§5.5 Graphs of the Tangent, Cotangent, Secant, and Cosecant Functions.

Tangent Function \(y = \tan(x) \)

\[
y = \tan(x) = \frac{\sin(x)}{\cos(x)}
\]

\(\tan(x) \) has a period of \(\pi \), so the graph has one period in the interval \((-\frac{\pi}{2}, \frac{\pi}{2})\).

\(\tan(x) \) is not defined at \(x = -\frac{\pi}{2}, \frac{\pi}{2} \) because \(\cos(-\frac{\pi}{2}) = 0 \) and \(\cos(\frac{\pi}{2}) = 0 \).

\(y = \tan(x) \) has vertical asymptotes at \(x = -\frac{\pi}{2} \) and \(x = \frac{\pi}{2} \).

Table 5.5.1

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = \tan(x))</th>
<th>((x,y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\frac{\pi}{2})</td>
<td>undefined</td>
<td></td>
</tr>
<tr>
<td>(-\frac{\pi}{3})</td>
<td>(-\sqrt{3} \approx -1.73)</td>
<td>(-\frac{\pi}{3}, -\sqrt{3})</td>
</tr>
<tr>
<td>(-\frac{\pi}{4})</td>
<td>(-1)</td>
<td>(-\frac{\pi}{4}, -1)</td>
</tr>
<tr>
<td>(-\frac{\pi}{6})</td>
<td>(-\sqrt{3} \approx -0.50)</td>
<td>(-\frac{\pi}{6}, -\sqrt{3})</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(0,0)</td>
</tr>
<tr>
<td>(\frac{\pi}{6})</td>
<td>(\sqrt{3} \approx 0.50)</td>
<td>(\frac{\pi}{6}, \sqrt{3})</td>
</tr>
<tr>
<td>(\frac{\pi}{4})</td>
<td>1</td>
<td>(\frac{\pi}{4}, 1)</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>(\sqrt{3} \approx 1.73)</td>
<td>(\frac{\pi}{3}, \sqrt{3})</td>
</tr>
<tr>
<td>(\frac{\pi}{2})</td>
<td>undefined</td>
<td></td>
</tr>
</tbody>
</table>

\[
\lim_{x \to -\frac{\pi}{2}^+} \tan(x) = -\infty \quad \lim_{x \to -\frac{\pi}{2}^-} \tan(x) = +\infty
\]

\[
\lim_{x \to \frac{\pi}{2}^-} \tan(x) = -\infty \quad \lim_{x \to \frac{\pi}{2}^+} \tan(x) = +\infty
\]
Properties of the tangent function:
1. Domain is all real numbers except odd multiples of $\frac{\pi}{2}$.
2. The range is $(-\infty, \infty)$.
3. The tangent function is symmetric about the origin, it is an odd function.
4. The period of the tangent function is π.
5. The x-intercepts are
 $$\ldots, -3\pi, -2\pi, -\pi, 0, \pi, 2\pi, 3\pi, \ldots$$
6. The vertical asymptotes are
 $$x = -3\frac{\pi}{2}, x = -\frac{\pi}{2}, x = \frac{\pi}{2}, x = 3\frac{\pi}{2}, \ldots$$
Graphing functions of the form

\[y = A \cdot \tan (wx) + B \]

1. Vertical stretch/shrink by a factor of \(|A| \)
 - Reflect across the x-axis if \(A < 0 \)
2. Horizontal expansion/compression by a factor of \(\frac{1}{w} \)
3. Vertical shift by \(|B| \)
 - Up if \(B > 0 \)
 - Down if \(B < 0 \)

Example: \(y = 2 \tan (\pi x) - 1 \)

1. Vertical stretch by a factor of 2
2) Horizontal Compression by a factor of $\frac{1}{7}$

period $p = \frac{\pi}{\frac{1}{7}} = 1$

$y = 2 \tan (\pi x)$

3) Vertical shift down by 1
The Graph of the Cotangent Function

\[y = \cot(x) \]

\[= \frac{1}{\tan(x)} \]

\(\cot(x) \) is undefined at:

\[\cdots, -2\pi, -\pi, 0, \pi, 2\pi, \cdots \]

because \(\tan(x) = 0 \) at:

\[\cdots, -2\pi, -\pi, 0, \pi, 2\pi, \cdots \]

