§8.2 Polar Equations and Graphs

1. Graph and identify polar equations by converting to rectangular coordinates
2. Test polar equations for symmetry
3. Graph polar equations by plotting points

Examples: page 667
Transform each polar equation to an equation in rectangular coordinates. Then identify and graph the equation.

(13) $r = 4 \implies r^2 = 16$
 $\implies x^2 + y^2 = 16$
a circle of radius $r = 4$ with center at (0,0)

(16) $\theta = \frac{\pi}{3} \implies \tan(\theta) = \sqrt{3}$
 $\implies \frac{y}{x} = \sqrt{3}$
 $\implies y = \sqrt{3} \cdot x$
a line through (0,6) with slope $m = \sqrt{3}$
17) \(r \sin(\theta) = 4 \implies y = 4 \)

A horizontal line with \(y \)-intercept \((0, 4)\)

\[y = 4 \quad (r \sin(\theta) = 4) \]

16) \(r \cdot \cos(\theta) = -2 \implies x = -2 \)

A vertical line with \(x \)-intercept \((-2, 0)\)

\[x = -2 \quad (r \cdot \cos(\theta) = -2) \]

21) \(r = 2 \cos(\theta) \)

\[r^2 = 2r \cos(\theta) \implies x^2 + y^2 = 2x \implies \]

\[(x^2 - 2x) + y^2 = 0 \implies (x^2 - 2x + 1) + y^2 = 1 \implies (x - 1)^2 + y^2 = 1 \]

A circle of radius 1 and with center at the point \((1, 0)\)

\[r = 2 \cdot \cos(\theta) \]

\[(x - 1)^2 + y^2 = 1 \]
27) \(r \cdot \csc(\theta) = -2 \)

\[\frac{r}{\sin(\theta)} = -2 \]

\[R = -2 \sin(\theta) \Rightarrow \]

\[r^2 = -2r \sin(\theta) \Rightarrow \]

\[x^2 + y^2 = -2y \Rightarrow \]

\[x^2 + y^2 - 2y = 0 \Rightarrow \]

\[x^2 + (y^2 - 2y + 1) = 1 \Rightarrow \]

\[x^2 + (y - 1)^2 = 1 \]

A circle of radius 1 and center at the point \((0,1)\)

Theorem: Let \(a \) be a non-zero real number, then the graph of the equation

\[r \cdot \sin(\theta) = a \]

is equivalent to \(y = a \)

A horizontal line with \(y \)-intercept \((0,a)\)

The graph of the equation

\[r \cdot \cos(\theta) = a \]

is equivalent to \(x = a \)

A vertical line with \(x \)-intercept \((a,0)\)
Theorem: Let \(a \) be a positive real number.

Then:

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r = 2a \sin(\theta))</td>
<td>Circle: radius (a), center ((0,0)) in rectangular coordinates</td>
</tr>
<tr>
<td>(r = -2a \sin(\theta))</td>
<td>Circle: radius (a), center ((-a, 0)) in rectangular coordinates</td>
</tr>
<tr>
<td>(r = 2a \cos(\theta))</td>
<td>Circle: radius (a), center ((a, 0)) in rectangular coordinates</td>
</tr>
<tr>
<td>(r = -2a \cos(\theta))</td>
<td>Circle: radius (a), center ((-a, 0)) in rectangular coordinates</td>
</tr>
</tbody>
</table>

Each circle passes through the origin.

Tests For Symmetry:

Theorem:

- **Symmetry with respect to \(x\)-axis.**
 - In a polar graph, replace \(\theta \) with \(-\theta\).
 If an equivalent equation results, the graph is symmetric with respect to the \(x\)-axis. (The line \(\theta = 0 \))

- **Symmetry with respect to the \(y\)-axis.**
 - In a polar graph, replace \(\theta \) by \(\pi - \theta \).
 If an equivalent equation results, the graph is symmetric with respect to the \(y\)-axis. (The line \(\theta = \frac{\pi}{2} \))

- **Symmetry with respect to the origin.**
 - In a polar equation, replace \(r \) by \(-r\) or replace \(\theta \) with \(\theta + \pi \).
 If an equivalent equation results, the graph is symmetric with respect to the origin \((r = 0)\).
Symmetry with respect to the x-axis:

Symmetry with respect to the y-axis:

\[-(r, \theta) = (r, \theta + \pi)\]
Examples:

- \(r = 2 \cdot \cos(\theta) \)

 symmetry w.r.t. x-axis

 (x-axis) \(2 \cdot \cos(-\theta) = 2 \cdot \cos(\theta) \)

 because cosine is an even function

 The graph is symmetric about the x-axis

 (y-axis) \(2 \cdot \cos(\pi - \theta) = 2 \cdot (-\cos(\theta)) = -2 \cdot \cos(\theta) \)

 \(\cos(\pi - \theta) = \cos(\pi) \cdot \cos(\theta) + \sin(\pi) \cdot \sin(\theta) \)

 = \((-1) \cdot \cos(\theta) + (0) \cdot \sin(\theta) \)

 = \(-\cos(\theta) \)

 The graph is not symmetric about the y-axis.

