both magnitude and direction. If two force vectors \(\vec{F}_1 \) and \(\vec{F}_2 \) act on an object at the same time, the net effect experienced by the object is called the resultant force. The resultant force is equal to the vector sum \(\vec{F}_1 + \vec{F}_2 \).
Example: page 629

Resultant Force

Two forces of magnitude 40 newtons (N) and 60N act on an object at angles of 30°
and 45° with respect to the positive x-axis. Find the direction and the magnitude of
the resultant force.

\[\text{Resultant force} \]

\[\vec{F}_{\text{resultant}} = 40N \]

\[\vec{F}_1 = <40N \cos(30°), 40N \sin(30°)> \]
\[= <40N \left(\frac{\sqrt{3}}{2} \right), 40N \left(\frac{1}{2} \right)> \]
\[= <20\sqrt{3}N, 20N> \]

\[\vec{F}_2 = <60N \cos(-45°), 60N \sin(-45°)> \]
\[= <60N \left(\frac{\sqrt{2}}{2} \right), 60N \left(-\frac{\sqrt{2}}{2} \right)> \]
\[= <30\sqrt{2}N, -(30\sqrt{2})N> \]

The resultant force is

\[\vec{F}_1 + \vec{F}_2 = <20\sqrt{3}N + 30\sqrt{2}N, 20N - 30\sqrt{2}N> \]
\[\approx <77.07N, -22.43N> \]

Magnitude

\[|| \vec{F}_1 + \vec{F}_2 || \approx \sqrt{(77.07)^2 + (-22.43)^2} \]
\[\approx 80.27N \]

Direction angles

\[\tan(\theta) = -\frac{22.43}{77.07} \text{ in QIII} \]

\[\theta = \tan^{-1} \left(\frac{-22.43}{77.07} \right) \]
\[\approx -16.22° \]

80.27N in the direction -16.22° w.r.t. to the positive x-axis.