\(y = \cot(x) \) has vertical asymptotes at:

\[\cdots, -2\pi, -\pi, 0, \pi, 2\pi, \cdots \]

\(y = \tan(x) \)
5.5.6

The \(y = \cot(x) \) function has one period in the interval \([-\pi, \pi] \).

\[
\begin{align*}
\lim_{x \to 0^+} \cot(x) &= +\infty, \\
\lim_{x \to -\pi^-} \cot(x) &= -\infty
\end{align*}
\]

(a) The Graph of the Cosecant Function

\[
csc(x) = \frac{1}{\sin(x)}
\]

csc \((x)\) is undefined at \(-2\pi, -\pi, 0, \pi, 2\pi, \ldots\)

because \(\sin(x) = 0\) at \(-\pi, 0, \pi, 2\pi, \ldots\)

\(y = \csc(x)\) has vertical asymptotes at \(x = -2\pi, x = -\pi, x = 0, x = \pi, x = 2\pi, \ldots\)

(b) The graph of the Secant Function:

\[
\sec(x) = \frac{1}{\cos(x)}
\]

is undefined at \(\ldots, -3\pi, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \ldots\)

since \(\cos(x) = 0\) at \(\ldots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \ldots\)

\(y = \sec(x)\) has vertical asymptotes at \(\ldots, x = -\frac{3\pi}{2}, x = -\frac{\pi}{2}, x = \frac{\pi}{2}, x = \frac{3\pi}{2}, \ldots\)
Example: page 442
(30) Graph the function \(y = \csc\left(\frac{3\pi}{2}x\right) \)

Period: \(p = \frac{\frac{3\pi}{2}}{\frac{3\pi}{2}} = \frac{2\pi}{\frac{3\pi}{2}} = \frac{4}{3} \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y = \csc\left(\frac{3\pi}{2}x\right) = \frac{1}{\sin(\frac{3\pi}{2}x)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>(\csc(0)) is undefined</td>
</tr>
<tr>
<td>(\frac{1}{3})</td>
<td>(\csc\left(\frac{\pi}{3}\right) = 1)</td>
</tr>
<tr>
<td>(\frac{2}{3})</td>
<td>(\csc(\pi)) is undefined</td>
</tr>
<tr>
<td>(1)</td>
<td>(\csc\left(\frac{3\pi}{2}\right) = -1)</td>
</tr>
<tr>
<td>(\frac{4}{3})</td>
<td>(\csc(2\pi)) is undefined</td>
</tr>
</tbody>
</table>

\(y = \csc\left(\frac{3\pi}{2}x\right) \)
Example: page 443

(a) Carrying a ladder around a corner.

Two hallways, one with width 4 feet, the other with width 3 feet, meet at a right angle.

(b) Show that the length, \(L \), of the line segment shown, as a function of the angle \(\theta \), is

\[L(\theta) = 3 \cdot \sec(\theta) + 4 \cdot \csc(\theta) \]

\[
\begin{align*}
A & \quad \theta & \quad e_1 & \quad e_2 \\
3 & \quad 4 & \quad 3 & \quad 4 & \quad 3 & \quad 4 \\
\end{align*}
\]

\[
L = e_1 + e_2
\]

\[
A. \quad \cos(\theta) = \frac{3}{e_1} \quad \Rightarrow \quad e_1 = \frac{3}{\cos(\theta)} = 3 \cdot \sec(\theta)
\]

\[
B. \quad \sin(\theta) = \frac{4}{e_2} \quad \Rightarrow \quad e_2 = \frac{4}{\sin(\theta)} = 4 \cdot \csc(\theta)
\]

\[
L = e_1 + e_2
\]

\[
L = 3 \cdot \sec(\theta) + 4 \cdot \csc(\theta)
\]

(b) Graph \(L = 3 \cdot \sec(\theta) + 4 \cdot \csc(\theta) \) for \(0 \leq \theta \leq \frac{\pi}{2} \).
For what value of θ is L least?

The smallest value of L is

$L \approx 9.86$ feet when $\theta \approx 0.8333$ (radians).

What is the longest ladder that can be carried around the corner?

$L \approx 9.86$ feet

as you carry the ladder around the corner. θ takes every value between 0 and $\frac{\pi}{2}$ (radians)

so it can be no larger than the smallest value of L for $0 \leq \theta \leq \frac{\pi}{2}$.