 (origin) if \((-r) = 2 \cdot \cos(\theta) \)
 then \(r = -2 \cdot \cos(\theta) \neq 2 \cdot \cos(\theta) \)

 The graph is not symmetric about the origin.

- \(r^2 = 4 \sin(2\theta) \)

 (x-axis) replace \(\theta \) with \(-\theta \)

 \(4 \sin(2(-\theta)) = 4 \sin(-2\theta) \)

 = \(-4 \sin(2\theta) \)

 \(\neq 4 \sin(2\theta) \)

 If \(r^2 = 4 \sin(-2\theta) \)

 \(r^2 = -4 \sin(2\theta) \)

 \(\neq 4 \sin(2\theta) \)

 The graph is not symmetric about the x-axis.
\[r^2 = 4 \sin(2\theta) \]

(y-axis) replace \(\theta \) with \(\pi - \theta \)

\[4 \sin(2(\pi - \theta)) = \]
\[4 \sin(2\pi - 2\theta) = \]
\[4 \sin(-2\theta) = \]
\[-4 \sin(2\theta) = \neq 4 \sin(2\theta) \]

The graph is not symmetric about the y-axis.

(origin) replace \(r \) with \(-r \)

\[(-r)^2 = r^2 \]
\[(-r)^2 = 4 \sin(2\theta) \] is equivalent to \(r^2 = 4 \sin(2\theta) \)

The graph is symmetric about the origin. (see Figure 31 pg. 404)

\section*{Graphing Polar Equations by Plotting Points}

\[r = \frac{2}{1 - \cos(\theta)} \text{ (parabola)} \]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(r)</th>
<th>(\theta)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>undefined</td>
<td>(\pm \frac{\pi}{6})</td>
<td>1.07</td>
</tr>
<tr>
<td>(\pm \frac{\pi}{4})</td>
<td>14.93</td>
<td>(\pm \frac{4\pi}{3})</td>
<td>1.33</td>
</tr>
<tr>
<td>(\pm \frac{3\pi}{2})</td>
<td>4</td>
<td>(\frac{3\pi}{2})</td>
<td>2</td>
</tr>
<tr>
<td>(\pm \frac{5\pi}{3})</td>
<td>1.33</td>
<td>(\frac{5\pi}{3})</td>
<td>4</td>
</tr>
<tr>
<td>(\pm \frac{11\pi}{6})</td>
<td>1.07</td>
<td>(2\pi)</td>
<td>undefined</td>
</tr>
</tbody>
</table>
\[r = \frac{2}{1 - \cos(\theta)} \]
73 \quad r = \frac{1}{3 - 2 \cos(\theta)} \quad (ellipse)

\begin{array}{c|c}
\theta & r \\
0 & 1.00 \\
\frac{\pi}{6} & 0.79 \\
\frac{\pi}{3} & 0.50 \\
\frac{\pi}{2} & 0.33 \\
\frac{2\pi}{3} & 0.25 \\
\frac{5\pi}{6} & 0.21 \\
\pi & 0.20 \\
\frac{7\pi}{6} & 0.21 \\
\frac{2\pi}{3} & 0.25 \\
\frac{5\pi}{4} & 0.33 \\
\frac{7\pi}{4} & 0.50 \\
\frac{9\pi}{4} & 0.70 \\
2\pi & 1.00 \\
\end{array}
Example:

$$r = 1 + \sin(\theta) \quad \text{(Cardioid)}$$

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>(\pi / 6)</td>
<td>1.50</td>
</tr>
<tr>
<td>(\pi / 3)</td>
<td>1.71</td>
</tr>
<tr>
<td>(\pi / 2)</td>
<td>1.87</td>
</tr>
<tr>
<td>(2\pi / 3)</td>
<td>2.00</td>
</tr>
<tr>
<td>(5\pi / 6)</td>
<td>1.87</td>
</tr>
<tr>
<td>(\pi)</td>
<td>1.71</td>
</tr>
<tr>
<td>3\pi / 2</td>
<td>1.50</td>
</tr>
<tr>
<td>2\pi</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Cardioids

Cardioids are characterized by equations of the form:

1. \(r = a(1 + \cos(\theta)) \) symmetric about the \(x \)-axis
2. \(r = a(1 - \cos(\theta)) \) symmetric about the \(x \)-axis
3. \(r = a(1 + \sin(\theta)) \) symmetric about the \(y \)-axis
4. \(r = a(1 - \sin(\theta)) \) symmetric about the \(y \)-axis

Examples

1. \(r = 2(1 + \cos(\theta)) \)

2. \(r = 2(1 - \cos(\theta)) \)

3. \(r = 2(1 + \sin(\theta)) \)
\[r = 2(1 - \sin(\theta)) \]

\[r = \cos(\theta) \]

\[r = \cos(2\theta) \]

\[r = \cos(3\theta) \]